WorldWideScience

Sample records for technology affects cotton

  1. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  2. Fruiting branch K+ level affects cotton fibre elongation through osmoregulation

    Directory of Open Access Journals (Sweden)

    Jiashuo eYang

    2016-01-01

    Full Text Available Potassium (K deficiency in cotton plants results in reduced fibre length. As one of the primary osmotica, K+ contributes to an increase in cell turgor pressure during fibre elongation. Therefore, it is hypothesized that fibre length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha-1 on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibres were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (Vmax is the parameter that best reflects the change in fibre elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analysed accordingly. Statistical analysis showed that K+ was the major osmotic factor affecting fibre length, and malate was likely facilitating K+ accumulation into fibres, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K+ absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fibre length in late season bolls.

  3. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  4. New Technologies for Managing Cotton Modules

    Science.gov (United States)

    The use of RFID transponders in the module tags on round modules formed by John Deere harvesters has opened up new possibilities for managing modules and harvest data. Tools are needed to help integrate this new technology and provide additional value to growers and ginners. A mobile application w...

  5. Study on Bleaching Technology of Cotton Fabric with Sodium Percarbonate

    OpenAIRE

    Li Zhi; Wang Yanling; Wang Zhichao

    2016-01-01

    Bleach cotton fabric with sodium percarbonate solution. Analyse of the effect of the concentration of sodium percarbonate solution, bleaching time, bleaching temperature and the light radiation on the bleaching effect of fabric.The result shows that increasing concentrations of percarbonate,increasing the bleaching time , raising the bleaching temperature and the UV irradiation may whiten the cotton fabric.The most suitable conditions for the bleaching process is concentration of sodium perca...

  6. Yields of cotton and other crops as affected by applications of sulfuric acid in irrigation water

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.D.; Lyerly, P.J.

    1954-01-01

    Effects of sulfuric acid on crop yields and on some physical and chemical properties of a calcareous soil were investigated in a field experiment from 1947 through 1952. On cotton plots, the treatments consisted of applications of irrigation water containing no acid (pH 8.3), water acidified to pH 6, and water acidified to pH 2.3. Cotton was grown five seasons followed by sesbania the sixth season. A test on alfalfa was established using irrigation water not acidified and water acidifeid to pH 4. Alfalfa was grown for 3 years. The fourth year the alfalfa was plowed under and a crop of corn was raised. Cotton yields on the acid plots relative to the checks became progressively higher (with two exceptions) from one year to the next; however, in only one year (1950) were differences in yield statistically significant. With sesbania following cotton, highly significant yield increases resulted from the high acid treatment. Alfalfa yields on the acid plots became progressively greater relative to the non-acid plots, but yield differences were not significant. In cotton leaves, the acid treatments resulted in increased uptake of magnesium, sulfur, and phosphorus, but the increases were probably not significant. Uptake of sodium, potassium, calcium, manganese, and iron were not appreciably affected. In sesbania, the acid treatments did not significantly alter the uptake of any of the plant nutrients determined. There was some indication, however, that the uptake of sodium and iron was reduced by the acidification. The results of this study support the view that soil acidification on calcareous soils may improve the soil physical conditions and result in increased yields, particularly in some crops. The application of acid in the irrigation water did not prove to be economically feasible. 12 references, 1 figure, 7 tables.

  7. Use of Electronic Technologies to Manage Seed Cotton Modules

    Science.gov (United States)

    Most U.S. farmers and ginners still use paper tags to identify cotton modules along with a large number painted on the side of traditional modules. The gin typically assigns tags for the modules. When the gin gets the module, the paper tag is removed and the information is manually entered into a s...

  8. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation...... will ask and try to answer. The mobile phone and its devices are depicted as being able to make a unique human presence, interaction, and affect. The medium, the technology is a necessary helper to get towards this very special and lost humanity. Without the technology, no special humanity - soul....... The paper will investigate how technology, humanity, affects, and synaesthesia are presented and combined with examples from everyday aesthetics, e.g. early computer tv-commercial, net-commercial for mobile phones. Technology and affects point, is the conclusion, towards a forgotten pre-human and not he...

  9. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves.

    Science.gov (United States)

    Hu, Wei; Coomer, Taylor D; Loka, Dimitra A; Oosterhuis, Derrick M; Zhou, Zhiguo

    2017-06-01

    Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K 2 O ha -1 and K67: 67 kg K 2 O ha -1 ) and a controlled environment experiment with K-deficient solution (K1: 0 mM K + ) and K-sufficient solution (K2: 6 mM K + ). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency

  10. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    Full Text Available Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N, and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  11. Simulative Global Warming Negatively Affects Cotton Fiber Length through Shortening Fiber Rapid Elongation Duration.

    Science.gov (United States)

    Dai, Yanjiao; Yang, Jiashuo; Hu, Wei; Zahoor, Rizwan; Chen, Binglin; Zhao, Wenqing; Meng, Yali; Zhou, Zhiguo

    2017-08-23

    Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, T day /T night ) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, T night had a great influence on fiber elongation, which means T n could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.

  12. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    Science.gov (United States)

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  13. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Science.gov (United States)

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  14. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization

    Directory of Open Access Journals (Sweden)

    Zongkui Chen

    2018-02-01

    Full Text Available Limitations of soil water and nitrogen (N are factors which cause a substantial reduction in cotton (Gossypium hirsutum L. yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20 or 40 cm (H40 from soil surface and four water-N combinations [deficit irrigation (W55 and no N (N0 (W55N0, W55 and moderate N (N1 (W55N1, moderate irrigation (W75 and N0 (W75N0, W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29–82% and reproductive organs biomass by 47–101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR activity, potential quantum yield of photosystem (PS II (Fv/Fm, PSII quantum yield in the light [Y(II] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II and stomatal conductance. Hence, shallow irrigation (20 cm with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs.

  15. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  16. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  17. Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females.

    Science.gov (United States)

    Coelho, Roberta R; de Souza Júnior, José Dijair Antonino; Firmino, Alexandre A P; de Macedo, Leonardo L P; Fonseca, Fernando C A; Terra, Walter R; Engler, Gilbert; de Almeida Engler, Janice; da Silva, Maria Cristina M; Grossi-de-Sa, Maria Fatima

    2016-09-01

    Vitellogenin (Vg), a yolk protein precursor, is the primary egg nutrient source involved in insect reproduction and embryo development. The Cotton Boll weevil (CBW) Anthonomus grandis Boheman, the most important cotton pest in Americas, accumulates large amounts of Vg during reproduction. However, the precise role of this protein during embryo development in this insect remains unknown. Herein, we investigated the effects of vitellogenin (AgraVg) knockdown on the egg-laying and egg viability in A. grandis females, and also characterized morphologically the unviable eggs. AgraVg transcripts were found during all developmental stages of A. grandis, with highest abundance in females. Silencing of AgraVg culminated in a significant reduction in transcript amount, around 90%. Despite this transcriptional reduction, egg-laying was not affected in dsRNA-treated females but almost 100% of the eggs lost their viability. Eggs from dsRNA-treated females showed aberrant embryos phenotype suggesting interference at different stages of embryonic development. Unlike for other insects, the AgraVg knockdown did not affect the egg-laying ability of A. grandis, but hampered A. grandis reproduction by perturbing embryo development. We concluded that the Vg protein is essential for A. grandis reproduction and a good candidate to bio-engineer the resistance against this devastating cotton pest.

  18. Factors Affecting sex pheromone production in female cotton leaf worm moth, Spodoptera littoralis (boisd.)

    International Nuclear Information System (INIS)

    Sallam, H.A.; Hazaa, M.A.; Abd El-Rahman, H.A.; Hussein, M.A.

    2000-01-01

    Factors influencing sex pheromone production in the cotton leaf worm female moth with emphasis on gamma radiation were investigated. To determine the effect of age on sex pheromone production, ether extracts of the female abdominal tips were prepared from virgin females of various ages in a concentration of 0.01 FE/mu L. Each female extract was tested against 1-2 days-old males. The obtained results indicated that virgin females could secrete sex pheromone early at the beginning of their life. The pheromone production increased rapidly to reach its maximum on the second day. To study the effect of daytime on sex pheromone production, the ether extracts of 1-2 days old virgin female abdominal tips were prepared at 3 hour-intervals, throughout the photo phase and scotophase in a concentration of 0.01 FE/mu L. The obtained results indicated that pheromone production showed a minimum concentration at mid-day during the photo phase. It then increased to a moderate concentration from 7:0 p.m. to 10:0 p.m. and reached its maximum titer at almost mid-night. The obtained data on the effect of gamma irradiation indicated that irradiation of 3 and 6-day-old female pupae with doses of 60 and 120 Gy, respectively caused a reduction of 28.1 and 27.3 % in male response, respectively, to female sex pheromone extracts. When full-grown female pupae were irradiated with 200 and 350 Gy, a reduction of 15.6 and 75% in male response, respectively, was reached. Thus, an irradiation dose of 350 Gy applied to full-grown female pupae could severely affect pheromone production of the emerging female moths

  19. Tensile properties of cotton yarn as affected by different yarn singeing machine variables

    International Nuclear Information System (INIS)

    Tausief, M.Q.; Mahmood, N.; Iqbal, W.

    2014-01-01

    The present study endeavours to optimise the yam quality in respect of its tensile properties by choosing the best combination of the yam singeing machine variables for excellent manufacture results. This research study revealed that different values of winding speed, gas pressure and air pressure of yam singeing machine put significant effect upon the tensile properties of cotton yam after singeing. (author)

  20. Use of GPS and GIS technology in surveying and mapping of wheat and cotton weeds in Khairpur district, Sindh, Pakistan

    International Nuclear Information System (INIS)

    Memon, R.A.; Khalid, S.; Mallah, A.

    2011-01-01

    Present study was conducted in the fields of Khairpur district, Sindh for the mapping of some important weeds of wheat and cotton by using GPS and GIS technology. A base map of the district was prepared by using Geographical Information System (GIS) to indicate the sampling sites and physical features of the area. Two more maps were created to depict the density and frequency of weeds of wheat and cotton crops in each Tehsil (Taluka), shown in the form of bar and pie diagrams. Present piece of work will help the scientists and managers to predict those areas, potentially subjected to weed invasion. (author)

  1. Survey Probability and Factors affecting Farmers Participation in Future and Option Markets Case Study: Cotton product in Gonbad kavos city

    Directory of Open Access Journals (Sweden)

    F. sakhi

    2016-03-01

    .5 respectively. Multinomial Logit model estimation results for the probability of participation in the future and option markets showed that variables of the level of education, farm ownership, cotton acreage, and non-farm income, work experience in agriculture, the index of willing to use new technologies, the index of risk perception cotton market and risk aversion index are statistically significant. The variables of farm ownership, non-farm income and work experience in agriculture, showed negative effects and the other variables showed positive effects on the probability of participation in these markets. The results are in line with previous studies. Conclusion: The purpose of the current study was to look at the possibility of farmers participations in the future and option markets that presented as a means to reduce the cotton prices volatility. The dependent variable for this purpose, have four categories: participation in both market, and future market, participation in option market and participation in both future and option markets. Multinomial Legit Regression Model was used for data analysis. Results indicated that during the period of 2014 -2015 and the sample under study 35% of cotton growers unwilling to participate in the future and option markets. Farmers willingness to participate in the future and option market was 19% and %21.5, respectively. Multinomial Legit model estimation results for the probability of participation in the future and option markets showed that the variables of the level of education, farm ownership, cotton acreage, and non-farm income, work experience in agriculture, the index of willing to use new technologies, the index of risk perception cotton market and risk aversion index were statistically significant. The variables of farm ownership, non-farm income and work experience in agriculture, showed negative effects and the other variables positive effects on the probability of participation in these markets. The results are in line

  2. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  3. Potassium-phosphorus relationships in cotton (gossypium hirsutum L.) as affected by potassium nutrition

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Ashraf, M.

    2007-01-01

    Field studies were undertaken to determine the interrelationship between potassium (K+) concentration in various organs of plant and phosphorus (P) content as influenced by K-nutrition in cotton. The experiment was conducted on Miani soil series silt loam and classified as Calcaric Cambisols, fine silty, mixed Hyperthermic Fluventic Haplocambids. The treatments consisted .of (a) four cotton (Gossypium hirsutum L.) cultivars (CI.M-448, CIM-IIOO, Karishma, S-12); and (b) four potassium fertilizer doses (0, 62.5, 125.0, 250.0 kg K ha-l). The design of experiment was split plot (main: cultivars, sub-plot: K-doses). The plant samples were collected at five stages of growth, i.e., first flower bud., first flower, peak flowering, first boll split and maturity. The various parts of plants were analyzed for phosphorus and potassium concentration at various stages of growth. Phosphorus concentration in leaves, stems, burs, seed and lint decreased with concurrent increase in K-doses. Crop maintained 0.22% phosphorus concentration in leaf tissues at first flower bud and dropped to 0.11% at maturity. Cultivars differed greatly amongst themselves in terms of maintaining P content in their different parts. Averaged across K-doses, cv. CIM-448 maintained the highest P content in all parts than other cultivars. There was a negative and significant correlation co-efficient between K and P concentration in various parts of the plant. The study demonstrated antagonistic interaction between K+ and P in cotton plant under irrigated conditions. (author)

  4. How does technological regime affect performance of technology development projects?

    NARCIS (Netherlands)

    Song, Michael; Hooshangi, Soheil; Zhao, Y. Lisa; Halman, Johannes I.M.

    2014-01-01

    In this study, we examine how technological regime affects the performance of technology development projects (i.e., project quality, sales, and profit). Technological regime is defined as the set of attributes of a technological environment where the innovative activities of firms take place.

  5. Improving food and agricultural production. Thailand. Breeding for resistance to diseases in cotton

    International Nuclear Information System (INIS)

    Wallace, T.P.

    1992-01-01

    This document reports the results of a 20-day mission to Thailand within the framework of the project ''Improving food and agricultural production with nuclear and related technology''. The expert discussed the status of cotton breeding, production practices and problems with personnel of the Department of Agriculture in Bangkok, and travelled to cotton-producing regions of the central and northern areas of the country to discuss current research, pest problems and social factors affecting cotton production

  6. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    Full Text Available Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars due to the introduction and widespread adoption of Bt (Bacillus thuringiensis cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  7. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  8. Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method?

    DEFF Research Database (Denmark)

    Mahieu, S.; Fustec, J.; Jensen, Erik Steen

    2009-01-01

    The aim of the present study was to test and improve the reliability of the 15N cotton-wick method for measuring soil N derived from plant rhizodeposition, a critical value for assessing belowground nitrogen input in field-grown legumes. The effects of the concentration of the 15N labelling...... solution and the feeding frequency on assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.). Neither the method nor the feeding frequency altered plant biomass and N partitioning, and the method appeared well adapted for assessing...... the belowground contribution of field-grown legumes to the soil N pool. However, nitrogen rhizodeposition assessment was strongly influenced by the feeding frequency and the concentration of labelling solution. At pod-filling and maturity, despite similar root 15N enrichment, the fraction of plants' belowground...

  9. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  10. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton.

    Science.gov (United States)

    Malaquias, J B; Ramalho, F S; Omoto, C; Godoy, W A C; Silveira, R F

    2014-03-01

    Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) is one of the most common asopine species in the neotropical region and its occurrence was reported in several countries of South and Central America, as an important biological control agent for many crops. This study was carried out to identify the imidacloprid impacts on the functional response of predator P. nigrispinus fed on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) strain resistant to lambda-cyhalothrin, on Bt cotton expressing Cry1Ac (Bollgard(®)). Spodoptera frugiperda larvae were used in the following conditions: resistant (1) and susceptible (2) strains to lambda-cyhalothrin fed on Bollgard(®) cotton leaves (DP 404 BG); and resistant (3) and susceptible (4) strains to lambda-cyhalothrin fed on non-genetically modified cotton leaves (cultivar DP4049). The predatory behavior of P. nigrispinus was affected by imidacloprid and the type II asymptotic curve was the one that best described the functional response data. Handling time (T h ) of predator females did not differ among treatments in the presence of imidacloprid. The attack rate did decrease, however, due to an increase in the density of larvae offered. Regardless of the treatment (S. frugiperda strain or cotton cultivar), the predation of P. nigrispinus females on S. frugiperda larvae was significantly lower when exposed to imidacloprid, especially at a density of 16 larvae/predator. The predation behavior of P. nigrispinus on S. frugiperda larvae is affected by the insecticide imidacloprid showing that its applications should be used in cotton crop with caution.

  11. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Science.gov (United States)

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  12. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  13. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  14. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  15. DETERMINATION THE EFFECT OF DEFOLIATION TIMING ON COTTON YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    Karademir Emine

    2007-12-01

    Full Text Available This study was carried out for determining the effect of different application times at 40, 50, 60 and 70 % boll opening and untreated plot of the defoliant on cotton yield, earliness and technological properties in Southeast Anatolia Region conditions in Turkey. Maras 92 cotton variety was used as plant material in the experiment field of the Southeast Anatolia Agricultural Research Institute during 2000-2001. Defoliant was including thidiazuron + diuron chemical substance. The result of this study showed that ginning percentage, 100 seed weight, seed germination percentage, fiber fineness, fiber length, fiber strength, reflectance, elongation and seed cotton yield were not affected by the treatment; plant height and first picking percentage in 2001, fiber uniformity in 2000 were 5 % significantly affected. This study showed that application of defoliant didn’t affect significantly yield and technological properties of cotton and after 40 % boll opening the defoliant can be used.

  16. Timing and placement of cattle manure and/or gliricidia affects cotton and sunflower nutrient accumulation and biomass productivity.

    Science.gov (United States)

    Primo, Dário C; Menezes, Rômulo S C; Oliveira, Fabio F DE; Dubeux Júnior, José Carlos B; Sampaio, Everardo V S B

    2018-01-01

    Organic fertilizers are a viable alternative to increase oilseed productivity in family agriculture systems. The study aimed to evaluate the effects of timing and placement of cattle manure and/or gliricidia (Gliricidia sepium Jacq. Walp) prunings on cotton (Gossipium hirsutum L.) and sunflower (Helianthus annuus L.) nutrient accumulation and biomass productivity. Experiments were carried out in 2010 and 2011 in Taperoá, Paraíba, Brazil. The organic fertilization treatments were: GI - gliricidia incorporated before planting; GS - gliricidia applied on surface 45 days after planting (DAP); MI + GI - manure and gliricidia incorporated before planting; MI + GS - manure incorporated before planting and gliricídia applied on the surface 45 DAP; MI - manure incorporated before planting; and T - with no organic fertilization. In 2010, treatment MI + GS increased N, P, and K accumulation in cotton (12 and 7 kg ha-1) as well as in sunflower (20 and 29 kg ha-1). In 2011, GI and GS treatments resulted in higher N, P, K accumulations in both crops. The highest cotton productivity in 2010 was obtained with MI + GS treatment (198 kg ha-1) and in 2011 with GS treatment (594 kg ha-1). For sunflower, MI + GS treatment yielded the highest productivity in 2010 (466 kg ha-1) and GI treatment in 2011 (3542 kg ha-1). GI and MI + GS treatments increased total biomass productivity for cotton and sunflower. The treatment that combined both cattle manure incorporated into the soil before planting and gliricidia applied on the surface 45 days after planting was the most viable management strategy.

  17. Site-specific management of cotton root rot using airborne and satellite imagery and variable rate technology

    Science.gov (United States)

    Cotton root rot is a serious cotton disease that can now be effectively controlled with Topguard Terra Fungicide. However, its recurrence in the same areas year after year makes fungicide application only to infested areas more effective and economical than uniform application. Base on 17 years of r...

  18. Emergence of controversy in technology transitions: Green revolution and Bt cotton in India

    NARCIS (Netherlands)

    Ramani, S.V.; Thutupalli, A.

    2015-01-01

    Technology transitions following radical technological breakthroughs are often marked by controversies and the transitions to Green Revolution (GR) and Genetically Modified (GM) seeds in India were no exceptions to this rule. Controversies can trigger social dilemmas, but in economics we do not yet

  19. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  20. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  1. How Technology and Data Affect Mission Command

    Science.gov (United States)

    2016-05-17

    relevant. For example , a concept of support developed using the Op- erational Logistics Planner is not a complete list of detailed decisions by phase, but...a standard issue green notebook and a good me- chanical pencil. Technology and the analysis and mobilization of data can enable or disrupt mission

  2. Desenvolvimento radicular do algodoeiro em resposta à localização do fertilizante Cotton root development as affected by fertilizer placement

    Directory of Open Access Journals (Sweden)

    Fábio Suano de Souza

    2007-04-01

    Full Text Available A utilização de adubos pode-se tornar prejudicial caso o fertilizante não seja localizado adequadamente. No presente trabalho foram estudados o crescimento radicular do algodoeiro (Gossypium hirsutum, o crescimento inicial e a nutrição da planta, considerando o local de aplicação do fertilizante. O estudo foi realizado em vasos com parede de vidro. O fertilizante foi colocado a 5,0 cm abaixo e 0,0, 2,5, 5,0 e 10,0 cm ao lado das sementes. O crescimento radicular foi avaliado a cada três dias e, aos 21 dias após a emergência, as plantas foram coletadas, sendo avaliada a produção de matéria seca e a absorção de macronutrientes. A aplicação de fertilizante proporcionou crescimento inicial mais vigoroso do sistema radicular mesmo em solo previamente corrigido e adubado, o que é importante no estabelecimento da cultura. Somente houve bom crescimento inicial do sistema radicular e da parte aérea do algodoeiro quando o fertilizante foi aplicado de 5,0 a 10,0 cm ao lado e 5,0 cm abaixo das sementes.Unless fertilizer is properly placed in the soil it can be harmful. This experiment was conducted to study cotton (Gossypium hirsutum root growth and initial plant development and nutrition as affected by fertilizer placement. Cotton plants were grown in pots with a glass wall. The fertilizer was applied 5.0 cm under the seed row and 0, 2.5, 5.0 and 10.0 cm beside the seed row. Root growth was evaluated every 3 days, and 21 days after emergence the plants were harvested. Dry matter production and macronutrient absorption were evaluated. Even in previously limed and fertilized soil, localized fertilizer application reinforced the initial growth of cotton roots, which is very important for a good crop establishment in the field. Normal root growth and adequate initial plant development was only observed when the fertilizer was placed 5.0 cm below and from 5.0 to 10.0 cm distance from the seed row.

  3. Digital academia: How higher education is affected by digital technology

    OpenAIRE

    Eriksmo, Anton; Sundberg, Johan

    2016-01-01

    Digital technology in higher education is constantly evolving. Understanding the effects of digital technology is important for higher education institutions in order to make good investments of digital technology. Previous research has focused on learning, teaching or the organization and the relation between one of these aspects and digital technology, thereby missing a broader understanding of how materiality in digital technology affects higher education. In this study themed interviews w...

  4. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    Science.gov (United States)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  5. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    Science.gov (United States)

    Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas

    2012-11-01

    The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.

  6. Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study.

    Science.gov (United States)

    Watto, Muhammad Arif; Mugera, Amin

    2014-11-01

    Massive groundwater pumping for irrigation has started lowering water tables rapidly in different regions of Pakistan. Declining water tables have thus prompted research efforts to improve agricultural productivity and efficiency to make efficient use of scarce water resources. This study employs a restricted stochastic production frontier to estimate the level of, and factors affecting, technical efficiency of groundwater-irrigated cotton farms in the Punjab province of Pakistan. The mean technical efficiency estimates indicate substantial technical inefficiencies among cotton growers. On average, tube-well owners and water buyers can potentially increase cotton production by 19% and 28%, respectively, without increasing the existing input level. The most influential factors affecting technical efficiency positively are the use of improved quality seed, consultation with extension field staff and farmers' perceptions concerning the availability of groundwater resources for irrigation in the future. This study proposes that adopting improved seed for new cotton varieties and providing better extension services regarding cotton production technology would help to achieve higher efficiency in cotton farming. Within the context of falling water tables, educating farmers about the actual crop water requirements and guiding them about groundwater resource availability may also help to achieve higher efficiencies. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  7. Gender-specific constraints affecting technology use and household ...

    African Journals Online (AJOL)

    Gender-specific constraints affecting technology use and household food security in western ... African Journal of Food, Agriculture, Nutrition and Development ... on household food security among smallholders in Western Province of Kenya.

  8. Factors affecting teachers’ continuation of technology use in teaching

    NARCIS (Netherlands)

    Kafyulilo, A.; Fisser, P.; Voogt, J.

    2016-01-01

    This study was conducted to investigate the continuation of technology use in science and mathematics teaching of the teachers who attended a professional development program between 2010 and 2012. Continuation of technology use was hypothesized to be affected by the professional development program

  9. Factors Affecting Teachers' Continuation of Technology Use in Teaching

    Science.gov (United States)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study was conducted to investigate the continuation of technology use in science and mathematics teaching of the teachers who attended a professional development program between 2010 and 2012. Continuation of technology use was hypothesized to be affected by the professional development program and by personal, institutional, and…

  10. Sleeping with technology: cognitive, affective, and technology usage predictors of sleep problems among college students.

    Science.gov (United States)

    Rosen, Larry; Carrier, Louis M; Miller, Aimee; Rokkum, Jeffrey; Ruiz, Abraham

    2016-03-01

    Sleep problems related to technology affect college students through several potential mechanisms including displacement of sleep due to technology use, executive functioning abilities, and the impact of emotional states related to stress and anxiety about technology availability. In the present study, cognitive and affective factors that influence technology usage were examined for their impact upon sleep problems. More than 700 US college students completed an online questionnaire addressing technology usage, anxiety/dependence, executive functioning, nighttime phone usage, bedtime phone location, and sleep problems. A path model controlling for background variables was tested using the data. The results showed that executive dysfunction directly predicted sleep problems as well as affected sleep problems through nighttime awakenings. In addition, anxiety/dependence increased daily smartphone usage and also increased nighttime awakenings, which, in turn, affected sleep problems. Thus, both the affective and cognitive factors that influence technology usage affected sleep problems. Copyright © 2016 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  11. Merging Technology and Emotions: Introduction to Affective Computing.

    Science.gov (United States)

    Brigham, Tara J

    2017-01-01

    Affective computing technologies are designed to sense and respond based on human emotions. This technology allows a computer system to process the information gathered from various sensors to assess the emotional state of an individual. The system then offers a distinct response based on what it "felt." While this is completely unlike how most people interact with electronics today, this technology is likely to trickle into future everyday life. This column will explain what affective computing is, some of its benefits, and concerns with its adoption. It will also provide an overview of its implication in the library setting and offer selected examples of how and where it is currently being used.

  12. Everyday complexities and sociomaterialities of learning, technology, affects and effects

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    design with particular intended educational purposes (e.g. educational technology and technology education), the everyday complexities and sociomaterialities of learning and technology intermingles with how students/professionals become affected by digital technology and hence also which matters......This paper starts out with the challenge of establishing and researching relationships between educational design, digital technology and professional learning. The paper is empirical and takes point of departure in case examples from two development projects with a focus on professional education....... Both projects focus on new waysto build relationships between digital technologies, professional education and learning. Each project takes a different take on how to approach and position digital technology and it’s relationships with the educational programs and students’ learning. Project Wellfare...

  13. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  14. Individual and Technological Factors Affecting Undergraduates' Use of Mobile Technology in University of Ilorin, Nigeria

    Science.gov (United States)

    Olufunmilola Ogulande, Oyeronke; Oladimeji Olafare, Festus; Ayuba Sakaba, Dabo

    2016-01-01

    The proliferation and utilization of handheld mobile technology among undergraduates for mobile learning cannot be underestimated. This study was geared towards investigating individual and technological factors affecting the perceived usefulness of mobile technology by undergraduates in university of Ilorin, Nigeria. The study was a descriptive…

  15. Does Technology Acceptance Affect E-Learning in a Non-Technology-Intensive Course?

    Science.gov (United States)

    Buche, Mari W.; Davis, Larry R.; Vician, Chelley

    2012-01-01

    Prior research suggests that individuals' technology acceptance levels may affect their work and learning performance outcomes when activities are conducted through information technology usage. Most previous research investigating the relationship between individual attitudes towards technology and learning has been conducted in…

  16. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  17. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  18. Factors Affecting Adoption of Recommended Cauliflower Production Technology in Nepal

    Directory of Open Access Journals (Sweden)

    Pankaj Raj Dhital

    2016-05-01

    Full Text Available Binary logit regression model of econometrics was used to identify the factors affecting adoption of recommended agricultural technology by the commercial farmers of Nepal. A survey was carried out in 2012 in 120 households from Kavre district, Nepal. The objective was to appraise factors affecting adoption of recommended technology of cauliflower, finding out the level of adoption, identifying the constraints of cauliflower cultivation, assessing the perceived level of satisfaction and studying the relationship of certain selected variables on the adoption. Education, Occupation, contact with Personal Localite sources of information, Group membership and Experience were the most influencing factors for adoption of recommended technology. Though, other factors were not strong enough to contribute significantly but indirectly influence the adoption decision of farmers as combined effects. Occupation was found as negatively associated. Landholding size was strongly and positively influencing among the non significant factors. The level of satisfaction and the constraints of cauliflower production were also identified. Transfer of technology will be effective if and only if the client adopts the technology. For an effective transfer of technology, it is better to go for activities for the welfare of the socioeconomic factors of the farmers.

  19. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  20. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  1. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  2. Factors affecting the adoption of quality assurance technologies in healthcare.

    Science.gov (United States)

    Storey, John

    2013-01-01

    In the light of public concern and of strong policy emphasis on quality and safety in the nursing care of patients in hospital settings, this paper aims to focus on the factors affecting the adoption of innovative quality assurance technologies. Two sets of complementary literature were mined for key themes. Next, new empirical insights were sought. Data gathering was conducted in three phases. The first involved contact with NHS Technology Hubs and other institutions which had insights into leading centres in quality assurance technologies. The second phase was a series of telephone interviews with lead nurses in those hospitals which were identified in the first phase as comprising the leading centres. The third phase comprised a series of face to face interviews with innovators and adopters of healthcare quality assurance technologies in five hospital trusts. There were three main sets of findings. First, despite the strong policy push and the templates established at national level, there were significant variations in the nature and robustness of the quality assurance toolkits that were developed, adapted and adopted. Second, in most of the adopting cases there were important obstacles to the full adoption of the toolkits that were designed. Third, the extent and nature of the ambition of the developers varied dramatically - some wished to see their work impacting widely across the health service; others had a number of different reasons for wanting to restrict the impact of their work. The general concerns about front-line care and the various inquiries into care quality failures emphasise the need for improved and consistent care quality assurance methodologies and practice. The technology adoption literature gives only partial insight into the nature of the challenges; this paper offers specific insights into the factors inhibiting the full adoption of quality assurance technologies in ward-based care.

