WorldWideScience

Sample records for technology annual progress

  1. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  2. FY13 Annual Progress Report for SECA Core Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-31

    This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation.

  3. FY2015 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-29

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  4. FY2014 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  5. FY2016 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-03

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  6. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  7. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  8. Materials project of the Energy Conversion and Utilization Technologies (ECUT) program for Fiscal Year 1983: Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, L.E.; Jordan, A.; Carpenter, J.A. Jr.

    1987-02-01

    This is the annual technical progress report for fiscal year 1983 of the Materials Project of the US Department of Energy (DOE) Energy Conversion and Utilization Technologies (ECUT) Program. In fiscal year 1983, the ECUT Materials Project conducted research in four technical areas, or ''work elements,'' entitled High Temperature Materials, Lightweight Materials, Materials by Design, and New Assessments and Initiatives. The progress of the various tasks of the work elements is discussed in this report.

  9. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  10. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  11. MHD air heater technology development. Annual technical progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    Progress on the technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described in detail. The objective of task 1 is to continue development of ceramic materials technology for the directly-fired HTAH. The objectives of task 2 are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of task 3 are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

  12. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  13. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  14. Geothermal technology development program. Annual progress report, October 1981-September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1983-08-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

  15. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  16. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--isotope

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  17. Department of energy technology annual progress report 1 January - 31 December 1986

    International Nuclear Information System (INIS)

    Micheelsen, B.; List, F.

    1987-02-01

    The general development of the Department of Energy Technology at Risoe during 1986 is presented, and the activities within the major subject fields are described in some detail. Lists of staff and publications are included. (author)

  18. Department of Energy Technology annual progress report 1 January - 31 December 1984

    International Nuclear Information System (INIS)

    Micheelsen, B.; List, F.

    1985-02-01

    The general development of the Department of Technology at Risoe during 1984 is presented, and the activities within the major subject fields are described in some detail. Lists of staff and publications are included. (author)

  19. Chemical Technology Division annual progress report for period ending March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, D.E.

    1978-08-01

    Separate abstracts were prepared for the various sections on fission energy, coal conversion and utilization, waste management, basic science and technology, biotechnology and environmental studies, special isotope production and separations, Nuclear Regulatory Commission programs, and miscellaneous programs.

  20. Department of Energy Technology annual progress report 1 January - 31 December 1985

    International Nuclear Information System (INIS)

    Micheelsen, B.; List, F.

    1986-02-01

    The general development of the Department of Energy Technology at Risoe during 1985 is presented, and the activities within the major subject fields are described in some detail. Lists of staff and publications are included. (author)

  1. Department of Energy Technology. Annual Progress Report 1 January - 31 December 1982

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Energy Technology at Risø during 1982 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Energy Technology at Risø during 1982 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  2. Chemical Technology Division annual progress report for period ending March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of /sup 233/UO/sub 2/, separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles. (JSR)

  3. Chemical Technology Division annual progress report for period ending March 31, 1976

    International Nuclear Information System (INIS)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of 233 UO 2 , separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles

  4. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy

  5. Ceramic technology report. Semi-annual progress report, April 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1995-06-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Energy Efficiency and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  6. Annual progress report

    International Nuclear Information System (INIS)

    1976-04-01

    A summary is presented of research progress at the University of Illinois at Urbana, Illinois during the calendar year 1975. Included are listings of personnel, reports on facilities and operations, and a list of publications submitted or published and papers presented during 1975

  7. Controlled thermonuclear materials technology program. Annual progress report for period ending June 30, 1975

    International Nuclear Information System (INIS)

    Scott, J.L.

    1975-10-01

    Detailed descriptions are given of research progress in the following areas: (1) microstructure of irradiated 316 stainless steel containing high helium concentrations, (2) temperature and fluence limitations for a type 316 stainless steel CTR first wall, (3) swelling and microstructural changes in irradiated vanadium alloys, (4) mechanical properties of irradiated V-20 wt percent Ti, (5) radiation damage calculations, (6) evaluation of irradiation facilities for CTR materials development, (7) surface studies, compatibility studies, (8) magnet development, (9) EPR design support, and (10) the influence of structural materials on fusion-reactor blanket response. (MOW)

  8. Managing tight-binding receptors for new separations technologies. 1998 annual progress report

    International Nuclear Information System (INIS)

    Busch, D.H.; Givens, R.S.

    1998-01-01

    'Whereas such traditional separation methodologies as ion exchange and solvent extraction require rapid interaction between ligands and metal ions, the most strongly binding ligands invariably bind slowly; e.g., cryptates bind and dissociate more slowly than macrocycles, which are slower than open-chain chelating ligands. This project seeks to maximize the binding and dissociation rates for tight-binding receptors in order to make them more useful to separations science. An alternative slow-binding technology is also under exploration.'

  9. Department of Reactor Technology annual progress report 1 January -31 December 1977

    International Nuclear Information System (INIS)

    1978-04-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, reactor operation, structural reliability, system reliability, reactor physics, fuel management, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, experimental activation measurements and neutron radiography at the DR 1 reactor, underground storage of gas, solar heating and underground heat storage, wind power. (author)

  10. Department of Energy Technology. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Micheelsen, B.; Hoejerup, C.F.

    1990-09-01

    The general development of the Department of Energy Technology at Risoe during 1989 is presented. This year was the last one for the department, as organizational changes at the beginning of 1990 caused a split-up of the sections of the department. The activities within the major fields are described in some detail and lists of staff and publicaltions are included. (author) 10 ills., 29 refs

  11. Department of Reactor Technology: annual progress report 1 January - 31 December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, structural reliability, system reliability, radiation fiels in nuclear power plants, reactor physics, fuel management, fission product decay analysis, steady-state thermo-hydraulics, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, control rod ejection accident analysis, economic studies for power plants, experimental activation measurements and neutron radiography at the DR 1 reactor. (author)

  12. Annual progress report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The technical support activities of the IPSN to competent administrations in 1980 has been marked: namely by the authorizations of divergence for 9 units EdF-PWR of 900 MW, the authorization project of creation and extension of reprocessing plant of COGEMA at the Hague UP 2 -800 and the authorization of starting up of the third unit of production of the EURODIF enrichment plant at Tricastin. On the other hand, IPSN has participated at the elaboration of a certain number of legislative and regulation texts relative to the control of nuclear matter, to radioprotection standards and to criteria of safety. For the safety of breeder, the test made at CABRI pile, in the international research program has given confirmation of the validity of theoretical models used in accidents calculations, hypothetical accidents which has allowed to reactualize safety criteria which have to be used for the development of this type of reactor. In worker radioprotection the results obtained in laboratory on the effect of radon, the progress made in personal dosimetry and the action of radioprotection undertaken in uranium mines constitutes a coherent effort. The deep drilling in granit (1000 m) and the experimental associated program which has finished the indispensable scientific data for the future policy in matter of storage of radioactives wastes. IPSN has contributed to progress made in the rules of exploitation of reactors, in the definition of wastes containment -specially at the output of reprocessing plant- in handling machines in hazardeous areas and in the study of environment [fr

  13. Annual progress report 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Through the years, the research and development efforts of PAEC have been geared to promoting the peaceful utilization of atomic energy and ensuring public health and safety in the use of atomic energy facilities. Comprehensively discussed are the research projects, activities, supportive services and other areas of accomplishments of PAEC. These are generally divided into categories under I. Research and Development: (a) Food, Agriculture (b) Nuclear Fuels and Power Systems Technology (c) Public Health and Nutrition Research (d) Supportive basic research and (e) Environmental Surveillance; II. Nuclear Safety: (a) Radiological Protection and safety (b) Nuclear Licensing and Safeguards; III. Supportive Technology such as: (a) Radioisotope Production and Development (b) Nuclear Manpower Development (c) Nuclear Information and Public acceptance (d) Program Management (e) Nuclear Regulation. A listing of projects and annotations are included under each category. (RTD)

  14. 1983. Annual progress report

    International Nuclear Information System (INIS)

    1984-01-01

    A beautiful experiment series for studying high energy excitation structures (10 to 80 MeV), concerning very heavy and asymmetric systems. CEV-Alice contributions to annual report concern Hg and Er high spin energy levels. About reaction mechanisms, the following contributions can be noticed: proton backward emission experiment results of high energy, at 200 MeV, on numerous targets; spectroscopic studies of direct transfer reactions by 18 O with measurement of angular distributions until 0 0 ; many heavy ion experiments around 30 MeV/u concerning the mechanism evolution between 10 and 100 MeV. Pion coherent production experiments have been made this year on energy dependence of the reaction 3 He+ 3 He → 6 Li+π + , considered as an existing model test. Cross section measurement of the elementary reactions (p,π + ) on three targets of very different masses, in a large energy scale and a wide angular domain, have been measured at the Synchrocyclotron. Concerning the nuclear structure in low and medium energy levels, elastic scattering and transfer studies are to be noticed particularly in transition nuclei region. Exotic nuclei rich in neutrons, with medium mass, Fe, Co, Ni, Zn have been studied using the 14 C beam of the Orsay tandem. The radiochemistry group work is essentially centered on actinides study [fr

  15. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.5

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fifth one, the content is about radiation protection and nuclear chemical industry.

  16. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  17. 1985. Progress annual report

    International Nuclear Information System (INIS)

    1986-06-01

    Tore Supra construction has been vigorously continued. The whole cryogenic system has been entirely delivered. On TFR priority has been given to electron cyclotron resonance heating; but also neutral heating mechanisms, pellet injection, plasma-wall interaction in the presence of pumped limiter, impurity transport and plasma turbulence have been studied and progress on diagnostics have been made. On Petula, with lower hybrid wave, the numerous results on ion heating, current drive, plasma stability in the presence of non-inductive current and on Tore Supra technical problems are important. At last, theoretical and numerical results are concerned with plasma equilibrium macroscopic evolution of plasma, RF heating, plasma instabilities, magnetic islands, turbulence, transport coefficients and spectroscopy [fr

  18. 1983 Annual progress report

    International Nuclear Information System (INIS)

    1984-05-01

    This report is concerned with the whole activities of the LETI (Laboratoire d'Electronique et de Technologie de l'Informatique) during 1983. They defined three sections wich are ''materials'', ''electronic components'' and the one called ''instrumentation and systems''. Among the magnetic materials, materials for magnetic bubble memories are concerned. Among semi-conductor materials, first, crystals of gallium arsenide and germanium are peculiarly studied; then researches on crystal growth processes aim at deposition of zinc or cadmium sulfide thin layers in aqueous solutions; and, finally, piezoelectric material researches consisted essentially in developing fabrication processes of lithium niobiate. Materials for infra-red devices are also studied together with materials related to optical microstructures (LNA, MgF 2 , LiYF 4 ). The section ''Components'' comprises silicium microelectronics (ionic implantation techniques, MOS systems, etc), the magnetic bubble memories, the components related to integrated circuits for infrared imaging or to Josephson effect devices. Display, sensors, optical telecommunications, wiring terminations are also concerned. Physics and medicine instrumentation (magnetometry, time-of-flight positon tomography, X-ray tomography, NMR spectrometry in-vivo), robotics and technology of acquisition and processing of images (in view of an automatic control) are activities of the last section [fr

  19. 2017 Annual Technology Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hand, M. M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beiter, Philipp C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maness, Michael [Formerly NREL; O' Connor, Patrick [Oak Ridge National Laboratory

    2018-03-26

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV, residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.

  20. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--pulse power technology and its application sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about pulse power technology and its application sub-volume

  1. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization sub-volume

  2. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology

  3. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  4. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  5. Annual technology assessment and progress report for the buried transuranic waste program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Berreth, P.D.

    1984-11-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive waste. In 1983, DOE formulated a comprehensive plan to manage transuranic (TRU) defense waste. The DOE plan for buried TRU waste is to monitor it, take remedial actions as necessary, and reevaluate its safety periodically. The DOE strategy reflects concern that, based on present technology, retrieval and processing of buried waste may be risky and costly. To implement the DOE plan, EG and G Idaho, Inc., prime contractor at the Idaho National Engineering Laboratory (INEL), has developed a strategy for long-term management of the 2 million cubic feet of INEL buried TRU waste. That strategy involves four main activities: (a) environmental monitoring, (b) remedial action if necessary, (c) assimilation of data from both special studies and ongoing waste management activities, and (d) selection of a long-term management alternative in 1995. This report, submitted as the first in a series of annual reports, summarizes the buried TRU waste activities performed in fiscal year (FY) 1984 at the INEL in response to the DOE plan. Specifically, technologies applicable to buried waste confinement, retrieval, certification, and processing have been assessed, a long-range plan to conduct buried wasted studies over the next ten years has been prepared, and retrieval and soil management alternatives have been evaluated. 17 references, 7 figures, 1 table

  6. Managing tight-binding receptors for new separations technologies. Annual progress report, September 15, 1996 - June 10, 1997

    International Nuclear Information System (INIS)

    Busch, D.H.; Givens, R.S.

    1997-01-01

    'This program is fully staffed and all proposed investigations are proceeding as outlined in the Task Schedule of the original proposal. The program aims remain unchanged and excellent progress is reported below. The authors anticipate no substantial unexpended funds from the first year''s budget at the end of the first year of support. Any such remaining funds will certainly be less than 10% of the budget; less than 5% is expected. Three projects make up this program and each focuses on a single aspect of the major problem of overcoming the inherent slow reaction rates of tight-binding ligands. In a logical order, Project 1 addresses the rates of formation of metal complexes using tight-binding ligands; Project 2 addresses the rate of release of metal ions from complexes with tight-binding ligands; and Project 3 provides the possibility of a new technology that should be unimpeded by the inherent dilatory rates.'

  7. Managing tight-binding receptors for new separations technologies. Annual progress report, September 15, 1996--June 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Busch, D.H.; Givens, R.S.

    1997-01-01

    'This program is fully staffed and all proposed investigations are proceeding as outlined in the Task Schedule of the original proposal. The program aims remain unchanged and excellent progress is reported below. The authors anticipate no substantial unexpended funds from the first year''s budget at the end of the first year of support. Any such remaining funds will certainly be less than 10% of the budget; less than 5% is expected. Three projects make up this program and each focuses on a single aspect of the major problem of overcoming the inherent slow reaction rates of tight-binding ligands. In a logical order, Project 1 addresses the rates of formation of metal complexes using tight-binding ligands; Project 2 addresses the rate of release of metal ions from complexes with tight-binding ligands; and Project 3 provides the possibility of a new technology that should be unimpeded by the inherent dilatory rates.'

  8. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  9. Annual progress report FY 1977

    International Nuclear Information System (INIS)

    Hansen, K.F.; Henry, A.F.

    1977-07-01

    Progress is summarized in a project directed toward development of numerical methods suitable for the computer solution of problems in reactor dynamics and safety. Specific areas of research include methods of integration of the time-dependent diffusion equations by finite difference and finite element methods; representation of reactor properties by various homogenization procedures; application of synthesis methods; and development of response matrix techniques

  10. CEA Annual progress report 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report presents the general organization of the CEA, the international relations and politics in nuclear field, the activities (military application, nuclear applied research, ANDRA (National Agency for Radioactive Waste Management), nuclear safety and protection, fundamental research, applied research other than nuclear), the industrial group; among topics about men and means, the budget execution of the public establishment of research. In annex, the nuclear power plants around the world and the principal legislative texts related to CEA or atomic energy published in 1986 [fr

  11. Missouri local technical assistance program at Missouri University of Science and Technology (formerly University of Missouri--Rolla) : annual progress report January-December 2007.

    Science.gov (United States)

    2009-02-01

    This annual report is a summary of the activities during 2007 for the Missouri Local Technical Assistance Program (Missouri LTAP), which is located at Missouri University of Science and Technology. The report highlights Missouri LTAPs performance ...