  3. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-01

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO 2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review

  4. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  5. Technological factors affecting biogenic amine content in foods: a review

    Directory of Open Access Journals (Sweden)

    Fausto Gardini

    2016-08-01

    Full Text Available Biogenic amines (BAs are molecules which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine and agmatine. The importance of preventing the excessive accumulation of BAs in food is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BA accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting biogenic amine content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity and other BAs, environmental factors influencing BA formation (temperature, salt concentration, pH. In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolising BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances are addressed.

  6. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  7. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  8. The "Cotton Problem"

    OpenAIRE

    Baffes, John

    2005-01-01

    Cotton is an important cash crop in many developing economies, supporting the livelihoods of millions of poor households. In some countries it contributes as much as 40 percent of merchandise exports and more than 5 percent of gross domestic product (GDP). The global cotton market, however, has been subject to numerous policy interventions, to the detriment of nonsubsidized producers. This ...

  9. POLICY IMPLICATIONS OF TEXTILE TRADE MANAGEMENT AND THE U.S. COTTON INDUSTRY

    OpenAIRE

    Shui, Shangnan; Wohlgenant, Michael K.; Beghin, John C.

    1993-01-01

    This study investigates the effects on the U.S. cotton industry of textile trade liberalization using a multi-market equilibrium displacement model. The simulation results suggest that textile trade liberalization would induce small changes in the total demand for U.S. cotton but would affect considerable y U.S. cotton demand structure, making U. S, cotton growers more dependent on world markets. The welfare analyses reveal that textile trade liberalization would result in a small welfare los...

  10. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  11. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  12. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.

    Science.gov (United States)

    Singh, Shardendu K; Badgujar, Girish; Reddy, Vangimalla R; Fleisher, David H; Bunce, James A

    2013-06-15

    Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800μmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants

  13. Radiation synthesis of silver nanostructures in cotton matrix

    International Nuclear Information System (INIS)

    Chmielewska, Dagmara; Sartowska, Bożena

    2012-01-01

    Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out. - Highlights: ► Ag NPs embedded in cotton matrix were synthesised by electron beam irradiation. ► Concentration of silver salt solution influences on size of silver nanoparticles. ► Silver content as well as irradiation affect thermal properties of cotton fabrics. ► Ag-cotton nanocomposites exhibit antibacterial activity against bacteria and fungi.

  14. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  15. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  16. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-10-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.

  17. Factors affecting the adoption of healthcare information technology

    OpenAIRE

    Naenna, Thanakorn; Phichitchaisopa, Nisakorn

    2013-01-01

    In order to improve the quality and performance of healthcare services, healthcare information technology is among the most important technology in healthcare supply chain management. This study sets out to apply and test the Unified Theory of Acceptance and Use of Technology (UTAUT), to examine the factors influencing healthcare Information Technology (IT) services. A structured questionnaire was developed and distributed to healthcare representatives in each province surveyed in Thailand...

  18. Factors affecting the adoption of healthcare information technology

    OpenAIRE

    Phichitchaisopa, Nisakorn; Naenna, Thanakorn

    2013-01-01

    In order to improve the quality and performance of healthcare services, healthcare information technology is among the most important technology in healthcare supply chain management. This study sets out to apply and test the Unified Theory of Acceptance and Use of Technology (UTAUT), to examine the factors influencing healthcare Information Technology (IT) services. A structured questionnaire was developed and distributed to healthcare representatives in each province surveyed in Thailand. D...

  19. Factors Affecting Teachers' Competence in the Field of Information Technology

    Science.gov (United States)

    Tambunan, Hamonangan

    2014-01-01

    The development of learning technology today, have a direct impact on improving teachers' information technology competence. This paper is presented the results of research related to teachers' information technology competence. The study was conducted with a survey of some 245 vocational high school teachers. There are two types of instrument…

  20. Emotionally Responsive Wearable Technology and Stress Detection for Affective Disorders.

    Science.gov (United States)

    Tillotson, Jenny

    2017-09-01

    As humans, we are born with no knowledge of odour. Our sense of smell is linked directly to the limbic system, the emotional part of our brain responsible for memory and behaviour, and therefore, our individual sense of smell is based purely on life's deep experiences and impressions. The roots of "Aromatherapy" can be traced back more than 3,500 years, to a time when essential oils were first recorded in human history for their therapeutic and medicinal properties. However, in the 21 st century, it remains one of the most controversial complementary therapies applied in medicine because of its pseudoscience connotations and limited available data on health benefits, despite the importance of smell on human health. Here I introduce the concept of "eScent", an emotionally responsive wearable technology that picks up on your emotions and vital signs and sends a personalisable 'scent bubble' to your nose. It combines sensing and dispensing aromatics for immersive experiences and multiple health benefits. It presents an empowering, sensory intervention and resilience builder that emits mood-enhancing aromas in a controllable way, depending on biofeedback. The advantage of essential oils merged with biometric sensors and intelligent tracking devices (e.g. an Apple Watch), could lead to a new palette of scents that are bio-synchronized to an individual's emotional, mental, and/or physical state and in a real-time manner alleviate high levels of stress, thus preventing the risk of a serious mental ill health relapse. Closure of the loop with wearable scent delivery systems requires an innovative, creative and collaborative approach, crossing many disciplines in psychological related sciences, biotechnology and industrial design. Testing such hypotheses in translational human studies is a matter of future research which could not only lead to valuable "prodromal" interventions for psychiatry, but new stress management tools for people suffering from affective disorders.

  1. Field Comparison of Fertigation Vs. Surface Irrigation of Cotton Crop

    International Nuclear Information System (INIS)

    Janat, M.

    2004-01-01

    Based on previous results of the same nature, one nitrogen rate 180 kg N ha -1 was tested under two-irrigation methods, surface irrigation and drip fertigation of cotton (Cultivar Rakka-5) for two consecutive seasons 2000 and 2001. The study aimed to answer various questions regarding the applicability of drip fertigation at farm level and the effect of its employment on yield and growth parameters, compared to surface irrigation. Nitrogen fertilizer was either injected in eight equally split applications for the drip fertigated cotton or divided in four unequally split applications as recommend by Ministry of Agriculture (20% before planting, 40% at thinning, 20% after 60 days from planting and 20% after 75 days after planting). 15 N labeled urea was used to evaluate nitrogen fertilizer efficiency. The experimental design was randomized block design with seven replicates. Results showed that drip fertigation led to water saving exceeding 50% in some cases. Field germination percentage was highly increased under drip- fertigated cotton relative to surface-irrigated cotton. Dry matter and seed cotton yield of surface-irrigated cotton was slightly higher than that of drip-fertigated cotton in the first growing season. The reason for that was due to the hot spill that occurred in the region, which exposed the cotton crop to water stress and consequently pushed the cotton into early flowering. Lint properties were not affected by the introduction of drip-fertigation. Actually some properties were improved relative to the standard properties identified by the cotton Bureau.Nitrogen uptake was slightly increased under drip fertigation whereas nitrogen use efficiencies were not constant along the growing seasons. The reason for that could be lateral leaching and root proliferation into the labeled and unlabeled subplots. Field water use efficiency was highly increased for both growing seasons under drip fertigation practice. The rate of field water use efficiencies

  2. Insect pests management of bt cotton through the manipulation of different eco-friendly techniques

    International Nuclear Information System (INIS)

    Ahmad, N.; Khan, M.H.; Tofique, M.

    2011-01-01

    This study was designed to manage insect pests of Bt cotton through the manipulation of different eco-friendly techniques. A perusal of data, based on the overall performance of different treatments reflected that lowest population of jassids (0.29) was observed in bio-control treated Bt cotton followed by bio-control treated conventional cotton (0.41). Mean per leaf population of thrips was found lowest in insecticide treated Bt cotton (0.97) which was statically at par with bi-control treated conventional cotton (0.95), biocontrol treated Bt cotton (1.09) and colour traps treated Bt cotton (1.50). In case of white flies, bio-control treated Bt cotton and bio-control treated conventional cotton again proved effective in maintaining the population at lower levels per leaf (0.33 and 0.35 respectively). No bollworms infestation was recorded in transgenic cotton whereas higher attack of the same was observed in the untreated conventional cotton block. The best results were achieved with the application of bio-control agents in combination with Bt cotton resulting in least infestation by insect pests and maximum seed yield of 3657 kg/ha. The population of Chrysoperla carnea was significantly higher in Bt and conventional cotton treated with bio-control agents as compared to the other treatments. The parasitism percentage of Trichogramma chilonis was observed significantly higher in bio-control treated conventional cotton. The studies manifested that combination of bio-control technology with Bt cotton effectively preserves the local beneficial insect fauna indicating its potential to be used as integrated management system against different insect pests of cotton. (author)

  3. Affect and Acceptability: Exploring Teachers' Technology-Related Risk Perceptions

    Science.gov (United States)

    Howard, Sarah K.

    2011-01-01

    Educational change, such as technology integration, involves risk. Teachers are encouraged to "take risks", but what risks they are asked to take and how do they perceive these risks? Developing an understanding of teachers' technology-related risk perceptions can help explain their choices and behaviours. This paper presents a way to…

  4. How Do Science and Technology Affect International Affairs?

    Science.gov (United States)

    Weiss, Charles

    2015-01-01

    Science and technology influence international affairs by many different mechanisms. Both create new issues, risks and uncertainties. Advances in science alert the international community to new issues and risks. New technological capabilities transform war, diplomacy, commerce, intelligence, and investment. This paper identifies six basic…

  5. How Do Information and Communication Technology Affect Delegation?

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena

    This paper investigates the distinct effects of the use of information technology and communication technology in firms on the degree of delegation of decision making. This paper contributes to the literature on organization design by showing empirically that these two types of technology have...... distinct effects on delegation at the level of analysis of delegation from manager to employees: delegation is more likely when database software is used and it is less likely when communication software is employed. We use a longitudinal and nationally representative dataset from Statistics Canada...

  6. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  7. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    Science.gov (United States)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  8. Factors affecting the adoption of healthcare information technology.

    Science.gov (United States)

    Phichitchaisopa, Nisakorn; Naenna, Thanakorn

    2013-01-01

    In order to improve the quality and performance of healthcare services, healthcare information technology is among the most important technology in healthcare supply chain management. This study sets out to apply and test the Unified Theory of Acceptance and Use of Technology (UTAUT), to examine the factors influencing healthcare Information Technology (IT) services. A structured questionnaire was developed and distributed to healthcare representatives in each province surveyed in Thailand. Data collected from 400 employees including physicians, nurses, and hospital staff members were tested the model using structural equation modeling technique. The results found that the factors with a significant effect are performance expectancy, effort expectancy and facilitating conditions. They were also found to have a significant impact on behavioral intention to use the acceptance healthcare technology. In addition, in Thai provincial areas, positive significance was found with two factors: social influence on behavioral intention and facilitating conditions to direct using behavior. Based on research findings, in order for healthcare information technology to be widely adopted and used by healthcare staffs in healthcare supply chain management, the healthcare organizational management should improve healthcare staffs' behavioral intention and facilitating conditions.

  9. Factors affecting the adoption of healthcare information technology

    Science.gov (United States)

    Phichitchaisopa, Nisakorn; Naenna, Thanakorn

    2013-01-01

    In order to improve the quality and performance of healthcare services, healthcare information technology is among the most important technology in healthcare supply chain management. This study sets out to apply and test the Unified Theory of Acceptance and Use of Technology (UTAUT), to examine the factors influencing healthcare Information Technology (IT) services. A structured questionnaire was developed and distributed to healthcare representatives in each province surveyed in Thailand. Data collected from 400 employees including physicians, nurses, and hospital staff members were tested the model using structural equation modeling technique. The results found that the factors with a significant effect are performance expectancy, effort expectancy and facilitating conditions. They were also found to have a significant impact on behavioral intention to use the acceptance healthcare technology. In addition, in Thai provincial areas, positive significance was found with two factors: social influence on behavioral intention and facilitating conditions to direct using behavior. Based on research findings, in order for healthcare information technology to be widely adopted and used by healthcare staffs in healthcare supply chain management, the healthcare organizational management should improve healthcare staffs' behavioral intention and facilitating conditions. PMID:26417235

  10. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-01-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of…

  11. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls, under elevated CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers were examined. Significant decreases in protein, total amino acid, water and nitrogen content and increases in free fatty acid were observed in cotton bolls. Changes in quality of cotton bolls affected the growth, development and food utilization of H. armigera. Significantly longer larval development duration in three successive generations and lower pupal weight of the second and third generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower fecundity was also found in successive three generations of H. armigera fed on cotton bolls grown under elevated CO2. The consumption per larva occurred significant increase in successive three generations and frass per larva were also significantly increased during the second and third generations under elevated CO2. Significantly lower relative growth rate, efficiency of conversion of ingested food and significant higher relative consumption rate in successive three generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower potential female fecundity, larval numbers and population consumption were found in the second and third generations of cotton bollworm fed on cotton bolls grown under elevated CO2. The integrative effect of higher larval mortality rate and lower adult fecundity resulted in significant decreases in potential population consumption in the latter two generations. The results show that elevated CO2 adversely affects cotton bolls quality, which indicates the potential population dynamics and potential population consumption of cotton bollworm will alleviate the harm to the plants in the future rising CO2 atmosphere.

  12. Factors affecting the selection of a soil water sensing technology

    International Nuclear Information System (INIS)

    Hignett, C.T.

    2000-01-01

    Reviews of soil moisture measurement technologies are counterproductive in attempting to identify the single approach that has the best overall performance for a range of soil, crop and landscape conditions. Not only does such an approach preclude the addition of new technologies, but it also obscures the fact that we have available today sensors and technologies that cover most field conditions, are well understood in terms of technical capability and are mechanically and electronically reliable. This review defines decision-making processes for assessing the characteristics, good and bad, of technology in relation to project objectives. Two processes are needed. The first links soil texture and scale of variability with the nature of the project, single-plant to catchment scale, to the needs for soil water measurement. The second lists the capabilities of some devices and shows how they can be selected to accommodate necessary criteria. It is concluded that the 'best technology' is a function of the project and soil conditions. (author)

  13. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. CARACTERÍSTICAS DO CAPULHO E PROPRIEDADES TECNOLÓGICAS DA FIBRA DO ALGODOEIRO EM FUNÇÃO DA CALAGEM E DA GESSAGEM BOLLS CHARACTERISTICS AND TECHNOLOGICAL PROPERTIES OF THE COTTON FIBER FACING OF LIMESTONE AND PHOSPHOGYPSUM

    Directory of Open Access Journals (Sweden)

    NELSON PAULIERI SABINO

    1998-01-01

    Full Text Available Em latossolo roxo ácido e de baixa fertilidade do município de Guaíra (SP, desenvolveu-se de 1986/87 a 1989/90 um ensaio de caráter permanente com o algodoeiro para estudar o efeito da aplicação de calcário (0,6; 1,8 e 3,0 t.ha-1 e de gesso (0, 2, 4, 6 t.ha-1 sobre as características do capulho e propriedades tecnológicas da fibra. O delineamento experimental utilizado foi do tipo blocos ao acaso com parcelas subsubdivididas e quatro repetições. O calcário elevou os valores de massa de um capulho e diminuiu o índice Micronaire e a maturidade da fibra, mas não afetou a massa de sementes, a porcentagem, o comprimento, a uniformidade de comprimento e a tenacidade da fibra. O gesso aumentou as massas de capulho e de sementes, especialmente quando associado a maior dose de calcário, assim como o índice Micronaire e a maturidade da fibra, no mais baixo nível de calagem.The effects of limestone and phosphogypsum applications on bolls characteristics and technological properties of the cotton fiber were studied in a permanent trial on a Dystrophic Dusky Latosol, acid and of low fertility during growing seasons of 1986/87 to 1989/90. A randomized complete block design was used, arranged in split split-plots with four replications where the dolomitic limestone doses were the main plots (0.6, 1.8 and 3.0 t.ha-1, and the phosphogypsum doses (0, 2, 4, and 6 t.ha-1 were the subplots. Lime and phosphogypsum were applied in the first year and reaplicated during 1988/89. Liming caused an increase in mass of bolls and reduced the Micronaire index and fiber maturity, and did not affect the mass of seed, the percentage of fiber, the length, the length uniformity and fiber tenacity. The use of phosphogypsum increase the mass of bolls and mass of seed, mainly when associated with extremes doses of lime. Otherwise, its effects upon Micronaire index and fiber maturity values, were significant at low level of liming.

  15. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    Science.gov (United States)

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  16. Affect and technology acceptance: A test of two mechanisms

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.; Søndergaard, Helle Alsted

    Commercialization of new technologies may be hampered by stakeholder resistance and a sceptical public. Genetic modification (GM) has suffered particularly from such problems. At present, for example, practically no products exist on the shelves of European retailers that are labelled as containi...... and practice, focusing on point-of-sale promotions that could be the key element in the launch of the first genetically modified foods in markets that are as yet GM-free....

  17. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Chemistry, Federal College of Education, Kano – Nigeria. 2Department of ... its versatility were examined taken into consideration, the molecular structure. ... hemicelluloses, pectin, coloring matter and ash ... temperature for a fixed period of time. These processes rendered the cotton 99% cellulose in nature.

  18. Cotton, Prof. Frank Albert

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Fellowship. Fellow Profile. Elected: 1985 Honorary. Cotton, Prof. Frank Albert. Date of birth: 9 April 1930. Date of death: 20 February 2007. Last known address: Department of Chemistry, Texas A & M University, College Station, TX 77843, U.S.A..

  19. Cotton regeneration in vitro

    Science.gov (United States)

    H. F. Sakhanokho and K. Rajasekaran Over the years, plant breeders have improved cotton via conventional breeding methods, but these methods are time-consuming. To complement classical breeding and, at times, reduce the time necessary for new cultivar development, breeders have turned to in vitro ...

  20. Satellite-based monitoring of cotton evapotranspiration

    Science.gov (United States)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  1. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  2. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  3. Integration Of Innovative Technologies And Affective Teaching amp Learning In Programming Courses

    Directory of Open Access Journals (Sweden)

    Alvin Prasad

    2015-08-01

    Full Text Available Abstract Technology has been integral component in the teaching and learning process in this millennium. In this review paper we evaluate the different technologies which are used to currently facilitate the teaching and learning of computer programming courses. The aim is to identify problems or gaps in technology usage in the learning environment and suggest affective solutions for technology integration into programming courses at the University levels in the future. We believe that with the inclusion of suggested innovative technologies and affective solutions in programming courses teaching and learning will be attractive and best for the programming industry.

  4. Evaluating potassium-use-efficiency of five cotton genotypes of pakistan

    International Nuclear Information System (INIS)

    Hassan, Z.U.; Kubar, K.A.

    2014-01-01

    Potassium (K) deficiency in Pakistani soils has been recently reported as the major limiting factor affecting sustainable cotton production. The present study was conducted to envisage how K nutrition affect the growth, biomass production, yield and K-use-efficiency of five cotton genotypes, NIBGE-3701, NIBGE-1524 (Bt-transgenic), Sadori, Sindh-1 and SAU-2 (non-Bt conventional), commonly grown in Pakistan. All five genotypes were raised at deficient and adequate K levels, i.e. 0 and 60 kg K/sub 2/O ha-1, respectively. The experiment was performed in plastic pots following a completely randomized factorial design with three repeats. Adequate K nutrition significantly increased various plant growth traits and yield of all cotton genotypes under study, viz. number of sympodia (21%), number of leaves (34%), leaf dry biomass (30%), shoot dry biomass (31%), number of bolls (50%) and yield of seed cotton (92%). Substantial variations were observed among cotton genotypes for their K-use-efficiency and K-response-efficiency. Sadori and SAU-2 were screened as most K-use-efficient cotton genotypes, while Sindh-1 and SAU-2 were ranked as the most K-responsive cotton genotypes. Interestingly, Sadori did not respond to K nutrition. Moreover, Bt cotton genotypes accumulated more K as compared to non-Bt genotypes. The cotton genotype SAU-2 was identified as efficient-response genotype for better adaptation for both low- and high-K-input sustainable cotton agriculture systems. (author)

  5. The Ecology of Technological Progress: How Symbiosis and Competition Affect the Growth of Technology Domains

    Science.gov (United States)

    Carnabuci, Gianluca

    2010-01-01

    We show that the progress of technological knowledge is an inherently ecological process, wherein the growth rate of each technology domain depends on dynamics occurring in "other" technology domains. We identify two sources of ecological interdependence among technology domains. First, there are symbiotic interdependencies, implying…

  6. Learning Technologies: Affective and Social Issues in Computer-Supported Collaborative Learning

    Science.gov (United States)

    Jones, Ann; Issroff, Kim

    2005-01-01

    This paper is concerned with "affective" issues in learning technologies in a collaborative context. Traditionally in learning there has been a division between cognition and affect: where cognition is concerned with skills and processes such as thinking and problem-solving and affect with emotional areas such as motivation, attitudes, feelings.…

  7. Barriers affecting successful technology enablement of supply chain: An Indian perspective

    Science.gov (United States)

    Arora, R.; Haleem, A.; Farooquie, J. A.

    2018-03-01

    In order to compete, organizations need to focus on improving supply chain and technology acts as a major enabler. Technology enablement of supply chain has not always been successful and has been examined by many researchers. The purpose of this paper is to do a systematic literature review of technology enabled supply chain from a strategic viewpoint. The literature is examined from two perspectives. Firstly, it studies the growing interest in technology-enabled supply chain in India. Secondly, it studies barriers affecting technology enablement of supply chain. The literature review identifies that technology enabled supply chain helps in improving performance via effective decision making, monitoring entire supply chain, faster reaction to customer service problems, etc. The research has emphasized the importance of 12 barriers affecting technology enablement. This research will help as a guide for practitioners in order to successfully implement technology and fills the gap in existing literature by highlighting and consolidating the significant research work done in past.

  8. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  9. Evaluation of cotton stalks destroyers

    OpenAIRE

    Bianchini, Aloisio; Borges, Pedro H. de M.

    2013-01-01

    The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle...

  10. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    Science.gov (United States)

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  11. SOME CHANGES IN INFORMATION TECHNOLOGY AFFECTING MARKETING IN THE YEAR 2000,

    Science.gov (United States)

    The report considers how far the year 2000 is from today, then some of the changes in the information technology one might expect, and lastly how these changes might affect marketing and its segmentation. (Author)

  12. Enhancing Dark Shade Pigment Dyeing of Cotton Fabric Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2017-07-01

    Full Text Available This study is intended to investigate the effect of atmospheric pressure plasma treatment on dark shade pigment dyeing of cotton fabric. Experimental results reveal that plasma-treated cotton fabric can attain better color yield, levelness, and crocking fastness in dark shade pigment dyeing, compared with normal cotton fabric (not plasma treated. SEM analysis indicates that cracks and grooves were formed on the cotton fiber surface where the pigment and the binder can get deposited and improve the color yield, levelness, and crocking fastness. It was also noticed that pigment was aggregated when deposited on the fiber surface which could affect the final color properties.

  13. Factors Affecting the Adoption of Information and Communication Technologies in Teaching

    Science.gov (United States)

    Salinas, Álvaro; Nussbaum, Miguel; Herrera, Oriel; Solarte, Mario; Aldunate, Roberto

    2017-01-01

    This study describes the level of adoption of information and communication technologies in teaching in three Latin American countries. It also analyzes factors that affect the process by which teachers incorporate these technologies into their classrooms. In order to do so, an online survey was conducted with 89 teachers. The results show that…

  14. Domain-Specific Aspects of Technological Pedagogical Content Knowledge: Music Education and the Importance of Affect

    Science.gov (United States)

    Macrides, Elena; Angeli, Charoula

    2018-01-01

    The present study addresses the lack of a theoretical framework for the integration of technology in music teaching and learning, and explores, within the framework of Technological Pedagogical Content Knowledge (TPACK), the importance of affect in the instructional design of music lessons. The purpose of this study is twofold: (a) to extend the…

  15. Towards a questionnaire for measuring affective benefits and costs of communication technologies

    NARCIS (Netherlands)

    Markopoulos, P.; Yarosh, S.; Abowd, G.

    2014-01-01

    As CSCW creates and investigates technologies for social communication, it is important to understand the emotional benefits and costs of these systems. We propose the Affec-tive Benefits and Costs of Communication Technologies (ABCCT) questionnaire to supplement traditional qualita-tive methods of

  16. Factors Affecting Faculty Use of Learning Technologies: Implications for Models of Technology Adoption

    Science.gov (United States)

    Buchanan, Tom; Sainter, Phillip; Saunders, Gunter

    2013-01-01

    This study examines factors associated with the use of learning technologies by higher education faculty. In an online survey in a UK university, 114 faculty respondents completed a measure of Internet self-efficacy, and reported on their use of learning technologies along with barriers to their adoption. Principal components analysis suggested…

  17. Factors Affecting Use of Telepresence Technology in a Global Technology Company

    Science.gov (United States)

    Agnor, Robert Joseph

    2013-01-01

    Telepresence uses the latest video conferencing technology, with high definition video, surround sound audio, and specially constructed studios, to create a near face-to-face meeting experience. A Fortune 500 company which markets information technology has organizations distributed around the globe, and has extensive collaboration needs among…

  18. Screening Pakistani cotton for drought tolerance

    International Nuclear Information System (INIS)

    Soomro, M.H.; Markhand, G.S.

    2011-01-01

    The drought is one of the biggest abiotic stresses for crop production in arid and semi-arid agriculture. Thus it is a challenge for plant scientists to screen and develop the drought tolerant cotton lines. In this study, 31 cotton genotypes/cultivars were evaluated under two irrigation regimes i. e., seven irrigations (Control) and two irrigations (Stress), using split plot design with four replications. The crop growth, yield and some physiological parameters were studied. There were high inter-varietal differences for all the parameters under control as well as drought stress. Although all the varieties for all parameters were significantly affected by drought but however, CRIS-9, MARVI, CRIS-134, CRIS-126, CRIS-337, CRIS-355 and CRIS-377 maintained highest performance for all the parameters studied under high drought conditions. (author)

  19. Time course study of feeding damage to pin head cotton squares by Lygus hesperus (Hemiptera: Miridae)

    Science.gov (United States)

    Lygus hesperus (Hemiptera: Miridae) is an economically important pest affecting cotton crops in California. Lygus feeding causes abscission of cotton squares, with damage severity dependent on size of the square and life stage of the insect. Fifth instar nymphs are the most damaging stage; however, ...

  20. Transcriptional Profiling in Cotton Associated with Bacillus Subtilis (UFLA285) Induced Biotic-Stress Tolerance

    Science.gov (United States)

    Abstract Lint yield and quality in cotton is greatly affected by water-deficit stress. The principal aim of this study was to identify cotton genes associated metabolic pathways involved in the water-deficit stress response. Gene expression profiles were developed for leaf and root tissues subject...

  1. Creating prescription maps from historical imagery for site-specific management of cotton root rot

    Science.gov (United States)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungic...

  2. Using airborne imagery to monitor cotton root rot infection before and after fungicide treatment

    Science.gov (United States)

    Cotton root rot is a severe soilborne disease that has affected cotton production for over a century. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of this disease. To effectively and economically control this disease, it is necessary to identify in...

  3. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot

    Science.gov (United States)

    Cotton root rot is a destructive disease affecting cotton production. Accurate identification of infected areas within fields is useful for cost-effective control of the disease. The uncertainties caused by various infection stages and newly infected plants make it difficult to achieve accurate clas...

  4. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  5. Productive Love Promotion Via Affective Technology: An Approach Based On Social Psychology And Philosophy

    Directory of Open Access Journals (Sweden)

    Ramon Solves Pujol

    2010-01-01

    Full Text Available This paper proposes the use of social psychological and philosophical foundations for designing affective technology that promotes the experience of love. The adopted theoretical basis is the concept of productive love, which is heavily based on Enrich Fromm but also includes theories and scientific findings of numerous psychoanalysts, social psychologists, and philosophers. We conducted a review of the theory about the nature of love and found that social psychological and philosophical approaches differ regarding peoples' understandings. The findings were used to elaborate eight principles of productive love. Based on these principles, we derived criteria for designing affective technology when the objective is to promote productive love. We reviewed the existent studies on affective technologies and implemented the criteria into a system design, the Pictures' Call. A prototype of the system was pretested to illustrate how productive love technology could be based on established criteria.

  6. SOCIAL SCIENCE CONTRIBUTIONS TO DISCUSSIONS AFFECT THE SCIENCE, TECHNOLOGY AND INNOVATION

    Directory of Open Access Journals (Sweden)

    Renato Santiago Quintal

    2015-04-01

    Full Text Available In its origins, the social sciences have focused on technological issues. Social scientists have devoted much attention to the subject affects the action of technological progress on the conformation of human life in General, as well as keeping an eye on more concreteness about the aspects related to the way the technique is acquired, the ways employed to protect her and the tools used to Exchange and protection. In this context, the article aims to identify the contributions of social sciences-notably of the applied social sciences-to discussions involving science, technology and innovation. The survey used the inductive method, applied to the literature review. The findings point to multidisciplinarity of significant thematic affects to science, technology and innovation. Keywords: Scientific knowledge; Social Sciences; Technology and society.

  7. Effects of Different Densities of Cotton (Gossypium Hirsutum and Common Lambsquarter (Chenopodium Album on Some Cotton Growth Characteristics in Birjand Condition

    Directory of Open Access Journals (Sweden)

    M. Velayati

    2011-01-01

    Full Text Available Abstract Weeds are problematic plants in agroecosystems as a competitor for crops. In order to evaluate effects of cotton (Gossypium hirsutum and common lambsquarter (Chenopodium album densities on some crop growth indices, a study was conducted during 2006 in Experimental Station of Faculty of Agriculture, The University of Birjand as factorial experiment based on complete randomized block design with four replications. Three densities of cotton (6, 9 and 12 Pl.m-2 and four weed densities (0, 6, 9 and 12 Pl.m-2 were used to provide different weed interference levels. Indeed, three plots in each replication were intended to cultivation of lambsquarter alone at 6, 9 or 12 Pl.m-2. Results showed that crop growth rate (CGR of cotton was influenced by weed density, and its relative growth rate (RGR and net assimilation rate (NAR indicated a declining trend as weed density increased. Dry matter accumulation of cotton also was affected negatively by weed densities, as interference of lambsquarter at 6, 9 and 12 Pl.m-2 resulted to 35, 42 and 48 percent dry matter reduction, respectively, than weed-free treatment. Increasing of cotton density could partly compensate for negative impact of weed attendance on cotton growth. Thus, it seems higher plant densities can be used as a managing tool against weeds in cotton fields to avoid reduction of yield. Keywords: Cotton, Density, Weed, competition, Growth analysis

  8. Impact of Bollgard cotton on Indian cotton production and Income of ...

    Indian Academy of Sciences (India)

    Impact of Bollgard cotton on Indian cotton production and Income of cotton farmers. Presentation made in the Seventy Second Annual Meeting Indian Academy of Sciences, Bangalore at Devi Ahilya Vishwavidyalaya Indore 11th November 2006.

  9. Examining the Factors Affecting PDA Acceptance among Physicians: An Extended Technology Acceptance Model.

    Science.gov (United States)

    Basak, Ecem; Gumussoy, Cigdem Altin; Calisir, Fethi

    2015-01-01

    This study aims at identifying the factors affecting the intention to use personal digital assistant (PDA) technology among physicians in Turkey using an extended Technology Acceptance Model (TAM). A structural equation-modeling approach was used to identify the variables that significantly affect the intention to use PDA technology. The data were collected from 339 physicians in Turkey. Results indicated that 71% of the physicians' intention to use PDA technology is explained by perceived usefulness and perceived ease of use. On comparing both, the perceived ease of use has the strongest effect, whereas the effect of perceived enjoyment on behavioral intention to use is found to be insignificant. This study concludes with the recommendations for managers and possible future research.

  10. The cotton farming pipeline of Malawi and South Africa: Management implications

    Directory of Open Access Journals (Sweden)

    J. P. Grundling

    2008-12-01

    Full Text Available Purpose of the study: The purpose this paper is to identify and describe the characteristics and influences of the cotton farming pipeline in Malawi and South Africa. Problem investigated: A broad based approach was followed to investigate the cotton farming pipeline to identify the major driving forces of the cotton pipeline in each of the respective countries. Research approach: A qualitative field research approach was followed to compile data on cotton farming in Malawi and South Africa. Data was compiled upstream from input suppliers, downstream from ginners, cotton transport conveyors, cotton marketing managers and agricultural government officials as well as from farmers and agricultural organizations. Findings: In Malawi a family farming model is followed versus an industrial model of production in South Africa. Despite the differences in approach, the farmers in both countries are faced with similar problems. In this regard, an urgent rethinking of the technological conditions of production and the possibilities of technological change is needed. Recommendations: The research proposes that these countries can benefit from establishing institutions like agricultural co-operatives and mechanisms like the development of a free traffic mechanism of seed-cotton. Conclusion: The present research may assist in developing first layer managerial recommendations that could enhance the sustainability and co-existence of cotton farming in the two countries.

  11. Organizational Factors that Affect the Implementation of Information Technology: Perspectives of Middle Managers in Iran.

    Science.gov (United States)

    Barzekar, Hosein; Karami, Mahtab

    2014-10-01

    to examine the organizational factors affecting the application of information technology in hospitals. Since the organizational factors are one of the most important determinants of successful projects, by understanding their impact and identifying them it can help planning a systematic IT implementation. In this cross-sectional descriptive study 110 middle managers were chosen from teaching hospitals. Structured questionnaire was used for the data collection. There was a significant relationship between organization resource, organizational knowledge, process, management structure and values and goals with implementation of information technology. Findings showed that organizational factors had a considerable impact on implementation of information technology. Top managers must consider the important aspects of effective organizational factors.

  12. PRICING OF BT COTTON SEEDS IN INDIA: THE DEBATE BEHIND

    Directory of Open Access Journals (Sweden)

    Anchal ARORA

    2014-11-01

    Full Text Available In 2006 the state government of Andhra Pradesh reduced the Bt cotton seed prices from Indian Rs1600 to Rs750 in order to make the technology affordable and accessible to small and marginal farmers in the state and also to prevent the monopolistic market structure in the seed market. The drastic reduction in seed prices, on the other hand could affect the profitability of seed providing companies and curb their incentives to innovate in future. Recent literature has also examined the impact of price controls on diffusion of technology, revenue and profitability of seed providers. It suggests that price controls have positively impacted the diffusion of technology in India, and were also successful in increasing the revenue of seed providers in the short run. However, the impact of price controls on profitability would depend on cost conditions. In the light of the above discussion, this article attempts to discuss the debate behind price controls and draws certain policy implications pertaining to pricing of Bt seeds, which has an international policy relevance.

  13. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    Science.gov (United States)

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  14. Factors Affecting Chinese Farmers' Decisions to Adopt a Water-Saving Technology

    NARCIS (Netherlands)

    Herzfeld, T.; Glauben, T.; Zhang, Y.; Hu, B.

    2008-01-01

    Chinese farm households (N = 240) were interviewed to understand some of the factors affecting their adoption of a water-saving technology called the Ground Cover Rice Production System (GCRPS). A logit model was established on the basis of a survey to estimate the determinants of adoption and to

  15. An Investigation of Relationships between Internal and External Factors Affecting Technology Integration in Classrooms

    Science.gov (United States)

    Hur, Jung Won; Shannon, David; Wolf, Sara

    2016-01-01

    Various factors affecting technology integration have been identified, but little research has examined the relationships between factors, especially internal and external ones, and whether they directly or indirectly influenced each other. To fill this research gap, this study examined the significance and relationships of five factors…

  16. A study on affective work skills needs of engineering and technology ...

    African Journals Online (AJOL)

    The study is designed to investigate the affective work skills needs of Engineering and Technology Education students of universities in North Central States of Nigeria. A 18 items questionnaire was developed and used to collect data from 60 Engineers, 100 technicians and 150 lecturers. Purposive sampling techniques ...

  17. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  18. How physicians professional socialisation and social technologies may affect colleagues in substance use disorder

    DEFF Research Database (Denmark)

    Sørensen, Johanne Korsdal

    2018-01-01

    . The article draws attention to the role of physician work culture in the development and management of physicians own substance use and SUD. It reports results from my Danish study analysing how professional socialisation and social technologies affect physicians disclosure of their own SUD and their help...... seeking at work. The work-related aspects that in some cases affect the development of substance use and SUD include hierarchical pressure, emotional strain from critical patient cases and work-related competition. In the analysis a disciplinary paradox concerning the social technologies intended...... to normalise and standardise physicians’ conduct and ensure the quality of treatment. Ironically, the social technologies seemed to have an unintended consequence: to conserve and maintain SUD rather than facilitating treatment and recovery. For instance, I show how the fear of social sanctions in the form...

  19. Cotton gin trash in the western United States: Resource inventory and energy conversion characterization

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.G.; Quinn, M.W.; Whittier, J.P. [NEOS Corp., Lakewood, CO (United States); Cohen, T.M.; Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (United States); Craig, J.D. [Cratech Inc., Tahoka, TX (United States); Swanson, D.S.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that will allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.

  20. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  1. A study of factors affecting the adoption of server virtualization technology

    Science.gov (United States)

    Lu, Hsin-Ke; Lin, Peng-Chun; Chiang, Chang-Heng; Cho, Chien-An

    2018-04-01

    It has become a trend that worldwide enterprises and organizations apply new technologies to improve their operations; besides, it has higher cost and less flexibility to construct and manage traditional servers, therefore the current mainstream is to use server virtualization technology. However, from these new technology organizations will not necessarily get the expected benefits because each one has its own level of organizational complexity and abilities to accept changes. The researcher investigated key factors affecting the adoption of virtualization technology through two phases. In phase I, the researcher reviewed literature and then applied the dimensions of "Information Systems Success Model" (ISSM) to generalize the factors affecting the adoption of virtualization technology to be the preliminary theoretical framework and develop a questionnaire; in phase II, a three-round Delphi Method was used to integrate the opinions of experts from related fields which were then gradually converged in order to obtain a stable and objective questionnaire of key factors so that these results were expected to provide references for organizations' adoption of server virtualization technology and future studies.

  2. TURKISH TRADE POLICY AND THE EFFICIENCY OF TURKISH COTTON MARKETS

    OpenAIRE

    Schmitz, Troy G.

    1999-01-01

    Turkish cotton markets are affected by import duties, export taxes, and a range of domestic subsidies. The degree of economic inefficiency arising from these government policies is estimated through the use of two partial equilibrium models, one for the Aegean market and another for the non-Aegean market. The welfare implications of these policies are also explored.

  3. A Grey Fuzzy Logic Approach for Cotton Fibre Selection

    Science.gov (United States)

    Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati

    2017-06-01

    It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.

  4. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Directory of Open Access Journals (Sweden)

    Toews Michael D

    2011-08-01

    Full Text Available Abstract Background Stink bugs (Hemiptera: Pentatomidae comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Results Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. Conclusions The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  5. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  6. Organizational Factors that Affect the University-Industry Technology Transfer Processes of a Private University

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2012-02-01

    Full Text Available This case study researched organizational factors that affect the university-industry technology transfer (UITT processes of a private university, chosen by its success and uniqueness in the Brazilian context. Stood out as factors: innovation among pillars of management; valuing of research and intellectual property; qualified students, teachers and managers; multidisciplinary research groups; stability of governing body; performance of the TTO, Technology Management Agency and Technology Park. Difficulties highlighted were: reconciliation of time between activities of professors-researchers, bureaucracy and centralization of administrative and legal support; valuation of research results; approach and negotiation with companies. Among suggestions are: granting greater independence to the structures in charge of UITT and making them self-sustainable; training agents in technology marketing, sale, and negotiation skills.

  7. Factors affecting the educational achievement of mature Māori information technology students: A case study

    Directory of Open Access Journals (Sweden)

    Blain Harre Rakena

    Full Text Available This paper reports on the results of an investigation into the experiences of academically successful adult Māori students undertaking the Bachelor of Information Technology (BIT programme at the Waikato Institute of Technology (Wintec. This research looked at the participants\\' motivation for attending Wintec, the barriers (such as financial, social and family hardships they encountered as they made the transition back to full time study, and their experiences at Wintec. The paper considers the reasons why the participants have achieved well, identifies the support systems they called on, and explores the challenges that they experienced while studying in a tertiary learning environment. Its significance lies in the focus on factors that affect Māori academic success, specifically in information technology, so that teaching approaches and support systems, particularly in the institute of technology and polytechnic (ITP sector, can enhance the success of Māori in the field of IT.

  8. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  9. Impact of efficient refuge policies for Bt cotton in India on world cotton trade

    OpenAIRE

    Singla, Rohit; Johnson, Phillip N.; Misra, Sukant K.

    2010-01-01

    India is a major cotton producing country in the world along with the U.S. and China. A change in the supply of and demand for cotton in the Indian market has the potential to have an impact on world cotton trade. This study evaluates the implications of efficient Bt cotton refuge policies in India on world and U.S. cotton markets. It can be hypothesized that increased refuge requirements for Bt cotton varieties in India could decrease the world supply of cotton because of the lower yield pot...

  10. Rethinking Race and Racism as "Technologies of Affect": Theorizing the Implications for Anti-Racist Politics and Practice in Education

    Science.gov (United States)

    Zembylas, Michalinos

    2015-01-01

    This article draws on the concept of race and racism as "technologies of affect" to think with some of the interventions and arguments of critical affect studies. The author suggests that critical affect theories enable the theorization of race and racism as affective modes of being that recognize the historically specific assemblages…

  11. Synthesis of Cotton from Tossa Jute Fiber and Comparison with Original Cotton

    Directory of Open Access Journals (Sweden)

    Md. Mizanur Rahman

    2015-01-01

    Full Text Available Cotton fibers were synthesized from tossa jute and characteristics were compared with original cotton by using FTIR and TGA. The FTIR results indicated that the peak intensity of OH group from jute cotton fibers occurred at 3336 cm−1 whereas the peak intensity of original cotton fibers occurred at 3338 cm−1. This indicated that the synthesized cotton fiber properties were very similar to the original cotton fibers. The TGA result showed that maximum rate of mass loss, the onset of decomposition, end of decomposition, and activation energy of synthesized cotton were higher than original cotton. The activation energy of jute cotton fibers was higher than the original cotton fibers.

  12. Cotton : Market setting, trade policies, and issues

    OpenAIRE

    Baffes, John

    2004-01-01

    The value of world cotton production in 2000-01 has been estimated at about $20 billion, down from $35 billion in 1996-97 when cotton prices were 50 percent higher. Although cotton's share in world merchandise trade is insignificant (about 0.12 percent), it is very important to a number of developing countries. Cotton accounts for approximately 40 percent of total merchandise export earnin...

  13. From Mediatized Emotion to Digital Affect Cultures: New Technologies and Global Flows of Emotion

    OpenAIRE

    Katrin Döveling; Anu A. Harju; Denise Sommer

    2018-01-01

    Research on the processes of mediatization aims to explore the mutual shaping of media and social life and how new media technologies influence and infiltrate social practices and cultural life. We extend this discussion of media’s role in transforming the everyday by including in the discussion the mediatization of emotion and discuss what we conceptualize as digital affect culture(s). We understand these as relational, contextual, globally emergent spaces in the digital environment where af...

  14. An Investigation of Factors Affecting Utilization of Information Technology (IT by Agricultural Students

    Directory of Open Access Journals (Sweden)

    Masoud Rezaei

    2012-03-01

    Full Text Available The present study was carried out with the aim of investigating factors affecting utilization of information technology by students of agriculture. A survey approach was used in this study and a questionnaire was developed to gather the data. The study population was postgraduate students (MS and PhD of economic and agricultural development faculty in Tehran University who were selected by applying random sampling technique. Sample size for students was 61 persons. Data was analyzed by using SPSS/WIN software. The results of the research indicated that there was a positive significant relationship between using of information technology by students and their age, average, prior experience, information technology skills, innovativeness, perceived ease of use, attitude and self-efficacy. The relationship between computer anxiety and using of IT was negative. Stepwise Regression Analysis showed that innovativeness and attitude predict 53.2 percent of variations of IT use by students.

  15. Factors Affecting M-commerce Adoption in Oman using Technology Acceptance Modeling Approach

    Directory of Open Access Journals (Sweden)

    Syed Jafar Naqvi

    2014-11-01

    Full Text Available The advancement in mobile technologies has influenced many countries to adopt mobile services in their private and public organizations including Oman. M-commerce services are growing rapidly with the exponential growth of mobile devices, technologies and networks. Hence, many business organizations private or public use them to improve revenue, reduce costs, maintain their competitive edge and achieve a level of high efficiency. Although there were many M-commerce services introduced, it was hard to find evidence of any study conducted to determine their successes or failures. This study is an attempt to explore the factors affecting the adoption of M-commerce services in Oman using the Technology Acceptance Model (TAM approach.

  16. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Science.gov (United States)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  17. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  18. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    Science.gov (United States)

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  19. Variation in water-use efficiency and its relation to carbon isotope ratio in cotton

    International Nuclear Information System (INIS)

    Saranga, Y.; Flash, I.; Yakir, D.

    1998-01-01

    Cotton (Gossypium spp.) is often exposed to drought, which adversely affects both yield and quality. Improved water-use efficiency (WUE = total dry matter produced or yield harvested / water used) is expected to reduce these adverse effects. Genetic variability in WUE and its association with photosynthetic rate and carbon isotope ratio (13C/12C) in cotton are reported in this paper. WUE of six cotton cultivars--G. hirsutum L., G. barbadense L., and an interspecific F1 hybrid (G. hirsutum x G. barbadense, ISH), was examined under two irrigation regimes in two field trials. The greatest WUE was obtained by two G. hirsutum cultivars (2.55 g dry matter or 1.12 g seed-cotton L-1 H2O) the ISH obtained similar or somewhat lower values, and that G. barbadense cultivars and one G. hirsutum cultivar exhibited the lowest values (2.1 g dry matter or 0.8 to 0.85 g seed-cotton L-1 H2O). These results indicate that different cotton cultivars may have evolved different environmental adaptations that affect their WUE. Photosynthetic rate was correlated with WUE in only a few cases emphasizing the limitation of this parameter as a basis for estimating crop WUE. Under both trials WUE was positively correlated with carbon isotope ratio, indicating the potential of this technique as a selection criterion for improving cotton WUE

  20. Thwarting one of cotton's nemeses

    International Nuclear Information System (INIS)

    Senft, D.

    1991-01-01

    There's not much good to be said for the pink bollworm, cotton's most destructive pest, except that it is being controlled to cut crop damage. Scientists have developed strategies, such as increasing native populations of predatory insects and pest-resistant cotton varieties. Thanks to research, growers today can also use cultural practices such as early plowdown of harvested cotton to break up stalks and bury overwintering pink bollworms. And they can disrupt normal mating by releasing sterile insects and using copies of natural compounds, called pheromones, that the pink bollworm uses to attract mates. Such strategies, together with judicious use of insecticides, put together in various combinations, form what is called an integrated pest management system

  1. Biased perception about gene technology: How perceived naturalness and affect distort benefit perception.

    Science.gov (United States)

    Siegrist, Michael; Hartmann, Christina; Sütterlin, Bernadette

    2016-01-01

    In two experiments, the participants showed biased responses when asked to evaluate the benefits of gene technology. They evaluated the importance of additional yields in corn fields due to a newly introduced variety, which would increase a farmer's revenues. In one condition, the newly introduced variety was described as a product of traditional breeding; in the other, it was identified as genetically modified (GM). The two experiments' findings showed that the same benefits were perceived as less important for a farmer when these were the result of GM crops compared with traditionally bred crops. Mediation analyses suggest that perceived naturalness and the affect associated with the technology per se influence the interpretation of the new information. The lack of perceived naturalness of gene technology seems to be the reason for the participants' perceived lower benefits of a new corn variety in the gene technology condition compared with the perceptions of the participants assigned to the traditional breeding condition. The strategy to increase the acceptance of gene technology by introducing plant varieties that better address consumer and producer needs may not work because people discount its associated benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  3. Causal Relationship Model of the Information and Communication Technology Skill Affect the Technology Acceptance Process in the 21ST Century for Undergraduate Students

    Directory of Open Access Journals (Sweden)

    Thanyatorn Amornkitpinyo

    2015-02-01

    Full Text Available The objective of this study is to design a framework for a causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process (TAP for undergraduate students in the 21ST Century. This research uses correlational analysis. A consideration of the research methodology is divided into two sections. The first section involves a synthesis concept framework for process acceptance of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century. The second section proposes the design concept framework of the model. The research findings are as follows: 1 The exogenous latent variables included in the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century are basic ICT skills and self-efficacy. 2 The mediating latent variables of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century are from the TAM Model, these includes three components: 1 perceived usefulness, 2 perceived ease of use and 3 attitudes. 3 The outcome latent variable of the causal relationship model of the Information and Communication Technology skills that affect the Technology Acceptance Process for undergraduate students in the 21ST Century is behavioural intention.

  4. Valuing financial, health and environmental benefits of Bt cotton in Pakistan

    OpenAIRE

    Kouser, Shahzad; Qaim, Matin

    2012-01-01

    Data from a farm survey and choice experiment are used to value the benefits of Bt cotton in Pakistan. Unlike previous research on the economic impacts of Bt, which mostly concentrated on financial benefits in terms of gross margins, we also quantify and monetize positive externalities associated with technology adoption. Due to lower chemical pesticide use on Bt cotton plots, there are significant health advantages in terms of reduced incidence of acute pesticide poisoning, and environmental...

  5. USING PASSIVE AND ACTIVE MULTISPECTRAL SENSORS ON THE CORRELATION WITH THE PHENOLOGICAL INDICES OF COTTON

    OpenAIRE

    Souza, Heloisa B.; Baio, Fabio H. R.; Neves, Danilo C.

    2017-01-01

    ABSTRACT: The investment in precision agriculture technologies has been growing as well the investment in vegetation index sensors with different types of data collection. This study aimed to evaluate the NDVI potential use obtained from passive and active multispectral sensors as phenological parameters indicator of cotton growth. The experiment was conducted in cultivated cotton fields during the harvest seasons of 2013/14 and 2014/15. The phenological variables analyzed in the field, were ...

  6. FCJ-151 The modulation and ordering of affect: from emotion recognition technology to the critique of class composition

    Directory of Open Access Journals (Sweden)

    Mark Gawne

    2012-01-01

    Full Text Available Recent developments in the workplace have seen the intensification of methods to elicit and capture value within and across the affective encounter, notably through the introduction of technologies to monitor and measure the production of affect and emotion in service workers. This paper develops the beginning of a critique of these technologies through a discussion of affective HCI, OKAO Vision and an engagement with the compositionist critique developed in (post-Operaismo.

  7. China's Cotton Policy and the Impact of China's WTO Accession and Bt Cotton Adoption on the Chinese and U.S. Cotton Sectors

    OpenAIRE

    Cheng Fang; Bruce A. Babcock

    2003-01-01

    In this paper we provide an analysis of China's cotton policy and develop a framework to quantify the impact of both China's World Trade Organization (WTO) accession and Bt (Bacillus thuringiensis) cotton adoption on Chinese and U.S. cotton sectors. We use a Chinese cotton sector model consisting of supply, demand, price linkages, and textiles output equations. A two-stage framework model provides gross cropping area and total area for cotton and major subsitute crops from nine cotton-produci...

  8. Review of the factors affecting the selection and implementation of waste management technologies

    International Nuclear Information System (INIS)

    1999-08-01

    The objective of this publication is to identify and critically review the factors affecting the selection of waste management strategies and technologies; summarize and discuss the options available, and offer a systematic approach for considering these factors to design, install and operate appropriate technologies for waste streams generated. The scope of this publication includes the management of radioactive waste from all orientations including low and intermediate level waste arising from the production of radionuclides and their application in industry, agriculture, medicine, education and research; waste generated from research reactors, power reactors and from nuclear fuel cycle activities including reprocessing high level waste. Although waste from decommissioning is not specifically addressed, the management of this waste is not significantly different from other types of waste in the same category

  9. Review of the factors affecting the selection and implementation of waste management technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The objective of this publication is to identify and critically review the factors affecting the selection of waste management strategies and technologies; summarize and discuss the options available, and offer a systematic approach for considering these factors to design, install and operate appropriate technologies for waste streams generated. The scope of this publication includes the management of radioactive waste from all orientations including low and intermediate level waste arising from the production of radionuclides and their application in industry, agriculture, medicine, education and research; waste generated from research reactors, power reactors and from nuclear fuel cycle activities including reprocessing high level waste. Although waste from decommissioning is not specifically addressed, the management of this waste is not significantly different from other types of waste in the same category 32 refs, 11 figs, 12 tabs

  10. On the Convergence of Affective and Persuasive Technologies in Computer- Mediated Health-Care Systems

    Directory of Open Access Journals (Sweden)

    Rebeca I. García-Betances

    2015-01-01

    Full Text Available This paper offers a portrayal of how affective computing and persuasive technologies can converge into an effective tool for interfacing biomedical engineering with behavioral sciences and medicine. We describe the characteristics, features, applications, present state of the art, perspectives, and trends of both streams of research. In particular, these streams are analyzed in light of the potential contribution of their convergence for improving computer-mediated health-care systems, by facilitating the modification of patients’ attitudes and behaviors, such as engagement and compliance. We propose a framework for future research in this emerging area, highlighting how key constructs and intervening variables should be considered. Some specific implications and challenges posed by the convergence of these two technologies in health care, such as paradigm change, multimodality, patients’ attitude improvement, and cost reduction, are also briefly addressed and discussed.

  11. APPLICATION OF DRIP IRRIGATION ON COTTON PLANT GROWTH (Gossypium sp.

    Directory of Open Access Journals (Sweden)

    Syahruni Thamrin

    2017-12-01

    Full Text Available The condition of cotton planting in South Sulawesi is always constrained in the fulfillment of water. All plant growth stages are not optimal to increase production, so it is necessary to introduce good water management technology, such as through water supply with drip irrigation system. This study aims to analyze the strategy of irrigation management in cotton plants using drip irrigation system. Model of application by designing drip irrigation system and cotton planting on land prepared as demonstration plot. Observations were made in the germination phase and the vegetative phase of the early plants. Based on the result of drip irrigation design, the emitter droplet rate (EDR was 34.266 mm/hour with an operational time of 4.08 min/day. From the observation of cotton growth, it is known that germination time lasted from 6 to 13 days after planting, the average plant height reached 119.66 cm, with the number of leaves averaging 141.93 pieces and the number of bolls averaging 57.16 boll.

  12. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  13. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  14. Drought coping strategies in cotton: increased crop per drop.

    Science.gov (United States)

    Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong

    2017-03-01

    The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Cotton fiber quality determined by fruit position, temperature and management

    OpenAIRE

    Wang, X.; Evers, J.B.; Zhang, L.; Mao, L.; Pan, X.; Li, Z.

    2013-01-01

    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality.

  16. 7 CFR 1205.319 - Cotton-producing region.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton-producing region. 1205.319 Section 1205.319... Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing region means each of the following groups of cotton-producing States: (a) Southeast Region: Alabama...

  17. What are farmers really planting? Measuring the presence and effectiveness of Bt cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    David J Spielman

    Full Text Available Genetically modified, insect-resistant Bacillus thuringiensis (Bt cotton is cultivated extensively in Pakistan. Past studies, however, have raised concerns about the prevalence of Bt cotton varieties possessing weak or nonperforming insect-resistance traits conferred by the cry gene. We examine this issue using data drawn from a representative sample of cotton-growing households that were surveyed in six agroclimatic zones spanning 28 districts in Pakistan in 2013, as well as measurements of Cry protein levels in cotton tissue samples collected from the sampled households' main fields. The resultant dataset combines information from 593 sampled households with corresponding plant tissue diagnostics from 70 days after sowing, as well as information from 589 sampled households with corresponding diagnostics from 120 days after sowing. Our analysis indicates that 11 percent of farmers believed they were cultivating Bt cotton when, in fact, the Cry toxin was not present in the tested tissue at 70 days after sowing (i.e., a Type I error. The analysis further indicates that 5 percent of farmers believed they were cultivating non-Bt cotton when, in fact, the Cry toxin was present in the tested tissue (i.e., a Type II error. In addition, 17 percent of all sampled farmers were uncertain whether or not they were cultivating Bt cotton. Overall, 33 percent of farmers either did not know or were mistaken in their beliefs about the presence of the cry gene in the cotton they cultivated. Results also indicate that toxic protein levels in the plant tissue samples occurred below threshold levels for lethality in a significant percentage of cases, although these measurements may also be affected by factors related to tissue sample collection, handling, storage, and testing procedures. Nonetheless, results strongly suggest wide variability both in farmers' beliefs and in gene expression. Such variability has implications for policy and regulation in Pakistan

  18. Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; HU Da-peng; LI Yuan; CHEN Yuan; Eltayib H.M.A.Abidallha; DONG Zhao-di; CHEN De-hua; ZHANG Lei

    2017-01-01

    Cotton cultivars with brown (Xiangcaimian 2),green (Wanmian 39) and white (Sumian 9) fiber were investigated to study fiber developmental characteristics of natural-colored cotton and the effect of hormones on fiber quality at different stages after anthesis.Fiber lengths of both natural-colored cottons were lower than the white-fibered control,with brown-flbered cotton longer than green.Fiber strength,micronaire and maturation of natural-colored cotton were also lower than the control.The shorter fiber of the green cultivar was due to slower growth during 10 to 30 days post-anthesis (DPA).Likewise,the lower fiber strength,micronaire and maturation of natured-colored cotton were also due to slower growth during this pivotal stage.Indole-3-acetic acid (IAA) content at 10 DPA,and abscisic acid (ABA) content at 30 to 40 DPA were lower in the fibers of the natural-colored than that of the white-flbered cotton.After applying 20 mg L-1 gibberellic acid (GA3),the IAA content at 20 DPA in the brown and green-fibered cottons increased by 51.07 and 64.33%,fiber ABA content increased by 38.96 and 24.40%,and fiber length increased by 8.13 and 13.96%,respectively.Fiber strength,micronaire and maturation were also enhanced at boll opening stage.Those results suggest that the level of endogenous hormones affect fiber quality.Application of external hormones can increase hormone content in natural-colored cotton fiber,improving its quality.