  12. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany. Reporting period 1993. Progress report

    International Nuclear Information System (INIS)

    1994-10-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general information of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  13. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  14. Annual technology assessment and progress report for the Buried Transuranic Waste Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    An improved-confinement technology as applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste is being investigated. An improved-confinement technology, in situ grouting, is being demonstrated in a 2-year engineering feasibility test at the INEL. Grout formulation and development were completed by Oak Ridge National Laboratory in Tennessee to support the in situ grouting test. Three grout formulations have been adapted to the arid, unsaturated soil conditions at the INEL: ordinary particulate grout; microfine penetration grout; soil grout. Three test trenches were constructed north of the INEL's Subsurface Disposal Area (SDA). Nonradioactive waste forms closely resembling TRU waste buried at the INEL have been fabricated and are ready for emplacement into these test trenches. A literature search for a simulated (analog) TRU tracer was completed as well as a chemical characterization of the INEL soil. Data developed from the chemistry characterization and literature search have been inputed into the selection and laboratory testing of the TRU analog tracers. Simulated TRU tracers will be loaded into waste forms prior to emplacement into the test trenches. Test trench data acquisition instrumentation will be installed during waste form emplacement. Instrumentation will monitor for moisture movement and tracer detection. Plans for test completion in FY-1986 are also shown. Various buried waste improved-confinement technologies performed by other Department of Energy sites were assessed for applicability to the INEL buried TRU waste. Primary demonstrations were performed at the Hanford site in Washington and at ORNL. This report also includes information on accomplishments of related activities at the INEL such as the program for Environmental Surveillance of the Radioactive Waste Management complex as well as the Subsurface Migration Studies. 18 refs., 11 figs., 12 tabs

  15. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear Information and computer applications

  16. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.6--computational physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 13 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about computational physics sub-volume

  17. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.8--nuclear agriculture sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about nuclear agriculture sub-volume

  18. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.2--uranium mining and metallurgy sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 48 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining and metallurgy sub-volume

  19. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.3--nuclear power sub-volume (Pt.2)

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 86 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the third one, the content is about nuclear power sub-volume (Pt.2)

  20. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--isotope separation sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 37 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about isotope separation sub-volume

  1. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.8--radiation research and its application sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 12 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation research and its application sub-volume

  2. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  3. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--uranium mining and metallurgy sub-volume

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  4. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.6--particle accelerator sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about particle accelerator sub-volume

  5. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  6. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.8--radiation research and its application sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation research and its application

  7. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  8. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  9. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  10. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  11. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  12. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  13. Gas-Cooled Reactor Programs. High-Temperature Gas-Cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kasten, P.R.

    1978-07-01

    Progress in HTGR studies is reported in the following areas: fission product technology and coolant impurity effects, fueled graphite development, PCRV development, structural materials, characterization and standardization of graphite, and evaluation of the pebble-bed type HTR.

  14. 2016 Annual Technology Baseline (ATB)

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O' Connor, Patrick; Waldoch, Connor

    2016-09-01

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  15. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; Porro, Gian; O' Connor, Patrick; Waldoch, Connor

    2016-09-13

    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  16. Resistance to technological progress

    International Nuclear Information System (INIS)

    Isensee, J.

    1983-01-01

    This article deals with the tolerance test the constitutional system (Basic Law) of the Federal Republic of Germany is currently put to as a consequence of the resistance to the power structure of this country, which is expressed in the name of protection and defense for the environment and world peace. This biopacifistic resistance movment, the author says, has nothing to do with the legal right to resist, as laid down in art. 20 (4) of the Basic Law. According to the author, this attitude is an offspring of fear of the hazards of technological progress, primarily of nuclear hazards. Practical resistance, the author states, is preceded by theoretical resistance in speech: De-legitimation of the democratic legality, of the parliamentary functions, of the supreme power of the government, and denial of the citizens duty of obedience. The author raises the question as to whether this attitude of disobedience on ecological grounds marks the onset of a fourth stage of development of the modern state, after we have passed through stages characterised by fear of civil war, of tyranny, and of social privation and suffering. There are no new ideas brought forward by the ecologically minded movement, the author says, for re-shaping our institutions or constitutional system. (HP) [de

  17. FY2016 Lightweight Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  18. Progressive technologies in furniture design

    OpenAIRE

    Šebková, Martina

    2014-01-01

    Šebková, M. Progressive technologies in furniture design. Diploma thesis, Brno, Mendel University in Brno, 2014 Diploma thesis 'Progressive technologies in furniture design' is focused on the use of modern technologies in furniture production. The theoretical part explains the basic terms, technology and material options. It focuses mainly on the production of 3D printed furniture and possibilities of virtual testing, measurements, scanning and rapid prototyping. Practical part of diploma the...

  19. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  20. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Middleton, D. E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    2009-10-15

    This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo

  1. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  2. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  3. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Middleton, D. E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Ananthakrishnan, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Siebenlist, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Shoshani, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Drach, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahrens, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jones, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, D. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Chastang, J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Cinquini, L. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Fox, P. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Harper, D. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Hook, N. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Nienhouse, E. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Strand, G. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); West, P. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Wilcox, H. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Wilhelmi, N. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Zednik, S. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Hankin, S. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Schweitzer, R. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Bernholdt, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bharathi, S. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Chervenak, A. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Schuler, R. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute; Su, M. [Univ. of Southern California, Marina Del Rey, CA (United States). Information Sciences Institute

    2010-04-21

    This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

  4. Pile technology section, annual report for 1955

    Energy Technology Data Exchange (ETDEWEB)

    1956-03-15

    This report is the 1955 annual report from the Pile Technology Section at Hanford. It summarizes work on pile engineering, pile materials, physics research, metallurgy, and fuel technology, related to the production reactors at Hanford.

  5. 1999 annual progress report -- Energy conservation team

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. (EERE OTT Office of Advanced Automotive Technologies Energy Conversion Team Leader)

    1999-10-19

    This report highlights progress achieved during FY 1999 under the Light-duty Fuels Utilization R and D Program. The program is comprised of two elements: the Advanced Petroleum-Based APB Fuels Program which focused on developing and testing advanced fuels for use with compression-ignition direct-injection (CIDI) engines and fuel cells and the Alternative Fuels Program which focused on Natural gas and natural gas derived fuels. The report contains 17 summaries of industry and National Laboratory projects. Fuel efficient vehicles with very low emissions are essential to meet the challenges of climate change, energy security, and improved air quality. The authors anticipate cooperative efforts with the auto and energy industries to develop new and innovative technologies that will be used to make advanced transportation vehicles that are fuel efficient, clean, and safe.

  6. Progress report 1995 on fusion technology tasks

    International Nuclear Information System (INIS)

    Laan, J.G. van der

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.)

  7. FINANCIAL IMPLICATIONS OF TECHNOLOGICAL PROGRESS

    Directory of Open Access Journals (Sweden)

    Mihaela ȘTEȚ

    2013-06-01

    Full Text Available The study analyses the problem of financing the innovation that is one of the biggest problems facing the companies that want to be innovative. As a consequence, the paper reveals the main forms of funding the technological progress with their advantages and drawbacks. In particular, it is highlighted the role of innovation and research in the performance of SME and, in relation with them, the difficulties for this companies to access funding under crisis conditions.

  8. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  9. Solar thermal power systems. Annual technical progress report, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  10. Progress report 1994 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1995-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1994. The work is organized in R and D contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. A list of publications and staff members is also given. (orig.)

  11. Progress report 1992 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1993-08-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1992. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  12. Progress report 1993 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  13. Progress report 1993 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T. [ed.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.).

  14. Gas-cooled reactor programs: High-Temperature Gas-Cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Progress in HTGR studies is reported in the following areas: HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; and evaluation of the pebble-bed HTR.

  15. Information Loss from Technological Progress

    Science.gov (United States)

    Townsend, P. D.

    2014-12-01

    Progress in electronics and optics offers faster computers, and rapid communication via the internet that is matched by ever larger and evolving storage systems. Instinctively one assumes that this must be totally beneficial. However advances in software and storage media are progressing in ways which are frequently incompatible with earlier systems and the economics and commercial pressures rarely guarantee total compatibility with earlier systems. Instead, the industries actively choose to force the users to purchase new systems and software. Thus we are moving forward with new technological variants that may have access to only the most recent systems and we will have lost earlier alternatives. The reality is that increased processing speed and storage capacity are matched by an equally rapid decline in the access and survival lifetime of older information. This pattern is not limited to modern electronic systems but is evident throughout history from writing on stone and clay tablets to papyrus and paper. It is equally evident in image systems from painting, through film, to magnetic tapes and digital cameras. In sound recording we have variously progressed from wax discs to vinyl, magnetic tape and CD formats. In each case the need for better definition and greater capacity has forced the earlier systems into oblivion. Indeed proposed interactive music systems could similarly relegate music CDs to specialist collections. The article will track some of the examples and discuss the consequences as well as noting that this information loss is further compounded by developments in language and changes in cultural views of different societies.

  16. Information Loss from Technological Progress

    International Nuclear Information System (INIS)

    Townsend, P D

    2014-01-01

    Progress in electronics and optics offers faster computers, and rapid communication via the internet that is matched by ever larger and evolving storage systems. Instinctively one assumes that this must be totally beneficial. However advances in software and storage media are progressing in ways which are frequently incompatible with earlier systems and the economics and commercial pressures rarely guarantee total compatibility with earlier systems. Instead, the industries actively choose to force the users to purchase new systems and software. Thus we are moving forward with new technological variants that may have access to only the most recent systems and we will have lost earlier alternatives. The reality is that increased processing speed and storage capacity are matched by an equally rapid decline in the access and survival lifetime of older information. This pattern is not limited to modern electronic systems but is evident throughout history from writing on stone and clay tablets to papyrus and paper. It is equally evident in image systems from painting, through film, to magnetic tapes and digital cameras. In sound recording we have variously progressed from wax discs to vinyl, magnetic tape and CD formats. In each case the need for better definition and greater capacity has forced the earlier systems into oblivion. Indeed proposed interactive music systems could similarly relegate music CDs to specialist collections. The article will track some of the examples and discuss the consequences as well as noting that this information loss is further compounded by developments in language and changes in cultural views of different societies

  17. Annual Research Progress Report, Fiscal Year 1982,

    Science.gov (United States)

    1982-10-01

    1982 Peters, V.J. The runner and biomechanics. Texas Academy of Family Physicians, San Antonio, TX, 20 Feb 1982. Peters, V.,. Use of peripheral...Bone scanning in Legg-Perthes disease. Annual Michael loke- -Hiran Kite Program, Scottish Rite Hospital, Atlanta, GA, 23-24 Apr 1982. Thomas, S.R

  18. Clinical Investigation Program Annual Progress Report

    Science.gov (United States)

    1993-09-30

    Assisted Cell Sorting (FACS). Data collection is in progress. CPS successfully identified antibody titers for bullous pemphigoid and pemphigus vulgaris ...Status: Completed (4) Title: Determination of Indirect Immunofluorescence Results in Bullous Pemphigoid and Pemphigus (5) Start Date: 1992 (6) Est

  19. Technology Deployment Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  20. Clinical Investigation Program. Annual Research Progress Report.

    Science.gov (United States)

    1980-09-30

    Annual Meeting, American Academy of Allergy, Atlanta, GA, 16-20 Feb 1980. (C) Mansfield, L.E.: Canine Bronchoconstriction Provoked by Esophageal...Preve.ntion ind Prel iril,ary Re- port of Quantitative Antcpo:tum Cultures. Presented: Cb-GYN Infectious Disease Symposium, Boca R-iton, FL, Dec 1979...protocol - (, Department of Pediatrics - continued Parry, W.H., Madden, W.A.: Bronchoscope Findings in Bacterial Laryngo- tracheobronchitis . PresEnted

  1. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  2. Annual Research Progress Report, Fiscal Year 1981,

    Science.gov (United States)

    1981-10-01

    count, sperm motility, sperm morphology, sperm viability, seminal prostaglandins, seminal fructose , seminal zinc, seminal gonadotropins. and gonadal...prostaglandins E, prostaglandins F, and various other seminal fluid components such as fructose , zinc, gonadotropins, and gonadal steroids. PROGRESS...UNIT NO: 81/107 TEHCNICAL OBJECTIVES To determine if there is malabsorption in infants in the intensive care nursery after first feedings and if there

  3. Recent progress in VSTOL technology

    Science.gov (United States)

    Roberts, L.; Deckert, W. R.

    1982-01-01

    Progress in vertical and short takeoff and landing (V/STOL) aircraft technology, in particular, during the 1970 to 1980 period at Ames Research Center is discussed. Although only two kinds of V/STOL aircraft (the helicopter and the British direct lift Harrier) have achieved operational maturity, understanding of the technology has vastly improved during this 10 year period. To pursue an aggressive R and D program at a reasonable cost, it was decided to conduct extensive large scale testing in wind tunnel and flight simulation facilities, to develop low cost research aircraft using modified airframes or engines, and to involve other agencies and industry contractors in joint technical and funding arrangements. The STOL investigations include exploring STOL performance using the rotating cylinder flap concept, the augmentor wing, upon initiation of the Quiet Short Haul Research Aircraft program, the upper surface blown flap concept. The VTOL investigations were conducted using a tilt rotor aircraft, resulting in the XV-15 tilt rotor research aircraft. Direct jet lift is now being considered for application to future supersonic fighter aircraft.

  4. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  5. Annual Research Progress Report, Fiscal Year 1982,

    Science.gov (United States)

    1982-10-01

    viability, seminal prostaglandins, seminal fructose , seminal zinc, seminal gonadotropins, and gonadal steroids. Seminal prostaglandin content will be compared...seminal fluid components such as fructose , zinc, gonadotropins, and gonadal steroids. PROGRESS (78 06 - 82 09) Efforts are continuing to obtain a...ASSISTANTS: CPT Richard Meidell, MC CPT James Little, MSC WORY ’NIT NO: 81/107 TECHNICAL OBJECTIVE %; "o Ietermine it there is malabsorption in infants in the

  6. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  7. Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2001 Through March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    J. P. Moore, JPM

    2002-05-22

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  8. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2002 Through September 30, 2003

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.

    2004-05-18

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2003. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  9. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  10. Systems Analysis Department annual progress report 1998

    DEFF Research Database (Denmark)

    1999-01-01

    The report describes the work of the Systems Analysis Department at Risø National Laboratory during 1998. The department undertakes research within Energy Systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, IndustrialSafety and Reliability, Man/Machine Interac....../Machine Interaction, and Technology Scenarios. The report includes lists of publications, lectures, committees and staff members....

  11. Systems Analysis Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    This report describes the work of the Systems Analysis Department at Risø National Laboratory during 1999. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning - UNEP Centre, Safety,Realiability and Human Factors, and Technology...

  12. Systems Analysis Department annual progress report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Loevborg, Leif [eds.

    1999-03-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1998. The department undertakes research within Energy Systems Analysis, Integrated Energy, Environment and Development Planning - UNEP Centre, Industrial Safety and Reliability, Man/Machine Interaction and Technology Scenarios. The report includes lists of publications, lectures, committees and staff members. (au) 111 refs.

  13. Systems Analysis Department. Annual Progress Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Olsson, Charlotte; Loevborg, Leif [eds.

    2000-03-01

    This report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1999. The department is undertaking research within Energy Systems Analysis, Energy, Environment and Development Planning-UNEP Centre, Safety, Reliability and Human Factors, and Technology Scenarios. The report includes summary statistics and lists of publications, committees and staff members. (au)

  14. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  15. FY2016 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    Vehicle Systems is concerned with advancing light-, medium-, and heavy-duty (HD) vehicle systems to support DOE’s goals of developing technologies for the U.S. transportation sector that enhance national energy security,increase U.S. competitiveness in the global economy, and support improvement of U.S. transportation and energy infrastructure.

  16. Research 1970/1971: Annual Progress Report.

    Science.gov (United States)

    Georgia Inst. of Tech., Atlanta. Science Information Research Center.

    The report presents a summary of science information research activities of the School of Information and Computer Science, Georgia Institute of Technology. Included are project reports on interrelated studies in science information, information processing and systems design, automata and systems theories, and semiotics and linguistics. Also…

  17. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2009-04-01

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  18. Annual Technical Progress Report of the Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2008 through September 30, 2009

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2010-05-01

    The Office of Space and Defense Power Systems of the U. S. Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators (RTG) were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. ORNL has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2009. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  19. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2012-05-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

  20. Technological progress and average job matching quality

    OpenAIRE

    Centeno, Mário; Corrêa, Márcio V.

    2009-01-01

    Our objective is to study, in a labor market characterized by search frictions, the effect of technological progress on the average quality of job matches. For that, we use an extension of Mortensen and Pissarides (1998) and obtain as results that the effects of technological progress on the labor market depend upon the initial conditions of the economy. If the economy is totally characterized by the presence of low-quality job matches, an increase in technological progress is accompanied by ...

  1. Metallurgy Department. Annual progress report for 1989

    International Nuclear Information System (INIS)

    Horsewell, A.; Hansen, N.

    1990-07-01

    Selected activities of the Metallurgy Department at Risoe National Laboratory during 1989 are described. The work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its acitivities within eduation and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publicaltions, lectures and poster presentations are included. (author) 90 refs

  2. Metallurgy Department annual progress report for 1987

    International Nuclear Information System (INIS)

    Schroeder Pedersen, A.; Bilde-Soerensen, J.B.; Hansen, N.

    1988-05-01

    Selected activities of the Metallurgy Department at Risoe National Laboratory during 1987 are described. The work is presented in four chapters: Materials Science, Materials Engineering, Materials Technology and Energy Programmes. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main numbers illustrating the Departments's economy are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. 38 ills. (author)

  3. Metallurgy Department. Annual progress report for 1988

    International Nuclear Information System (INIS)

    Schroeder Pedersen, A.; Bilde-Soerensen, J.B.; Hansen, N.

    1989-05-01

    Selected activities of the Metallurgy Department at Risoe National Laboratory during 1988 are described. The work is presented in four chapters: Materials Science, Materials Engineering, Materials Technology and Energy Programmes. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main numbers illustrating the Department's economy are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. (author) 36 ills., 81 refs

  4. Materials Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Horsewell, A.; Hansen, N.

    1994-06-01

    Selected activities of the Materials Department at Risoe National Laboratory during 1993 are described. The work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. (au) (220 refs.)

  5. SET Careers Program: An interactive science, engineering, and technology career education exhibit. Annual progress report, September 1, 1992--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cole, P.R.

    1993-03-31

    The New York Hall of Science, in response to the national crisis in education and employment in science and engineering, is developing and pilot testing a unique, interactive, video-based, hypermedia series on energy-related and other science and engineering careers for middle and junior high school students. Working in collaboration with the Consortium for Mathematics and its Applications (COMAP) and the Educational Film Center (EFC), this pilot-demonstration phase will last 14 months, during which time the basic design, production, and testing of eight science and engineering career modules (video and software) will be completed and installed as an interactive educational exhibit at the New York Hall of Science. This career education package will then be distributed to other science technology centers nationwide.

  6. Radiochemistry Division annual progress report : 1990

    International Nuclear Information System (INIS)

    Iyer, R.H.

    1992-01-01

    This progress report provides an account of the research and development activities of the Radiochemistry Division during the year 1990 in the areas of nuclear chemistry, actinide chemistry and spectroscopy. The main area of work in nuclear chemistry is centered around the fission process induced by reactor neutrons, and light and heavy ions on actinides and low Z (Z<80) elements. Actinide chemistry research is concerned mostly with extraction, complexation and separation of actinide ions from aqueous media using a variety of organic reagents under different experimental conditions. Spectroscopic studies include development and optimisation of chemical/analytical methods for separation and determination of trace metallic impurities and rare earths in fuel materials and EPR and microwave studies on several compounds to understand their superconducting, structural and magnetic properties. A list of publications by the scientific staff of the Division during 1990 is also given in the report. (author). 45 figs., 44 tabs

  7. Radiochemistry Division: annual progress report: 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The progress of Research and Development (R and D) activities during the year 1987 are reported in the form of summaries, which are presented under the headings (1) Actinide Chemistry, (2) Nuclear Chemistry, and (3) Spectroscopy. Microwave absorption studies of the high Tsub(c) oxide superconductor YBa 2 Cu 3 Osub(7-x) using electron paramagnetic resonance techniques are the new feature during the report year. Radioanalytical services and radiation sources in the form of electrodeposited sources or standard soluti ons were also given to the other Divisions, other units of the Department of Atomic Energy, and other organisations in the country. A list of papers by the members of the Division published in various journals and presented at various symposia, conferences etc. is given at the end of the report. (M.G.B.). refs., 51 tabs., 33 figs

  8. Studies in developmental immunogenetics. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R D

    1976-05-26

    Progress is reported on studies of genetic regulation, mainly in complex organisms, and with an emphasis on the immune system as a model for developmental analysis and as a tool for following the development of other systems, especially the brain. Results are reported from studies of biochemical genetics, primarily from a developmental viewpoint and with particular regard to defense mechanisms; cellular aspects of the immune system; the area of cancer immunology and cell specificities as related to tumor systems, primarily from an immunogenetic viewpoint and with particular reference to leukemias in the mouse; and the disruptions of genetic control mechanisms in tumor development, especially as approached through the reappearance of fetal antigens associated with tumor development.

  9. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  10. Hazards Control Department annual technology review, 1984

    International Nuclear Information System (INIS)

    Griffith, R.V.; Anderson, K.J.

    1985-01-01

    The Annual Technology Review covers the period from October 1983 to September 1984. Topics reviewed include Nuclear Criticality Information System, nuclear dosimetry, personnel dosimetry, laser chemistry, electric filters and neutron spectrometry. Individual papers are indexed and abstracted for the data base. (DT)

  11. Neutron scattering. Annual progress report 1997

    International Nuclear Information System (INIS)

    Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A.

    1998-02-01

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs

  12. Physics and Advanced Technologies 2001 Annual Report

    International Nuclear Information System (INIS)

    Jacobs, R

    2002-01-01

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  13. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  14. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  15. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  16. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  17. Atmospheric sciences annual progress report, 1974

    International Nuclear Information System (INIS)

    Tucker, W.D.

    1975-11-01

    Activities in atmospheric sciences in the Department of Applied Science at Brookhaven National Laboratory carried out during 1974 are described. Included are contributions from the Meteorology, Atmospheric Diagnostics, Atmospheric Chemistry Research, and Atmospheric Instrumentation Groups. Programs in Meteorology reported on include diffusion from an off-shore source, plume dynamics studies, modeling of coastal effects on wind and temperature fields and pollutant distributions, effects of indoor shelter on inhalation of airborne radionuclides, chemical-dynamical interactions, techniques for determining acid-rain impact upon the ecology of the eastern U.S., and climatology. Work under Atmospheric Chemistry Research was concentrated on atmospheric aerosol studies, including formation by free radical and neutral association reactions, identification of reactive systems leading to aerosol formation, growth of sodium aerosols under atmospheric conditions and clustering reactions. Atmospheric Diagnostics presents work on field sampling and analytical technology for atmospheric pollutants, airborne sampling systems, atmospheric sulfate particulates methodology, and on a pyroturbidometric method for particulate sulfate discrimination and determination. Methodology for the use of sulfur hexafluoride in field tracer studies is discussed under Atmospheric Instrumentation. A list of publications is included

  18. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  19. Federal Facility Agreement Annual Progress Report for Fiscal Year 1998

    International Nuclear Information System (INIS)

    Palmer, E.

    1999-01-01

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement

  20. Federal Facility Agreement Annual Progress Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1999-08-04

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

  1. 1993 annual final progress report: July 1992 through June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Crotty, G.; Chen, Z.; Sana, P.; Salami, J.; Doolittle, A.; Pang, A.; Pham, T. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

    1994-11-01

    This is the first annual report since the Inauguration of the University Center of Excellence for Photovoltaics Research and Development (UCEP) at Georgia Tech. The essential objective of the Center is to improve the fundamental understanding of the science and technology of advanced PV devices and materials, to provide training and enrich the educational experience of students in the field, and to increase US competitiveness by providing guidelines to industry and DOE for achieving cost-effective and high efficiency PV devices. These objectives are to be accomplished through a combination of research and education. This report summarizes the technical accomplishments, including modeling, processing, and characterization of cast multicrystalline silicon solar cells; use of modeling and PCD measurements to develop a road map for progressing toward 20% multicrystalline and 25% single crystalline cells; the development of a novel PECVD SiN/SiO{sub 2} AR coating that also provides good surface passivation; PECVD deposited SiO{sub 2} films with record low S and D{sub it} at the SiO{sub 2}/Si interface; and educational activities and accomplishments.

  2. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  3. Progress in supersonic cruise technology

    Science.gov (United States)

    Driver, C.

    1983-01-01

    The Supersonic Cruise Research (SCR) program identified significant improvements in the technology areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements, when combined in a large supersonic cruise vehicle, offer a far greater technology advance than generally realized. They offer the promise of an advanced commercial family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. These same areas of technology have direct application to smaller advanced military aircraft and to supersonic executive aircraft. Several possible applications will be addressed.

  4. Semiconductor technology program. Progress briefs

    Science.gov (United States)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  5. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  6. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  7. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

  8. Integral Fast Reactor Program. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  9. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  10. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  11. FY2015 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-30

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  12. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  13. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately

  14. Annual meeting on nuclear technology 2011. Documentation

    International Nuclear Information System (INIS)

    2011-01-01

    The program of annual meeting on nuclear technology 2011 included plenary sessions, topical sessions, a workshop and technical sessions. The topical sessions covered the following topics: the final waste disposal, from scientific basis to application; nuclear competence in Germany and Europe; sodium cooled fast reactors; characteristics of a high reliability organization (HRO) considering experience gained from events at nuclear power stations; CFD simulations for safety related tasks. The workshop concerned the issue preserving competence in nuclear technology. The technical sessions covered the following issues: reactor physics and methods of calculations; Thermo- and fluid dynamics; radioactive waste management - storage; fusion technology; safety of nuclear installations - methods, analyses, results; operation of nuclear installations; decommissioning of nuclear installations; education, expert knowledge, know-how transfer; new build and innovations; front end of the fuel cycle, fuel elements and core components, radiation protection; energy industry and economics.

  15. Semiconductor technology program: Progress briefs

    Science.gov (United States)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  16. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  17. Capital accumulation and embodied technological progress

    NARCIS (Netherlands)

    Grass, D.; Hartl, R.F.; Kort, P.M.

    This paper combines technology adoption with capital accumulation taking into account technological progress. We model this as a multi-stage optimal control problem and solve it using the corresponding maximum principle. The model with linear revenue can be solved analytically, while the model with

  18. Recent progress in medical imaging technology

    International Nuclear Information System (INIS)

    Endo, Masahiro

    2004-01-01

    Medical imaging is name of methods for diagnosis and therapy, which make visible with physical media such as X-ray, structures and functions of man's inside those are usually invisible. These methods are classified by the physical media into ultrasound imaging, magnetic resonance imaging, nuclear medicine imaging and X-ray imaging etc. Having characteristics different from one another, these are used complementarily in medical fields though in some case being competitive. Medical imaging is supported by highly progressed technology, which is called medical imaging technology. This paper describes a survey of recent progress of medical imaging technology in magnetic resonance imaging, nuclear medicine imaging and X-ray imaging. (author)

  19. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  20. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  1. Nuclear Structure Group annual progress report June 1974 -May 1975

    International Nuclear Information System (INIS)

    1975-06-01

    This is the first annual progress report of the Nuclear Structure Group of the University of Birmingham. The introduction lists the main fields of study of the Group as: polarisation penomena and optical model studies using 3 He and 4 He probes; photonuclear physics; heavy-ion physics; and K- meson physics. The programme is related to particle accelerators at Birmingham, Oxford, Harwell and the Rutherford Laboratory. The body of the report consists of summaries of 38 experiments undertaken by members of the Group. The third section contains 10 notes on instrumentation topics. Appendices contain lists of (a) personnel, (b) papers published or submitted during the period. (U.K.)

  2. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  3. Neutron scattering. Annual progress report 1997; Neutronenstreuung. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Neutronenstreuung

    1998-02-01

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs.

  4. Progress in containerless science and technologies

    Science.gov (United States)

    Wang, T. G.

    1983-01-01

    One of the unique features of space which cannot be reproduced on earth is long duration zero gravity. Experiments that take the greatest advantage that space can offer are containerless processing experiments. This is precisely the reason why NASA has developed a variety of containerless processing technologies and facilities to allow the scientific community to perform experiments prior to and during Space Shuttle flights. This paper will briefly review recent progress in some of these technologies and facilities.

  5. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  6. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  7. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  8. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  9. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  10. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  11. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  12. Firm Exit, Technological Progress and Trade

    DEFF Research Database (Denmark)

    Schröder, Philipp; Sørensen, Allan

    The dynamics of export market exit and firm closure have found limited attention in the new heterogeneous-firms trade literature. In fact, several of the predictions on firm survival and exit stemming from this new class of models are at odds with the stylized facts. Empirically, higher...... productivity firms survive longer, most firm closures are young firms, higher productivity exporters are more likely to continue to export compared to less productive exporters and market exits as well as firm closures are typically preceded by periods of contracting market shares. The present paper shows...... that the simple inclusion of exogenous economy wide technological progress into the standard Melitz (2003) model generates a tractable dynamic framework that generates endogenous exit decisions of firms in line with the stylized facts. Furthermore, we derive the effects of faster technological progress and trade...

  13. Progress in MMIC technology for satellite communications

    Science.gov (United States)

    Haugland, Edward J.; Leonard, Regis F.

    1987-01-01

    NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.

  14. [Progress in digital PCR technology and application].

    Science.gov (United States)

    Lin, Jiaqi; Su, Guocheng; Su, Wenjin; Zhou, Changyi

    2017-02-25

    Digital PCR is an emerging analysis technology for absolute quantification after realtime-PCR. Through digital PCR, single DNA molecules are distributed into isolated reactions, and the product with fluorescence signal can be detected and analyzed after amplification. With the advantages of higher sensitivity and accuracy, digital PCR, independent of a standard curve, is developing rapidly and applied widely to the next generation sequencing and detection fields, such as gene mutation, copy number variation, microorganism, and genetically modified food. In this article, we reviewed the quantitative method and research progress of digital PCR technology in the main application fields.

  15. Irreversible Investment with Embodied Technological Progress

    OpenAIRE

    Bruno de Oliveira Cruz; Aude Pommeret

    2015-01-01

    In this paper, we propose to explain capital accumulation in a stochastic framework by taking into account the two main motives for investment. Specifically, firms invest to expand capacity and to replace old machines. The model considers irreversible investment under uncertainty and embodied technological progress. It is shown to be consistent with the following empirical observations: Investment is lumpy and infrequent at the firm level; firms can invest even if they have not reached full c...

  16. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  17. Statistical basis for predicting technological progress.

    Directory of Open Access Journals (Sweden)

    Béla Nagy

    Full Text Available Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly the same. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation.

  18. Statistical Basis for Predicting Technological Progress

    Science.gov (United States)

    Nagy, Béla; Farmer, J. Doyne; Bui, Quan M.; Trancik, Jessika E.

    2013-01-01

    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly the same. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation. PMID:23468837

  19. Statistical basis for predicting technological progress.

    Science.gov (United States)

    Nagy, Béla; Farmer, J Doyne; Bui, Quan M; Trancik, Jessika E

    2013-01-01

    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly the same. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation.

  20. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  1. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  2. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  3. Technological progress and average job matching quality

    Directory of Open Access Journals (Sweden)

    Mário Centeno

    2009-12-01

    Full Text Available Our objective is to study, in a labor market characterized by search frictions, the effect of technological progress on the average quality of job matches. For that, we use an extension of Mortensen and Pissarides (1998 and obtain as results that the effects of technological progress on the labor market depend upon the initial conditions of the economy. If the economy is totally characterized by the presence of low-quality job matches, an increase in technological progress is accompanied by an increase in the quality of jobs. In turn, if the economy is totally characterized by the presence of high-quality job matches, an increase in the technological progress rate implies the reverse effect. Finally, if the economy is totally characterized by the presence of very high-quality jobs, an increase in the technological progress rate implies an increase in the average quality of the job matches.O objetivo deste artigo é o de estudar, em um mercado de trabalho caracterizado por fricções, os efeitos do progresso tecnológico sobre a qualidade média das parcerias produtivas. Para tal, utilizamos uma extensão do modelo de Mortensen and Pissarides (1998 e obtivemos, como resultados, que os efeitos de variações na taxa de progresso tecnológico sobre o mercado de trabalho dependerão das condições da economia. Se a economia for totalmente caracterizada pela presença de parcerias produtivas de baixa qualidade, um aumento na taxa de progresso tecnológico vem acompanhado por um aumento na qualidade médias das parcerias produtivas. Por sua vez, se a economia for totalmente caracterizada pela presença de parcerias produtivas de alta qualidade, um aumento na taxa de progresso tecnológico gera um efeito inverso. Finalmente, se a economia for totalmente caracterizada pela presença de parcerias produtivas de muito alta qualidade, um aumento na taxa de progresso tecnológico virá acompanhado de uma elevação na qualidade média dos empregos.