  19. How methodological issues affect the energy indicator results for different electricity generation technologies

    International Nuclear Information System (INIS)

    Modahl, Ingunn Saur; Raadal, Hanne Lerche; Gagnon, Luc; Bakken, Tor Haakon

    2013-01-01

    The aim of this paper is to improve the basis for the comparison of energy products. The paper will discuss important methodological issues with regard to various energy indicators and it will, by means of a few selected energy indicators, show examples of results for hydropower, wind power and electricity from biomass, gas and coal. Lastly it will suggest methods to achieve results which are more consistent when comparing electricity production technologies. In general, methodological issues can affect the results of life cycle assessments. In this paper, the authors have focused on the effect of system boundaries for energy indicators and found that the internal ranking of cases within one electricity generation technology is dependent on the indicator used. These variations do not, however, alter the general ranking of the major technologies studied. The authors suggest that future assessments should focus on a smaller set of indicators: the Cumulative Energy Demand (CED), which is the most “universal” indicator, Energy Payback Ratio (EPR) for assessment of upstream activities, and a suggested “Cumulative Fossil Energy Demand” (CFED) for resource depletion assessments. There is also a need for stricter standardisation and increased transparency in the assessment of energy products. - Highlights: • There is a need for stricter standardisation of energy performance assessments. • System boundaries for renewable sources should be harmonised. • One should focus on a smaller set of indicators. CED should be included

  20. Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2018-03-01

    Full Text Available Performance textiles that protect human from different threats and dangers from environment are in high demand, and the advancement in functionalization technology together with employing advanced materials have made this an area of research focus. In this work, silicone rubber and environmentally friendly fluoropolymers have been employed to explore superomniphobic surface on cotton fabrics without compromising comfort much. It has been found that a cross-linked network between the rubber membrane and the fluoropolymers has been formed. The surface appearance, morphology, handle, thickness and chemical components of the surface of cotton fabrics have been changed. The coated fabrics showed resistance to water, aqueous liquid, oil, chemicals and soil. The comfort of the coated fabrics is different to uncoated cotton fabrics due to the existence of coated layers on the surface of cotton fabrics. This work would benefit the development and design of the next generation of performance textiles with balanced performance and comfort.

  1. Parasitoids of boll weevil Anthonomus grandis and resident predators in kaolin-treated cotton

    Directory of Open Access Journals (Sweden)

    Roberta Leme Santos

    2013-12-01

    Full Text Available Simultaneous use of control methods is essential to reach success in managing arthropod pests. The current study investigated the effect of kaolin application on resident predators in the cotton plant canopy and parasitism of boll weevil on abscised squares in the field, and parasitism of boll weevil in the laboratory. Predators Araneae, Formicidae, Chrysopidae, and Coccinellidae showed similar seasonal densities for kaolin-treated and untreated cotton fields as well as the emergence rate of the parasitoids Bracon vulgaris Ashmead (Hymenoptera: Braconidae and Catolaccus grandis Burks (Hymenoptera: Pteromalidae from abscised field-collected structures. Under laboratory conditions, the parasitism of boll weevil larvae infesting squares was similar when treated and untreated squares with kaolin were offered to the parasitoid under free choice test. Therefore, the results show that spraying cotton fields with kaolin does not affect the natural biological control by parasitoids of boll weevil and pink bollworm and resident predators naturally occurring in cotton fields.

  2. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina ... This has led to experiment on Bt cotton from 2003 to 2007. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  3. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Hu, Liangbing; Deshazer, Heather Dawn; Cui, Yi

    2010-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  4. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  5. Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Feng Ge; Yu-Cheng Sun

    2007-01-01

    A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt)cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%,2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.

  6. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  7. Exploring the Factors That Affect the Intention to Use Collaborative Technologies: The Differing Perspectives of Sequential/Global Learners

    Science.gov (United States)

    Huang, Yong-Ming

    2015-01-01

    The use of collaborative technologies in learning has received considerable attention in recent years, but few studies to date have examined the factors that affect sequential and global learners' intention to use such technologies. Previous studies have shown that the learners of different learning styles have different needs for educational…

  8. Cotton Island: Students' Learning Motivation Using a Virtual World

    Science.gov (United States)

    Wyss, Jamie; Lee, Seung-Eun; Domina, Tanya; MacGillivray, Maureen

    2014-01-01

    As technology advances, it is important for teachers to seamlessly integrate technology into their innovative teaching techniques. Using virtual worlds is one alternative to traditional teaching methods that can provide rich learning experiences. The purpose of this article is twofold: (a) to present Cotton Island, an avatar-based 3-D virtual…

  9. A Path Model of Factors Affecting Secondary School Students' Technological Literacy

    Science.gov (United States)

    Avsec, Stanislav; Jamšek, Janez

    2018-01-01

    Technological literacy defines a competitive vision for technology education. Working together with competitive supremacy, technological literacy shapes the actions of technology educators. Rationalised by the dictates of industry, technological literacy was constructed as a product of the marketplace. There are many models that visualise…

  10. Ozone impacts on cotton: towards an integrated mechanism

    International Nuclear Information System (INIS)

    Grantz, D.A.

    2003-01-01

    Vegetation removes tropospheric ozone (O 3 ) mainly through uptake by stomata. O 3 reduces growth, photosynthesis, and carbohydrate allocation. Effects on mesophyll photosynthesis, may reducing carbohydrate source strength and, indirectly, carbohydrate translocation. Alternatively direct translocation, itself, could explain all of these observations. O 3 -reduced root proliferation inhibits exploitation of soil resources and interferes with underground carbon sequestration. Simulations with cotton suggest O 3 -disrupted root development could indirectly reduce shoot photosynthesis. Strong evidence for O 3 impacts on both carbon assimilation and carbon translocation exists, but data determining the primacy of direct or indirect O 3 effects on either or both processes remain inconclusive. Pholoem loading may be particularly sensitive to O 3 . Further research on metabolic feedback control of carbon assimilation and phloem loading activity as affected by O 3 exposure is required. - Ozone impacts on Pima cotton are reviewed to evaluate the possibility that a direct effect on carbohydrate translocation could mediate the suite of symptoms observed

  11. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  12. Influence of bleach activators on the fabric made from cotton (gossypium hamster l.)

    International Nuclear Information System (INIS)

    Asif, H.M.; Iftikhar, M.; Shahbaz, B.

    2013-01-01

    Raw cotton contains various type of trash and most of the impurities are removed during the spinning process but still the cotton fabric coming from the weaving or knitting process always contains some impurities. Some time cotton fabric gets the oil, stains and coloured materials which affect the quality of dyed fabric. Bleaching is a process that eliminates unwanted coloured matters from the fibres, yarn and fabrics. A bleaching agent is a material that lightens or whitens a substrate through chemical action. Hydrogen peroxide is by far the most commonly used oxidative bleaching agent for cotton and its blends, accounting for more than 90 percent of all the bleaching agents. The use of activators to enhance the bleaching performance of hydrogen peroxide for cellulosic materials has gained popularity now a day. In this context the main objectives of this paper are to study the influence of different bleaching activators on cotton fabric and to give implications for textile extension.The results indicate that the activators with different concentrations, along with different concentrations of hydrogen peroxide (H/sub 2/O/sub 2) have significant influence on the bleaching performance of cotton fabric. (author)

  13. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    Science.gov (United States)

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  15. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  16. Passive and active protection of cotton textiles

    NARCIS (Netherlands)

    Bochove, C. van

    1967-01-01

    In rotproofing of cotton a distinction is made between passive and active protection. In passive protection, the structure of the cotton fibre is modified in such a way that the fibre can longer be attacked. This modification of structure can be effected on different levels: microscopical,

  17. Fiber quality challenges facing the cotton industry

    Science.gov (United States)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  18. Within canopy distribution of cotton seed N

    Science.gov (United States)

    Whole cotton seeds can be an important component of dairy rations. Nitrogen content of the seed is an important determinant of the feed value of the seed. Efforts to increase the seed value as feed will be enhanced with knowledge of the range and distribution of seed N within the cotton crop. This s...

  19. Milkweed, stink bugs, and Georgia cotton

    Science.gov (United States)

    In peanut-cotton farmscapes in Georgia, stink bugs, i.e., Nezara viridula (L.)(Say) and Chinavia hilaris (Say), develop in peanut and then disperse at the crop-to-crop interface to feed on fruit in cotton. The main objective of this study was to examine the influence of a habitat of tropical milkwe...

  20. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana,

    Bacillus thuringiensis, field experiment, farmers’ participation

    Pests are one of the main factors limiting cotton production worldwide. Most of the pest

    control

  1. Parameters affecting the life cycle performance of PV technologies and systems

    International Nuclear Information System (INIS)

    Pacca, Sergio; Sivaraman, Deepak; Keoleian, Gregory A.

    2007-01-01

    This paper assesses modeling parameters that affect the environmental performance of two state-of-the-art photovoltaic (PV) electricity generation technologies: the PVL136 thin film laminates and the KC120 multi-crystalline modules. We selected three metrics to assess the modules' environmental performance, which are part of an actual 33 kW installation in Ann Arbor, MI. The net energy ratio (NER), the energy pay back time (E-PBT), and the CO 2 emissions are calculated using process based LCA methods. The results reveal some of the parameters, such as the level of solar radiation, the position of the modules, the modules' manufacturing energy intensity and its corresponding fuel mix, and the solar radiation conversion efficiency of the modules, which affect the final analytical results. A sensitivity analysis shows the effect of selected parameters on the final results. For the baseline scenario, the E-PBT for the PVL136 and KC120 are 3.2 and 7.5 years, respectively. When expected future conversion efficiencies are tested, the E-PBT is 1.6 and 5.7 years for the PVL136 and the KC120, respectively. Based on the US fuel mix, the CO 2 emissions for the PVL136 and the KC120 are 34.3 and 72.4 g of CO 2 /kW h, respectively. The most effective way to improve the modules' environmental performance is to reduce the energy input in the manufacturing phase of the modules, provided that other parameters remain constant. Consequently, the use of PV as an electricity source during PV manufacturing is also assessed. The NER of the supplier PV is key for the performance of this scheme. The results show that the NER based on a PV system can be 3.7 times higher than the NER based on electricity supplied by the traditional grid mix, and the CO 2 emissions can be reduced by 80%

  2. Nutrient Uptake by High-Yielding Cotton Crop in Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Vilela Vieira

    2018-02-01

    Full Text Available ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton

  3. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  4. Cotton for removal of aquatic oil spills

    International Nuclear Information System (INIS)

    Parker, H.W.; Fedler, C.B.; Heintz, C.E.; Nash, P.T.; Carr, D.L.; Lu, M.

    1992-01-01

    Raw cotton has considerable potential for selective removal of spilled oil and oil products from surface waters, since the natural waxes on the raw cotton make it preferentially oil wet. This potential was recognized in the early seventies at Texas Tech University. More recently other research workers have considered cotton as an adsorbent for spilled oil. The adsorbent market is now dominated by synthetic materials, such as air-blown polypropylene fiber, inorganic clays, and recycled paper and paper products. This paper further examines the potential of cotton in relation to these other adsorbents. Emphasis is placed on the potential for complete biodegradation of oil-soaked cotton adsorbents as a means avoiding the expense for incineration and/or the long-term environmental risk associated with placing the used adsorbents in landfills

  5. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  6. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  7. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  8. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  9. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  10. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  11. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  12. (Pleurotus pulmonarius) grown on cotton waste and cassava peel

    African Journals Online (AJOL)

    This work evaluated the yield of Pleurotus pulmonarius on different mixtures of cotton waste and cassava peel. P. pulmonarius demonstrated significantly higher colonization rate on cotton waste substrate (100 g cotton waste) 3 weeks after inoculation of spawn than any other substrate mixtures. Cotton waste had the ...

  13. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  15. Separation and recycling of cotton from cotton/PET blends by depolymerization of PET catalyzed by bases and ionic liquids

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Groeneveld, R.A.J. (Richard); Oelerich, J. (Jens)

    2014-01-01

    The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is

  16. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  17. Measuring the Influences That Affect Technological Literacy in Rhode Island High Schools

    Science.gov (United States)

    Walach, Michael

    2015-01-01

    This study sampled the current state of technological literacy in Rhode Island high schools using a new instrument, the Technological Literacy Assessment, which was developed for this study. Gender inequalities in technological literacy were discovered, and possible causes and solutions are presented. This study suggests possible next steps for…

  18. Factors Affecting Learning in Technology in the Early Years at School

    Science.gov (United States)

    Mawson, Brent

    2007-01-01

    The nature of progression in technology is still a matter of debate in technology education. While there is a growing research-based literature exploring the elements of technological literacy that might be appropriate measures of progression, little has been written about the factors that may influence both group and individual development of…

  19. One-to-One Laptop Teacher Education: Does Involvement Affect Candidate Technology Skills and Dispositions?

    Science.gov (United States)

    Donovan, Loretta; Green, Tim; Hansen, Laurie E.

    2012-01-01

    This study compares teacher candidates' initial and changed beliefs, dispositions, and uses of technology in two credential program models: a one-to-one laptop program with ubiquitous technology use and a traditional credential program in which students are expected to have specific technology experiences and requirements in each course (a model…

  20. Energy usage for cotton ginning in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.A. [MARA Univ. of Technology, Shah Alam (Malaysia). Faculty of Applied Sciences; Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture; Chen, G.; Baillie, C.; Symes, T. [Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study that evaluated the energy consumption of cotton gins used in Australia. The average electricity use is 52.3 kWh per bale. In practicality, the electricity consumption for different gins is correlated linearly with the bale numbers produced. The cost of electricity is therefore important in cotton ginning operations. The power factor in all the gins monitored in this study was greater than 0.85. The study showed that the use of gas dryers was highly influenced by the cotton moisture and regulated drying temperature. In general, electricity and gas consumption comprised 61 and 39 per cent of total energy use respectively. The study showed that 60.38 kg of carbon dioxide are emitted for ginning each bale of cotton. This paper described a newly developed method for monitoring the energy performance in cotton gins. Detailed monitoring and analysis carried out at 2 gin sites revealed that electricity consumption is not influenced much by changes in trash content in the module, degree of moisture and lint quality. However, the cotton variety influences the energy consumption. Cotton handling constituted nearly 50 per cent of the power used in both gins.

  1. Providing assistive technology in Italy: the perceived delivery process quality as affecting abandonment.

    Science.gov (United States)

    Federici, Stefano; Borsci, Simone

    2016-01-01

    The study brings together three aspects rarely observed at once in assistive technology (AT) surveys: (i) the assessment of user interaction/satisfaction with AT and service delivery, (ii) the motivational analysis of AT abandonment, and (iii) the management/design evaluation of AT delivery services. 15 health professionals and 4 AT experts were involved in modelling and assessing four AT Local Health Delivery Service (Centres) in Italy through a SWOT analysis and a Cognitive Walkthrough. In addition 558 users of the same Centres were interviewed in a telephone survey to rate their satisfaction and AT use. The overall AT abandonment was equal to 19.09%. Different Centres' management strategies resulted in different percentages of AT disuse, with a range from 12.61% to 24.26%. A significant difference between the declared abandonment and the Centres' management strategies (p = 0.012) was identified. A strong effect on abandonment was also found due to professionals' procedures (p = 0.005) and follow-up systems (p = 0.002). The user experience of an AT is affected not only by the quality of the interaction with the AT, but also by the perceived quality of the Centres in support and follow-up. Implications for Rehabilitation AT abandonment surveys provide useful information for modelling AT assessment and delivery process. SWOT and Cognitive Walkthrough analyses have shown suitable methods for exploring limits and advantages in AT service delivery systems. The study confirms the relevance of person centredness for a successful AT assessment and delivery process.

  2. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  3. Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xiaoge; Lu, Xuke; Wang, Junjuan; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Ye, Wuwei

    2016-01-01

    Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in saline and alkaline land, salt tolerance study of cotton is particularly important. In our experiment, four salt-tolerance varieties with different salt tolerance indexes including CRI35 (65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xinyan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of the same seedling pre- and after- salt stress) in different varieties were screened; polymorphic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton materials with different salt tolerance index was different, in which the induction efficiency on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may be related to the methylation changes under salt stress. (3) SNPr may influence salt tolerance of plants by affecting the expression of salt-tolerance related genes.

  4. U.S. Cotton Prices and the World Cotton Market: Forecasting and Structural Change

    OpenAIRE

    Isengildina-Massa, Olga; MacDonald, Stephen

    2009-01-01

    The purpose of this study was to analyze structural changes that took place in the cotton industry in recent years and develop a statistical model that reflects the current drivers of U.S. cotton prices. Legislative changes authorized the U.S. Department of Agriculture to resume publishing cotton price forecasts for the first time in 79 years. In addition, systematic problems have become apparent in the forecasting models used by USDA and elsewhere, highlighting the need for an updated review...

  5. The Return of the Freudian Couch®: Managing Affectivity through Technologies of Comfort

    Science.gov (United States)

    Juelskjaer, Malou; Staunaes, Dorthe; Ratner, Helene

    2013-01-01

    This article explores how the affective "set-up" of Freud's legendary couch has been exported into modern education relations. The so-called psy-sciences from pedagogy, psychology, and psychiatry have informed self-management in school. Managing self-management has a material-affective dimension. Through affective encounters with the…

  6. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    Science.gov (United States)

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  7. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-07-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  8. Selectivity and stability of vegetation-applied herbicides in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-06-01

    Full Text Available Abstract. An experiment was carried out during 2013 – 2015 in the experimental field of the Field Crops Institute, Chirpan, with two cotton cultivars − Helius and Darmi (Gossypium hirsutum L.. Herbicides: Goal 2 E, oxyfluorfen (80 ml/da; Linuron 45 SC, linuron (200 ml/da; Wing-P, pendimethalin + dimethenamid (400 ml/da; Merlin 750 WG, isoxaflutol (5 g/da; Bazagran 480 SL, bentazone (150 ml/da were investigated. They were treated separately or combined with growth regulator Amalgerol (500 ml/da or foliar fertilizer Lactofol O (500 ml/da in the budding stage of the cotton. It was established that selectivity is the lowest in the two cotton cultivars with herbicides Linuron 45 CK and Merlin 750 WG. The purpose of this investigation was to establish the selectivity and stability of some herbicides and their tank mixtures on the cotton by influence of different meteorological conditions. It has been found that the highest phytotoxicity on cotton is given the vegetation-applied herbicides Merlin and Linuron. Foliar fertilizer Laktofol O reduces phytotoxicity of herbicides Goal, Wing, Merlin and Bazagran in two cotton cultivars. Herbicides Wing and Bazagran have excellent selectivity for the two cotton cultivars – Helius and Darmi. The highest yield was obtained by vegetation treatment with herbicide Bazagran, followed by herbicides Wing and Goal. Tank mixtures of Goal, Bazagran and Wing with Laktofol, followed by those with Amalgerol are technologically the most valuable. They combine high yield with high stability over the years. Аlone application of herbicides Linuron and Merlin and their tank mixtures with Amalgerol and Laktofol have low estimate.

  9. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  10. Mutagenesis in naturally coloured cotton

    International Nuclear Information System (INIS)

    Khatod, J.P.; Meshram, L.D.; Jain, P.P.

    2000-01-01

    The seeds of naturally coloured cotton were treated with 15 kR, 20 kR doses of gamma rays and 0.5% Ethyl Methane Sulphonate (EMS) and their combinations. The M 1 and M 2 generations were studied for mutagenic effectiveness and efficiency in inducing the useful mutants, spectrum of mutation and their effects on bract characters. Results obtained revealed that 15 kR and 20 kR doses were more effective in inducing the mutations. In G. hirsutum, significant differences were found for bract size and dry weight of bract was noted in 20 kR dose and low in 0.5% EMS in M 1 . In the M 2 generation increased ratio of bract surface area to lint weight per boll was noted in 20 kR + 0.5% EMS. (author)

  11. Factors affecting the matriculation of African American undergraduate students in science, mathematics, engineering, and technology

    Science.gov (United States)

    Hall, Alfred L., II

    Previous research studies indicated that African Americans remain severely underrepresented in the field of science, mathematics, engineering, and technology (SMET), making up only 3% of that workforce, while representing 11.1% of all professional and related workers and 12.6% of the general population. As this country moves towards a more culturally diverse population, then representation of African Americans in SMET-related fields must be addressed in order to ensure our nation's competitiveness in a global market. This research study analyzed characteristics of African American undergraduate SMET majors participating in the Alliance for Minority Participation (AMP) program in six different states located in the Southeast region of the United States. These states consisted of Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina. AMP program participants completed a survey questionnaire, which collected information about potential factors that could affect their matriculation in SMET programs of studies at their respective institutions. Follow-up interviews and focus group sessions were also conducted with AMP participants to provide supplemental information to the survey data. The results of student responses were analyzed according to the type of institution the students attended (Historically Black College or University and Majority White Institution) as well as by the statewide Alliance program in which the students were involved. The students responded to survey questions that asked for their reasons for majoring in their field of study, their level of satisfaction with their institution, their impressions of student support programs and persons, their impressions of faculty and advisors, their reasons for thinking of switching majors, and their level of high school preparation. Statistical analyses of the student responses found that African American AMP students attending Historically Black Colleges and Universities differed from those

  12. The design of a novel, environmentally improved cotton pre-treatment proces

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit)

    2011-01-01

    The scope of this thesis of Gerrit Bouwhuis, lecturer at Saxion Research Centre for Design and Technology in Enschede is the development of a new industrial applicable pre-treatment process for cotton based on catalysis. The pre-treatment generally consists of desizing, scouring and bleaching. These

  13. Technology development in road construction, how government roles affect project performance

    NARCIS (Netherlands)

    Caerteling, Jasper

    2008-01-01

    This dissertation contributes to both the academic and policy debates on the roles of government in technology development in the public sector. In the literature, there are many perspectives that deal with government’s roles in technology development. These perspectives include competition,

  14. Intrapersonal Factors Affecting Technological Pedagogical Content Knowledge of Agricultural Education Teachers

    Science.gov (United States)

    Stewart, Jessica; Antonenko, Pavlo D.; Robinson, J. Shane; Mwavita, Mwarumba

    2013-01-01

    The focus of this exploratory study was to examine levels of technology integration, self-efficacy, and Technological Pedagogical Content Knowledge (TPACK) in preservice and inservice agricultural education teachers in Oklahoma. The findings of this study suggest that intrapersonal factors, such as self-efficacy, outcome expectations, and…

  15. Teachers' Perceptions of Factors Affecting the Educational Use of ICT in Technology-Rich Classrooms

    Science.gov (United States)

    Badia, Antoni; Meneses, Julio; Sigales, Carles

    2013-01-01

    Introduction: The purpose of this study is to identify the main factors that influence teachers' decision-making regarding the educational use of ICT (Information and Communication Technologies) in technology-rich classrooms. Method: We collected data from 278 teachers in Catalonia (Spain) working in eight primary and secondary education schools…

  16. Identify the Motivational Factors to Affect the Higher Education Students to Learn Using Technology

    Science.gov (United States)

    Yau, Hon Keung; Cheng, Alison Lai Fong; Ho, Wing Man

    2015-01-01

    The purpose of this study is twofold. Firstly, engineering students' motivation in using technology for learning in one of Hong Kong universities is investigated. Secondly, new research model about students' perception in using technology for learning is developed. Survey was employed and the questionnaires were distributed to targeted university…

  17. Does Teaching Geometry with Augmented Reality Affect the Technology Acceptance of Elementary School Mathematics Teacher Candidates?

    Science.gov (United States)

    Önal, Nezih; Ibili, Emin; Çaliskan, Erkan

    2017-01-01

    The purpose of this research is to determine the impact of augmented reality technology and geometry teaching on elementary school mathematics teacher candidates' technology acceptance and to examine participants' views on augmented reality. The sample of the research was composed of 40 elementary school mathematics teacher candidates who were…

  18. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  19. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  20. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  1. Producing Organic Cotton: A Toolkit - Crop Guide, Projekt guide, Extension tools

    OpenAIRE

    Eyhorn, Frank

    2005-01-01

    The CD compiles the following extension tools on organic cotton: Organic Cotton Crop Guide, Organic Cotton Training Manual, Soil Fertility Training Manual, Organic Cotton Project Guide, Record keeping tools, Video "Organic agriculture in the Nimar region", Photos for illustration.

  2. Cotton Transportation and Logistics: A Dynamic System

    OpenAIRE

    Robinson, John R.; Park, John L.; Fuller, Stephen

    2007-01-01

    The paper reviews the evolution of U.S. cotton transportation and logistics patterns over the last three decades. There have been many forces of change over this time period, with the largest change being a shift from primarily domestic market destinations to the international market. We describe the pre-1999 system and flow patterns when domestic consumption of U.S. cotton was dominant. We contrast this with current flow patterns as measured by available secondary export data and a sample of...

  3. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  5. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  6. Measurement of salivary cortisol--effects of replacing polyester with cotton and switching antibody

    DEFF Research Database (Denmark)

    Hansen, Ase Marie; Garde, Anne Helene; Persson, Roger

    2008-01-01

    measurements in our laboratory were affected by: 1) changes in the tampon material and 2) changes in the antibody of the analytical kit. In study 1, saliva from healthy subjects (n = 19) was split and spiked to Salivette polyester and cotton tampons, respectively, and treated as ordinary samples before being...... analysed for cortisol using a Spectria RIA kit for cortisol. In study 2, 68 anonymous saliva samples were analysed with the Spectria Cortisol RIA kit both before and after the manufacturer changed the antibody. The change from polyester to cotton tampons reduced the measured concentration of salivary...

  7. Effect of abiotic factors on the infestation of spotted bollworm in advance genotypes of cotton

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Murtaza, M.A.

    2007-01-01

    Studies were conducted on ten advance varieties of cotton Viz., BH-121, NIAB KRISHMA, DNA-137, VH-142, BH-125, MNH-635, SLH-627, FNH-245, CRIS-467 and CRIS-82 to see the effect of different weather conditions on the incidence and development of spotted bollworm infestation at Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad. Temperature and relative humidity were correlated positively and rainfall affected negatively to the infestation of spotted bollworm on squares and green bolls in advance genotype of cotton. (author)

  8. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    International Nuclear Information System (INIS)

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-01-01

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  9. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    Science.gov (United States)

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Integration of pheromones and biological control for the management of cotton bollworms in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, N.; Ashraf, M.; Hussain, T.; Fatima, B.

    2002-01-01

    The management of cotton bollworms in a semi-isolated area through the use of inundative releases of the egg parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in conjunction with pheromones suppressed populations of the pink and spotted bollworms to sub-economic levels. The parasitoid was more effective against pink bollworm than spotted bollworm. Applications of either pheromones or parasitoids by themselves were less effective when compared to the combined treatment. The level of parasitism in the cotton field was comparatively low in June and July but gradually increased during August and September. Maximum parasitism was recorded in November. Studies indicated that temperature affected the establishment of the parasitoid, and populations increased significantly when favourable conditions prevailed in the cotton field. (author)

  11. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  12. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  13. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ... Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders AGENCY... Assistance Program (EAAP) and clarifying the definition of ``active shipping order.'' DATES: Effective Date... address that matter this rule amends in the payment calculation for semi-processed and reginned motes in 7...

  14. Do self-service technologies affect interfirm relationships? A B2B perspective

    Directory of Open Access Journals (Sweden)

    Raechel Johns

    2014-11-01

    Full Text Available While considerable literature examines business-to business (B2B relationships, the impact of technology on these relationships has lacked attention. IT has impacted the way businesses operate in a B2B context as well as influencing services by altering the way services are delivered. To understand the way in which Internet technology has impacted these B2B services, it is essential to examine its impact not only on business processes but on business relationships too. One technology, enabled by modern Internet technologies, which is changing the nature of business relationships is the increased use of self-service technologies (SSTs or technology-enabled services, however, there is a shortage of research in the area in a B2B context. The discussion in this paper provides an overview of the impact of IT on business relationships, using Relationship Marketing theory to provide a theoretical framework. A qualitative study in the Australian banking industry provides findings relating to the theory. The findings of this study provide evidence that while traditional Relationship Marketing theory is still applicable for some business customers, new theory is required for business customers who do not seek relationships. With both practical and theoretical implications, the research detailed in this paper makes a useful contribution to the literature and indicates the necessity for further research to be developed which explores business customers who prefer to remain transaction-oriented, rather than develop interpersonal relationships.

  15. Genotype-by-sowing date interaction effects on cotton yield and quality in irrigated condition of dera ismail khan, pakistan

    International Nuclear Information System (INIS)

    Usman, K.; Khan, S.; Ayatullah, A.

    2016-01-01

    Cotton is a major export commodity of Pakistan. It is affected by variable environmental conditions throughout the country which limits its production. A 2-year field study was conducted in 2012 and 2013 at Cotton Research Station, Dera Ismail Khan, Pakistan to evaluate the effects of six sowing dates on yield and quality attributes of four cotton genotypes. The experiments were laid out in split-plot within a randomized complete block design with three replications. Main plots treatments were six sowing dates, namely March 20, April 4, April 19, May 4, May 19, and June 3 while subplots treatments were four approved transgenic varieties of cotton (CIM-598, CIM-599, CIM-602, and Ali Akber-703). Results revealed that earlier planting produced more vegetative growth rather than lint yield while late planting induced flowering and boll formation when temperature was much cold that adversely affected cotton yield and quality. The results further indicate that the genotype CIM-599 scored first rank in number of bolls plant-1, boll weight, seed cotton yield, ginning out turn, fiber length, fiber strength, fiber fineness, and fiber uniformity when sown on April 19. CIM-598 was the next suitable genotype after CIM-599 which produced higher yield and quality traits in April 19 sowing. Earlier and later sowing than April 19 resulted in lower cotton yield and quality characters due to unfavorable environmental conditions and shorter growth period, respectively. Thus it is concluded that the genotype, CIM-599 sown on April 19 suits well to the study area and had the potential to optimize cotton yield and quality in irrigated condition of Dera Ismail Khan, Pakistan. (author)

  16. Transcript mapping of Cotton leaf curl Burewala virus and its cognate betasatellite, Cotton leaf curl Multan betasatellite

    Directory of Open Access Journals (Sweden)

    Akbar Fazal

    2012-10-01

    Full Text Available Abstract Background Whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus are major limiting factors for the production of numerous dicotyledonous crops throughout the warmer regions of the world. In the Old World a small number of begomoviruses have genomes consisting of two components whereas the majority have single-component genomes. Most of the monopartite begomoviruses associate with satellite DNA molecules, the most important of which are the betasatellites. Cotton leaf curl disease (CLCuD is one of the major problems for cotton production on the Indian sub-continent. Across Pakistan, CLCuD is currently associated with a single begomovirus (Cotton leaf curl Burewala virus [CLCuBuV] and the cotton-specific betasatellite Cotton leaf curl Multan betasatellite (CLCuMuB, both of which have recombinant origins. Surprisingly, CLCuBuV lacks C2, one of the genes present in all previously characterized begomoviruses. Virus-specific transcripts have only been mapped for few begomoviruses, including one monopartite begomovirus that does not associate with betasatellites. Similarly, the transcripts of only two betasatellites have been mapped so far. The study described has investigated whether the recombination/mutation events involved in the evolution of CLCuBuV and its associated CLCuMuB have affected their transcription strategies. Results The major transcripts of CLCuBuV and its associated betasatellite (CLCuMuB from infected Nicotiana benthamiana plants have been determined. Two complementary-sense transcripts of ~1.7 and ~0.7 kb were identified for CLCuBuV. The ~1.7 kb transcript appears similar in position and size to that of several begomoviruses and likely directs the translation of C1 and C4 proteins. Both complementary-sense transcripts can potentially direct the translation of C2 and C3 proteins. A single virion-sense transcript of ~1 kb, suitable for translation of the V1 and V2 genes was identified. A predominant

  17. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2011-06-03

    ... ``Any AUP cotton'' and replacing it with the phrase ``Mature AUP cotton'' to clarify the AUP cotton must be mature in order to calculate a conversion factor between AUP cotton and ELS cotton. List of... dividing Price A by 85 percent of Price B. * * * * * (f) Mature AUP cotton harvested or appraised from...

  18. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  19. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton

    Directory of Open Access Journals (Sweden)

    Nhan eLe Van

    2016-01-01

    Full Text Available As the demands for nanotechnology and nanoparticle (NP applications in agriculture increase, the ecological risk has drawn more attention because of the unpredictable results of interactions between NPs and transgenic crops. In this study, we investigated the effects of various concentrations of Fe2O3 NPs on Bt-transgenic cotton in comparison with conventional cotton for 10 days. Each treatment was conducted in triplicate, and each experiment was repeated three times. Results demonstrated that Fe2O3 nanoparticles (NPs inhibited the plant height and root length of Bt-transgenic cotton and promoted root hairs and biomass of non-transgenic cotton. Nutrients such as Na and K in Bt-transgenic cotton roots increased, while Zn contents decreased with Fe2O3 NPs. Most hormones in the roots of Bt-transgenic cotton increased at low Fe2O3 NP exposure (100 mg·L−1 but decreased at high concentrations of Fe2O3 NPs (1000 mg·L−1. Fe2O3 NPs increased the Bt-toxin in leaves and roots of Bt-transgenic cotton. Fe2O3 NPs were absorbed into roots, then transported to the shoots of both Bt-transgenic and non-transgenic cottons. The bioaccumulation of Fe2O3 NPs in plants might be a potential risk for agricultural crops and affect the environment and human health.

  20. Identifying Qualitative Factors Affecting the Production and Distribution of Information and Knowledge in Science and Technology Parks of Iran

    Directory of Open Access Journals (Sweden)

    Ali Haji Shamsaei

    2017-06-01

    Full Text Available This study was conducted in order to identity Qualitative factors affecting the production and distribution of information and knowledge in science and technology parks of Iran. The research was Applied Research in which, qualitative method was carried out. The population of the study was included of 10 managers of Knowledge-based Companies. The data was collected from the population using semi-structured and in-depth interviews. For data analysis, content analysis was used. Results of the qualitative factors affecting the production and distribution of information and knowledge in science and technology parks of Iran, led to extraction of 39 components which were classified in four categories: I Foreign and domestic policy, II Financial and economic support, III Infrastructure barriers and IV Cultural barriers. Results howed that overcoming the political, financial and economic, infrastructural and cultural barriers has undeniable impact on production and distribution of information and knowledge.

  1. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  2. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  3. Personal and other factors affecting acceptance of smartphone technology by older Chinese adults.

    Science.gov (United States)

    Ma, Qi; Chan, Alan H S; Chen, Ke

    2016-05-01

    It has been well documented that in the 21st century, there will be relatively more older people around the world than in the past. Also, it seems that technology will expand in this era at an unprecedented rate. Therefore, it is of critical importance to understand the factors that influence the acceptance of technology by older people. The positive impact that the use of mobile applications can have for older people was confirmed by a previous study (Plaza et al., 2011). The study reported here aimed to explore and confirm, for older adults in China, the key influential factors of smartphone acceptance, and to describe the personal circumstances of Chinese older adults who use smartphone. A structured questionnaire and face to face individual interviews were used with 120 Chinese older adults (over 55). Structural Equation Modeling was used to confirm a proposed smartphone acceptance model based on Technology Acceptance Model (TAM), and the Unified Theory of Acceptance and Use of Technology (UTAUT). The results showed that those who were younger, with higher education, non-widowed, with better economic condition related to salary or family support were more likely to use smartphone. Also, cost was found to be a critical factor influencing behavior intention. Self-satisfaction and facilitating conditions were proved to be important factors influencing perceived usefulness and perceived ease of use. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Review of Renewable Energy Technologies in Zambian Households: Capacities and Barriers Affecting Successful Deployment

    Directory of Open Access Journals (Sweden)

    Priscilla Kachapulula-Mudenda

    2018-05-01

    Full Text Available Modern renewable energy has been hailed as one of the prerequisites for fostering green growth and the achievement of sustainable development. Despite efforts to promote the use of renewable energy in households, its adoption has remained fairly low, hence the need for an inquiry into household capabilities needed for the acquisition and adoption of renewable energy technologies. This paper reviews the requisite capacities of households for the adoption of renewable energy services and expounds on some of the barriers hampering renewable energy among households. It takes a desk research approach to analyse the capacities which should be possessed by Zambian households and possible barriers constraining the widespread deployment of renewable energy technologies. The findings reveal that there is a need for a broader, multidimensional understanding of access to renewable energy in order for deployment to be effective. Barriers to the successful adoption of clean energy technologies include underserved populations, policy inadequacies; an underexploited renewable energy sector and heavy reliance on a service-challenged hydro-power utility. Since most of the aforementioned challenges are institutional in nature, the paper concludes with a recommendation of a baseline assessment to understand knowledge, perceptions, attitudes and drivers for renewable energy technology adoption among households.

  5. Assessing Factors Affecting Physician's Intention to Adopt Biometric Authentication Technology in Electronic Medical Records

    Science.gov (United States)

    Corazao, Cesar E.

    2014-01-01

    The Health Insurance Portability and Accountability Act of 1996 (HIPAA) regulated the privacy and security of patient information. Since HIPPA became a law, hospital operators have struggled to comply fully with its security and privacy provisions. The proximity-based biometric authentication (PBBA) technology evolved in last decade to help…

  6. General wisdom concerning the factors affecting the adoption of cleaner technologies: a survey 1990-2007

    NARCIS (Netherlands)

    Montalvo Corral, C.

    2008-01-01

    Cleaner technologies (CT) have recently received much attention in diverse media and policy agendas. This comes out of the clear role they play in environmental protection and sustainability and the large potential to contribute to economic growth and competitiveness. The realization of both

  7. Providing assistive technology in Italy : The perceived delivery process quality as affecting abandonment

    NARCIS (Netherlands)

    Federici, Stefano; Borsci, Simone

    2016-01-01

    Purpose: The study brings together three aspects rarely observed at once in assistive technology (AT) surveys: (i) the assessment of user interaction/satisfaction with AT and service delivery, (ii) the motivational analysis of AT abandonment, and (iii) the management/design evaluation of AT delivery

  8. The Factors Affecting Definition of Research Problems in Educational Technology Researches

    Science.gov (United States)

    Bahçekapili, Ekrem; Bahçekapili, Tugba; Fis Erümit, Semra; Göktas, Yüksel; Sözbilir, Mustafa

    2013-01-01

    Research problems in a scientific research are formed after a certain process. This process starts with defining a research topic and transforms into a specific research problem or hypothesis. The aim of this study was to examine the way educational technology researchers identify their research problems. To this end, sources that educational…

  9. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    Science.gov (United States)

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  10. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    1Key Laboratory of Cotton Genetic Improvement of the Ministry of Agriculture, Cotton Research Institute, Chinese. Academy of Agricultural Sciences, Anyang Henan 455 112, People's Republic of China. 2Institute ..... Athens, Greece. Xie D. X. ...

  11. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  12. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  13. The chemical recycle of cotton

    Directory of Open Access Journals (Sweden)

    Alice Beyer Schuch

    2016-08-01

    Full Text Available The chemical recycle of cotton textiles and/or other cellulosic materials for the purpose of manufacturing regenerated high quality textiles fibres is a novel process. The objective of related research is based on the forecast of population growth, on resource scarcity predictions, and on the negative environmental impact of the textile industry. These facts lead the need of broadening the scope for long-term textile-to-textile recycle - as the mechanical recycle of natural fibres serve for limited number of cycles, still depends on input of virgin material, and offer a reduced-in-quality output. Critical analysis of scientific papers, relevant related reports, and personal interviews were the base of this study, which shows viable results in laboratorial scale of using low-quality cellulosic materials as input for the development of high-quality regenerated textile fibres though ecological chemical process. Nevertheless, to scale up and implement this innovative recycle method, other peripheral structures are requested, such as recover schemes or appropriate sort, for instance. Further researches should also be considered in regards to colours and impurities.

  14. PREDICTING DEMAND FOR COTTON YARNS

    Directory of Open Access Journals (Sweden)

    SALAS-MOLINA Francisco

    2017-05-01

    Full Text Available Predicting demand for fashion products is crucial for textile manufacturers. In an attempt to both avoid out-of-stocks and minimize holding costs, different forecasting techniques are used by production managers. Both linear and non-linear time-series analysis techniques are suitable options for forecasting purposes. However, demand for fashion products presents a number of particular characteristics such as short life-cycles, short selling seasons, high impulse purchasing, high volatility, low predictability, tremendous product variety and a high number of stock-keeping-units. In this paper, we focus on predicting demand for cotton yarns using a non-linear forecasting technique that has been fruitfully used in many areas, namely, random forests. To this end, we first identify a number of explanatory variables to be used as a key input to forecasting using random forests. We consider explanatory variables usually labeled either as causal variables, when some correlation is expected between them and the forecasted variable, or as time-series features, when extracted from time-related attributes such as seasonality. Next, we evaluate the predictive power of each variable by means of out-of-sample accuracy measurement. We experiment on a real data set from a textile company in Spain. The numerical results show that simple time-series features present more predictive ability than other more sophisticated explanatory variables.

  15. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  16. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal

    2017-05-13

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  18. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal; Alshehri, Abdullah; Almansouri, Abdullah Saud Mohammed; Al-Turki, Abdullah Turki

    2017-01-01

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  19. How do mobile technologies affect work and private lives? The case of Turkish banking professionals

    OpenAIRE

    Yıldırım, Nihan; Ansal, Hacer

    2014-01-01

    Mobile technologies (MTs) became important part of infrastructure in service industries. The impacts of MT usage in work are shown to be significant; improving the productivity, responsiveness, effectiveness and flexibility of companies, while reshaping the work place organization and making employees accessible on a 7/24 basis. However, there are great differences in terms of the types and levels of these impacts on organizations and individuals as the industry, region/country changes. Moreo...

  20. Factors affecting food security and contribution of modern technologies in food sustainability.

    Science.gov (United States)

    Premanandh, Jagadeesan

    2011-12-01

    The concept of food insecurity is complex and goes beyond the simplistic idea of a country's inability to feed its population. The global food situation is redefined by many driving forces such as population growth, availability of arable lands, water resources, climate change and food availability, accessibility and loss. The combined effect of these factors has undeniably impacted global food production and security. This article reviews the key factors influencing global food insecurity and emphasises the need to adapt science-based technological innovations to address the issue. Although anticipated benefits of modern technologies suggest a level of food production that will sustain the global population, both political will and sufficient investments in modern agriculture are needed to alleviate the food crisis in developing countries. In this globalised era of the 21st century, many determinants of food security are trans-boundary and require multilateral agreements and actions for an effective solution. Food security and hunger alleviation on a global scale are within reach provided that technological innovations are accepted and implemented at all levels. Copyright © 2011 Society of Chemical Industry.

  1. Factors Affecting the Use of Dairy Technologies in Coastal Kenya and Assessment of their Impacts

    International Nuclear Information System (INIS)

    Nicholson, C.F.; Thornton, P.K.; Staal, S.G.; Thorpe, W.; Muinga, R.W; Mwamachi, D.M.; Mohamed, L.; Elbasha, E.

    1999-01-01

    This study examines the factors influencing adoption of three related dairy technologies in the coastal Kenya and assessed the impact of dairy adoption on household income, employment generation, and nutritional status of pre-school children. The technologies studied were adoption of grade and crossbred dairy animals, planting of the fodder Napier grass, and use of the infection-and-treatment method of immunisation against East Coast fever. A series of household surveys was conducted from mid-1997 to mid-1998. Results showed that adoption of grade or crossbred dairy animal can lead to substantial impacts on household income, can generate employment, and can have a beneficial impact on the nutritional status of pre-school-age children in the household. It appears that neither the adoption nor productivity of dairying are constrained by poor availability of technology options. For dairy development activities on the coast, two areas merit attention: mechanisms for easing access to grade and crossbred dairy cattle, either through credit schemes or through self-help smallholder co-operatives, and reducing the disease risks associated with grade and crossbred dairy animals

  2. How new power generation technologies will affect the development of independent power

    International Nuclear Information System (INIS)

    Bhan, S.K.

    1999-01-01

    The deregulation of electricity markets in North America have made it possible for independent power producers to generate electricity. This presentation focused on the different factors that should be considered when developing cogeneration projects, including their inherent environmental benefits. Cogeneration is the combined production of thermal energy and electricity. The main requirement for cogeneration is that there should be a market for both electricity as well as thermal energy. This means that any large institutions where steam or hot water is used for heating can qualify for cogeneration of electricity. The development of cogeneration projects has been encouraged by recent advances in technology in gas turbines, micro-turbines, coal-fired generation and fuel cells. Future technologies will include improved circulating fluidized bed boilers, low NO x burners, and selective catalytic reactors. The newest technologies claim to achieve simple cycle efficiency approaching 40 per cent. In the combined cycle, efficiencies of 60 per cent can be achieved, while 80 per cent efficiency can be achieved in cogeneration. This paper described various cogeneration options including: (1) gas turbines with unfired heat recovery steam generators (HRSG), (2) gas turbines with fired HRSG, (3) combined cycle plants, and (4) reciprocating engines. The efficiency of cogeneration makes it a viable option for reducing greenhouse gases (GHGs). 5 tabs

  3. Environmental effect of conventional and GM crops of cotton (Gossipium hirsitum L. and corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Kelly Ávila

    2011-12-01

    Full Text Available In the corn belt of Valle de San Juan and in the cotton zone of El Espinal, municipalities in the department of Tolima (Colombia, 10 conventional corn producers, 10 producers of genetically modified corn, five producers of conventional cotton and 15 producers of transgenic cotton were surveyed in the first half of 2009 to contrast the differences in the environmental impact associated with use of insecticides and herbicides, which were evaluated by estimating the environmental index quotient-EIQ. In the case of maize, an EIQ of 42 was found in the conventional type, while transgenic technology had an EIQ of 3.03. In the cultivation of cotton, an EIQ of 263.59 was found for the conventional type while for transgenic technology this value varied between 335.75 (Nuopal BG/RR and 324.79 (DP 455 BG/RR. These data showed a lower environmental impact using GM technology in the cultivation of maize when compared to the conventional counterpart, in connection with the use of insecticides and herbicides, in the context of time, space and genotypic analysis. This effect was not observed in the case of cotton, where environmental impacts were similar

  4. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  5. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  6. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  7. 78 FR 68983 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-11-18

    ...-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing... regulations to allow for the addition of an optional cotton futures classification procedure--identified and... response to requests from the U.S. cotton industry and ICE, AMS will offer a futures classification option...

  8. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  9. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  10. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... 2Key Laboratory of Cotton Genetic Improvement, Cotton Research Institute of the Chinese Academy of Agricultural. Sciences, Ministry of ... terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. ... toxic to non-ruminant animals and humans, which means that large ...

  11. THE ELASTICITY OF EXPORT DEMAND FOR US COTTON

    OpenAIRE

    Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala

    2004-01-01

    There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.

  12. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  13. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore prescribed, separate samples, if desired, may be drawn and furnished to the owner of the cotton. ...

  14. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan... intentions to receive a loan deficiency payment on the identified commodity or (ii) A completed request for a... cotton based on a locked-in adjusted world price, provide identifying numbers for modules or other...

  15. CATEGORIZATION OF EXTRANEOUS MATTER IN COTTON USING MACHINE VISION SYSTEMS

    Science.gov (United States)

    The Cotton Trash Identification System (CTIS) was developed at the Southwestern Cotton Ginning Research Laboratory to identify and categorize extraneous matter in cotton. The CTIS bark/grass categorization was evaluated with USDA-Agricultural Marketing Service (AMS) extraneous matter calls assigned ...

  16. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427.174 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION... Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31 following...

  17. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    A survey of 337 cotton farmers in the three northern regions of Ghana was ... five applications were made during the season. ... Keywords: cotton, farmer knowledge and perception, insect pest control, Ghana. .... bordered on tests of farmers' knowledge of cotton insect pests, their damage ..... Agricultural Experiment Station.

  18. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  19. 7 CFR 1427.1203 - Eligible ELS cotton.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Extra Long Staple (ELS) Cotton... must be either: (1) Baled lint, including baled lint classified by USDA's Agricultural Marketing..., under the provisions of this subpart, has been made available; (2) Imported ELS cotton; (3) Raw...

  20. Fourier transform infrared imaging of Cotton trash mixtures

    Science.gov (United States)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  1. Cotton Production in Mali: Subsidies or Sustainable Development?

    Science.gov (United States)

    Moore, Lindsey

    2007-01-01

    Current trade rules concerning cotton subsidies are intricately linked with poverty and hunger in Mali. Over half of Mali's economy and over 30 million people depend directly on cotton. It is the main cash crop and the most important source of export revenue. Cotton also plays a key role in development policies and in the fight against poverty by…

  2. Do 'enabling technologies' affect customer performance in price-responsive load programs?

    International Nuclear Information System (INIS)

    Goldman, Charles A.; Kintner-Meyer, Michael; Heffner, Grayson

    2002-01-01

    Price-responsive load (PRL) programs vary significantly in overall design, the complexity of relationships between program administrators, load aggregators, and customers, and the availability of ''enabling technologies''. Enabling technologies include such features as web-based power system and price monitoring, control and dispatch of curtailable loads, communications and information systems links to program participants, availability of interval metering data to customers in near real time, and building/facility/end-use automation and management capabilities. Two state agencies - NYSERDA in New York and the CEC in California - have been conspicuous leaders in the demonstration of demand response (DR) programs utilizing enabling technologies. In partnership with key stakeholders in these two states (e.g., grid operator, state energy agencies, and program administrators), Lawrence Berkeley National Laboratory (LBNL) and Pacific Northwest National Laboratory (PNNL) surveyed 56 customers who worked with five contractors participating in CEC or NYSERDA-sponsored DR programs. We combined market research and actual load curtailment data when available (i.e., New York) or customer load reduction targets in order to explore the relative importance of contractor's program design features, sophistication of control strategies, and reliance on enabling technologies in predicting customer's ability to deliver load reductions in DR programs targeted to large commercial/industrial customers. We found preliminary evidence that DR enabling technology has a positive effect on load curtailment potential. Many customers indicated that web-based energy information tools were useful for facilitating demand response (e.g., assessing actual performance compared to load reduction contract commitments), that multiple notification channels facilitated timely response, and that support for and use of backup generation allowed customers to achieve significant and predictable load

  3. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  4. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    Science.gov (United States)

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  5. Induced mutations for improvement of desi cotton

    International Nuclear Information System (INIS)

    Waghmare, V.N.; Mohan, Punit; Singh, Phundan; Gururajan, K.N.

    2000-01-01

    Desi cotton varieties of Gossypium arboreum have wide adaptability and are relatively tolerant to biotic (insect pests and diseases) and abiotic (moisture and salt) stresses. Desi varieties have got potential to yield even under adverse and low input situations. Most of them are synchronous in maturity and possess consistent fibre properties. Despite such merits, very little attention has been paid for improvement of desi cotton. The present area under arboreum varieties is 17.0% (15.30 lakh ha.) against 65% (35.75 lakh ha) during 1947-48. Deliberate attempts are required to improve G. arboreum for its economic and quality characters to compete with upland varieties in rainfed cotton ecology

  6. FACTORS AFFECTING TEACHING THE CONCEPT of RENEWABLE ENERGY in TECHNOLOGY ASSISTED ENVIRONMENTS AND DESIGNING PROCESSES in THE DISTANCE EDUCATION MODEL

    Directory of Open Access Journals (Sweden)

    A. Seda YUCEL

    2007-01-01

    Full Text Available The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out what to take into account in creating renewable energy awareness. In this study, certain factors thought to affect the development of renewable energy awareness were investigated. The awareness was created through a technology-assisted renewable energy module and assessed using a renewable energy assessment tool. The effects of the students’ self-directed learning readiness with Guglielmino (1977, inner-individual orientation, and anxiety orientation on the awareness were examined. These three factors were found to have significant effects on renewable energy, which was developed through technology utilization. In addition, based on the finding that delivering the subject of renewable energy in technology assisted environments is more effective, the criteria that should be taken into consideration in transforming this subject into a design model that is more suitable for distance education were identified.

  7. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum

    OpenAIRE

    Carter, William W.

    1982-01-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather ...

  8. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  9. How energy technology innovation affects transition of coal resource-based economy in China

    International Nuclear Information System (INIS)

    Guo, Pibin; Wang, Ting; Li, Dan; Zhou, Xijun

    2016-01-01

    The aim of this research paper is to investigate factors and mechanisms that may facilitate the transition from coal resource-based economy to sustainability. Based on the energy technology innovation theory, factors that may influence the transition of coal resource-based economy were categorized into four types, including: innovation policy, innovation input, innovation ability, and innovation organization. Hypotheses were proposed regarding the mechanisms of these factors. Data were collected from surveys administered to 314 Chinese energy firms, and a structural equation model (SEM) was employed to test the hypotheses. Ten of fifteen hypotheses were retained based on the reliability tests, validity tests, and SEM. The results show that the four proposed factors are crucial in transforming the coal resource-based economy, and the effects become statistically significant through three intermediate variables, namely, transition of energy consumption structure, correction of resource wealth investment, and improvement of transition environment. - Highlights: •Approximately, 66% of energy relies on coal in China. •Serious environment problems have occurred in many coal-based regions. •Energy technology innovation can promote the transition of coal-based economy. •China should accelerate the development of clean energy.

  10. Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains.

    Science.gov (United States)

    Lindemann, Igor da Silva; Lang, Gustavo Heinrich; Hoffmann, Jessica Fernanda; Rombaldi, Cesar Valmor; de Oliveira, Maurício; Elias, Moacir Cardoso; Vanier, Nathan Levien

    2017-08-16

    The effects of the use of glyphosate (GLY), glyphosate plus carfentrazone (GLY/CAR), and paraquat (PAR) as plant desiccators on the technological and chemical properties of cowpea grains were investigated. All studied desiccants provided lower cooking time to freshly harvested cowpea. However, the coat color of PAR- and GLY/CAR-treated cowpea was reddish in comparison to the control treatment. Principal component analysis (PCA) from liquid chromatography-mass spectrometry (LC-MS) data sets showed a clear distinction among cowpea from the different treatments. Catechin-3-glucoside and epicatechin significantly contributed for discriminating GLY-treated cowpea, while citric acid was responsible for discriminating GLY/CAR-treated cowpea. Quercetin derivative and gluconic acid were responsible for discriminating control treatment. Residual glyphosate and paraquat content was higher than the maximum limits allowed by Codex Alimentarius and the European Union Commission. Improvements in the technological and chemical properties of cowpea may not be overlapped by the risks that those desiccants exhibit when exceeding the maximum limits of tolerance in food.

  11. Factors Affecting Nursing Students' Readiness and Perceptions Toward the Use of Mobile Technologies for Learning.

    Science.gov (United States)

    Zayim, Nese; Ozel, Deniz

    2015-10-01

    The purpose of this study was to determine the current usage of mobile devices, preferences of mobile learning environments and examine the readiness of nursing students in a public university. In order to investigate preferences and attitudes with respect to mobile technology use in nursing education, 387 students at a state university have been surveyed. It has been observed that while students preferred their current portable laptops, those in higher classes were more inclined to favor mobile phones. The common problems of battery life and high cost of communication, both in smartphones and tablet systems, suggest that hardware quality and financial constraints seem to be two main factors in determining these technologies. While more than half of students expressed readiness for mobile learning, one quarter indicated indecision. Through multivariate regression analysis, readiness to use mobile learning can be described in terms of perceived ease of use, perceived usefulness, personal innovativeness, self-management of learning, perceived device limitation, and availability. Class level, perceived ease of use, personal innovativeness, and self-management of learning explain intention to use mobile learning. Findings obtained from these results can provide guidance in the development and application of mobile learning systems.

  12. Video Lecture Capture Technology Helps Students Study without Affecting Attendance in Large Microbiology Lecture Courses

    Directory of Open Access Journals (Sweden)

    Jennifer Lynn McLean

    2016-12-01

    Full Text Available Recording lectures using video lecture capture software and making them available for students to watch anytime, from anywhere, has become a common practice in many universities across many disciplines. The software has become increasingly easy to use and is commonly provided and maintained by higher education institutions. Several studies have reported that students use lecture capture to enhance their learning and study for assessments, as well as to catch up on material they miss when they cannot attend class due to extenuating circumstances. Furthermore, students with disabilities and students from non-English Speaking Backgrounds (NESB may benefit from being able to watch the video lecture captures at their own pace. Yet, the effect of this technology on class attendance remains a controversial topic and largely unexplored in undergraduate microbiology education. Here, we show that when video lecture captures were available in our large enrollment general microbiology courses, attendance did not decrease. In fact, the majority of students reported that having the videos available did not encourage them to skip class, but rather they used them as a study tool. When we surveyed NESB students and nontraditional students about their attitudes toward this technology, they found it helpful for their learning and for keeping up with the material.

  13. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  14. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  15. Survival and Development of Spodoptera frugiperda and Chrysodeixis includens (Lepidoptera: Noctuidae) on Bt Cotton and Implications for Resistance Management Strategies in Brazil.

    Science.gov (United States)

    Sorgatto, Rodrigo J; Bernardi, Oderlei; Omoto, Celso

    2015-02-01

    In Brazil, Spodoptera frugiperda (J. E. Smith) and Chrysodeixis includens (Walker) are important cotton pests and target of control of Bollgard II (Cry1Ac/Cry2Ab2) and WideStrike (Cry1Ac/Cry1F) cotton technologies. To subsidize an insect resistance management program, we conducted laboratory studies to evaluate the toxicity of these Bt cotton plants throughout larval development of S. frugiperda and C. includens. In bioassays with leaf disc, the efficacy of both Bt cotton plants against neonates was >80% for S. frugiperda and 100% for C. includens. However, S. frugiperda larvae that survived on Bt cotton had >76% of growth inhibition and stunting. In bioassays with S. frugiperda and C. includens larvae fed on non-Bt near-isoline during different time period (from 3 to 18 d) and then transferred to Bollgard II or WideStrike leaves showed that larval susceptibility decreased as larval age increased. For Bollgard II cotton, in all S. frugiperda instars, there were larvae that reached the pupal and adult stages. In contrast, on WideStrike cotton, a few larvae in fifth and sixth instar completed the biological cycle. For C. includens, some larvae in sixth instar originated adults in both Bt cotton plants. In conclusion, Bollgard II and WideStrike cotton technologies showed high efficacy against neonates of S. frugiperda and C. includens. However, the mortality of these species decreases as larval age increase, allowing insect survival in a possible seed mixture environment and favoring the resistance evolution. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A study on Factors Affecting Application of Information and Communication Technology (ICT by Faculty Members of

    Directory of Open Access Journals (Sweden)

    Elham Biglari

    2010-12-01

    Full Text Available This paper is an attempt to investigate the factors affecting on ICT application by faculty members of University of Razi. A descriptive-correlative research survey method was used. The statistical population of this research consist of faculty members of University of Kermanshah (N=271. Sampling method was stratified randomization (n=116. Questionnaire was used for data collection, the validity of which was confirmed by the opinions of some of professionals and faculty members of Agriculture Education and Extension and for determining reliability Cronbach's Alpha (0.83 was used. The collected data were analyzed using SPSS software. The findings reveal that there’s a significant positive relationship between the number of published papers in internal and external journals and conferences, familiarity with internet services, skill in driving computer, skill in using internet services, using internet for meeting educational and research needs, skill in English language, attitude towards using ICT in education and research, scientific rank and use of internet for supervising over  thesis and dissertation, on the one hand, and the variable of application of ICT by faculty members of University of Kermanshah. In regression analysis, the predicting variables of factors affecting on application of ICT by faculty members, including skill in using internet services, attitude towards using ICT in research and education and the number of published papers in foreign journals and conferences were entered in 3 stages, which in total explain 25.1 percent variance of dependent variable. 

  17. Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats

    Directory of Open Access Journals (Sweden)

    Raquel Muelas

    2017-12-01

    Full Text Available Traditional farming practices include the use of local agricultural by-products in the diet of ruminants. Artichoke harvesting and transformation yield high amounts of by-products that, if properly used, may reduce farming costs and the environmental impact of farming. The present study tests the inclusion of silages from artichoke by-products (plant and outer bracts in the diet of dairy goats (0%, 12.5% and 25% inclusion on the technological and sensory properties of milk during a five-month study. Milk composition, color, stability, coagulation and fermentation properties remained unaffected by diet changes. Panelists were not able to differentiate among yogurts obtained from those milks by discriminant triangular sensory tests. Silages of artichoke by-products can be included in isoproteic and isoenergetic diets for dairy goats, up to a 25% (feed dry matter, without negatively affecting milk technological and sensory properties whereas reducing feeding costs.