  4. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  5. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  6. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  7. Western Research Institute: Annual technical progress report, October 1987--September 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report describes the technical progress made by the Western Research Institute of the University of Wyoming Research Institute of the University of Wyoming Research Corporation on work performed for the period October 1, 1987 through September 30, 1988. This research involves five resource areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. Under the terms of the cooperative agreement, an annual project plan has been approved by DOE. The work reported herein reflects the implementation of the research in the plan and follows the structure used therein. 49 refs., 32 figs., 87 tabs.

  8. Third Annual Clinical Diabetes Technology Meeting

    National Research Council Canada - National Science Library

    Klonoff, David D

    2007-01-01

    .... The attendance was 378 healthcare providers and scientists. The first day of the meeting covered Technologies for Diabetes Monitoring and the second day covered Technologies for Diabetes Therapy...

  9. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  10. Progress in abrasive and grinding technology

    CERN Document Server

    Xu, Xipeng

    2009-01-01

    The grinding and abrasive processing of materials are machining techniques which use bonded or loose abrasives to remove material from workpieces. Due to the well-known advantages of grinding and abrasive processes, advances in abrasive and grinding technology are always of great import in enhancing both productivity and component quality. In order to highlight the recent progress made in this field, the editor invited 21 world-wide contributions with the aim of gathering together all of the achievements of leading researchers into a single publication. The authors of the 21 invited papers, of

  11. The actual technological progress of NPPs

    International Nuclear Information System (INIS)

    Florescu, Gheorghe; Popa, Adrian; Panaitescu, Valeriu

    2010-01-01

    The actual nuclear R and D issues require new technologies and continuous progress in order to find adequate and effective solutions in sustained and increasing energy demand. The current tendency in energy consumption and occurring of large consumers, especially from Asian countries, imposes finding new means for energy clean, large scale and sustained production. NPPs reliability and availability were permanently monitored and improved; in the mean time the safety of the nuclear energy production was under surveillance. Corresponding development of the new technologies and discovery of improved materials and adequate technological processes offers the possibilities for appropriate implementation and use of them in the NPPs systems configuration and functioning/operation. The modern technologies and scientific discoveries, also the international cooperation, offer the opportunities to brake the actual barriers in order to cumulate and use advanced energy production processes in finding new energy sources and to build improved, reliable and safety power plants. The monitoring systems, intelligent sensors and intelligent SSCs, nanotechnologies and and modern and intelligent materials constitute the main reasons in improvement of the NPPs systems configuration and processes. The paper presents: - The state of the art in the level of actual and useful technologies for nuclear power systems development; - The actual technological limits that need to be over passed for NPPs systems improvements; - The main systems that need improvement and reconfiguration for actual NPPs development and increase in efficient operation, appropriate availability and total safety; - The actual energy production issues; - The key arguments in sustaining the R and D new NPPs systems development; - Future trends in NPPs development; - The limitations in industrial processes knowledge and use. Appropriate R and D in the field of NPPs systems has a specific characteristic that is highlighted in

  12. Progress report - Advanced cryogenic OTV engine technology

    Science.gov (United States)

    Schoenman, L.

    1985-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LO2/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse in excess of 480 lbF-sec/lbM. The results of recent vehicle-engine integration analyses and the progress in design, fabrication, and testing are provided. Emphasis is placed on the following technology areas being investigated in support of the advanced engine design: LOX hydrostatic bearings; burn-resistant materials for high-pressure GOX turbines and valves; high surface-low flux annular combustion chambers for the dual propellant expander cycle; improved cooling approaches for high-pressure combustion chambers, new concepts in integrated controls; and engine health diagnostics.

  13. [Progress on biogas technology and engineering].

    Science.gov (United States)

    Liu, Xiaofeng; Yuan, Yuexiang; Yan, Zhiying

    2010-07-01

    Dwindling supplies of conventional energy sources and the demand to increase the share of renewable energy for sustainability have increased the significance of biogas, the product of synergistic fermentation of biodegrable organic wastes from municipal, agricultural and industrial activities by microbial populations under anaerobic conditions. With extensive research and engineering practice, many technologies and modes have been developed for biogas production and application. Currently, the most widely used mode is the complete-mixing mesophilic fermentation. Europe, especially Germany, is leading the world in the combined heat and power production (CHP) from biogas. In this paper, updated progress in biogas technologies is reviewed, with focuses on anaerobic microorganisms, bioreactor configurations and process development, biogas production and applications, in which perspectives of biogas as a clean and renewable energy are projected.

  14. Progress in fusion technology at SWIP

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X.R., E-mail: duanxr@swip.ac.cn; Chen, J.M.; Feng, K.M.; Liu, X.; Li, B.; Wu, J.H.; Wang, X.Y.; Zheng, P.F.; Wang, Y.Q.; Wang, P.H.; Liu, Yong

    2016-11-01

    Highlights: • Dispersion strengthened CLF-1 steel, vanadium alloys and tungsten alloys are developed. • The HCCB TBM conceptual design, development of functional materials such as Li{sub 4}SiO{sub 4} pebbles and Be pebbles are in progress. • A full size prototype shield block has been fabricated and passed ITER qualification. • Advanced divertor for a new tokamak are designed and analyzed. • GIS and GDC have entered the engineering design phase. - Abstract: The fusion research activities at Southwestern Institute of Physics (SWIP) include the HL-2A & HL-2M tokamak programs, fusion reactor design and materials, along with key fusion technologies including R&D on ITER procurement packages. This paper presents the progress of fusion technology at SWIP, including the ITER first wall and blanket, Chinese helium cooled ceramic breeder test blanket module (HCCB–TBM) for ITER, gas injection system and gas discharge cleaning system, as well as the recent activities on reactor materials and R&D related to advanced divertor. The final design for ITER first wall and blanket shielding blocks allocated to SWIP have been completed, and were validated by recent tests. Major manufacturing technologies, such as forging, deep drilling, explosion bonding and deep laser welding, have been successfully demonstrated. Furthermore, the conceptual design of CN–HCCB–TBM has been completed, the related materials’ preparation, mock-up manufacturing and tests have been implemented. The tungsten divertor has been studied with various bonding and coating technologies. Meanwhile, highlights of functional material for TBM, oxides and carbides dispersion strengthened (ODS, CDS) reduced activation ferritic/martensitic (RAFM) steel, vanadium and tungsten alloys are also presented.

  15. Granulation techniques and technologies: recent progresses.

    Science.gov (United States)

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

  16. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  17. Accelerator Technology Division: Annual Report FY 1990

    National Research Council Canada - National Science Library

    Schriber, Stanley

    1991-01-01

    The Accelerator Technology (AT) Division continued in fiscal year 1990 to fulfill its mission of developing accelerator science and technology for application to research, defense, energy, and other problems of national interest...

  18. 1997 Annual report. Technological Research Direction

    International Nuclear Information System (INIS)

    Instituto Nacional de Investigaciones Nucleares

    1998-01-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  19. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. [Research progress on biochar carbon sequestration technology].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-08-01

    Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China.

  1. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  2. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  3. Hazards Control Department annual technology review, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  4. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  5. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  6. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Kumar, Vinod

    1983-01-01

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  7. Progress on technology of boiling water reactor

    International Nuclear Information System (INIS)

    Ogawa, Nagao

    1975-01-01

    Progress has been made on the technology of boiling water reactors since the successful operation of Dresden BWR No.1. The technical advancement of BWRs has continued with the adoption of many kinds of proven techniques until the present stage. The advancement was made in the following items; improvement of core fuel, increase of plant power output, adoption of jet pump and moisture separator, improvement of containment and other items. Recently the technology of BWRs was reviewed from the point of nuclear plant safety and reliability and some new techniques are now under examination in order to apply to BWR plants. These items are as follows; improvement of core fuel assembly (adoption of 8x8 array fuel assembly), improvement of reactor recirculating system (flow control valve and jet pump), improvement of emergency core cooling system, revised control system, radioactive waste disposal system and adoption of standard design of BWR plants. These technical trend will produce more reliable and safer BWR plants. (Iwase, T.)

  8. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  9. Technology Deployment Annual Report 2013 December

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2014-01-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily

  10. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  11. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  12. Technology Deployment Annual Report 2014 December

    Energy Technology Data Exchange (ETDEWEB)

    Arterburn, George K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically

  13. Hazards Control Department annual technology review, 1982

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1983-01-01

    The report from Lawrence Livermore National Laboratory, which covers the period from October 1981 to September 1982, is divided into three major sections. The first section, progress reports, includes studies in areas of industrial hygiene, instrument development, environmental protection, radiation protection and fire safety. The second section, technical notes, contains reports on interesting activities of a more limited scope. The third section lists recent publications

  14. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  15. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  16. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  17. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  18. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  19. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  20. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  1. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  2. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  3. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  4. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  5. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  6. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  7. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. 2016 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  10. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  11. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  12. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  13. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  14. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  15. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  16. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  17. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  18. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  19. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  20. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  1. Investment specific technological progress and structural change

    Directory of Open Access Journals (Sweden)

    Ricardo Silva Azevedo Araujo

    2010-12-01

    Full Text Available In this paper we introduce investment specific technical progress into Pasinetti's model of structural change. Our aim is to assess the effects of embodied technical progress on economic growth and macroeconomic variables. Our findings suggest that despite the fact that this type of technical progress increases the productivity of capital, it has negative effects on conditions that promote full employment.

  2. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  3. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  4. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  5. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  6. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  7. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  8. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  10. Accelerator Department. Annual Progress Report 1 January - 31 December 1984

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    A description is given of work in the fields of radiation chemistry and reaction kinetics, physical dosimetry, radiation physics and technological application of radiaticn, radiation bacteriology research and irradiation technology, as well as of the operation of various irradiation facilities....

  11. Accelerator department annual progress report 1 January-31 December 1981

    International Nuclear Information System (INIS)

    1982-07-01

    A description is given of work in the fields of irradiation technology, radiation chemistry, physical dosimetry, radiation physics and technological application of radiation and radiation bacterology research, as well as of the operation of various irradiation facilities. (author)

  12. Accelerator department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    1983-05-01

    A description is given of the work in the fields of irradiation chemistry, physical dosimetry, radiation physics and technological application of radiation, radiation bacteriology research and irradiation technology, as well as of the operation of various irradiation facilities. (author)

  13. Accelerator Department. Annual progress report. 1 January - 31 December 1987

    International Nuclear Information System (INIS)

    1988-03-01

    A description is given of research in the fields of chemical reactivity, radiation physics, physical dosimetry and technological application of radiation and irradiation technology, as well as of the operation of various irradiation facilities. (author)

  14. Accelerator Department annual progress report 1 January - 31 December 1985

    International Nuclear Information System (INIS)

    1986-02-01

    A description is given of research in the fields of reaction kinetics, physical dosimetry, radiation physics and technological application of radiation and irradiation technology, as well as of the operation of various irradiation facilities. (author)

  15. Accelerator Department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    1984-03-01

    A description is given of work in the fields of irradiation chemistry, physical dosimetry, radiation physics and technological application of radiation, radiation bacteriology research and radiation technology, as well as of the operation of various irradiation facilities. (author)

  16. Accelerator department annual progress report 1 January-31 December 1986

    International Nuclear Information System (INIS)

    1987-02-01

    A description is given of research in the fields of reaction kinetics, physical dosimetry, radiation physics and technological application of radiation and irradiation technology, as well as of the operation of various irradiation facilities. (author)

  17. Progress of radiation curing technology and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Takashi Ukachi

    2007-01-01

    The Japanese industry has grown with annual growth rate 108%. Electric parts and devices industry strongly promoted Japanese economy. UV/EB curing market in Japan enjoyed its steady growth with an annual growth rate 107%. By realizing the advantages of good performance and high functionality, the UV/EB curing technology has expanded its application field especially in leading edge industries, such as electric parts and devices, FPDs, Optical fibers and cables, optical recording media, and their fabrication and manufacturing. This paper summarizes the Japanese UV/EB market situation and overviews the latest progress of UV/EB technology. (Author)

  18. Accelerator Department. Annual Progress Report 1 January - 31 December 1981

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    A description is given of work in the fields of irradiation technology, radiation chemistry, physical dosimetry, radiation physics and technological application of radiation and radiation bacteriology research, as well as of the operation of various irradiation facilities.......A description is given of work in the fields of irradiation technology, radiation chemistry, physical dosimetry, radiation physics and technological application of radiation and radiation bacteriology research, as well as of the operation of various irradiation facilities....

  19. 2. Semi-annual progress report 1980, no 17

    International Nuclear Information System (INIS)

    1981-01-01

    This semi-annual report deals with the experimental research carried out at the Departement de Recherche Fondamentale de Grenoble (fission, nuclear spectroscopy, heavy ion reactions, physical metallurgy, magnetism, organic molecules, theoretical chemistry, molecular physical chemistry, cellular biology, vegetal biology) [fr

  20. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  1. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  2. Physics and Advanced Technologies 2003 Annual Report

    International Nuclear Information System (INIS)

    Hazi, A; Sketchley, J

    2005-01-01

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  3. Annual progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB. (ACR)

  4. Annual progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB

  5. 2006 annual nuclear technology conference - opening address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    The Energy Summit organized by Federal Chancellor Merkel set the right course in energy research. The funds to be made available by the federal government for energy research and innovation are to be raised by more than 30% by 2009. However, the Red-Green ban on research into reactor development still needs to be lifted. For Germany, 2005 was a year of change. As far as energy policy is concerned, it was a year more of disenchantment, as the diametrally opposed positions held by CDU/CSU and SPD in matters nuclear mean that, for the time being, the current regulations about residual plant lifetimes will continue to be valid. The Energy Summit as the first round in a process at the end of which, in 2007, there is to be a complete energy policy concept for the next few decades, does raise hopes. Clear emphasis must be given to worldwide developments, however. The assumption that others would follow Germany's 'good' example in opting out of the use of nuclear power has turned out to be naive. Ultimate clarity about which technology will turn out to be a bridge or an interim technology will be obtained in retrospect only. We should buy time now by extending nuclear power plant life so as to be able later to decide more freely about our options. The repository question, which is still considered a point of dispute, is less a technical than a political problem. The sequence of steps to be taken for solution is outlined in great detail and with high precision in the nuclear agreement. Following the ruling by the Lueneburg higher administrative court, Konrad can be installed and commissioned by 2013. After handling the so-called points of doubt, exploration of Gorleben can be completed. Nuclear power is an important building block in the energy mix in peaceful coexistence of various energy resources in accordance with their respective possible uses. For this reason, the renewables and nuclear power should no longer by played off one against the other. Both of them have a

  6. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  7. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  8. 1980 Annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1981-01-01

    According to the decisions taken by the Council of Ministers on the JRC multiannual programme (1980-83), the 1980 activity has been oriented toward four projects which cover a broad range of fields, namely: - the Project 1: 'Reactor Studies'. The main effort was oriented toward the NET/INTOR studies. JRC Ispra is acting as reference nucleus for NET preliminary design. For the moment being this work was made in support to the European participation to INTOR. In 1980 the conceptual design of a demonstration power reactor (FINTOR-D) was also achieved. - The Project 2: 'Blanket Technology' has the aim to investigate structural materials behaviour in fusion conditions. Items like tritium outgassing and permeation from structurals an materials compatibility were investigated. - The Projet 3: 'Material sorting and development'. Its aim is to assess mechanical properties and radiation damage of standard and advanced materials suited for reactor structures. - The Projet 4: 'Cyclotron construction and operation' has the task to install and exploit a cyclotron to simulate demages to materials in a fusion ambient

  9. Institute for Energy Technology -Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes.

  10. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  11. Institute for Energy Technology -Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes

  12. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  13. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  14. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  15. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  16. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  17. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  18. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  19. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  20. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  1. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  2. China reports on progress in coal water technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-18

    Progress in coal-water mixture (CWM) technology in China, as described by Zhao Changfeng at the Pacific Coal Flow Conference held on 2-3 March in Japan, is summarized. Pricing policies favouring oil over coal remain an obstacle to commercial application but CWM can ease railroad transport loads, improve efficiency and reduce air pollution. A CWM technical and economic complex in Beijing oversees five CWM-related production centres and has an annual output of 250,000 tons. The CWM is used in six industrial boilers. The complex is researching CWM preparation, pipeline transportation and combustion testing. CWM is used in a paper mill and in demonstration projects at the Guilin and Laiwu Steel Plants. Developments of a spray nozzle and in preparation technologies are outlined. More R D on these and other aspects is needed to make CWM more economic and popular. Oil consumption is to be reduced in China by 10 million tons under a five year plan and coal transport by pipeline is targeted at 30 million tons by the year 2000. Other CWM-related targets are mentioned.

  3. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  4. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  5. Optics and Plasma Research Department annual progress report for 2004

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.

    2005-01-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. Thedepartment has core competencies in optical sensors......, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalibration, and infrared measurement techniques. The research is supported by several EU programmes, including...

  6. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  7. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  8. College Students' Technology Arc: A Model for Understanding Progress

    Science.gov (United States)

    Langer, Arthur; Knefelkamp, L. Lee

    2008-01-01

    This article introduces the Student Technology Arc, a model that evaluates college students 'technology literacy, or how they operate within an education system influenced by new technologies. Student progress is monitored through the Arc's 5 interdependent stages, which reflect growing technological maturity through levels of increasing cognitive…

  9. 10 CFR 905.14 - Does Western require annual IRP progress reports?

    Science.gov (United States)

    2010-01-01

    ... Section 905.14 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Integrated Resource Planning § 905.14 Does Western require annual IRP progress reports? Yes, customers must submit IRP progress... projected goals and implementation schedules, and energy and capacity benefits and renewable energy...

  10. Reactor technology. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.L. (ed.)

    1978-07-01

    Progress is reported in eight program areas. The nuclear Space Electric Power Supply Program examined safety questions in the aftermath of the COSMOS 954 incident, examined the use of thermoelectric converters, examined the neutronic effectiveness of various reflecting materials, examined ways of connecting heat pipes to one another, studied the consequences of the failure of one heat pipe in the reactor core, and did conceptual design work on heat radiators for various power supplies. The Heat Pipe Program reported progress in the design of ceramic heat pipes, new application of heat pipes to solar collectors, and final performance tests of two pipes for HEDL applications. Under the Nuclear Process Heat Program, work continues on computer codes to model a pebble bed high-temperature gas-cooled reactor, adaptation of a set of German reactor calculation codes to use on U.S. computers, and a parametric study of a certain resonance integral required in reactor studies. Under the Nonproliferation Alternative Sources Assessment Program LASL has undertaken an evaluation of a study of gaseous core reactors by Southern Science Applications, Inc. Independently LASL has developed a proposal for a comprehensive study of gaseous uranium-fueled reactor technology. The Plasma Core Reactor Program has concentrated on restacking the beryllium reflector and redesigning the nuclear control system. The status of and experiments on four critical assemblies, SKUA, Godiva IV, Big Ten, and Flattop, are reported. The Nuclear Criticality Safety Program carried out several tasks including conducting a course, doing several annual safety reviews and evaluating the safety of two Nevada test devices. During the quarter one of the groups involved in reactor technology has acquired responsibility for the operation of a Cockroft-Walton accelerator. The present report contains information on the use of machine and improvements being made in its operation.

  11. Reactor technology. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Warren, J.L.

    1978-07-01

    Progress is reported in eight program areas. The nuclear Space Electric Power Supply Program examined safety questions in the aftermath of the COSMOS 954 incident, examined the use of thermoelectric converters, examined the neutronic effectiveness of various reflecting materials, examined ways of connecting heat pipes to one another, studied the consequences of the failure of one heat pipe in the reactor core, and did conceptual design work on heat radiators for various power supplies. The Heat Pipe Program reported progress in the design of ceramic heat pipes, new application of heat pipes to solar collectors, and final performance tests of two pipes for HEDL applications. Under the Nuclear Process Heat Program, work continues on computer codes to model a pebble bed high-temperature gas-cooled reactor, adaptation of a set of German reactor calculation codes to use on U.S. computers, and a parametric study of a certain resonance integral required in reactor studies. Under the Nonproliferation Alternative Sources Assessment Program LASL has undertaken an evaluation of a study of gaseous core reactors by Southern Science Applications, Inc. Independently LASL has developed a proposal for a comprehensive study of gaseous uranium-fueled reactor technology. The Plasma Core Reactor Program has concentrated on restacking the beryllium reflector and redesigning the nuclear control system. The status of and experiments on four critical assemblies, SKUA, Godiva IV, Big Ten, and Flattop, are reported. The Nuclear Criticality Safety Program carried out several tasks including conducting a course, doing several annual safety reviews and evaluating the safety of two Nevada test devices. During the quarter one of the groups involved in reactor technology has acquired responsibility for the operation of a Cockroft-Walton accelerator. The present report contains information on the use of machine and improvements being made in its operation

  12. Accelerator Department annual progress report 1 January - 31 December 1984

    International Nuclear Information System (INIS)

    1985-03-01

    A description is given of work in the fields of radiation chemistry and radiation kinetics, physical dosimetry, radiation physics and technological application of radiation, radiation bacteriology research and irradiation technology, as well as of the operation of various irradiation facilities. (author)

  13. FY2009 Annual Progress Report for Advanced Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States)

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  14. FY2014 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  15. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. FY2016 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  17. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. FY2013 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  19. FY2010 Annual Progress Report for Lightweighting Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-01-15

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  20. Clarence Ayres, technology, pragmatism and progress

    OpenAIRE

    Anne Mayhew

    2010-01-01

    This paper explores the origins and continued relevance of Clarence Ayres' definition of technology as a process involving both physical tools and a scientific method of reasoning, where science is understood to achieve cross-cultural explanatory power by virtue of technological validation. Ayres' concept of technology derived from his training as a Pragmatist and was primarily philosophical rather than descriptive, but is congruent with the work of modern historians of technology and remains...

  1. Association Euratom - Risoe National Laboratory annual progress report 2005

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2006-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  2. Association Euratom - Risoe National Laboratory annual progress report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N (eds.)

    2005-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  3. Association Euratom - Risoe National Laboratory annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N.

    2004-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  4. Association Euratom - Risoe National Laboratory. Annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N

    2003-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. (au)

  5. Association Euratom - Risoe National Laboratory annual progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  6. Association Euratom - Risoe National Laboratory annual progress report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. (eds.)

    2001-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion rector materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2000. (au)

  7. Association Euratom - Risoe National Laboratory. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N

    2002-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001. (au)

  8. Association Euratom - Risoe National Laboratory annual progress report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N. (eds.)

    2006-11-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  9. Optics and Plasma Research Department. Annual progress report for 2004

    International Nuclear Information System (INIS)

    Bindslev, H.; Lynov, J.P.; Pedersen, C.; Petersen, P.M.; Skaarup, B.

    2005-03-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. The department has core competencies in optical sensors, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperature calibration, and infrared measurement techniques. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2004 is presented. (au)

  10. The Community's research and development programme on decommissioning of nuclear installations. Third annual progress report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1987. The third progress report describes the objectives, scope and work programme of the 69 research contracts concluded, as well as the progress of work achieved and the results obtained in 1987

  11. The community's research and development programme on decommissioning of nuclear installations. Fourth annual progress report 1988

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This is the fourth annual progress report on the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme at 31 December 1988. The fourth progress report describes the objectives, scope and work programme of the 72 research contracts concluded, as well as the progress of work achieved and the results obtained in 1988

  12. SMD Technology Development Story for NASA Annual Technology report

    Science.gov (United States)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  13. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  14. Accelerator department annual progress report 1 January - 31 December 1979

    International Nuclear Information System (INIS)

    1980-04-01

    A description is given of work in the fields of irradiation technology, chemical dosimetry, radiation chemistry, physical dosimetry and radiation bacteriology research, as well as of the operation of various irradiation facilities. (author)

  15. FY2008 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-01-01

    This program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines providing enabling materials support for combustion, hybrid, and power electronics development.

  16. Association Euratom - Risoe National Laboratory annual progress report 1997

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au)

  17. Association Euratom - Risoe National Laboratory annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au) 5 tabs., 30 ills., 12 refs.

  18. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au) 27 ills., 18 refs.

  19. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au)

  20. Accelerator department annual progress report 1 Jan - 31 Dec 1980

    International Nuclear Information System (INIS)

    1981-07-01

    A description is given of work in the fields of irradiation technology, chemical dosimetry, radiation chemistry, physical dosimetry and radiation bacteriology research, as well as of the operation of various irradiation facilities. (author)

  1. FY2010 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  2. Water Science and Technology Board annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

  3. Fuel Chemistry Division: annual progress report for 1988

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1991-01-01

    The progress report gives the brief descriptions of various activites of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1988. The descriptions of activities are arranged under the headings: Fuel Development Chemistry of Actinides, Quality Control of Fuel, and Studies related to Nuclear Material Accounting. At the end of report, a list of publications published in journals and papers presented at various conferences/symposia during 1988 is given. (author). 13 figs., 61 tabs

  4. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  5. High Energy Physics Group. Annual progress report, fiscal year 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Perhaps the most significant progress during the past twelve months of the Hawaii experimental program, aside from publication of results of earlier work, has been the favorable outcome of several important proposals in which a substantial fraction of our group is involved: the Mark II detector as first-up at the SLC, and DUMAND's Stage I approval, both by DOE review panels. When added to Fermilab approval of two neutrino bubble-chamber experiments at the Tevatron, E632 and E646, the major part of the Hawaii experimental program for the next few years is now well determined. Noteworthy in the SLAC/SLC/Mark II effort is the progress made in developing silicon microstrip detectors with microchip readout. Results from the IMB(H) proton decay experiment at the Morton Salt Mine, although not detecting proton decay, set the best lower limit on the proton's lifetime. Similarly the Very High Energy Gamma Ray project is closely linked with DUMAND, at least in principle, since these gammas are expected to arise from pi-zero decay, while the neutrinos come from charged meson decay. Some signal has been seen from Cygnus X-3, and other candidates are being explored. Preparations for upgrading the Fermilab 15' Bubble Chamber have made substantial progress. Sections of the Progress Report are devoted to VAX computer system improvements, other hardware and software improvements, travel in support of physics experiments, publications and other public reports, and last analysis of data still being gleaned from experimental data taken in years past (PEP-14 and E546, E388). High energy physics theoretical research is briefly described

  6. Advanced solar thermal technology - Potential and progress

    Science.gov (United States)

    Leibowitz, L.; Hanseth, E.

    1979-01-01

    The advanced thermal power technology program which develops and applies advanced technology for improved solar thermal energy subsystems and components. It is shown that the effort is aimed at systems which can achieve significant energy cost reductions. The paper describes the potential for advanced technology to achieve commercially attractive solar thermal systems and describes some recent developments in advanced heat engines, high temperature receivers, chemical transport, and storage.

  7. Association Euratom - Risoe National Laboratory annual progress report 2006

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Singh, B.N.

    2007-09-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  8. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  9. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  10. Association Euratom - Risoe National Laboratory annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Michelsen, P.; Singh, B.N. [eds.

    1995-06-01

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs.

  11. The theory of hadronic systems. Annual progress report

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1993-01-01

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; study of the radii of neutron distributions in nuclei; the hadronic double scattering operator; transparency in pion production; asymmetry in pion scattering and charge exchange from polarized nuclei; the mechanism of pion absorption in nuclei; the neutron-proton charge-exchange reaction; modification of the fundamental structure of nucleons in nuclei; and antiproton annihilation in nuclei

  12. Ionization in liquids [annual] progress report, 1993--1994

    International Nuclear Information System (INIS)

    Bakale, G.

    1994-01-01

    Progress in 1993--94 was focused on delineating how ions of the model nonpolar spherical solute Buckminsterfullerene interact differently with various nonpolar solvents than does the ellipsoidal fullerene analog C-70, and exposing a variety of new audiences to the electrophilicity-carcinogenicity relationship in order to obtain fresh insight into this relationship that may lead to elucidation of the role of electrons in carcinogenesis and thereby a better understanding of the biological effects of ionizing radiation. To achieve these goals a new collaboration was established with scientists at Oak Ridge National Lab who have unique facilities to characterize fullerene and its radiolytic products

  13. Wills Plasma Physics Department annual progress report 1982

    International Nuclear Information System (INIS)

    1982-01-01

    Progress in the experimental program using the research tokamak TORTUS is presented. The main thrust of the program is the study of the characteristics of hydromagnetic waves in tokamak plasmas and in the use of such waves in r.f. heating. Work on runaway electron production, on wave propagation in collisional plasmas and on hydromagnetic shock wave studies is reported. Diagnostic techniques and equipment described include a laser interferometer system and techniques based on the observation of resonance fluorescence and near-resonant scattering of a laser beam from atomic species in a plasma

  14. Nuclear structure from radioactive decay. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1982-01-01

    The most exciting development during this year has been the formulation of a unified description of shape coexistence in nuclei. The picture is built on the idea that deformation in nuclei is due to an attractive proton-neutron force acting in the valence shell model space. The excitation of nucleon pairs across closed shells effectively increases the number of valence nucleons, giving rise to a set of coexisting states with larger deformation. The major area of activity is the study of neutron-deficient nuclei around the Z = 82 shell closure, with special emphasis on the levels of the odd-mass Pt, Au, Hg and Tl isotopes. Progress is reported

  15. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  16. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  17. Annual progress report for 1984 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.; Jain, R.P.

    1985-01-01

    This report presents a resume of the work done in the Theoretical Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1984. The report is divided into two parts, namely, Nuclear Technology and Mathematical Physics. The topics covered are described by brief summaries. A list of research publications and papers presented in symposia/workshops is also included. (author)

  18. Progress in supersonic cruise aircraft technology

    Science.gov (United States)

    Driver, C.

    1978-01-01

    The Supersonic Cruise Aircraft Resarch (SCAR) program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, take-off and landing procedures, and advanced configuration concepts. A brief overview of the highlights of the NASA supersonic technology program is presented.

  19. NASA's progress in nuclear electric propulsion technology

    Science.gov (United States)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  20. Progress in ultra-centrifuge enrichment technology

    International Nuclear Information System (INIS)

    Paul Dawson

    2006-01-01

    Urenco have undertaken a continuous development programme in centrifuge technology for over 35 years. This has seen development from sub-critical machines in the mid 1970's through to the company's world leading TC12 supercritical centrifuge, which has been deployed on a large-scale basis over the last decade. The latest centrifuge to emerge from this programme is Urenco's sixth generation centrifuge, the TC21, which will be commercially deployed from mid-2007 onwards. In recent times Urenco has vested its centrifuge technology in Enrichment Technology Company (ETC) as a vehicle to enable the use of this advanced technology by other operators for commercial purposes. This paper reviews why Urenco and ETC believe this technology represents the best choice for creating new global commercial enrichment capacity and its future development prospects. (author)

  1. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  2. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  3. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  4. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  5. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  6. Experimental verification of internal dosimetry calculations. Annual progress report

    International Nuclear Information System (INIS)

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee

  7. Optics and Fluid Dynamics Department annual progress report for 2003

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...

  8. Advanced Industrial Materials (AIM) Program. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1995-05-01

    The Advanced Industrial Materials Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy in the Department of Energy. The mission of the AIM Program is to conduct applied research, development, and applications engineering work, in partnership with industry, to commercialize new or improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. AIM is responsible for identifying, supporting, and coordinating multidisciplinary projects to solve identified industrial needs and transferring the technology to the industrial sector. Program investigators in the DOE National Laboratories are working closely with approximately 100 companies, including 15 partners in Cooperative Research and Development Agreements. Work is being done in a wide variety of materials technologies, including intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The Program supports other efforts in the Office of Industrial Technologies to assist the energy consuming process industries, including forest products, glass, steel, aluminum, foundries, chemicals, and refineries. To support OITs {open_quotes}Industries of the Future{close_quotes} initiatives and to improve the relevance of materials research, assessments of materials needs and opportunities in the process industries are being made. These assessments are being used for program planning and priority setting; support of work to satisfy those needs is being provided. Many new materials that have come into the marketplace in recent years, or that will be available for commercial use within a few more years, offer substantial benefits to society. This document contains 28 reports on advanced materials research. Individual reports have been processed separately for entry onto the Department of Energy databases.