  18. Socio-Economic Factors Assessment Affecting the Adoption of Soil Conservation Technologies on Rwenzori Mountain

    Directory of Open Access Journals (Sweden)

    Nabalegwa Wambede Muhamud

    2015-06-01

    Full Text Available This study analysed the role of socio-economic factors in influencing farmers’ adoption to soil conservation technologies in Bugoye Sub-county, Rwenzori Mountain. A cross sectional household survey design was used in this study, using systematic sampling to obtain 150 household samples. Qualitative analysis and chi-square tests were used to analyze these data. Results indicated that only 54% of the sampled households have adopted soil conservation, and revealed that eight of the nine factors significantly influenced farmers’ adoption, which are slope, farm size, farm distance from home, education level, family income, training, membership to NGOs, and credit accessibility. Only family size was insignificant. Other constraints are labour demands, cost of conservation work, land fragmentation, crop pests, and the limited agricultural extension services. It is recommended to perform training for farmers on designing soil conservation structures. Policies for empowering farmers with extra income are crucial to increase the adoption of soil conservation efforts.

  19. A case of a laptop learning campus: how do technology choices affect perceptions?

    Directory of Open Access Journals (Sweden)

    Jennifer Percival

    2009-12-01

    Full Text Available Laptop learning programs have been developed to create ubiquitous online learning environments. Given the infancy of many programs, there is little understanding of aspects of the program are perceived to provide value to faculty and students. This paper focuses on the value proposition (with respect to perceived benefits versus capital investment for undergraduate students in a mandatory, campus-wide, comprehensive laptop learning program. Results indicate that the perceived value of the laptop for technical programs such as science, engineering, and information technology, and liberal arts programs such as business and criminology, justice, and policy studies are significantly different. This difference results in a clear need to use different laptop learning models for each type of program and that a single campus-wide model will likely prove unsatisfactory for most students. A need to better communicate the true value of industry-specific software and skills acquisition is also highlighted.

  20. How may CCS technology affect the electricity market in North-Western Europe?

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Groenenberg, H.

    2008-11-01

    The EU electricity market is changing. Electricity demand in Europe is on the rise, the power plant fleet is aging, and a large share of the capacity will need to be replaced in the coming decades. An ambitious target has been formulated for the share of renewable energy, and CO2 prices are anticipated to increase. On top of this, CO2 Capture and Storage (CCS) has appeared as an important technology in the transition to a long term sustainable energy supply. This paper discusses the implications of all the fore-mentioned developments for the EU electricity market, with an emphasis on the Northwest European market. On the whole, electricity prices in the Northwestern part of Europe are anticipated to increase until 2020, but this may only partly be ascribed to the pending introduction of CCS

  1. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  2. The Impacts of U.S. Cotton Programs on the West and Central African Countries Cotton Export Earnings

    OpenAIRE

    Fadiga, Mohamadou L.; Mohanty, Samarendu; Pan, Suwen

    2005-01-01

    This study uses a stochastic simulation approach based on a partial equilibrium structural econometric model of the world fiber market to examine the effects of a removal of U.S. cotton programs on the world market. The effects on world cotton prices and African export earnings were analyzed. The results suggest that on average an elimination of U.S. cotton programs would lead to a marginal increase in the world cotton prices thus resulting in minimal gain for cotton exporting countries in Af...

  3. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  4. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    Science.gov (United States)

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  5. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  6. Respiration intensiveness and inclusion of 32P in the composition of phosphorus-organic combinations in radiomutants of cotton plants and their initial forms under salinization of soil

    International Nuclear Information System (INIS)

    Nazirov, N.N.; Tashmatov, N.T.; Vakhabov, A.; Nabiev, A.G.

    1981-01-01

    Salinization of soil affects respiration intensity, 32 P introduction into plants and its inclusion in the content of phosphoric organic compounds as well as their content in tissues of cotton plants. Respiration intensity increases: respiration intensity of weakly-stable plants increases to a greater degree. General character of changes caused by the salinization effect of different cotton sorts, is analogous, differences are only in the destruction degree [ru

  7. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  8. Pilot scale cotton gin trash energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harp, S.L. [Oklahoma State Univ., Stillwater, OK (United States)

    1993-12-31

    During the summer of 1992 a 520,000 kcal/h (2,064,400 Btu/hr) biomass combustor was installed at a cotton gin in southwestern Oklahoma. The gin has a capacity of approximately 35 bales per hour. Each bale of cotton ginned weighs about 227 kg (500 lb) and produces about 68 kg (150 lb) of trash. Therefore, this gin produces about 52,360 kg (115,500 lb) of trash per day during a typical ginning season. Approximately 2 million kg (4 million lb) of gin trash are produced at this site each year. Cotton must first be dried to about 3-5% moisture content before the ginning process is begun. To accomplish this at this gin, two six million Btu/hour direct fired gas heaters are used to heat air for drying the cotton. The biomass combustor was installed to operate in parallel with one of the heaters to supply heated air for the drying process. A pneumatic conveying system was installed to intercept a portion of the gin trash and divert it to the burner. The burner was operated during the 1992 ginning season, which lasted from September through November, with few problems.

  9. Airborne multispectral detection of regrowth cotton fields

    Science.gov (United States)

    Regrowth of cotton, Gossypium hirsutum L., can provide boll weevils, Anthonomus grandis Boheman, with an extended opportunity to feed and reproduce beyond the production season. Effective methods for timely areawide detection of these potential host plants are critically needed to achieve eradicati...

  10. Absolute moisture sensing for cotton bales

    Science.gov (United States)

    With the recent prevalence of moisture restoration systems in cotton gins, more and more gins are putting moisture back into the bales immediately before the packaging operation. There are two main reasons for this recent trend, the first is that it has been found that added moisture at the bale pre...

  11. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  12. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  13. PESTICIDE CONTAMINATION OF THE DRIDJI COTTON ...

    African Journals Online (AJOL)

    ruud

    pesticide contamination in the Dridji cotton production area poses a risk to public ... the Kiti River as well as bean leaves grown near the river were sampled and ... Sediments were analysed at the Institute of Environmental Studies of the VU .... Empty bottles of pesticides were recycled to buy oil from the market and to bring.

  14. Locally Grown: Examining Attitudes and Perceptions About Organic Cotton Production and Manufacturing Between Mississippi Cotton Growers and Consumers

    Directory of Open Access Journals (Sweden)

    Charles Freeman

    2016-06-01

    Full Text Available The purpose of this study is to examine attitudes and perceptions about organic cotton of Mississippi cotton growers and producers in comparison to fashion-conscious consumers, including advantages/disadvantages of growing and production processes, quality control, consumer preferences, and competitive price structures/profit margins. A sample size of 16 local Mississippi growers and/or producers and 44 undergraduate students at a mid-major Southeastern university were chosen to participate in the study. Instruments were developed based on current research and the definition of organic cotton production defined by the United States Department of Agriculture. Results indicate 75% of growers and producers do not perceive a quality difference between organic and conventionally grown cotton, while 72.7% of the consumers report organically grown cotton is capable of producing a higher quality product compared to conventionally grown cotton. Even with an increase in organic cotton prices (25- 40% higher premium, only 25% of growers and producers would be willing to convert, while a majority (52.3% of consumers would not be willing to spend more than 25% extra for an organically grown cotton product. Consumers indicate the negative effects of conventionally grown cotton, yet many report little knowledge about organic cotton production, while growers/producers immediately dismiss organically grown cotton as a retail marketing strategy.

  15. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  16. Genetic and epigenetic status of triple exotic consanguinity cotton introgression lines.

    Science.gov (United States)

    He, S P; Sun, J L; Du, X M

    2011-10-03

    Introgression lines are some of the most important germplasm for breeding applications and other research conducted on cotton crops. The DNA methylation level among 10 introgression lines of cotton (Gossypium hirsutum) and three exotic parental species (G. arboreum, G. thurberi and G. barbadense) were assessed by methylation-sensitive amplified polymorphism (MSAP) technology. The methylation level in the introgression lines ranged from 33.3 to 51.5%. However, the lines PD0111 and PD0113 had the lowest methylation level (34.6 and 33.3%, respectively) due to demethylation of most non-coding sequences. Amplified fragment length polymorphism (AFLP) was used to evaluate the genetic polymorphism in the cotton introgression lines. A high degree of polymorphism was observed in all introgression lines (mean 47.2%) based on AFLP and MSAP analyses. This confirmed the effects of genetic improvement on cotton introgression lines. The low methylation varieties, PD0111 and PD0113 (introgression lines), clustered outside of the introgression lines based on MSAP data, which was incongruent with an AFLP-based dendrogram. This phenomenon could be caused by environmental changes or introgression of exotic DNA fragments.

  17. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    Science.gov (United States)

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Genetic diversity and phylogenetic relationship in different genotypes of cotton for future breeding

    Directory of Open Access Journals (Sweden)

    Jehan

    2017-11-01

    Full Text Available Background: To make the plants well adapted and more resistant to diseases and other environmental stresses there is always a need to improve the quality of plant’s genome i.e. to increase its genetic diversity. Methods: In the present study six variety and six lines of cotton were investigated for their genetic diversity and phylogenetic relationship. For this purpose 35 different RAPD primers obtained from the Gene Link Technologies, USA were used. Results: Among 35 RAPD primers, 13 primers produced reproducible PCR bands while the rest failed to show any amplification product. Our results indicated that the total count of the reproducible bands was 670 and polymorphic loci were counted to be 442 which constitute 66% of total loci. Phylogenetic analysis revealed two major groups each consists of 7 and 5 genotypes respectively. Genotypes Lp1 and Tp4 were placed at maximum genetic distance and in separate groups and could be utilized for future cotton breeding. Conclusions: RAPD analysis is a cheaper and time saving technique for the determination of genetic diversity of different cotton genotypes. Cotton genotype Lp1 and Tp4 could be the best candidates for future breeding programs as both genotypes are genetically distant from each other.

  19. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  20. Influência da aplicação e do efeito cumulativo de boro nas características agronômicas e propriedades tecnologicas da fibra do algodoeiro Influence of applications and accumulation of boron on the agronomic characteristics and technological properties of cotton fiber

    Directory of Open Access Journals (Sweden)

    Nelson Paulieri Sabino

    1996-01-01

    Full Text Available Avaliou-se a influência da aplicação de doses de boro sobre características agronômicas e propriedades tecnológicas da fibra de algodão em catorze ensaios regionais desenvolvidos no Estado de São Paulo, em 1979-86. Deles, selecionou-se o de Guaíra (SP, cujo caráter de longa duração (1984-93 permitiu o estudo do seu efeito cumulativo. Instalou-se tal ensaio em gleba de latossolo roxo distrófico, argiloso, anteriormente cultivada com milho e leguminosas e, para tanto, corrigida no aspecto de acidez e adubada com NPK. Adotou-se, para todos os ensaios, o delineamento de quadrado latino com seis repetições. O boro foi aplicado anualmente no sulco de semeação, nas seguintes doses: 0; 0,2; 0,4; 0,8; 1,6 e 3,2 kg/ha de B na forma de bórax (11% de B, em mistura com 10-75-75 kg/ha de N, P(20(5 e K2O respectivamente. Os ensaios regionais foram reunidos em dois grupos, estabelecidos em função da resposta esperada do algodoeiro à aplicação de boro. Em solos corrigidos, continuamente cultivados, mas nunca adubados com boro, nos quais se esperava, em termos de produção, média ou alta resposta das plantas, os efeitos positivos da adubação boratada estenderam-se para o comprimento da fibra e para o peso de um capulho, com reflexos negativos no índice Micronaire. Em solos em pousio ou naqueles que já haviam recebido boro nas adubações de plantio anteriores, de baixa resposta esperada, portanto, não se verificou efeito do micronutriente nas características estudadas. Com o acúmulo de boro nas adubações anuais do algodão em solo de média resposta esperada, o efeito sobre o peso de capulho e de sementes se destacou, à semelhança do que ocorreu com a produção.The influence of boron applications on the agronomic characteristics and technological properties of the cotton fiber were studied in a regional group of experiments conducted through the São Paulo State cotton belt, during the years of 1979 to 1986. The boron

  1. Using of virtual reality technology in acute cerebral stroke and their influense on post-stroke affective disorders

    Directory of Open Access Journals (Sweden)

    Maslyuk О.А.

    2014-12-01

    Full Text Available Aim. The study of virtual reality technology in the rehabilitation of patients with cerebral stroke and influence on post stroke affective disorder. Materials and methods. The study included 88 patients with ischemic stroke: 59 men (67% and 29 women (33%. The average age of the patients was 62,05 ± 11,74 years. In the study group included 46 patients, 44 patients in the control group. The groups were matched by age, time from the begin of disease, severity of disease, the severity of motor, affective and cognitive impairments. In addition, in the study group to the program of early rehabilitation to use individual training with virtual reality technology (BTS NIRVANA. The duration of the training was 21 days, 3 times a week for 40 minutes. Results. On the background of rehabilitation in the study group patients had a significant reduced of neurological deficit (p <0,05. Significantly improved neurodynamic and executive cognitive function (p <0,01. In the study group was a statistically significant decrease symptoms of depression on a scale of BDI was 31,7% vs. 20.9% in the control group, anxiety on a scale of HADS was 18,46% (p <0,05 vs. 12,23% (p <0,05 in the control group. Increase motivation and decrease symptoms of apathy in the study group of patients on a scale of AES-C was 13,78% (p <0,05 vs. 1,01 % in the control group. On the background of rehabilitation patients in the study group was no difference between the rates of pathological muscle and mental fatigue. On the background there is rehabilitation of the quality of life due to mobility and activities of daily living. Conclusion. The study showed the positive effect of virtual reality technology for the correction of post-stroke mood disorders.

  2. Effects of nematicides on cotton root mycobiota.

    Science.gov (United States)

    Baird, R E; Carling, D E; Watson, C E; Scruggs, M L; Hightower, P

    2004-02-01

    Baseline information on the diversity and population densities of fungi collected from soil debris and cotton (Gossypium hirsutum L.) roots was determined. Samples were collected from Tifton, GA, and Starkville, MS containing cotton field soil treated with the nematicides 1,3-dichloroproprene (fumigant) and aldicarb (granules). A total of 10,550 and 13,450 fungal isolates were collected from these two study sites, respectively. Of this total, 34 genera of plant pathogenic or saprophytic species were identified. Pathogenic root fungi included Fusarium spp. (40% of all isolations), Macrophomina, Pythium, Rhizoctonia, and Sclerotium. Fusarium and Rhizoctonia were the most common fungal species identified and included F. oxysporum, F. verticillioides and F. solani, the three Fusarium species pathogenic on cotton plants. Population densities of Fusarium were not significantly different among locations or tissue types sampled. Macrophomina was isolated at greater numbers near the end of the growing seasons. Anastomosis groups of R. solani isolated from roots and soil debris included AG-3, -4, -7, 2-2, and -13 and anastomosis groups of binucleate Rhizoctonia included CAG-2, -3, and -5. Occurrences and frequency of isolations among sampling dates were not consistent. Fluctuations in the frequency of isolation of Rhizoctonia did not correspond with changes in frequency of isolation of the biological control fungus, Trichoderma. When individual or pooled frequencies of the mycobiota were compared to nematicide treatments, no specific trends occurred between treatments, application methods or rates. Results from this study show that use of 1,3-D and aldicarb in cotton fields does not significantly impact plant pathogenic fungi or saprophytic fungal populations. Thus cotton producers need not adjust seedling disease control measures when these two nematicides are used.

  3. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  4. Work health and safety in cotton ginning industry: a survey of practices in australia

    International Nuclear Information System (INIS)

    Soomro, N.

    2015-01-01

    This survey focuses on the WH and S (Work Health and Safety) practices in Australia and relates them with those in Pakistan. It also highlights the planned areas of work required on WH and S in cotton ginning industry of Pakistan. This article is one a series of research studies that will inform a broader approach development. The aim of the survey was to design a standardized health and safety Act for cotton ginning industry of Pakistan and to help ginners meet their due industry obligations under the model WH and S Act. The first component of the research study survey was to review the relevant Australian work and safety model as this provides a framework to protect the health, safety and welfare of all employees at work and of other people who might be affected by the job. The second aspect of the research study survey concerned site visits to cotton gins with the support of Australian Centre for Agricultural Health and Safety, Moree, NSW. During these visits the existing ginning process in terms of WH and S were reviewed. Informal interviews were also conducted with Gin Managers and Ginning Experts regarding WH and S in the Australian cotton ginning industry. (author)

  5. An exploratory investigation of barriers and enablers affecting investment in renewable companies and technologies in the UK.

    Science.gov (United States)

    Wells, Victoria; Greenwell, Felicity; Covey, Judith; Rosenthal, Harriet E S; Adcock, Mike; Gregory-Smith, Diana

    2013-02-06

    The last few years have seen considerable research expenditure on renewable fuel technologies. However, in many cases, the necessary sustained and long-term funding from the investment community has not been realized at a level needed to allow technologies to become reality. According to global consulting firm Deloitte's recent renewable energy report (http://www.deloitte.com/energypredictions2012), many renewable energy projects stalled or were not completed because of issues including the global economy, the state of government finances, difficulties in funding and regulatory uncertainty. This investigation concentrates on the funding aspect and explores the perceived barriers and enablers to renewable technologies within the investment and renewables community. Thematic analysis of 14 in-depth interviews with representatives from renewable energy producers, banks and investment companies identified key factors affecting the psychology of investor behaviour in renewables. Eight key issues are highlighted, including a range of barriers and enablers, the role of the government, balance between cost/risk, value/return on investment, investment time scales, personality/individual differences of investors and the level of innovation in the renewable technology. It was particularly notable that in the findings the role of the government was discussed more than other themes and generally in quite critical terms, highlighting the need to ensure consistency in government funding and policy and a greater understanding of how government decision-making happens. Specific findings such as these illustrate the value of crossing disciplinary boundaries and highlight potential further research. Behavioural science and economic psychology in particular have much to offer at the interface of other disciplines such as political science and financial economics.

  6. An exploratory investigation of barriers and enablers affecting investment in renewable companies and technologies in the UK

    Science.gov (United States)

    Wells, Victoria; Greenwell, Felicity; Covey, Judith; Rosenthal, Harriet E. S.; Adcock, Mike; Gregory-Smith, Diana

    2013-01-01

    The last few years have seen considerable research expenditure on renewable fuel technologies. However, in many cases, the necessary sustained and long-term funding from the investment community has not been realized at a level needed to allow technologies to become reality. According to global consulting firm Deloitte's recent renewable energy report (http://www.deloitte.com/energypredictions2012), many renewable energy projects stalled or were not completed because of issues including the global economy, the state of government finances, difficulties in funding and regulatory uncertainty. This investigation concentrates on the funding aspect and explores the perceived barriers and enablers to renewable technologies within the investment and renewables community. Thematic analysis of 14 in-depth interviews with representatives from renewable energy producers, banks and investment companies identified key factors affecting the psychology of investor behaviour in renewables. Eight key issues are highlighted, including a range of barriers and enablers, the role of the government, balance between cost/risk, value/return on investment, investment time scales, personality/individual differences of investors and the level of innovation in the renewable technology. It was particularly notable that in the findings the role of the government was discussed more than other themes and generally in quite critical terms, highlighting the need to ensure consistency in government funding and policy and a greater understanding of how government decision-making happens. Specific findings such as these illustrate the value of crossing disciplinary boundaries and highlight potential further research. Behavioural science and economic psychology in particular have much to offer at the interface of other disciplines such as political science and financial economics. PMID:24427512

  7. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  8. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  9. [Effects of drought and waterlogging on carbohydrate contents of cotton boll and its relationship with boll biomass accumulation at the flowering and bolling stage].

    Science.gov (United States)

    Yang, Chang-Qin; Liu, Jing-Ran; Zhang, Guo-Wei; Liu, Rui-Xian; Zhou, Zhi-Guo

    2014-08-01

    Cotton cultivar NuCOTN 33B was planted in isolated pools treated with drought or waterlogging for 7 or 14 d to explore their effects on cotton boll carbohydrate content and its relationship with the biomass accumulation. The results showed that the drought treatment reduced the carbohydrate content of cotton boll shell on middle fruit branches, but had a weak effect on cotton boll shells on lower fruit branches. Soluble sugar, starch and sucrose contents of cotton boll shell on upper fruit branches under the drought condition and on whole plant branches under waterlogging treatment changed similarly, namely, the soluble sugar and starch content increased, while the sucrose content went down firstly and then increased later, which indicated that the exportation of sucrose from boll shell was inhibited and became worse with the increase of waterlogging duration. Compared with the boll shell, the carbohydrate contents of cotton seed were less affected by the drought and waterlogging treatments at the flowering and bolling stage. Under the treatments of drought and 7 d-waterlogging, the biomass accumulation of cotton bolls on the middle fruit branches initiated earlier but lasted less days, and the maximum speed at lower and upper fruit branches reduced, while the treatment of waterlogging for 14 d caused the decline of maximum speed of biomass accumulation of bolls on whole branches. On the other side, the correlation analysis showed the significant positive relationships among the boll biomass, the maximum speed and the contents of soluble sugar and sucrose in the boll shell respectively. In conclusion, the treatment of drought and waterlogging at the flowering and bolling stage retarded the outward transportation of sucrose from cotton bolls, changed the boll biomass accumulation characteristics, and therefore were detected as the important cause of cotton boll total biomass reduction.

  10. Tri-trophic interactions between Bt cotton, the herbivore Aphis gossypii Glover (Homoptera: Aphididae), and the predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae).

    Science.gov (United States)

    Guo, Jian-Ying; Wan, Fang-Hao; Dong, Liang; Lövei, Gábor L; Han, Zhao-Jun

    2008-02-01

    Tri-trophic impacts of transgenic Bacillus thuringiensis (Bt) cotton GK12 and NuCOTN 99B were studied using a predator, the great lacewing Chrysopa pallens (Rambur), and its prey, the cotton aphid Aphis gossypii Glover, in laboratory feeding experiments. The parental nontransgenic cotton cultivar of GK12 was used as control. The predator was fed with uniform (aphids from a single cultivar) or mixed prey (aphids from the three cotton cultivars provided on alternate days). Mortality and development of the immature stages, pupal body mass, adult sex ratio, fecundity, and egg viability of C. pallens were measured. When fed GK12-originated aphid prey, pupal body mass of C. pallens was significantly higher than that of the control, more females emerged, and these females laid significantly more eggs. Other parameters were not impacted. Females emerging from larvae maintained on NuCOTN 99B-originated prey laid fewer eggs than those maintained on GK12. Other measurements did not differ significantly between the two Bt cotton cultivars. Compared with the control, mixed feeding significantly prolonged pupal development time and increased pupal body mass and percentage of females but did not affect other parameters. These results indicate that C. pallens is sensitive to aphid prey from different cotton cultivars. Transgenic Bt cotton GK12-originated aphid prey has no adverse impact on survival, development, and fecundity of C. pallens. Between the two Bt cotton cultivars, NuCOTN 99B-originated aphid prey provided to C. pallens in the larval stage may lower female fecundity. Mixed feeding of C. pallens with the two Bt cotton-originated prey and non-Bt prey may have some adverse impacts on pupal development.

  11. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  12. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    Science.gov (United States)

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  13. Nature Relation Between Climatic Variables and Cotton Production

    Directory of Open Access Journals (Sweden)

    Zakaria M. Sawan

    2014-08-01

    Full Text Available This study investigated the effect of climatic variables on flower and boll production and retention in cotton (Gossypium barbadense. Also, this study investigated the relationship between climatic factors and production of flowers and bolls obtained during the development periods of the flowering and boll stage, and to determine the most representative period corresponding to the overall crop pattern. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 0600 h and minimum temperature. There was a negative correlation between flower and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.

  14. Factors Affecting ICT Adoption among Distance Education Students Based on the Technology Acceptance Model--A Case Study at a Distance Education University in Iran

    Science.gov (United States)

    Dastjerdi, Negin Barat

    2016-01-01

    The incorporation of Information and Communication Technologies (ICT) into education systems is an active program and movement in education that illustrates modern education and enables an all-encompassing presence in the third millennium; however, prior to applying ICT, the factors affecting the adoption and use of these technologies should be…

  15. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  16. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2010-11-19

    ... dividing Price A by 85 percent of Price B. * * * * * (f) Any AUP cotton harvested or appraised from acreage... dividing the price per pound for AUP cotton by the price per pound for ELS cotton. The prices used for AUP...

  17. 77 FR 51867 - Cotton Board Rules and Regulations: Adjusting Supplemental Assessment on Imports

    Science.gov (United States)

    2012-08-28

    ... Advertising, Agricultural research, Cotton, Marketing agreements, Reporting and recordkeeping requirements... supplemental assessments collected for use by the Cotton Research and Promotion Program. An amendment is..., Chief, Research and Promotion Staff, Cotton and Tobacco Programs, AMS, USDA, 100 Riverside Parkway...

  18. Modern trends on development of cotton production and processing chain Uzbekistan

    OpenAIRE

    Abdimumin Alikulov

    2010-01-01

    The cotton production complex of Uzbekistan has high rating comparing other export oriented branches. Cotton fiber value in 2008 share made 12% from total export of the country. The paper observes some trends and policy developments in cotton industry development.

  19. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  20. Sustainable cotton production and water economy through different planting methods and mulching techniques

    International Nuclear Information System (INIS)

    Nasrullah, H.M.; Khan, M.B.; Ahmad, R.; Ahmad, S.; Hanif, M.; Nazeer, W

    2011-01-01

    Planting methods and mulching techniques are important factors which affect crop growth, development and yield by conserving soil and plant moisture. A multifactorial experiment was conducted to study the water economy involving different planting methods and mulching techniques in cotton (Gossypium hirsutum L.) for two consecutive years (2004 and 2005) at the Agronomic Research Station, Khanewal. Two moisture stress tolerant cotton varieties (CIM-473 and CIM-499) were planted using four different planting methods i.e. 70c m spaced single row planting, 105 cm spaced double row strip planting, 70 cm spaced ridge planting and 140 cm spaced furrow beds (or bed and furrows) along four mulching practices i.e. cultural, straw, sheet and chemical for their individual and interactive effects on various parameters including water use efficiency. Positive interactive effects of furrow bed planting method (140 cm spaced) with plastic sheet/film mulching were observed for all the parameters i.e., highest seed cotton yield (3009 and 3332 kg ha/sup -1/), maximum water saving (up to 25.62% and 26.53%), highest water use efficiency up to 5.04 and 4.79 [macro mol (CO/sub 2/)/mmol (H/sub 2/O)], highest net income (Rs. 27224.2 and 50927.7 ha/sup -1/) with a cost-benefit ratio of 1.64 and 2.20 followed by maximum net income (Rs. 27382.2 and 47244.5 ha/sup -1/) with 1.64 and 2.10 cost-benefit ratio in case of plastic mulch and 2814 and 3007 kg ha/sup -1/ in ridge planting method during 2004 and 2005, respectively. It is concluded that cotton crop can be grown using bed and furrow planting method with plastic sheet/film mulching technique for sustainable cotton production and better water economy. (author)

  1. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  2. Effect of weather factors on the incidence and development of pink bollworm on flowers of advance cotton genotypes

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Hassan, S.W.; Afzal, M.

    2008-01-01

    Ten advance genotypes of cotton Viz. BH-121, NIAB KRISHMA, DNH-137, VH-142, VH-142 BH-125, MNH-635, SLH-267, FNH-245, CRIS-467 and CRIS-82 were used to determine the effect of different weather factors on the incidence and development of pink bollworm (Pectinophora gossyiella) infestation at Nuclear institute for Agriculture and Biology (NIAB) Faisalabad. Trials were laid out using Randomized Complete Block Design (RCBD) with four replications. Finally data were subjected to statistical analysis and for correlation studies between weather factors and pink bollworm. Temperature and relative humidity and rainfall affected negatively for the infestation of pink bollworm on flowers in advance genotypes of cotton. (author)

  3. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 77 FR 31182 - Final Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short Supply...

    Science.gov (United States)

    2012-05-25

    ... Woven Fabric and Short Supply Procedures AGENCY: Import Administration, International Trade... final rule withdrawing regulations pertaining to imports of cotton woven fabric and short supply..., and the short supply voluntary restraints have not affected U.S. trade for over 19 years. The removal...

  5. Correlation of EPG waveforms from Lygus lineolaris feeding on cotton squares and chemical evidence of inducible tannins

    Science.gov (United States)

    Probing behavior of Lygus lineolaris (Palisot de Beauvois), one of the most important pests affecting cotton production in mid-southern United States, has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and Ingestion (I) EPG waveforms were identified as two of the ...

  6. Inter-Simple Sequence Repeat (ISSR Markers to Study Genetic Diversity Among Cotton Cultivars in Associated with Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Ali Akbar ABDI

    2012-11-01

    Full Text Available Developing salt-tolerant crops is very important as a significant proportion of cultivated land is salt-affected. Screening and selection of salt tolerant genotypes of cotton using DNA molecular markers not only introduce tolerant cultivars useful for hybridization and breeding programs but also detect DNA regions involved in mechanism of salinity tolerance. To study this, 28 cotton cultivars, including 8 Iranian cotton varieties were grown in pots under greenhouse condition and three salt treatments were imposed with salt solutions (0, 70 and 140 mM NaCl. Eight agronomic traits including root length, root fresh weight, root dry weight, chlorophyll and fluorescence index, K+ and Na+ contents in shoot (above ground biomass, and K+/Na+ ratio were measured. Cluster analysis of cultivars based on measured agronomic traits, showed �Cindose� and �Ciacra� as the most tolerant cultivars, and �B-557� and �43347� as the most sensitive cultivars of salt damage. A total of 65 polymorphic DNA fragments were generated at 14 inter-simple sequence repeat (ISSR loci. Plants of 28 cultivars of cotton grouped into three clusters based on ISSR markers. Regression analysis of markers in relation with traits data showed that 23, 33 and 30 markers associated with the measured traits in three salt treatments respectively. These markers might help breeders in any marker assisted selection program in order to improving cotton cultivars against salt stress.

  7. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    Science.gov (United States)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  8. In-situ deposition of hematite (α-Fe2O3) microcubes on cotton cellulose via hydrothermal method

    Science.gov (United States)

    Gili, M.; Latag, G.; Balela, M.