  9. FY2015 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-04-30

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  10. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  11. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  12. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  13. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  14. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  15. Water Science and Technology Board annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) and its subgroups during 1989, it seventh year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1990, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is an introduction to the WSTB and its program for the year. 4 figs.

  16. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1992-01-01

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high T c superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  17. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1991-01-01

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high T c superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  18. Progress in the technology of nautical charting

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    surveying; chart projection schemes; the role of radio and satellite-based position-fixing systems; the technology of the modern electronic nautical charts; and applications of computers in modern navigation. The article also peeps into possible future...

  19. Office of Industrial Technologies research in progress

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  20. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  1. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  2. 1998 annual report of Petroleum Technology Alliance Canada

    International Nuclear Information System (INIS)

    1999-01-01

    Key accomplishments of the Petroleum Technology Alliance of Canada (PTAC) during 1998 are summarized. PTAC is an association that facilitates collaborative research and technology development in the conventional oil and gas industry. Accomplishments in 1998 included the launch of 21 new research and development projects, increased memberships, and 16 successful workshops which focused on PTAC research and development initiatives in environmental impacts, conventional heavy oil, well completions, inactive well management and well abandonment. A financial statement attesting to the PTAC's financial health is included with this annual report. 2 tabs

  3. INL Control System Situational Awareness Technology Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  4. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  5. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2009-08-06

    . Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

  6. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2008-12-22

    . Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

  7. Using technology to scaffold progressive teaching

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2018-01-01

    An encouraging consensus has arisen in recent decades among researchers and policy organizations in favor of more progressive teaching practices like Inquiry Based Science Education (B. Barron & Darling-Hammond, 2010; Rocard et al., 2007) and Project Based Learning (Krajcik & Shin, 2014; OECD...... Publishing, 2010), giving way to teaching that incorporates science and arts subjects. At the same time, there has been an increased acknowledgement of challenges that are typically encountered in progressive teaching practices, for example the challenges of organization of collaboration, of structuring...... by organizing collaboration, structuring activities, supporting subject learning, and providing tools for production and sharing of and communication about students’ products. To explain the principles I give two examples of PracSIPs developed as ready-to-use material, and after that I point to how...

  8. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.

  9. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    NARCIS (Netherlands)

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with

  10. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  11. Optics and Fluid Dynamics Department. Annual progress report for 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B. (eds.)

    2004-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)

  12. Spectroscopy Division : Annual progress report for 1973-74

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1973-74) of the Spectroscopy Division of the Bhabha Atomic Research Centre, Bombay are reviewed. From the point of view of nuclear science and technology, a special mention may be made of the following: (1) development of highly sensitive emission spectrographic methods for determination of boron in uranium and its compounds (ii) development of x-ray fluorescence analytic method for analysis of ZrO 2 , rare earths and thorium (iii) spectral studies of rare earth ions in crystals and (iv) development of isotopic analytical method for determining the abundances of boron isotopes. (M.G.B.)

  13. Monthly progress report: Heat source technology program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [comp.

    1993-05-01

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  14. Physics department annual progress report, 1 Jan - 31 Dec 1975

    International Nuclear Information System (INIS)

    Bjeerum Moeller, H.; Lebech, B.

    1975-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics, nuclear spectroscopy and meteorology are presented. The main experimental and theoretical work in solid-state physics has involved: investigation of the static and dynamic properties of magnetic solids; studies of various kinds of phase transitions in solids and liquid-like systems; electronic energy band calculations of metals; and investigations of the structure and lattice dynamics of molecular crystals and adsorbed monolayers. The work of the plasma physics section is centered on technology of interest for future fusion reactors and on basic plasma physics. The technological aspects of plasma phsics are undertaken with one of the possible refuelling schemes for fusion reactors in mind. The main object of the basic research is investigations of waves and instabilites in a relatively cold steady state plasma. The activites in the field of nuclear spectroscopy have concerned an attempt to form the 236 U fission isomer with thermal neutrons and studies of the fine structure in the mass distribution for fission fragments. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  15. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    International Nuclear Information System (INIS)

    None

    2001-01-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports

  16. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports.

  17. Environmental and Occupational Safety Division annual progress report for 1984

    International Nuclear Information System (INIS)

    1985-11-01

    Over 950 radiation workers were monitored at ORNL for both internal and external exposure to ionizing radiation and radioactive materials in 1984, and no employee exceeded 50% of the applicable DOE dose limit. No internal exposure exceeded 10% of the maximum permissible organ burden, as determined by in-vivo gamma spectrometry. Dose readings from 5000 TLDs and 136,000 pocket meters were determined, and more than 5800 calibrations were performed on these devices. Approximately 82,000 radioassays were performed; among these were 1500 urinalyses and 3000 radiochemical analyses. Over 3000 calibrations were performed for approximately 2000 portable and fixed survey instruments. Response teams were identified in support of the Radiological Assistance Program (RAP). Documentation, procedures, and equipment for the RAP vehicle were upgraded. A long-range environmental plan was issued early in the year and again in June 1984 to document the scope and justification for each project. The DEM is developing an environmental information system for managing DOE-ORO and ORNL environmental data. Five hundred eighty-four waste disposal requests containing 5769 items were handled by the Hazardous Materials Control Group during 1984. The Office of Operational Safety made significant progress in the completion of Safety Analysis Reports for existing facilities. The Radiation and Safety Surveys Department is becoming increasingly involved in work resulting in facility improvement, repair, or upgrade as well as decontamination and decommissioning of older facilities

  18. Physics Department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    1983-09-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: condensed matter physics, plasma physics and meteorology. The report is a progress report describing the principal activities in these fields for the period from 1 January to 31 December 1982. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons, X-rays, and synchrotron X-ray radiation. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometereology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  19. Physics Department. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Juul Rasmussen, J.; Lebech, B.

    1990-02-01

    Research in the Physics Department covers two main fields: condensed matter physics and plasma physics. The principal activites in these fields are presented in this Progress Report covering the period from 1 January to 31 December 1989. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applied nature. The discovery of the high Tc superconductors in 1986 has opened an important new research area, where neutron and x-ray diffraction are used to elucidate the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses used in producing the materials. The plasma physics research is partly experimental and partly theoretical. The plasma physics programme is also of a wide scope ranging from fundamental studies of wave propagation, instabilities, solitons and turbulence in plasmas to refuelling a fusion reactor by deuterium-tritium pellets. (author) 4 tabs., 66 ills., 71 refs

  20. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  1. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  2. Recent Progress in Engine Noise Reduction Technologies

    Science.gov (United States)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  3. Progress in silicon carbide semiconductor technology

    Science.gov (United States)

    Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.

    1992-01-01

    Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.

  4. Industrial Revolution and Scientific and Technological Progress

    NARCIS (Netherlands)

    Fremdling, Rainer

    1996-01-01

    This working paper is a draft chapter for the UNESCO-History of Humanity. Different views on the concept and spread of the industrial revolution, which took place from the late 18th century onwards, are dealt with. By way of example the revolutionary character of technological change and the search

  5. The spinvalve transistor: technologies and progress

    NARCIS (Netherlands)

    Lodder, J.C.; Monsma, D.J.; Vlutters, R.; Shimatsu, T.; Shimatsu, T.

    1999-01-01

    The paper describes the necessary technologies needed for realising a RT operating spin-valve transistor (SVT) which is in fact a magnetic controlled metal base transistor. The preparation of a 350×350 μm2 SVT consisting of an Si emitter and collector and Co/Cu/Co GMR multilayer are described. The

  6. A Progressive Approach to Integrating Education Technology

    Science.gov (United States)

    Nemcek, Felicia

    2013-01-01

    Do you ever have the feeling that with rapidly changing technology your students are driving the bus and you are holding on for dear life? According to the author, who is the principal of the Southwest Career and Technical Academy (SWCTA) located in Las Vegas, Nevada, they feel that way more often than not. However, she and her faculty understand…

  7. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  8. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  9. Recent Progress in Technology of Leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Kim, S. H.; Cho, J. W.; Joo, Y. S.; Yang, D. J

    2005-07-15

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future.

  10. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  11. Automated Array Assembly. Phase 2. Annual technical progress report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, B G

    1979-02-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array (LSSA) Project is a process development task. This contract includes solar cell module process development activities in the areas of Surface Preparation. Plasma Processing, Diffusion, Cell Processing and Module Fabrication. In addition, a High Efficiency Cell Development Activity is included. The overall goal is to advance solar cell module process technology to meet the 1986 goal of a production capacity of 500 megawatts per year at a cost of less than $500 per kilowatt. This contract will focus on the process element developments stated above and will propose an overall module process. During 1978, process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies tat focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel-glass structure that should exceed the 20 year life goal of the LSA program. In a related set of studies, high efficiency cell development was carried out on the Texas Instruments developed Tandem Junction Cell (TJC) and a modification of the TJC called the Front Surface Field cell. These cells feature planar backslide contacts with no metallization of the frontside. Cell efficiencies in excess of 16% at AM1 have been attained with only modest fill factors. Photo generated current densities as high as 44 mA/cm/sup 2/ at AM0 have been attained. A transistor-like model has been proposed that fits the cell performance and provides a guideline for future improvements in cell performance.

  12. Second annual clean coal technology conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  13. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  14. 2015 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-11-01

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  15. 2014 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  16. 2013 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  17. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  18. Water Science and Technology Board Annual Report 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This annual report marks the twentieth anniversary of the Water Science and Technology Board (WSTB) (1982-2002). The WSTB oversees studies of water issues. The principal products of studies are written reports. These reports cover a wide range of water resources issues of national concern. The following three recently issued reports illustrate the scope of the WSTB's studies: Envisioning the Agenda for Water Resources Research in the Twenty-first Century. The Missouri River Ecosystem: Exploring the Prospects for Recovery, and Assessing the TMDL Approach to Water Quality Management. The WSTB generally meets three times each year where discussions are held on ongoing projects, strategic planning, and developing new initiatives. The meetings also foster communication within the water resources community. The annual report includes a discussion on current studies, completed studies 2001-2002, and future plans, as well as a listing of published reports (1983-2002).

  19. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1985-08-01

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  20. Long-run Determinants of Technological Progress in Nigeria Abstract

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-12-01

    Dec 1, 2013 ... Economic historians have argued that long-term growth of an economy is to a great extent attributable to the growth of the Total Factor. Productivity (TFP) or technological progress rather than growth in factor accumulation. Following neoclassical assumption of exogenous technological change and New ...

  1. Recent progress in DNA origami technology.

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2011-06-01

    DNA origami is an emerging technology for designing defined two-dimensional DNA nanostructures. In this review, we focus on and describe several types of DNA origami-related studies, as follows: (1) programmed DNA origami assembly, (2) DNA origami-templated molecular assembly, (3) design and construction of various three-dimensional DNA origami structures, (4) programmed functionalization of DNA origami and combination with top-down nanotechnology, (5) single molecular observation on a designed DNA origami, and (6) DNA nanomachines working on a DNA origami. © 2011 by John Wiley & Sons, Inc.

  2. [New technology for linear colliders.] Progress report

    International Nuclear Information System (INIS)

    McIntyre, P.M.

    1986-01-01

    The purpose of the contract is to devise and analyze new technologies appropriate for future linear colliders. The focus of our research during 1986 has been the coaxial pulse line (CPL) accelerating structure. It is similar to a wake field structure, except that it replaces the annular ring beam driver by an annular TEM wave. The driver wave can be launched using a capacitor discharge arrangement similar to induction linacs. The structure has the combined advantages of high gradient (∼200 MeV/m) and high efficiency (perhaps ∼50%). A high-power lasertron based on a ribbon electron beam is proposed

  3. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  4. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  5. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  6. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  7. Environmental Science and Technology Department annual report 1994

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  8. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  9. 2011 annual meeting on nuclear technology fully on line

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY, in its familiar structure of 3 days of conferencing about topics from politics, economy, and technology, was the forum for presentations and discussions in the field of nuclear power. Participants accepted the new concept. This was borne out in particular by the great interest shown in the pre-conference evening with its keynote address, but also by the success of the plenary day, which included a press forum and a panel discussion as components of active communication making the plenary day much more attractive. The 2011 Annual Meeting on Nuclear Technology will be held again at the Berlin Congress Center (bcc) in Alexanderplatz on May 17-19. From September 1, some first important information is available under www.kerntechnik.info, for instance, the call for Papers. All other information about the program will be published in due course. All steps of importance to participants, from registration for the meeting to booking hotel accommodation, can be handled online. (orig.)

  10. Coal Technology Program progress report, March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    In the final hydrocarbonization experiment with Wyodak subbituminous coal, the coal was hydrocarbonized at 1100/sup 0/F and 300 psig in the recirculating fluidized bed. Two-dimensional pyrolysis behavior of an eastern bituminous coal (Pittsburgh seam) continues to be examined. Results to date indicate that swelling is significantly more pronounced at very low heating rates. Several activities in progress are related to inspection techniques for wear- and process-resistant coatings. Experimental investigations of fireside corrosion on tubing from a fluidized bed combustor have proceeded with metallographic examination and analyses of the scale formed during the test exposure. Methods for nondestructively determining remaining tube wall thickness and scale thickness were developed. Failure prevention and analysis work was aimed at several parts from the Solvent Refined Coal Plant in Ft. Lewis, Washington. The mechanical design of the gas-fired potassium boiler system was completed with the issue of the last four drawings. One electrical and five instrument and control drawings were completed and some fabrication work was completed. Surveys of industrial coal conversion capabilities continued with emphasis on rotating components, valves, hot gas cleanup devices, and heat recovery equipment. Process and program analysis research studies continued with work on low-Btu gasification, direct combustion, advanced power conversion, liquefaction, high-Btu gasification, in-situ gasification, and beneficiation. In the fossil energy environmental project, a first draft of a landfill assessment report was issued for review. Work continued on the Environmental Monitoring Handbook and Pipeline Gas Programmatic Assessment.

  11. Nuclear technology for peace and progress

    International Nuclear Information System (INIS)

    Cordero Calderon, C.F.

    1997-01-01

    It is important, to become aware of the new worries arisen to the light of the last events happened in Costa Rica, as in other countries, which have had a particular impact within the activities of the Costa Rican Institute of Electricity. In the field of the topography, particularly, it has developed the so call auscultation of works, in order to carry out better and to expand the registration of the behavior of the main projects of engineering, diagnostic its operation and to offer efficient and opportune solutions to delicate situations by means of new or improved technology. It also contemplates the alternative of carrying out investigations that permit to adopt new measured of control before any eventuality. (S. Grainger) [es

  12. Recent progress in terrestrial photovoltaic collector technology

    Science.gov (United States)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  13. Technological progress and regress in pre-industrial times

    DEFF Research Database (Denmark)

    Aiyar, Shekhar; Dalgaard, Carl-Johan Lars; Moav, Omer

    2008-01-01

    This paper offers micro-foundations for the dynamic relationship between technology and population in the pre-industrial world, accounting for both technological progress and the hitherto neglected but common phenomenon of technological regress. A positive feedback between population and the adop....... Inventions don't just get adopted once and forever; they have to be constantly practised and transmitted, or useful techniques may be forgotten. Jared Diamond, Ten Thousand Years of Solitude, 1993...

  14. Next wave EM technology : Electromagnetic communication technology continues to progress

    International Nuclear Information System (INIS)

    Ludwick, J.

    1998-01-01

    Alpine Oil Services Corp. and Ryan Energy Technologies Inc., have made technological advances in the use of real time electromagnetic (EM) data transmission, using low frequency radio waves to transmit well commands or geological information. The development of the telemetry activated tool was done in two steps. The first technology was real time EM data transmission from the subsurface which used the wellbore to transfer information. The second step was constructing a memory pack which involved an electronic instrument installed in the wellbore which was programmed to perform certain tasks at certain times by transmitting signals back and forth. The use of EM communication allows the geological steering information to come back faster. The EM signal is much faster compared to MWD systems for deeper directional wells. The EM technology also has immediate applications in underbalanced drilling. 1 fig

  15. Progress in switching technology for METS systems

    International Nuclear Information System (INIS)

    Honig, E.M.; Swannack, C.E.; Warren, R.W.; Whitaker, D.H.

    1977-01-01

    Three distinct sets of switching requirements have emerged from design optimization studies of large superconducting magnetic energy storage systems, such as the METS system to power the adiabatic plasma compression field in the proposed theta-pinch SFTR. Extremely low joule loss cryogenic disconnects are required between storage coils in the liquid helium environment to allow charging the coils in series over a prolonged time, then to isolate the coils for parallel fast discharging into the load. Another switch must break the current in the series charging loop and absorb the energy from the stray inductance. This action will allow the subsequent opening of the cryogenic disconnects under near zero current condition. The current now has been transferred to the many paralleled circuits, each containing a high current, high voltage interrupter. The opening and arc commutation of the interrupter starts the energy transfer into the load. The primary activities associated with cryogenic disconnect have been testing and development of contact materials, configurations, and closing forces for carrying 26 kA with a resistance less than 40 nΩ, and development of an actuating system that is both reliable and fast acting in a liquid helium environment. The charging loop switch will include a continuous duty switch and a vacuum interrupter. The continuous duty switch resistance can be an order of magnitude larger than that of the cryogenic disconnect because it does not present a refrigeration load. The HVDC interrupter must break 26 kA and withstand 60 kV during the energy transfer time of 700 μs. Testing in progress already has shown successful interruption using single vacuum interrupters up to 31 kA and 66 kV

  16. Canada's climate change voluntary challenge and registry program : 6. annual progress report

    International Nuclear Information System (INIS)

    2000-10-01

    A Canadian integrated energy company, Suncor Energy Inc. comprises a corporate group, three operating business units, and two emerging businesses. This annual Progress Report for Canada's Climate Change Voluntary Challenge and Registry (VCR) Program represents the sixth for this company. Suncor is committed to sustainable development. Some initiatives undertaken in 1999 by Suncor included: Oil Sands Project Millennium, which will more than double the actual production of crude oil and fuel products by 2002. Suncor is divesting of conventional oil properties in order to concentrate on exploration and production of natural gas. Alternative and renewable energy will see an investment of 100 million over the next five years. The money will be allocated to research and development, the production of fuels from biomass, and conversion of municipal solid waste to energy through the recovery of methane from landfills. Since 1990, the emissions of carbon dioxide have been reduced to 14 per cent below 1990 levels, and reductions of 622, 000 tonnes of greenhouse gases. A comprehensive tracking, reporting, and management system for greenhouse gases was implemented. Ongoing improvements in quality and comprehensiveness have validated the methodology used to monitor emissions inventories and sources. Initiatives in internal and external awareness of greenhouse gases education were implemented, such as speaking engagements at climate change activities, the retrofit of schools with advanced energy-efficient technology, education programs, employee suggestion programs, etc. Collaboration with external partners on research and development projects represents a major building block in this approach. Some of the research and development projects involve the development of advanced carbon dioxide capture and geologic sequestration technologies, work on the production of alternative and renewable energy from Canadian municipal landfills, and the study of a new process to extract heavy

  17. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  18. Thinking Small: Progress on Microscale Neurostimulation Technology.

    Science.gov (United States)

    Pancrazio, Joseph J; Deku, Felix; Ghazavi, Atefeh; Stiller, Allison M; Rihani, Rashed; Frewin, Christopher L; Varner, Victor D; Gardner, Timothy J; Cogan, Stuart F

    2017-12-01

    Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation. © 2017 International Neuromodulation Society.

  19. Technological Progress, Globalization, and Secular Stagnation

    Directory of Open Access Journals (Sweden)

    Popović Milenko

    2018-01-01

    Full Text Available After the 2008 crisis, despite economic recovery that started in 2009, the world economy has experienced a downward shift of its growth path and a consequent decline. As shown at the beginning of this paper, this shift and growth rate stagnation are totally attributable to the economic dynamics in developed economies, the USA and the EU. Explanations of this phenomenon can be divided into two large groups: explanations that belong to the demand side and those that belong to the supply side. The aim of this paper is to give a critical survey of the most important explanations for the ongoing growth stagnation in developed countries and consequently in the entire world economy. This ongoing prolonged stagnation can only be explained by looking at both, the demand and supply sides of the explanation, and particularly by taking a closer look at the interaction between aggregate demand and aggregate supply. In other words, secular stagnation manifests itself as a problem of the limitation of long run growth of aggregate demand. However, in order to explain the causes of those demand limitations, we have to undertake a careful analysis of the supply side dynamics, especially the dynamics of innovations, which bring us to circular and cumulative causation. In order to explain the numerous consequences of this stagnation and to solve some important puzzles, like the productivity paradox for example, a special emphasis is given to the analysis of deindustrialization and the consequent strange reoccurrence of a dual economy within most developed countries during the period of the IT revolution and hyper-globalization. It will also be shown that this new dual economy presents serious limitations for further technological advancement and economic development, quite contrary to the old dualism which contributed to an acceleration of economic growth.

  20. 2009 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Hartmann, Miks; Hoffmann, Petra Britt; Stieglitz, Robert; Hoehne, Thomas; Weiss, Frank-Peter; Hollands, Thorsten; Sanchez Espinoza, Victor Hugo; Tietsch, Wolfgang; Sonnenburg, H.G.

    2009-01-01

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  1. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  2. 2017 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  3. 2016 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-01

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  4. Kootenai River fisheries investigations: rainbow and bull trout recruitment: annual progress report 1999; ANNUAL

    International Nuclear Information System (INIS)

    Walters, Jody P.; Downs, Christopher Charles

    2001-01-01

    Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I.= 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana waters during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m(sup 2), respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline

  5. The macroeconomic determinants of technological progress in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusegun Ayodele Akanbi

    2011-08-01

    Full Text Available This study empirically examines the macroeconomic determinants of technological progress (total factor productivity in Nigeria that is consistent with the endogenous growth theory. The estimations are carried out with time-series data from 1970 to 2006 using the Johansen estimation techniques. The study is distinct from most of the existing literature since it made an attempt in generating a time-varying technological progress. It employs the Kalman filter technique to determine the evolution of the Solow residual estimated from a Cobb-Douglas production function. The results conform to the existing literature that macroeconomic instability, the level of financial development, and the level of human development are highly significant determinants of technological progress in Nigeria.

  6. Technological Progress and Investment Microeconomic Foundations and Macroeconomic Implications

    OpenAIRE

    Boucekkine, Raouf; de Oliveira Cruz, Bruno

    2006-01-01

    This paper presents a non-technical overview of the recent investment literature with a special emphasis on the connection between technological progress and the investment decision. First of all, we acknowledge that some dramatic advances have been made in the 1990s in understanding and modelling non-convex capital adjustment schemes and irreversibility. Nonetheless, this new literature has not satisfactorily accounted for the investment-specific (or embodied) nature of technical progress. W...

  7. Nuclear powered satellite studies. Annual progress report, July 1, 1977--June 30, 1978

    International Nuclear Information System (INIS)

    Kaplan, M.H.

    1978-06-01

    Progress achieved during the reporting period is reported. Discussions of several pertinent aspects are included, e.g., schedule, personnel, technology developments, and plans. The reporting period represents the second year of activities of a project which is designed to provide continuing support in the area of nuclear space power technology. Important results are summarized

  8. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  9. Fiscal year 2001 annual progress report for StreamNet the Northwest Aquatic Information Network.; ANNUAL

    International Nuclear Information System (INIS)

    Schmidt, Bruce R.

    2002-01-01

    This report presents accomplishments of the StreamNet project for Fiscal Year 2001 (FY-01). The report is organized by Task, rather than by participating agency, to clearly link accomplishments by all project participants to the individual Tasks and responsibilities detailed in the FY-01 Statement of Work. The StreamNet Project was somewhat hampered in FY-01 by a delay in final approval of the project budget. The effective project budget has been eroded by cost of living adjustments not keeping up with the actual inflationary cost increases. For example, the project was recently impacted by an unanticipated increase in the federal pay scales for computer technology personnel. This is significant because the project budget is primarily composed of personnel costs (84%). Resultant reductions in workforce have led to a consistent decrease in the ability of the project to conduct its work. The budget request for FY-01 was initially proposed to make up for past differences, but the size of the requested increase caused additional review, and the final budget was not approved until approximately half way through the fiscal year. The increased request was not granted and only a 5% cost of living increase was approved. This resulted in some work beginning late and some work not being done. Several staff members at the Regional level could be funded for only 9 months, forcing those positions to do other work on other contracts for part of the year. A contract to develop data compilations for subbasin summaries through NWPPC helped bridged that gap this year. The ODFW StreamNet Project had significant job vacancies in FY-01, so they took the largest proportion of the budget shortfall of the project cooperators for this year. This allowed the other cooperators to function more at a normal level, but resulted in Oregon not being able to update as many data sets as planned. Oregon was able to fill its vacant database manager position later in the year, and this person has

  10. Research progress on catalytic denitrification technology in chemical industry

    Science.gov (United States)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  11. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  12. Long-run Determinants of Technological Progress in Nigeria ...

    African Journals Online (AJOL)

    Using growth accounting model, economic researchers were able to estimate a measure of technological progress in any economy which has been known as Total Factor Productivity (TFP). Several research works have been carried out on the determinants of TFP in different countries using different methodologies.

  13. Wind turbines - facts from 20 years of technological progress

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Dannemand Andersen, P. [Risoe Ntaional Lab., Roskilde (Denmark)

    1999-03-01

    The first Danish commercial wind turbines were installed in the late 1970s. Over the last 20 years the Danish wind turbine market has been relatively stable concerning annual installations, and the wind turbine technology has been able to develop continuously. This gives a unique time track for technology analysts. The aim of this paper is to extract reliable information on this time track from existing archives and statistics. Seven generations of wind turbine technology have been identified mainly based on `characteristic` rotor diameters. The technological development of each generation is described using indicators such as: market share in Denmark, generator size, rotor diameter, hub height, electricity production and productivity. Economical indicators comprise: costs of turbine and standard foundation. (au)

  14. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  15. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  16. The Community's research and development programme on decommissioning of nuclear installations (1989-1993). Annual progress report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This is the second annual progress report of the European Community's programme (1989-93) of research on decommissioning of nuclear installations. It shows the status of the programme on 31 December 1991. This second progress report summarizes the objectives, scope and work programme of the 76 research contracts concluded, as well as the progress of work achieved and the results obtained in 1991

  17. [Research progress of cell sheet technology in oral tissue engineering].

    Science.gov (United States)

    Liu, Ying; Wang, Daqing; Mo, Jinlong; Li, Binzhong

    2014-09-01

    Cell sheet technology (CST) demonstrates the innovation and advantage by overcoming some immanent shortcomings of traditional tissue engineering. To review the research progress of CST in oral tissue engineering. The related home and abroad literature about CST and its application in stomatology was extensively reviewed and analyzed. Compared to the traditional tissue engineering technology, CST has the features of high seeding density, abundant matrix, good biological compatibility, and perfect operability, which can improve the survival rate of cell transplantation and promote functional reconstruction. It is reported that CST has been successfully used in the following fields, repair and reconstruction of periodontium, soft tissues of oral mucosa, and bones in maxillofacial region. With the development of CST and combined with the traditional tissue engineering technologies, it will promote the tissue engineering further progress in stomatology.

  18. Induced pluripotent stem cell technology: a decade of progress.

    Science.gov (United States)

    Shi, Yanhong; Inoue, Haruhisa; Wu, Joseph C; Yamanaka, Shinya

    2017-02-01

    Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.

  19. Progress in Technology Validation of the Next Ion Propulsion System

    Science.gov (United States)

    Benson, Scott W.; Patterson, Michael J.

    2007-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development.

  20. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    OpenAIRE

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; Van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinica...

  1. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank - A Review of Emerging Issues and Technologies

    OpenAIRE

    Wissam Deeb; James J Giordano; James J Giordano; Peter Justin Rossi; Alon Mogilner; Aysegul Gunduz; Aysegul Gunduz; Jack William Judy; Jack William Judy; Bryan T. Klassen; Christopher R. Butson; Craig van Horne; Damiaan Denys; Darin D Dougherty; David Rowell

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual Deep Brain Stimulation Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS r...

  2. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-04-01

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  3. Water Science and Technology Board annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broader scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.

  4. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  5. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    International Nuclear Information System (INIS)

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems

  6. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  7. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  8. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  9. Fossil Energy Program annual progress report for April 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1998-07-01

    This report covers progress made on research and development projects that contribute to the advancement of fossil energy technologies, covering the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve (SPR). Papers are arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; fossil fuels supplies modeling and research; and oil and gas production.

  10. Fossil Energy Program annual progress report for April 1995 through March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1996-06-01

    This report covers progress for research and development projects that contribute to the advancement of various fossil energy technologies. Attention is focused on the following areas: materials research and development; environmental analysis support; bioprocessing research for coal, oil, and natural gas; coal combustion research; fossil fuels supplies modeling and research; and advanced turbine systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. [Progress in bioenergy-oriented microbial lipid technology].

    Science.gov (United States)

    Zhao, Zongbao K; Hu, Cuimin

    2011-03-01

    Microbial lipid is a potential raw material for biofuel industry. In this review, we summarized recent progress in microbial lipid production by oleaginous fungi in terms of identifying cheap feedstock, developing robust lipid producer, establishing novel strategies and better culture modes for cellular lipid accumulation, as well as revealing the molecular mechanism of oleaginity. We discussed issues, solutions and directions for further development of microbial lipid technology.

  12. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    Science.gov (United States)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  13. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  14. Progress in Genome Editing Technology and Its Application in Plants

    OpenAIRE

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, pr...

  15. Opening address at the 2007 annual meeting on nuclear technology

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2007-01-01

    International developments in nuclear power clearly show that the peaceful utilization of nuclear power is becoming more and more important worldwide. A total of 29 nuclear generating units are currently under construction in 10 countries. On top of that, power utilities are preparing for the construction of some forty nuclear power plants. The United Kingdom, the key country of this year's Annual Nuclear Technology Conference, is reassessing nuclear power. Building new nuclear power plants is once more considered indispensable, not only for climate protection. For Europe, the Europen Commission, in its strategy paper on 'One Energy Policy for Europe', finds that nuclear power is good for the climate, enhances security of supply, and is a competitive form of energy production. Accordingly, it is high time for Germany to develop a consistent and long-term energy concept incorporating a broad energy mix which includes nuclear power. This has to be done within the framework of the Energy Summit and beyond. Nuclear power, together with the other CO 2 -free energy resources, is an indispensable component in meeting also national short-, medium-, and long-term goals of climate protection, as German politicians keep reiterating. A milestone in the repository issue was reached in early April with the decision refuting the Federal Administrative Court action against the Konrad Mine repository. The license issued for the repository is legally valid and the road to final installation is now open. Now exploration of the Gorleben salt dome must be resumed with a specific end in mind. Also in the interest of freedom of research, the existing Red-Green ban on research into reactor development must be lifted. A country of science and technology cannot, must not, afford clinging to this kind of 'yesterday's principles'. (orig.)

  16. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  17. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-01-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  18. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Crouthamel, C.E.

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor

  19. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  20. Characterization of annual disease progression of multiple sclerosis patients: A population-based study

    DEFF Research Database (Denmark)

    Freilich, Jonatan; Manouchehrinia, Ali; Trusheim, Mark

    2017-01-01

    from each full EDSS with explanatory variables age, sex, age at onset, time in current EDSS, highest prior EDSS, MS course and treatment. All factors (except sex) investigated had statistically significant impacts on transitions from at least one EDSS. However, significance and size of the effect...... are dependent on the EDSS state of the patient. Greater age, longer time in a state, highest prior EDSS, having progressive MS and treatment had significant impacts, whereas age at onset had minor impact. Our study confirms that established factors associated with MS disease worsening in time to disease...... milestones also have impacts on annual progression. This approach adds granularity to what EDSS these factors have an influence....

  1. Fossil Energy Program annual progress report for April 1994 through March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report covers progress made during the period April 1, 1994, through March 31, 1995, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, and DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The following research areas are covered in this report: Materials research and development; Environmental analysis support; Bioprocessing research; Coal combustion research; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion in the Energy Science an Technology database.