    2018-03-01

    Hematite microcubes with truncated edges have been successfully deposited on cotton cellulose via one-step hydrothermal process using anhydrous FeCl3 and glycine as Fe(III) precursor and chelating agent, respectively. The amount of glycine significantly affects the morphology and yield of hematite. The addition of 0.495 g of glycine to 50 ml of 0.1 M FeCl3 solution with 0.400 g of cotton resulted to hematite-deposited cellulose having ∼15% hematite content. The reduction of glycine to 0.247 g increased the amount of hematite on the surface of the cotton cellulose to ∼20% by weight. However, the hematite microcubes have a wide size distribution, with particle size in the range of 0.684 μm to 1.520 μm. Without glycine, hematite cannot be formed in the solution.

  9. An Assessment of Current Policy Initiatives in Zambia's Cotton Sector

    OpenAIRE

    Zulu, Ballard; Tschirley, David L.

    2004-01-01

    This paper assesses three of these policy initiatives: input credit provision for smallholder producers of selected cash crops including cotton, the proposed creation of a Cotton Board, and the emergence in 2003 of District Council levies as a point of conflict between local governments and cotton companies. The purpose of the paper is to provide guidance to public and private decision makers regarding key modifications which may need to be made to these policies to ensure continued healthy d...

  10. Processing and Properties of PCL/Cotton Linter Compounds

    OpenAIRE

    Bezerra,Elieber Barros; França,Danyelle Campos; Morais,Dayanne Diniz de Souza; Rosa,Morsyleide de Freitas; Morais,João Paulo Saraiva; Araújo,Edcleide Maria; Wellen,Renate Maria Ramos

    2017-01-01

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton...

  11. THE WORLD TRADE ORGANIZATION AND SOUTHERN AGRICULTURE: THE COTTON PERSPECTIVE

    OpenAIRE

    Hudson, Darren

    2000-01-01

    The World Trade Organization (WTO) negotiations could have important implications for Southern Agriculture. This paper explores some of the issues surrounding the WTO negotiations for cotton. Specifically, this paper examines the impacts of the phase-out of the Multi-Fiber Arrangement (MFA) on the location of textile production and cotton trade flows. Generally, it is believed that the WTO negotiations will have little direct impact on cotton, but will have indirect impacts through textile po...

  12. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    OpenAIRE

    Nurindah Nurindah; Dwi Adi Sunarto

    2014-01-01

    Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...

  13. Effects of temperature on the feeding behavior of Alabama argillacea (Hübner (Lepidoptera: Noctuidae on Bt and non-Bt cotton plants

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. RAMALHO

    2017-12-01

    Full Text Available ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (Hübner (Lepidoptera: Noctuidae larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.

  14. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  15. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  16. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  17. Ergonomic Evaluation of Battery Powered Portable Cotton Picker

    Science.gov (United States)

    Dixit, A.; Manes, G. S.; Singh, A.; Prakash, A.; Mahal, J. S.

    2012-09-01

    Ergonomic evaluation of battery powered portable manual cotton picker was carried out on two subjects for three cotton varieties and was compared against manual method of picking. It is a hand operated machine and has a pair of chain with small sharp edged teeth and sprockets and is operated by a light weight 12 V battery. Cotton gets entangled with the chain and is collected and guided into the collection bag. Average heart rate, oxygen consumption, workload, energy expenditure was more in case of cotton picking by manual cotton picker as compared to manual picking for both the subjects for all three cotton variety types. Oxygen consumption varied from 0.81 to 0.97 l/min, workload varied from 36.32 to 46.16 W and energy expenditure varied from 16.83 to 20.33 kJ/min for both the subject in case of machine picking for all three cotton varieties. The maximum discomfort experienced by the subjects during picking cotton by manual cotton picker was in right wrist palm, right forearm, upper and lower back, left shoulder and in lower legs and both feet.

  18. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  19. Study of mungbean intercropping in cotton planted with different techniques

    International Nuclear Information System (INIS)

    Khan, M.B.; Khaliq, A.

    2004-01-01

    Bio-economic efficiency of different cotton-based intercropping systems was determined at the Agronomic Research Area, University of Agriculture, Faisalabad, (Pakistan) during 1996-1997 and 1997-98. Cotton cultivar NIAB-78 was planted in 80-cm apart single rows and 120-cm spaced double row strips with the help of a single row hand drill. Intercropping systems were cotton alone and cotton + mungbean. Experiment was laid out in a RCBD with split arrangements in four replications. Planting patterns were kept in main plots and intercropping systems in sub-plots. Inter crop was sown in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Competition functions like relative crowding coefficient, competitive ratio, aggressivity, land equivalent ratio and area time equivalent ratio were calculated for the assessment of the benefits of the intercropping. Partial budget was prepared for determining net field benefits of the systems under study. Growing of cotton in 120-cm spaced double row strips proved superior to 80-cm spaced single rows. Intercropping decreased the seed cotton production significantly in both years, however, inter crop not only covered this loss but also increased overall productivity. Higher net field benefit (NFB) was obtained from cotton + mungbean than sole cropping of cotton. Farmers with small land holdings, seriously constrained by low crop income can adopt the practice of intercropping of mungbean in cotton. (author)

  20. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  1. Cotton Wilt and the Environment

    Indian Academy of Sciences (India)

    as well as mature healthy plants growing in diseased soil. (2) Fusarium hyphae may not be present in the wilt-affected plants. (3) Superphosphate ... agencies, such as organic manure, aluminium salts, lime and water-logging. (8) Seedlings in the very first stages of wilt-infection, if transplanted into healthy soil, develop into ...

  2. BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS

    Directory of Open Access Journals (Sweden)

    LUPU Iuliana G.

    2017-05-01

    Full Text Available Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered with hard (barium hexaferrite BaFe12O19 and soft (Black Toner magnetic particles. An in-house developed laboratory equipment has been used to cover the twist cotton yarns with seven mixtures having different amounts of magnetic powder (30% – 50%. The bending behavior of the coated yarns was evaluated based on the average width of cracks which appeared on the yarn surface after repeated flexural tests. The obtained results revealed that usage of a polyurethane adhesive in the coating solution prevents crack formation on the surface of hard magnetic yarns after flexural tests. At the same time, the higher the mass percentage of hard magnetic powder in the mixture, the higher was the cracks’ width. The soft magnetic yarns are more flexible and a smaller crack width is observed on their surface. Both the coating solution composition and the powder diameter are expected to influence the bending behavior of coated yarns.

  3. Genetic diversity in upland cotton for cotton leaf curl virus disease, earliness and fiber quality

    International Nuclear Information System (INIS)

    Saeed, F.; Farooq, J.; Mahmood, A.; Hussain, T.

    2014-01-01

    In Pakistan during last two decades the major factor limiting cotton production is cotton leaf curl virus disease (CLCuD). For estimation of genetic diversity regarding CLCuD tolerance, fiber quality and some yield contributing traits, 101 cotton genotypes imported from USA were evaluated. Different statistical procedures like cluster, principle components (PC) and correlation analysis were employed to identify the suitable genotypes that can be further exploited in breeding programme. Significant associations were found between yield contributing trait, boll weight and fiber related trait, staple length. Earliness related traits, like days taken to 1 square and days taken to 1 flower had positive correlation with each other and both these traits also showed their positive association with ginning out turn. The negative significant correlation of CLCuD was obtained with monopodial branches, sympodial branches and plant height. Principal component (PC) analysis showed first five PCs having eigen value >1 explaining 67.8% of the total variation with days to st 1 square and flowering along with plant height and sympodia plant which were being the most important characters in PC1. Cluster analysis classified 101 accessions into five divergent groups. The genotypes in st cluster 1 only showed reasonable values for days to 1 square and flower, sympodia per plant, ginning out turn, staple length and fiber fineness and the genotypes in cluster 5 showed promising values for the traits like cotton leaf curl virus, ginning out turn and fiber fineness. The genotypes in cluster 1 and 5 may be combined to obtain desirable traits related to earliness and better disease tolerance. Scatter plot and tree diagrams demonstrated sufficient diversity among the cotton accessions for various traits and some extent of association between various clusters. It is concluded that diversity among the genotypes could be utilized for the development of CLCuD resistant lines with increased seed

  4. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Directory of Open Access Journals (Sweden)

    Schrago Carlos EG

    2011-08-01

    Full Text Available Abstract Background In response to infection, viral genomes are processed by Dicer-like (DCL ribonuclease proteins into viral small RNAs (vsRNAs of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV, a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  5. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    Science.gov (United States)

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  6. How organic farming of wheat may affect the sourdough and the nutritional and technological features of leavened baked goods.

    Science.gov (United States)

    Pontonio, Erica; Rizzello, Carlo G; Di Cagno, Raffaella; Dousset, Xavier; Clément, Héliciane; Filannino, Pasquale; Onno, Bernard; Gobbetti, Marco

    2016-12-19

    Organic farming is gaining broad recognition as a system that complies well with sustainability, an overarching principle that should drive agriculture now and in the coming year. Different cultivars and products can harbour different abundances of specific bacterial groups, farming system may influence the composition and abundances of microbial communities found on food product. Despite the growing interest towards organic foods, we still have a limited understanding of the diversity of food-associated microbial communities and the factors that influence the composition of these communities. Consumers in developed nations are commonly exposed to differences in farming practices through their choice between organic and conventionally farmed foods. Organic farming practices can differ from conventional farming practices in a variety of ways, including the types of fertilizer and pesticides that are used. This review aiming to gather current knowledge on chemical, technological, toxicological and functional properties and microbiota composition of wheat flours originating from organic and conventional farming systems and how the use of these may affect the sourdough fermentation and breadmaking. Sourdough fermentation is the most natural and best-performing process to ensure optimal sensory and functional characteristics. It fits perfectly into the processing chain that starts with the organic farming, especially for old wheat varieties with weaker technological properties. Recently, organic and sourdough microbiota diversity was investigated and in some case a comparison between organic and conventional microbial ecosystem was also carried out. Opposites evidences arise. Once a higher diversity of lactic acid bacteria species was found in conventional wheat sourdoughs, while when the diversity of Firmicutes was investigated, organic sourdoughs showed the highest complexity. When occurring, the differences between conventional and organic sourdough microbiota and

  7. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  8. The fluorescence and absorption of white and dyed cotton fabrics laundered with brightening agents

    International Nuclear Information System (INIS)

    Kakoma, Maseka

    2005-01-01

    The absorbtion and emmission spectra of white and coloured cotton treated with Fluorescent Brightening Agents,(FBA's) used in formulating domestic laundry products have been characterized using a BFC-450 Bispectra Colorimeter. It was found that on white bleached cotton treated with FBA's, the intensity of fluorescence increases with increasing FBA concentration, very rapidly at first and approaching a limiting value at higher concentration.On dyed goods, it was found that the intensity offluoresnce increases with increasing FBA concentration to a maximum limit too, but decreases with increase in dye concentration. It was found that the absorbtion is not significantly affected by the FBA concentration in most of the shades except for yellow dyeings. In the yellow dyeings it was found that at lower dye concentration, absorption increases with an increase in FBA concentration. (author)

  9. Carbon contributions from roots in cotton based rotations

    Science.gov (United States)

    Tan, D. K. Y.; Hulugalle, N. R.

    2012-04-01

    Most research on the decline in soil organic carbon (SOC) stocks in Australian cotton farming systems has focussed on the inputs from above-ground crop residues, with contribution from roots being less studied. This paper aims to outline the contribution of cotton roots and roots of other crops to soil carbon stocks in furrow-irrigated Vertisols in several cotton (Gossypium hirsutum L.)-based rotations. Data was collected from cotton-based rotation systems: cotton monoculture, cotton-vetch (Vicia benghalensis) Roth.), cotton-wheat (Triticum aestivum L.), cotton-wheat-vetch, cotton-corn, corn-corn, cotton-sorghum (Sorghum bicolor L.) and from BollgardTM II (Bt) and non-Bt cotton. Land management systems were permanent beds, with or without standing stubble, and conventional tillage. Root growth in the surface 0.10 m was measured with the core-break method, and that in the 0.10 to 1.0 m depth with a minirhizotron and I-CAP image capture system. These measurements were used to derive root C added to soil through intra-seasonal root death (Clost), C in roots remaining at the end of season (Croot), and total root C added to soil (Ctotal = Croot + Clost). Ctotal in non-Bt cotton (Sicot 80RRF, 0.9 t C/ha/year) was higher than in Bt cotton (Sicot 80RRF, 0.6 t C/ha/year). Overall, Ctotal from cotton roots ranges between 0.5 to 5 t C/ha/year, with Clost contributing 25-70%. Ctotal was greater with vetch than with wheat and was in the order of vetch in cotton-wheat-vetch (5.1 t C/ha/year) > vetch in cotton-vetch (1.9 t C/ha/year) > wheat in cotton-wheat (1.6 t C/ha/year) = wheat in cotton-wheat-vetch (1.7 t C/ha/year). Intra-seasonal root mortality accounted for 12% of total root carbon in vetch and 36% in wheat. Average corn Ctotal with monoculture was 9.3 t/ha and with cotton-corn 5.0 t/ha. Ctotal averaged between both treatments was, thus, of the order of 7.7 t C/ha/year and average Clost 0.04 t/ha/yr. Sorghum roots contributed less carbon with conventional tillage (8.2 t

  10. The Effect of Rate and Application Method of Potassium on Yield and Yield Components of Cotton in Saline Condition

    Directory of Open Access Journals (Sweden)

    A Ardakani

    2016-12-01

    Full Text Available Introduction Salinity is a major abiotic stress that affects approximately 7% of the world’s total land area. Cotton (Gossypium barbadense L. is considered as one of the most important cash crops which is widely used for agricultural and industrial purposes. Although, cotton is classified as one of the most salt-tolerant major crops but its growth and development are adversely affected by soil or water salinity. Understanding salinity and fertilizer interaction can mitigate salinity stress and improving crop yield. Potassium (K is an essential nutrient that affects most of the biochemical and physiological processes that are involved in plant resistance to biotic and abiotic stresses. Proper management of K fertilizer is especially important in saline soils where K application might reduce the adverse effects of salinity on plant growth and yield. There is a little information about rate and application method of K on yield and yield component of cotton in saline condition. The objective of this study was to determine the effects of rate and application method of K on yield and yield component of cotton in soil and water saline condition. Materials and Methods The experiment was carried out at Sabzevar Agriculture and Natural Resources Research center (Haresabad, 30km southwest of Sabzevar (32◦32N, 51◦23E and 1630 above mean sea level,in 2014.This experiment was conducted as split plot design based on randomized complete block design with three replications. Factors were: K rate (75 and 150kg ha-1 Solopotash (containing 50% K2O and 18% S comprising the main plot and application method (25%at planting+25% at first flowering and 50%at early boll development (25P+25F+50B, 25%at planting+50% at first flowering and 25%at early boll development (25P+50F+25B, 25%at planting+25% at vegetative stage (5-8 leaves stage, 25% at first flowering and 25% at early boll development (25P+25V+25F+50B, 25% at planting+25% at vegetative stage and 50% at first

  11. Unbalanced international collaboration affects adversely the usefulness of countries' scientific output as well as their technological and social impact.

    Science.gov (United States)

    Zanotto, Sonia R; Haeffner, Cristina; Guimarães, Jorge A

    The unbalanced international scientific collaboration as cause of misleading information on the country's contribution to the scientific world output was analyzed. ESI Data Base (Thomson Reuters' InCites), covering the scientific production of 217 active countries in the period 2010-2014 was used. International collaboration implicates in a high percentage (33.1 %) of double-counted world articles, thus impacting qualitative data as citations, impact and impact relative to word. The countries were divided into three groups, according to their individual contribution to the world publications: Group I (24 countries, at least 1 %) representing 83.9 % of the total double-counted world articles. Group II (40 countries, 0.1-0.99 % each). Group III, 153 countries (70.5 %) with international collaboration were: Group I, 43.0 %; Group II, 55.8 % and Group III, 85.2 %. We concluded that very high and unbalanced international collaboration, as presented by many countries, misrepresent the importance of their scientific production, technological and social outputs. Furthermore, it jeopardizes qualitative outputs of the countries themselves, artificially increasing their scientific impact, affecting all fields and therefore, the whole world. The data confirm that when dealing with the qualitative contribution of countries, it is necessary to take in consideration the level of international cooperation because, as seen here, it can and in fact it does create false impression of the real contribution of countries.

  12. [Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China].

    Science.gov (United States)

    Gu, Mei-ying; Tang, Guang-mu; Liu, Hong-liang; Li, Zhi-qiang; Liu, Xiao-wei; Xu, Wan-li

    2016-01-01

    In this study, field trials were conducted to examine the effects of cotton stalk biochar on microbial population, function and structural diversity of microorganisms in rhizosphere soil of continuous cotton cropping field in Xinjiang by plate count, Biolog and DGGE methods. The experiment was a factorial design with four treatments: 1) normal fertilization with cotton stalk removed (NPK); 2) normal fertilization with cotton stalk powdered and returned to field (NPKS); 3) normal fertilization plus cotton stalk biochar at 22.50 t · hm⁻² (NPKB₁); and 4) normal fertilization plus cotton stalk biochar at 45.00 t · hm⁻² (NPKB₂). The results showed that cotton stalk biochar application obviously increased the numbers of bacteria and actinomycetes in the rhizospheric soil. Compared with NPK treatment, the number of fungi was significantly increased in the NPKB₁treatment, but not in the NPKB₂ treatment. However, the number of fungi was generally lower in the biochar amended (NPKB₁, NPKB₂) than in the cotton stalk applied plots (NPKS). Application of cotton stalk biochar increased values of AWCD, and significantly improved microbial richness index, suggesting that the microbial ability of utilizing carbohydrates, amino acids and carboxylic acids, especially phenolic acids was enhanced. The number of DGGE bands of NPKB₂ treatment was the greatest, with some species of Gemmatimonadetes, Acidobacteria, Proteobacteria and Actinobacteria being enriched. UPGMC Cluster analysis pointed out that bacterial communities in the rhizospheric soil of NPKB₂ treatment were different from those in the NPK, NPKS and NPKB₁treatments, which belonged to the same cluster. These results indicated that application of cotton stalk biochar could significantly increase microbial diversity and change soil bacterial community structure in the cotton rhizosphere soil, thus improving the health of soil ecosystem.

  13. Preliminary assessments of portable color spectrophotometer measurements of cotton color

    Science.gov (United States)

    Cotton in the U.S. is classified for color with the Uster® High Volume Instrument (HVI), using the parameters Rd (diffuse reflectance) and +b (yellowness). It has been reported that some cotton bales, especially those transported overseas, appear to have changed significantly in color from their in...

  14. 78 FR 54970 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-09-09

    ... Service 7 CFR Part 27 [AMS-CN-13-0043] RIN 0581-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... optional cotton futures classification procedure--identified and known as ``registration'' by the U.S...

  15. Effect of nitrates on embryo induction efficiency in cotton (Gossypium ...

    African Journals Online (AJOL)

    Fred

    cotton species (Zhang, 1994b). Somatic embryogenesis and plant regeneration systems have been established from cotton tissue, protoplasts and ovules (Zhang and Li,. 1992; Feng and Zhang, 1994; Zhang, 1995). Regeneration procedures have been used to obtain genetically modified plants after Agrobacterium- ...

  16. Ginning U.S. cotton for domestic and export markets

    Science.gov (United States)

    The U.S. cotton crop is produced by a highly mechanized production system that seeks to minimize manual labor while maximizing fiber quality. It is estimated that a bale of U.S. cotton is produced using approximately three man hours of labor while foreign producers may utilize several hundred man h...

  17. Efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    ... and Betsulfan at 3.2 l ha-1 recorded the highest and lowest yields, respectively. For effective control of cotton bollworms for maximum yield in the ecology, Thionex applied at 2.8 l ha-1 is recommended. Keywords: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides. African Crop Science Journal, Vol. 20, No.

  18. Quantification and characterization of cotton crop biomass residue

    Science.gov (United States)

    Cotton crop residual biomass remaining in the field after mechanical seed cotton harvest is not typically harvested and utilized off-site thereby generating additional revenue for producers. Recently, interest has increased in utilizing biomass materials as feedstock for the production of fuel and ...

  19. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  20. Productivity and resource use in cotton and wheat relay intercropping

    NARCIS (Netherlands)

    Zhang, L.

    2007-01-01

    Keywords: Grain yield; lint yield; phenological delay; light use; nitrogen use; resource use efficiency; modelling; profitability; water productivity. From the early 1980s onwards, farmers in the Yellow River cotton producing region intercropped cotton and winter wheat; currently on more than 60% of

  1. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  2. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  3. Polyploidization altered gene functions in cotton (Gossypium spp.)

    Science.gov (United States)

    Cotton fibers are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that a large set of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across the At and ...

  4. Current university and USDA lab cotton contamination research

    Science.gov (United States)

    U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination can be classified under four major categorizes: fabrics and strings ...

  5. Nitrogen economy in relay intercropping systems of wheat and cotton

    NARCIS (Netherlands)

    Zhang, L.Z.; Spiertz, J.H.J.; Zhang, S.; Li, B.; Werf, van der W.

    2008-01-01

    Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are

  6. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora

    NARCIS (Netherlands)

    Marek, S.M.; Hansen, K.; Romanish, M.; Thorn, R.G.

    2009-01-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia

  7. Governing the transnational organic cotton network from Benin

    NARCIS (Netherlands)

    Glin, L.C.; Mol, A.P.J.; Oosterveer, P.J.M.; Vodouhè, S.

    2012-01-01

    In this article, we attempt to conceptualize the historical development and the governance structure of the transnational organic cotton network from Benin. We aim to discover how the organic cotton production-consumption network is governed locally and internationally. Existing bodies of literature

  8. Role of secondary metabolites biosynthesis in resistance to cotton ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Disease percentage on six cotton varieties with respect to time for cotton leaf curl virus (CLCuV) was evaluated. In August 2007, the maximum disease was observed in CIM-506, CYTO-89 and BH-118. (susceptible), whereas CIM-443 was resistant with lower disease percentage. It was found that the leaf.

  9. 7 CFR 28.8 - Classification of cotton; determination.

    Science.gov (United States)

    2010-01-01

    ... Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of the Act, the classification of any cotton shall be determined by the quality of a sample in accordance... employees will determine all fiber property measurements using High Volume Instruments. The classification...

  10. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  11. Fourier transform infrared macro-imaging of botanical cotton trash

    Science.gov (United States)

    The marketability of cotton fiber is directly tied to the trash comingled with it. Trash can contaminate cotton during harvesting, ginning, and processing. Thus, the removal of trash is important from field to fabric. An ideal prerequisite to removing trash from lint is identifying what trash types...

  12. 7 CFR 27.73 - Supervision of transfers of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Supervision of transfers of cotton. 27.73 Section 27.73 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER...

  13. Cotton gin electrical energy use trends and 2009 audit results

    Science.gov (United States)

    Cotton gin energy costs have risen more than other operating costs. Energy audits were conducted in twenty US cotton gins representing a range of capacities in six states. The average participating saw gin used 39.5 kWh to process a bale. The average roller gin used 62.6 kWh. Gins have become la...

  14. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L. cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June each with three shading levels (normal light, declined 20% and 40% PAR. Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5% produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9% was greater than shading (decreased cellulose content by 0.7%-5.6%. The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis. The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.

  15. 76 FR 80278 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2011-12-23

    ... challenge to the provisions of this rule. Regulatory Flexibility Act Pursuant to requirements set forth in... currently part of the official USDA cotton classification. Accurate assignment of leaf grade is of economic... cost factor associated with its removal. Furthermore, since small leaf particles cannot always be...

  16. 77 FR 20503 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2012-04-05

    ... measurements for other quality factors are performed by precise HVI measurements, manual determinations for.... Accurate assignment of leaf grade is of economic importance to all participants along the cotton supply... significant economic impact on a substantial number of small entities. Fees paid by users of the service are...

  17. Spatial Distribution of Adult Anthonomus grandis Boheman (Coleoptera: Curculionidae) and Damage to Cotton Flower Buds Due to Feeding and Oviposition.

    Science.gov (United States)

    Grigolli, J F J; Souza, L A; Fernandes, M G; Busoli, A C

    2017-08-01

    The cotton boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the main pest in cotton crop around the world, directly affecting cotton production. In order to establish a sequential sampling plan, it is crucial to understand the spatial distribution of the pest population and the damage it causes to the crop through the different developmental stages of cotton plants. Therefore, this study aimed to investigate the spatial distribution of adults in the cultivation area and their oviposition and feeding behavior throughout the development of the cotton plants. The experiment was conducted in Maracaju, Mato Grosso do Sul, Brazil, in the 2012/2013 and 2013/2014 growing seasons, in an area of 10,000 m 2 , planted with the cotton cultivar FM 993. The experimental area was divided into 100 plots of 100 m 2 (10 × 10 m) each, and five plants per plot were sampled weekly throughout the crop cycle. The number of flower buds with feeding and oviposition punctures and of adult A. grandis was recorded throughout the crop cycle in five plants per plot. After determining the aggregation indices (variance/mean ratio, Morisita's index, exponent k of the negative binomial distribution, and Green's coefficient) and adjusting the frequencies observed in the field to the distribution of frequencies (Poisson, negative binomial, and positive binomial) using the chi-squared test, it was observed that flower buds with punctures derived from feeding, oviposition, and feeding + oviposition showed an aggregated distribution in the cultivation area until 85 days after emergence and a random distribution after this stage. The adults of A. grandis presented a random distribution in the cultivation area.

  18. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  19. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication.

    Science.gov (United States)

    Rapp, Ryan A; Haigler, Candace H; Flagel, Lex; Hovav, Ran H; Udall, Joshua A; Wendel, Jonathan F

    2010-11-15

    Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression

  20. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.

    Science.gov (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying

    2016-06-01

    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  1. 3rd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. 2nd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. 1st stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Science.gov (United States)

    2010-04-01

    ... used in dry food packaging. 182.70 Section 182.70 Food and Drugs FOOD AND DRUG ADMINISTRATION... used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally recognized as safe for their intended use, within the meaning of...

  5. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  6. Phosphorus response in two varieties of cotton

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahendra; Bhandari, D K; Kumar, Vinod [Haryana Agricultural Univ., Hissar (India)

    1974-09-01

    Phosphorus requirements of cotton varieties H-14 and J-34 were studied on seirozem soils of Hissar under greenhouse conditions. The dry matter yield of both the varieties increased significantly upto 120 kg/ha P after which dry matter yield decreased. Total P uptake also increased with the addition of P. The highest utilization of fertilizer P by H-14 and J-34 was observed at 240 kg and 120 kg/ha levels of applied P, respectively. H-14 utilized more native P than J-34 at all levels of P application.

  7. Marketing policies and economic interests in the cotton sector of Kenya

    NARCIS (Netherlands)

    Dijkstra, T.

    1990-01-01

    This report, which is based on field research carried out in 1988, examines the marketing arrangements for raw cotton, cotton lint and cotton seed in Kenya, as well as the relationships and conflicts between the actors involved. The report starts with the history of cotton production and marketing

  8. CCI and CI Join Hands:A Better Supply Chain with More Innovations on Cotton Fabrics

    Institute of Scientific and Technical Information of China (English)

    Tom; Xue

    2010-01-01

    Cotton Council International("CCI")and Cotton Incorporated("CI") joined forces again,from October 19-22,2010 at Intertextile Shanghai,to promote natural fiber-U.S.cotton.As global textile strategic partners,both organizations were bringing together alliances through the cotton

  9. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  10. 7 CFR 28.107 - Original cotton standards and reserve sets.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Original cotton standards and reserve sets. 28.107... Standards Act Practical Forms of Cotton Standards § 28.107 Original cotton standards and reserve sets. (a) The containers of the original Universal Standards and other official cotton standards of the United...

  11. Validating a measure to assess factors that affect assistive technology use by students with disabilities in elementary and secondary education.

    Science.gov (United States)

    Zapf, Susan A; Scherer, Marcia J; Baxter, Mary F; H Rintala, Diana

    2016-01-01

    The purpose of this study was to measure the predictive validity, internal consistency and clinical utility of the Matching Assistive Technology to Child & Augmentative Communication Evaluation Simplified (MATCH-ACES) assessment. Twenty-three assistive technology team evaluators assessed 35 children using the MATCH-ACES assessment. This quasi-experimental study examined the internal consistency, predictive validity and clinical utility of the MATCH-ACES assessment. The MATCH-ACES assessment predisposition scales had good internal consistency across all three scales. A significant relationship was found between (a) high student perseverance and need for assistive technology and (b) high teacher comfort and interest in technology use (p = (0).002). Study results indicate that the MATCH-ACES assessment has good internal consistency and validity. Predisposition characteristics of student and teacher combined can influence the level of assistive technology use; therefore, assistive technology teams should assess predisposition factors of the user when recommending assistive technology. Implications for Rehabilitation Educational and medical professionals should be educated on evidence-based assistive technology assessments. Personal experience and psychosocial factors can influence the outcome use of assistive technology. Assistive technology assessments must include an intervention plan for assistive technology service delivery to measure effective outcome use.

  12. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  13. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  14. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  15. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    Science.gov (United States)

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  16. Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-11-01

    Full Text Available Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature.

  17. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    Science.gov (United States)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  18. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  19. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  20. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves.

    Science.gov (United States)

    Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang

    2018-04-05

    The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  2. Bio-oil production from cotton stalk

    International Nuclear Information System (INIS)

    Zheng Jilu; Yi Weiming; Wang Nana

    2008-01-01

    Cotton stalk was fast pyrolyzed at temperatures between 480 deg. C and 530 deg. C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 55 wt% was obtained at 510 deg. C for cotton stalk. The chemical composition of the bio-oil acquired was analyzed by GC-MS, and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed. In the pyrolysis system used in our experiment, some improvements to former pyrolysis systems are done. Two screw feeders were used to prevent jamming the feeding system, and the condenser is equipped with some nozzles and a heat exchanger to cool quickly the cleaned hot gas into bio-oil

  3. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  4. Technology-Aided Leisure and Communication Opportunities for Two Post-Coma Persons Emerged from a Minimally Conscious State and Affected by Multiple Disabilities

    Science.gov (United States)

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Oliva, Doretta

    2013-01-01

    This study assessed technology-aided programs for helping two post-coma persons, who had emerged from a minimally conscious state and were affected by multiple disabilities, to (a) engage with leisure stimuli and request caregiver's procedures, (b) send out and listen to text messages for communication with distant partners, and (c) combine…

  5. Seeing the first-person perspective in dementia : a qualitative personal evaluation game to evaluate assistive technology for people affected by dementia in the home context

    NARCIS (Netherlands)

    Suijkerbuijk, S.; Brankaert, R.G.A.; Kort, de Y.A.W.; Snaphaan, L.J.A.E.; Ouden, den P.H.