  2. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  3. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  4. The UK fuel poverty strategy: 5th annual progress report 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This fifth annual progress report details government progress in 2007 in tackling fuel poverty and movement towards targets. The United Kingdom were the first country in the world to recognise the issue of fuel poverty and to put in place measures to tackle the issue, including spending 20 billion pounds sterling on benefits and programmes since the year 2000. The report covers progress to date, schemes and initiatives to tackle fuel poverty, the energy market and looks ahead to the future. Progress and development of the schemes across the devolved nations are also considered. This report is the first to publish the Government's proposals for the Carbon Emissions Reduction Target (CERT) priority group, which were laid before Parliament on 5th December 2007. This report is the first to present the fuel poverty figures for 2005, and shows the effects of rising energy prices. The Government continues to take action to ensure that the energy market is working properly, and to encourage reform in the EU on energy market liberalisation - this should reduce pressure on prices. Those in fuel poverty have much to gain by switching supplier and this report outlines the action taken by Ofgem and Energywatch to encourage this

  5. 2009 annual conference on nuclear technology opening address

    International Nuclear Information System (INIS)

    Hohlefelder, Walter

    2009-01-01

    To Germany, 2009 first and foremost is an election year. The course will be reset. At any rate, reassessing nuclear power policy in Germany in the sense of plant life extension and real progress in solving the energy problem is indispensable. One major reason is the change in boundary conditions since 2000, the year of the agreement between the Red-Green federal government and the nuclear power plant licensees. Climate change, security of power supply, and overcoming the worldwide financial and economic crisis are important points to be mentioned. The world of nuclear power, too, has changed. Besides Finland, also Switzerland, the United Kingdom, Sweden, Italy, and Poland are European countries intending to build new nuclear power plants. Premature shutdown of 7 out of the 17 German nuclear power plants in the next legislative term of the German federal parliament would have grave consequences for the security of supply and would greatly jeopardize the objectives of climate protection. In addition, it would weaken Germany's position as a center of industry. It is important, therefore, to negotiate a sensible approach after the national elections. Like the politically motivated alliance of coal and nuclear in the 1970s and 1980s, a model encompassing renewables, efforts towards energy efficiency, and nuclear power could be possible. As nuclear power has lost its divisive effect on society, despite ongoing discussions, the necessary reassessment must be put on the agenda also in Germany. One major issue is real progress in the waste management problem. This dialog will have to be carried on in a committed as well as unbiased way particularly in the weeks and months to come. We need all power technologies, nuclear included. (orig.)

  6. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  7. Fossil Energy Program annual progress report for April 1993 through March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1994-06-01

    This report covers progress made during the period April 1, 1993, through March 31, 1994, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, the DOE Fossil Energy Office of Petroleum Reserves, and the US Agency for International Development. The five areas of research covered in this report are: Materials research and development; Environmental analysis and support; Bioprocessing; Coal combustion; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion on the data base.

  8. The Community's research and development programme on decommissioning of nuclear installations. Second annual progress report (year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1986. This second progress report describes the objectives, scope and work programme of the 58 research contracts concluded, as well as the progress of work achieved and the results obtained in 1986

  9. FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  10. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  11. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  12. Recent progress at NASA in LISA formulation and technology development

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, R T [NASA Goddard Space Flight Center, Code 663, Greenbelt, MD 20771 (United States)], E-mail: Robin.T.Stebbins@nasa.gov

    2008-06-07

    Over the last year, the NASA half of the joint LISA project has focused its efforts on responding to a major review, and advancing the formulation and technology development of the mission. The NAS/NRC Beyond Einstein program assessment review will be described, including the outcome. The basis of the LISA science requirements has changed from detection determined by integrated signal-to-noise ratio to observation determined by uncertainty in the estimation of astrophysical source parameters. The NASA team has further defined the spacecraft bus design, participated in many design trade studies and advanced the requirements flow down and the associated current best estimates of performance. Recent progress in technology development is also summarized.

  13. Research progress of new technologies in stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Lin MENG

    2017-03-01

    Full Text Available Survivors of stroke commonly experience a different range of dysfunction, and recovery can be slow and incomplete, which lead to a serious and long-term impact on patients themselves and their families. Although the treatment of stroke patients relies mainly on rehabilitation intervention, but the rehabilitation needs of discharged patients are not fully met due to lots of restrictions, such as the lack of professional rehabilitation services, the difficulty and inconvenience in transportation from home to hospital, therefore their prognosis of rehabilitation are affected. At present a number of new rehabilitation technologies, including telerehabilitation (TR, virtual reality (VR, robotics, electronic textiles (E-textiles, etc., are coming into being and may solve these problems. This article tries to discuss the research progress of these new rehabilitation technologies, and provide a new perspective for the rehabilitation intervention of stroke patients. DOI: 10.3969/j.issn.1672-6731.2017.03.003

  14. Dynamic properties of the Solow model with bounded technological progress and time-to-build technology.

    Science.gov (United States)

    Guerrini, Luca; Sodini, Mauro

    2014-01-01

    We introduce a time-to-build technology in a Solow model with bounded technological progress. Our analysis shows that the system may be asymptotically stable, or it can produce stability switches and Hopf bifurcations when time delay varies. The direction and the stability criteria of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. Numerical simulations confirms the theoretical results.

  15. Scandinavian perspectives on plant gene technology: applications, policies and progress.

    Science.gov (United States)

    Eriksson, Dennis; Brinch-Pedersen, Henrik; Chawade, Aakash; Holme, Inger B; Hvoslef-Eide, Trine A K; Ritala, Anneli; Teeri, Teemu H; Thorstensen, Tage

    2018-02-01

    Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding. © 2017 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  16. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  17. Research progress of terahertz wave technology in food inspection

    Science.gov (United States)

    Yan, Zhanke; Ying, Yibin; Zhang, Hongjian; Yu, Haiyan

    2006-10-01

    Food safety and quality concern have become more and more significant in recent years. There is therefore an increasing focus on new technologies that can be applied to food quality evaluation or safety inspection, either to simplify or speed up the checking process, or to provide additional functionality. For example, the technique of near infrared (NIR) spectroscopy has been used for the authentication of agricultural products and food samples. Terahertz (THz) radiation, or THz wave, is electromagnetic wave lies between mid-infrared and microwave radiation. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. The main two applications in which THz fields involved are THz spectroscopy and THz imaging. Terahertz wave technology, as a new area of research, has shown its wide prospects in imaging, diagnosis, detection, and monitoring, etc. Recently, THz technology has gained a lot of attention from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In this paper, a brief review is given to summarize the progress of THz techqiues in the field of food inspection. The properties of THz wave, its uniqueness in sensing and imaging applications, and the prospect of this novel technology in food industry were discussed.

  18. Progress in multiplex loop-mediated isothermal amplification technology.

    Science.gov (United States)

    Lin, Wen-hui; Zou, Bing-jie; Song, Qin-xin; Zhou, Guo-hua

    2015-09-01

    Loop-mediated isothermal amplification (LAMP) has been widely applied in nucleic acid diagnostics due to its high sensitivity and specificity, high speed and low requirement of equipment. In order to fully leverage these merits, achieve high efficiency and reliability in diagnostics, and expand the applicable fields while keeping low reagent cost, multiplex LAMP technology has been extensively explored in recent years. Common methods for LAMP products detection are mostly based on the double-stranded DNA amplicons or byproducts from the polymerization reaction, so they can only identify the occurrence of amplification reaction but not the origins or specificity of the products. To achieve specific LAMP products detection, researchers developed various multiplex methods by improving the conventional LAMP technology or coupling LAMP with other assays. However, the interference and/or the different amplification efficiencies among different primer sets often lead to biased amplification and thus limited multiplexing level. We here defined these methods as narrow-sensed multiplex LAMP. The research on miniaturized amplification technology which is booming in recent years has given rise to the novel general-sensed multiplex LAMP technology that breaks this limitation by its capability to perform highly parallel and miniaturized simplex reactions in independent compartments. Methods of this type have additional benefits such as lower reagent cost, higher level of automation, lower risk of cross-contamination and better suitability for on-site detection of multiple targets. In this review, we summarize the recent research progress in multiplex LAMP technology from the following aspects: the principle and design of narrow-sensed LAMP and its amplification optimization, the general-sensed LAMP, and the various applications of all multiplex LAMP technologies in diagnostics.

  19. [Progress and potential applications of induced pluripotent stem cell technology].

    Science.gov (United States)

    Wu, Cui-Ling; Zhang, Yu-Ming

    2014-08-01

    Differentiated somatic cells can be reprogrammed to a pluripotent state through ectopic expression of specific transcription factors. These reprogrammed cells, which were designated as induced pluripotent stem (iPS) cells, are detected to exhibit unlimited self-renewal capacity and pluripotency. This breakthrough in stem cell research provides a powerful and novel tool for the studies on pathogenesis of diseases, reprogramming mechanism and development of new therapies. For this reason, the iPSC technology has currently become one of the hot topics in stem cells research. Recently, major progress in this field has been achieved: initially, researchers succeeded in inducing the reprogramming of mouse fibroblasts by retroviral transduction of four specific transcription factors; in succession, the accelerated development of iPSC technology by employing non-integrating viral vectors, non-viral vectors or removing the introduced foreign genes via gene knock-out has ensured the yields of much safer iPSC; meanwhile, some researches discovered the proofs that a number of micro molecular compounds were potent in accelerating the cellular reprogramming. For a prospect, iPSC are highly promising for regenerative medicine, disease modeling and drug screening. In this review, the recent progress in the generation of iPSC, prospects of their possible clinical applications and problems in the iPSC research are summarized and discussed.

  20. Productivity growth and technological progress in the Brazilian agricultural sector

    Directory of Open Access Journals (Sweden)

    Marcelo Farid Pereira

    2002-12-01

    Full Text Available Starting in the 1970's, the Brazilian agricultural sector has experienced an important process of modernization, whose principal effects include advances in technological progress and gains in productivity. The primary objective of this paper is to analyze technological progress and total productivity growth in the Brazilian agricultural sector during the period from 1970 to 1996. The methodology used here is based on the Malmquist productivity index and techniques in mathematical programming called Data Envelopment Analysis. The results show that significant progress was made in this sector of the economy but concentrated in only some regions of the country.O setor agropecuário brasileiro passou por um processo de modernização a partir dos anos 70, conseqüentemente, espera-se que exista uma contrapartida de progresso tecnológico e de ganhos de produtividade para o setor. Diante de tal fato tem-se como objetivo, neste estudo, avaliar o progresso tecnológico e o crescimento da produtividade total dos fatores (PTF do setor agropecuário brasileiro ao longo do período de 1970 a 1996. A metodologia utilizada foi baseada no índice Malmquist de produtividade e nas técnicas de programação matemática denominadas de Análise de Envoltória de Dados (DEA. Os resultados alcançados foram condizentes com estudos prévios e apontam para progresso técnico e ganhos de produtividade para o setor, porém concentrados em algumas regiões.

  1. CTR plasma engineering studies. Annual progress report, 1 December 1985-30 November 1986

    International Nuclear Information System (INIS)

    Miley, G.H.

    1986-01-01

    The work described in this annual progress report covers a variety of topics ranging from alpha instabilities and current drive techniques to radiation heating of the first wall in a fusion device. Section II discusses work carried out on alpha instabilities, including comments on problems anticipated in the proposed compact ignition experiment and also recent studies of effects in tandem mirrors. Sections III and IV describe our recent efforts on RFP modelling. This includes a detailed study of oscillating field current drive (F-Θ) pumping and also parametric studies of ignition requirements. Section V presents a report of our application of control theory techniques to the stabilization of an elongated tokamak (ET) using feedback control of the plasma elongation. Section VI discusses our most recent study of the first-wall thermal response to plasma energy deposition while Section VII reviews our continuing study of techniques to radiation harden a wall detector for measuring alpha distributions in a burning plasma

  2. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  3. 75 FR 56651 - ITS Joint Program Office; Trucking Industry Mobility & Technology Coalition Annual Meeting

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Trucking Industry Mobility & Technology... Transportation. ACTION: Notice. The Trucking Industry Mobility & Technology Coalition (TIMTC) Annual [[Page 56652...: Beating Gridlock with a Smart Grid; U.S. DOT Truck Technology Initiatives; and State and Federal...

  4. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  5. Annual Program Progress Report under DOE/PHRI Cooperative Agreement: (July 1, 2001-June 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Palafox, Neal A., MD, MPH

    2002-07-31

    OAK B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Annual Program Progress Report. The DOE Marshall Islands Medical Program continued, in this it's 48th year, to provide medical surveillance for the exposed population from Rongelap and Utrik and the additional DOE patients. The program was inaugurated in 1954 by the Atomic Energy Commission following the exposure of Marshallese to fallout from a nuclear test (Castle Bravo) at Bikini Atoll. This year marks the fourth year in which the program has been carried out by PHRI under a cooperative agreement with DOE. The DOERHRI Special Medical Care Program, awarded the cooperative agreement on August 28, 1998, commenced its health care program on January 15, 1999, on Kwajalein and January 22, 1999, on Majuro. This report details the program for the July 1, 2001, through the June 30, 2002, period. The program provides year-round, on-site medical care to the DOE patient population residing in the Republic of the Marshall Islands (RMI) and annual examinations to those patients living in Hawaii and on the Continental U.S.

  6. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  7. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  8. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-05

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  9. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  10. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  11. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  12. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  13. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  14. Recent Progress in Cell Reprogramming Technology for Cell Transplantation Therapy.

    Science.gov (United States)

    Yamashita, Toru; Abe, Koji

    2016-01-01

    The discovery of induced pluripotent stem (iPS) cells opened the gate for reprogramming technology with which we can change the cell fate through overexpression of master transcriptional factors. Now we can prepare various kinds of neuronal cells directly induced from somatic cells. It has been reported that overexpression of a neuron-specific transcriptional factors might change the cell fate of endogenous astroglia to neuronal cells in vivo. In addition, some research groups demonstrated that chemical compound can induce chemical-induced neuronal cells, without transcriptional factors overexpression. In this review, we briefly review recent progress in the induced neuronal (iN) cells, and discuss the possibility of application for cell transplantation therapy.

  15. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  16. Technological progress and sustainable development. What about the rebound effect?

    International Nuclear Information System (INIS)

    Binswanger, M.

    2001-01-01

    Sustainability concepts that rest on the idea of resource- or energy-efficiency improvements due to technological progress tend to overestimate the potential saving effects because they frequently ignore the behavioral responses evoked by technological improvements. Efficiency improvements also affect the demand for resources and energy, and often an increase in efficiency by 1% will cause a reduction in resource use that is far below 1% or, sometimes, it can even cause an increase in resource use. This phenomenon is commonly labeled the rebound effect, which is well-known among energy economists, but never attracted much attention in ecological economics. The paper starts with the traditional neoclassical analysis of the rebound effect in a partial equilibrium framework that concentrates on the demand of one particular energy service such as mobility or room temperature. It also provides an overview of some of the main empirical studies based on this model that mostly confirm the existence of the rebound effect, but are controversial about its actual importance. However, we have to go beyond the neoclassical single-service model in order to take care of the variety of possible feedback affecting energy use. The paper presents two important expansions of the single-service model in order to show the potential relevance of the rebound effect to ecological economics. First, it is shown that in a multi-services model it proves to be difficult to make general statements about the relevance of the rebound effect. In this case, the overall effect of an increase in energy efficiency on total energy use depends on the on the assumptions about the substitutability between the services considered and the direction of the income effect. Second, the paper also tries to take care of the fact that changes in resource use or energy use are frequently just 'side-effects' of other forms of technological progress. Especially technological change of a time-saving nature can have a

  17. Letterman Army Institute of Research Annual Research Progress Report, FY 1981.

    Science.gov (United States)

    1981-10-01

    CONITOL symbol.: RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY DAOG 6202 81 10 01 DD-DH&a(AR)6O6 O.-DATE PR V SUMRV 4. KID OF SUMMARY L SUMMARY SCTV W SITV* V...loss of stability is seen in the AsP at room temperature. Similar studies were being planned to reevaluate the solution stability of DHA , but were...cancelled when the company holding the patent on using DHA terminated the manufacture of blood bags. Final studies are in progress to obtain the optimal

  18. FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 2.

  19. FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR) part 1.

  20. FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 1.