    2015-01-01

    The number of people with dementia is increasing rapidly. As a result, care has to be extended towards the home context. This increases the burden on both informal caregivers and persons affected by dementia. To support these people more effectively, technology could play an important role. However,

  6. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  7. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    Science.gov (United States)

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  8. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Acoustical evaluation of carbonized and activated cotton nonwovens.

    Science.gov (United States)

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  10. Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop

    Science.gov (United States)

    Nigam, Rahul; Kot, Rajsi; Sandhu, Sandeep S.; Bhattacharya, Bimal K.; Chandi, Ravinder S.; Singh, Manjeet; Singh, Jagdish; Manjunath, K. R.

    2016-05-01

    stresses interfere with physical structure and function of plant and influence the absorption of light energy and therefore changes the reflectance spectrum of plants. Moreover, remote sensing provides better means to objectively quantify crop stress than visual methods and it can be used repeatedly to collect sample measurements non-destructively and non-invasively (Nutteret et al., 1990; Nilson, 1995). Recent advances in the field of spectroscopy and other remote sensing techniques offer much needed technology of hyperspectral remote sensing (Prabhakar et al., 2011). Hyperspectral remote sensing for disease detection helps in monitoring the diseases in plants with the help of different plant spectral properties at the visible, near infrared and shortwave infrared regions ranging from 350 - 2500 nm, which develops specific signatures for a specific stress for a given plant (Yang et al., 2009). It has been effectively used in assessment of disease in agricultural crops like wheat, rice, tomato etc across the world. Cotton (Gissypium hirsutum L.) is one of the major commercial crops grown in India, and supports about 60 million people in the country directly or indirectly through the process of production, processing, marketing and trade (Prabhakar et al., 2011). India ranks first in global acreage, occupying about 33% of world cotton area. With regard to production it is ranked second next to China. In recent years, farmers are facing many challenges because of rising incidents of white flies, jassid, leafhoppers, aphids, mealybugs and stainers. Whiteflies are tiny, sap- sucking insects that may become abundant in vegetable and ornamental plantings, especially during warm weather. They excrete sticky honeydew and cause yellowing or death of leaves. Outbreaks often occur when the natural biological control is disrupted. Management is difficult once populations are high. White flies develop rapidly in warm weather, and populations can build up quickly in situations where

  11. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  12. Exp2 polymorphisms associated with variation for fiber quality properties in cotton (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Daohua He

    2014-10-01

    Full Text Available Plant expansins are a group of extracellular proteins thought to affect the quality of cotton fibers. Previous expression profile analysis revealed that six Expansin A genes are present in cotton, of which two (GhExp1 and GhExp2 produce transcripts that are specific to the developing cotton fiber. To identify the phenotypic function of Exp2, and to determine whether nucleotide variation among alleles of Exp2 affects fiber quality, candidate gene association mapping was conducted. Gene-specific primers were designed to amplify the Exp2 gene. By amplicon sequencing, the nucleotide diversity of Exp2 was investigated across 92 accessions (including 7 Gossypium arboreum, 74 Gossypium hirsutum, and 11 Gossypium barbadense accessions with different fiber qualities. Twenty-six SNPs and seven InDels including 14 from the coding region of Exp2 were detected, forming twelve distinct haplotypes in the cotton collection. Among the 14 SNPs in the coding region, five were missense mutations and nine were synonymous nucleotide changes. The average SNP/InDel per nucleotide ratio was 2.61% (one SNP per 39 bp, with 1.81 and 3.87% occurring in coding and non-coding regions, respectively. Nucleotide and haplotype diversity across the entire Exp2 region was 0.00603 (π and 0.844, respectively, and diversity in non-coding regions was higher than that in coding regions. For linkage disequilibrium (LD, the mean r2 value for all polymorphism loci pairs was 0.48, and LD did not decay over 748 bp. Based on 132 simple sequence repeat (SSR loci evenly covering 26 chromosomes, the population structure was estimated, and the accessions were divided into seven groups that agreed well with their genomic origin and evolutionary history. A general linear model was used to calculate the Exp2-wide diversity–trait associations of 5 fiber quality traits, considering population structure (Q. Four SNPs in Exp2 were associated with at least one of the fiber quality traits, but not with

  13. The Optimal Tax on Antebellum U.S. Cotton Exports

    OpenAIRE

    Douglas A. Irwin

    2001-01-01

    The United States produced about 80 percent of the world's cotton in the decades prior to the Civil War. How much monopoly power did the United States possess in the world cotton market and what would have been the effect of an optimal export tax? This paper estimates the elasticity of foreign demand for U.S. cotton exports and uses the elasticity in a simple partial equilibrium model to calculate the optimal export tax and its effect on prices, trade, and welfare. The results indicate that t...

  14. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  15. Performance enhancement of a solar still using cotton regenerative medium

    Directory of Open Access Journals (Sweden)

    Thirumalai Gopal Sakthivel

    2017-01-01

    Full Text Available This paper presents the performance of a single slope solar still using cotton cloth regenerative medium. The performance was evaluated under the metrological conditions of Chennai city in India during the summer months of 2016. Two single-slope solar stills are fabricated with an effective area of 0.5 m2 with various thicknesses (2, 4, 6, and 8 mm of cotton cloth were used for the performance comparison. The results showed, the solar still with 6 mm thick cotton assisted regenerative solar still has about 28% improved productivity when compared to conventional solar still.

  16. Changing Land Use from Cotton to Bioenergy Crops in the Southern Great Plains: Implications on Carbon and Water Vapor Fluxes

    Science.gov (United States)

    Rajan, N.; Sharma, S.

    2016-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Although first-generation biofuels like corn ethanol are available, second-generation biofuels are gaining importance because they don't directly compete with food production. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). While we believe there would be environmental benefits associated with this change in land use, their exact nature and magnitude have not been investigated for this region. The overall goal of the proposed study was to investigate the water and carbon (C) fluxes associated with the change in agricultural land use to biofuels-dominated cropping systems in the semi-arid Southwestern U.S. Cotton Belt region. Eddy covariance flux towers were established at selected producer fields (cotton, perennial grasses and biomass sorghum) in the Southern Great Plains region. The fluxes of carbon dioxide, water vapor and sensible heat between the surface and the atmosphere will be measured throughout the year. The results have demonstrated that the dynamics of C and water vapor fluxes for these agroecosystems were strongly affected by environmental variables, management factors, and crop phenology. Detailed results will be presented at the meeting.

  17. Dusky Cotton Bug Oxycarenus spp. (Hemiptera: Lygaeidae: Hibernating Sites and Management by using Plant Extracts under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Abbas Muneer

    2015-09-01

    Full Text Available The dusky cotton bug, Oxycarenus spp., has now attained the status of a major pest of cotton crops that affects lint as well as the seed quality of cotton. Surveys were conducted to explore the hibernating sites in the districts Faisalabad, Multan and Bahawalpur. The efficacies of six different plant extracts, i.e. Neem (Azadirachta indica, Milkweed (Calotropis procera, Moringa (Moringa oleifera, Citrus (Citrus sinensis, Tobacco (Nicotiana tobacum and Castor (Ricinus communis were tested by using three different concentrations of each plant extract, i.e. 5, 2.5 and 1.5% under laboratory conditions at 25±2°C and 70±5% RH. The data were recorded 24, 48, 72 and 96 hours after treatment application. However, Psidium guajava, Azadirachta indica, Eucalyptus camaldulensis and Mangifera indica were graded as host plants heavily infested by Oxycarenus spp. Results (α≤0.05 indicated that increasing the concentration of extracts also increased the mortality. Nicotiana tobacum and Calotropis procera respectively displayed maximum 72 and 71, 84 and 80, 97 and 89% mortality at all concentrations, i.e. 1.25, 2.50 and 5.00%, after 96 hours of application. Two concentrations (2.5 and 5% are the most suitable for obtaining significant control of the dusky cotton bug.

  18. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  19. Testing the Digital Divide: Does Access to High-Quality Use of Technology in Schools Affect Student Achievement?

    Science.gov (United States)

    Talley, Gregory Keith

    2012-01-01

    This study investigates the relationship between access, use of technology and student achievement in public middle schools in Maryland. The objective of this study was to determine whether a digital divide (differences in access and utilization of technology based on student characteristics of race, socioeconomic status, and gender) exists among…

  20. An Empirical Study of Factors Affecting Mobile Wireless Technology Adoption for Promoting Interactive Lectures in Higher Education

    Science.gov (United States)

    Gan, Chin Lay; Balakrishnan, Vimala

    2016-01-01

    Use of mobile technology is widespread, particularly among the younger generation. There is a huge potential for utilizing such technology in lecture classes with large numbers of students, serving as an interaction tool between the students and lecturers. The challenge is to identify significant adoption factors to ensure effective adoption of…

  1. Teachers' Perceptions of Factors Affecting Their Adoption and Acceptance of Mobile Technology in K-12 Settings

    Science.gov (United States)

    Khlaif, Zuheir

    2018-01-01

    Factors influencing the adoption and acceptance of tablets as a mobile technology were explored one year after their integration in middle schools in Palestine. Semi-structured interviews were conducted with 15 teachers. The participants held a variety of attitudes toward accepting mobile technologies in their instruction. The findings revealed…

  2. Experimental Research on How Instructing Students to Use Lecture Capture (Podcasting) Technology Affects Student Learning in Higher Education

    Science.gov (United States)

    Hall, William A., Jr.

    2012-01-01

    Students' use of new technology is prevalent. Many of them own mobile phones, laptop computers, and various entertainment devices. However, they are seldom taught how to maximize these technologies for academic purposes. This experimental study examined whether students who received instructions on how to use podcasts for academic purposes…

  3. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  4. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  5. DeepCotton: in-field cotton segmentation using deep fully convolutional network

    Science.gov (United States)

    Li, Yanan; Cao, Zhiguo; Xiao, Yang; Cremers, Armin B.

    2017-09-01

    Automatic ground-based in-field cotton (IFC) segmentation is a challenging task in precision agriculture, which has not been well addressed. Nearly all the existing methods rely on hand-crafted features. Their limited discriminative power results in unsatisfactory performance. To address this, a coarse-to-fine cotton segmentation method termed "DeepCotton" is proposed. It contains two modules, fully convolutional network (FCN) stream and interference region removal stream. First, FCN is employed to predict initially coarse map in an end-to-end manner. The convolutional networks involved in FCN guarantee powerful feature description capability, simultaneously, the regression analysis ability of neural network assures segmentation accuracy. To our knowledge, we are the first to introduce deep learning to IFC segmentation. Second, our proposed "UP" algorithm composed of unary brightness transformation and pairwise region comparison is used for obtaining interference map, which is executed to refine the coarse map. The experiments on constructed IFC dataset demonstrate that our method outperforms other state-of-the-art approaches, either in different common scenarios or single/multiple plants. More remarkable, the "UP" algorithm greatly improves the property of the coarse result, with the average amplifications of 2.6%, 2.4% on accuracy and 8.1%, 5.5% on intersection over union for common scenarios and multiple plants, separately.

  6. Technical- and environmental-efficiency analysis of irrigated cotton-cropping systems in Punjab, Pakistan using data envelopment analysis.

    Science.gov (United States)

    Ullah, Asmat; Perret, Sylvain R

    2014-08-01

    Cotton cropping in Pakistan uses substantial quantities of resources and adversely affects the environment with pollutants from the inputs, particularly pesticides. A question remains regarding to what extent the reduction of such environmental impact is possible without compromising the farmers' income. This paper investigates the environmental, technical, and economic performances of selected irrigated cotton-cropping systems in Punjab to quantify the sustainability of cotton farming and reveal options for improvement. Using mostly primary data, our study quantifies the technical, cost, and environmental efficiencies of different farm sizes. A set of indicators has been computed to reflect these three domains of efficiency using the data envelopment analysis technique. The results indicate that farmers are broadly environmentally inefficient; which primarily results from poor technical inefficiency. Based on an improved input mix, the average potential environmental impact reduction for small, medium, and large farms is 9, 13, and 11 %, respectively, without compromising the economic return. Moreover, the differences in technical, cost, and environmental efficiencies between small and medium and small and large farm sizes were statistically significant. The second-stage regression analysis identifies that the entire farm size significantly affects the efficiencies, whereas exposure to extension and training has positive effects, and the sowing methods significantly affect the technical and environmental efficiencies. Paradoxically, the formal education level is determined to affect the efficiencies negatively. This paper discusses policy interventions that can improve the technical efficiency to ultimately increase the environmental efficiency and reduce the farmers' operating costs.

  7. Conductive Cotton Fabrics for Motion Sensing and Heating Applications

    Directory of Open Access Journals (Sweden)

    Mengyun Yang

    2018-05-01

    Full Text Available Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs on a knitted cotton fabric surface through a “dip-and-dry” method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%, fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

  8. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    INERA05

    2013-08-14

    Aug 14, 2013 ... insects such as honey bees, bumble bees and butterflies. Genetic materials ... cotton fields separated from the transgenes source by wide open space. In Boni ..... Breeding: new strategies in plant improvement. International ...

  9. Bleaching of hydroentangled greige cotton nonwoven fabrics without scouring

    Science.gov (United States)

    This work investigated whether a hydroentangled greige cotton nonwoven fabric made at a relatively high hydroentangling water pressure, say, 135-bar, could be successfully bleached to attain the desired whiteness, absorbency and other properties without traditional scouring. Accordingly, the scoured...

  10. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  11. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  12. Study of gene flow from GM cotton (Gossypium hirsutum) varieties in El Espinal (Tolima, Colombia)

    International Nuclear Information System (INIS)

    Rache Cardenal, Leidy Yanira; Mora Oberlaender, Julian; Chaparro Giraldo, Alejandro

    2013-01-01

    In 2009, 4088 hectares of genetically modified (GM) cotton were planted in Tolima (Colombia), however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise Remolinos Inc. located in El Espinal (Tolima) were analyzed in the first half of 2010. The results indicated seed mediated gene flow in 45 refuges (80.4 %) and 26 fields with conventional cotton (96 %), besides pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  13. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.

    Science.gov (United States)

    De Silva, Rasike; Byrne, Nolene

    2017-10-15

    Cotton accounts for 30% of total fibre production worldwide with over 50% of cotton being used for apparel. In the process from cotton bud to finished textile product many steps are required, and significant cotton waste is generated. Typically only 30% of pre consumer cotton is recycled. Here we use cotton waste lint to produce regenerated cellulose fibres (RCF). We find the RCF from waste cotton lint had increased mechanical properties compared to RCF produced from wood pulp. We show that this is likely linked to the higher degree of polymerization (DP) of waste cotton lint. An ionic liquid is used to dissolve the cotton lint and the rheology of the spinning is measured. The properties of the RCF are characterized and compared to wood pulp RCF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ASSESMENT OF FACTORS AFFECTING THE PRODUCTIVITY OF AMBER CHARKHA AND ERGONOMIC EVALUATION OF WORKERS

    OpenAIRE

    G. V. THAKRE; S. G. PATIL; D. N. AGRAWAL

    2011-01-01

    Increasing demands of the cotton fabrics, now a day has made it necessary to increase the production of cotton fabrics. To increase the production it is necessary to study the factors affecting the performance of the women workers working on Amber charkha. Most of the Amber charkha in rural areas are hand operated (i.e. they runwith the help of human energy input). There are various medical, technical and environmental factors which affect the productivity of women workers working on Amber ch...

  15. Sustainability in the supply chain of organic cotton

    OpenAIRE

    Retamiro, Wiliam; Silva, José Luis Gomes da; Vieira, Edson Trajano

    2013-01-01

    This article aims to diagnose the application of sustainability concepts in the economic, spatial,ecological, social, cultural and politics in the productive chain of cotton. Explains about the cotton industry is free from all pesticides and their use in the textile production chain, increasing the value of the input, as well as products derived from this. Analyzed by the method of case studywith a qualitative approach in a bibliographic and documentary through to the collection of data,their...

  16. Biological Innovation and Productivity Growth in the Antebellum Cotton Economy

    OpenAIRE

    Alan L. Olmstead; Paul W. Rhode

    2008-01-01

    The Cliometrics literature on slave efficiency has generally focused on static questions. We take a decidedly more dynamic approach. Drawing on the records of 142 plantations with 509 crops years, we show that the average daily cotton picking rate increased about four-fold between 1801 and 1862. We argue that the development and diffusion of new cotton varieties were the primary sources of the increased efficiency. These finding have broad implications for understanding the South's preeminenc...

  17. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  18. Genomic studies for drought tolerance in cotton (abstract)

    International Nuclear Information System (INIS)

    Mahboob-ur-Rehman; Ullah, I.; Asir, M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    The cotton germplasm developed in Pakistan has not been screened comprehensively for their response to water stress, which is a pre-requisite in exploring different metabolic pathways, development of genome maps, isolation of genes etc. The objectives of the study were to identify drought tolerant/sensitive cotton genotypes, development of genetic linkage maps, and to identify the most robust DNA markers leading towards marker-assisted selection (MAS). A field trial was conducted to investigate variation in gas exchange parameters and productivity traits in 32 cotton cultivars/promising strains under water stress environment and to ascertain association among these physiological and productivity traits. Photosynthetic rate (P), stomatal conductance (gs) and transpiration rate (E) were significantly reduced under water stress. Substantial genotypic variation for gas exchange parameters especially photosynthetic rate were observed with a significant association with productivity traits under water-limited environment elucidating its use as an indirect selection criterion for seed cotton yield. Moreover, the genotypes FH-901 and CIM-1100 were found the most sensitive and tolerant cultivars, respectively. Four hundred eighty random primers were surveyed on different cotton genotypes involved in population development programs. Out of these, 32 polymorphic primers were identified which are being converted into sequence characterized amplified regions (SCARs). Similarly, 25 out of 150 microstatellite loci (SSRs) were polymorphic among the cotton genotypes. Amplified fragment length polymorphism (AFLP) fingerprinting technique is being exploited to search for additional polymorphisms. The study will have impact on cotton breeding programme by reducing span to develop drought tolerant cotton varieties. (author)

  19. Composting of cotton wastes; Compostaje de residuos de algodon

    Energy Technology Data Exchange (ETDEWEB)

    Dobao, M.M.; Tejada, M.; Benitez, C.; Gonzalez, J.L.

    1997-12-31

    In this article a study on the composting process of residuals of cotton gin is presented crushed and not crushed, previous. The analysis of correlation gotten for each one of the treatments reveals that although common correlations between the parameters studied for both treatment exist, they are presented a great number of correlations between this parameters for the treatment of cotton crushed residuals. (Author) 11 refs.

  20. Overcoming dormancy in seeds of cotton-silk tree

    Directory of Open Access Journals (Sweden)

    Irinaldo Lima do Nascimento

    2012-06-01

    Full Text Available Cotton-silk tree Ceiba glaziovii (kuntze k. Schu belongs to family Bombacaceas and is locally known as barriguda. It is widely used in landscaping and reforestation, neverdeless seed dormancy affects reproduction in this species. The objective of this study was to evaluate the effectiveness of different methods to overcome dormancy in the germination process. Treatments included mechanical scarification with 85-grit sandpaper, chemical scarification with concentrated sulfuric acid for 5, 10, 15 and 20 minutes, physical scarification with hot water at 60°, 70°, 80°and 90° C for one minute, imbibition in distilled water for 24, 48 and 72 hours, oven heating at 65° C for 1, 2, 3 and 4 hours, and a control treatment. Each treatment included four replicates of 25 seeds, using a completely randomized experimental design, and means were compared by the Scott-Knott test at the 5% probability level. Assessed parameters included emergence percentage, emergence rate index, dry matter and length of plants. The most recommended treatments were mechanical scarification, immersion in sulfuric acid for 5, 10 and 15 minutes and immersion in distilled water for 48 hours.

  1. Investigation of Fibres Migration in Cotton/Polypropylene Blended Yarn

    Directory of Open Access Journals (Sweden)

    Dzmitry RYKLIN

    2014-09-01

    Full Text Available This study is devoted to theoretical and experimental research of fibres migration in blended yarns. A hypothesis states that due to fibres migration their tension in yarn becomes equal. On the basis of that hypothesis, we identified the factors that affect the migration. The main factors influencing are differences in Young's modulus and density of fibres. Simulating the fibres migration we obtained the formulae for determining the proportion of fibres in the external and inner layers of blended yarn. These formulae were proved by analysis of cross-section of cotton/polypropylene yarn. Results of blended yarn processing in knitting showed that migration of polypropylene fibres in direction to the yarn surface leads to significant increase of yarn breakages due to growth of its friction coefficient. Reduction of the input yarn tension by 10 % – 15 % helped to stabilize the process of knitting. It was found that the usage of theoretical information about fibres migration allows to draw conclusions about the necessity of adjustments to settings of subsequent processing of blended yarns. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4610

  2. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  3. Factors affecting sustainable adoption of e-health technology in developing countries: an exploratory survey of Nigerian hospitals from the perspective of healthcare professionals

    Science.gov (United States)

    Toycan, Mehmet

    2018-01-01

    Background E-health technology applications are essential tools of modern information technology that improve quality of healthcare delivery in hospitals of both developed and developing countries. However, despite its positive benefits, studies indicate that the rate of the e-health adoption in some developing countries is either low or underutilized. This is due in part, to barriers such as resistance from healthcare professionals, poor infrastructure, and low technical expertise among others. Objective The aim of this study is to investigate, identify and analyze the underlying factors that affect healthcare professionals decision to adopt and use e-health technology applications in developing countries, with particular reference to hospitals in Nigeria. Methods The study used a cross sectional approach in the form of a close-ended questionnaire to collect quantitative data from a sample of 465 healthcare professionals randomly selected from 15 hospitals in Nigeria. We used the modified Technology Acceptance Model (TAM) as the dependent variable and external factors as independent variables. The collected data was then analyzed using SPSS statistical analysis such as frequency test, reliability analysis, and correlation coefficient analysis. Results The results obtained, which correspond with findings from other researches published, indicate that perceived usefulness, belief, willingness, as well as attitude of healthcare professionals have significant influence on their intention to adopt and use the e-health technology applications. Other strategic factors identified include low literacy level and experience in using the e-health technology applications, lack of motivation, poor organizational and management policies. Conclusion The study contributes to the literature by pinpointing significant areas where findings can positively affect, or be found useful by, healthcare policy decision makers in Nigeria and other developing countries. This can help them

  4. Factors affecting sustainable adoption of e-health technology in developing countries: an exploratory survey of Nigerian hospitals from the perspective of healthcare professionals.

    Science.gov (United States)

    Zayyad, Musa Ahmed; Toycan, Mehmet

    2018-01-01

    E-health technology applications are essential tools of modern information technology that improve quality of healthcare delivery in hospitals of both developed and developing countries. However, despite its positive benefits, studies indicate that the rate of the e-health adoption in some developing countries is either low or underutilized. This is due in part, to barriers such as resistance from healthcare professionals, poor infrastructure, and low technical expertise among others. The aim of this study is to investigate, identify and analyze the underlying factors that affect healthcare professionals decision to adopt and use e-health technology applications in developing countries, with particular reference to hospitals in Nigeria. The study used a cross sectional approach in the form of a close-ended questionnaire to collect quantitative data from a sample of 465 healthcare professionals randomly selected from 15 hospitals in Nigeria. We used the modified Technology Acceptance Model (TAM) as the dependent variable and external factors as independent variables. The collected data was then analyzed using SPSS statistical analysis such as frequency test, reliability analysis, and correlation coefficient analysis. The results obtained, which correspond with findings from other researches published, indicate that perceived usefulness, belief, willingness, as well as attitude of healthcare professionals have significant influence on their intention to adopt and use the e-health technology applications. Other strategic factors identified include low literacy level and experience in using the e-health technology applications, lack of motivation, poor organizational and management policies. The study contributes to the literature by pinpointing significant areas where findings can positively affect, or be found useful by, healthcare policy decision makers in Nigeria and other developing countries. This can help them understand their areas of priorities and weaknesses

  5. Factors affecting sustainable adoption of e-health technology in developing countries: an exploratory survey of Nigerian hospitals from the perspective of healthcare professionals

    Directory of Open Access Journals (Sweden)

    Musa Ahmed Zayyad

    2018-03-01

    Full Text Available Background E-health technology applications are essential tools of modern information technology that improve quality of healthcare delivery in hospitals of both developed and developing countries. However, despite its positive benefits, studies indicate that the rate of the e-health adoption in some developing countries is either low or underutilized. This is due in part, to barriers such as resistance from healthcare professionals, poor infrastructure, and low technical expertise among others. Objective The aim of this study is to investigate, identify and analyze the underlying factors that affect healthcare professionals decision to adopt and use e-health technology applications in developing countries, with particular reference to hospitals in Nigeria. Methods The study used a cross sectional approach in the form of a close-ended questionnaire to collect quantitative data from a sample of 465 healthcare professionals randomly selected from 15 hospitals in Nigeria. We used the modified Technology Acceptance Model (TAM as the dependent variable and external factors as independent variables. The collected data was then analyzed using SPSS statistical analysis such as frequency test, reliability analysis, and correlation coefficient analysis. Results The results obtained, which correspond with findings from other researches published, indicate that perceived usefulness, belief, willingness, as well as attitude of healthcare professionals have significant influence on their intention to adopt and use the e-health technology applications. Other strategic factors identified include low literacy level and experience in using the e-health technology applications, lack of motivation, poor organizational and management policies. Conclusion The study contributes to the literature by pinpointing significant areas where findings can positively affect, or be found useful by, healthcare policy decision makers in Nigeria and other developing countries. This

  6. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation

    Science.gov (United States)

    Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian

    2017-10-01

    During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.

  7. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  8. Textile industry can be less pollutant: introducing naturally colored cotton

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2014-07-01

    Full Text Available 800x600 Studies in agribusiness and textile industry, both involved with the production of manufacturing fashion present insufficient development for new products that could represent water savings and reduction of chemical effluents, making this production chain a sustainable business. This paper introduces the colored and organic cotton as an alternative to foster colored cotton producing farmers and improving the concept of sustainability in the textile sector. Results show that the increase in the production of colored and organic cotton, may result in reduction of water use, and consequent reduction in the disposal of effluents in nature. As the colored and organic cotton is produced by small farmers, governmental agencies need to participate in the effort of improving its production and distribution, providing the needed infrastructure to meet the increasing market. This would slowly encourage the reduction of white cotton consumption in exchange for this naturally colored product. The water used, and consequent polluted discharge in the use of colored cotton in the textile industry might be reduced by 70%, assuming a reduction of environmental impact of 5% per year would represent expressive numbers in the next ten years. Normal 0 21 false false false ES X-NONE X-NONE

  9. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  10. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  11. Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts.

    Science.gov (United States)

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Zheng, Xiuting; Wang, Fei; Hoegenauer, Kevin A; Maeda, Andrea B V; Yang, S Samuel; Stoffel, Kevin; Matvienko, Marta; Clemons, Kimberly; Udall, Joshua A; Van Deynze, Allen; Jones, Don C; Stelly, David M

    2014-10-30

    Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3-79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in

  12. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  13. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium.

    Science.gov (United States)

    Chen, Jie-Yin; Liu, Chun; Gui, Yue-Jing; Si, Kai-Wei; Zhang, Dan-Dan; Wang, Jie; Short, Dylan P G; Huang, Jin-Qun; Li, Nan-Yang; Liang, Yong; Zhang, Wen-Qi; Yang, Lin; Ma, Xue-Feng; Li, Ting-Gang; Zhou, Lei; Wang, Bao-Li; Bao, Yu-Ming; Subbarao, Krishna V; Zhang, Geng-Yun; Dai, Xiao-Feng

    2018-01-01

    Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting.

    Science.gov (United States)

    Duan, Manli; Gu, Jie; Wang, Xiaojuan; Li, Yang; Zhang, Sheqi; Yin, Yanan; Zhang, Ranran

    2018-01-01

    Genetically modified (GM) cotton production generates a large yield of stalks and their disposal is difficult. In order to study the feasibility of using GM cotton stalks for composting and the changes that occur in antibiotic resistance genes (ARGs) during composting, we supplemented pig manure with GM or non-GM cotton stalks during composting and we compared their effects on the absolute abundances (AA) of intI1, intI2, and ARGs under the two treatments. The compost was mature after processing based on the germination index and C/N ratio. After composting, the AAs of ARGs, intI1, and intI2 were reduced by 41.7% and 45.0% in the non-GM and GM treatments, respectively. The ARG profiles were affected significantly by temperature and ammonia nitrogen. In addition, excluding tetC, GM cotton stalks had no significant effects on ARGs, intI1, and intI2 compared with the non-GM treatment (p composting with livestock manure, and the AAs of ARGs can be reduced. Furthermore, the results of this study provide a theoretical basis for the harmless utilization of GM cotton stalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  16. Struggling with Excellence in All We Do: Is the Lure of New Technology Affecting How We Process Out Members’ Information

    Science.gov (United States)

    2016-02-01

    this ease of setup also allows for multiple variations in design. Introducing all of these variables into the decisions made during the design...20 Additionally, strength accounting of each member’s duty status potentially affects funding of personnel and is used to manage the Operations Tempo ...www.huffingtonpost.com/thomas-kalil/information-technology-an_b_860582.html, 12 July 2011, Accessed 10 Jan 2015. 4 Goldberg , Saveli, Niemierko

  17. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides

    DEFF Research Database (Denmark)

    Rajasundaram, Dhivyaa; Runavot, Jean-Luc; Guo, Xiaoyuan

    2014-01-01

    cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from...... different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength...

  18. Why did they do it? How customers’ self-service technology introduction attributions affect the customer-provider relationship

    NARCIS (Netherlands)

    Nijssen, E.J.; Schepers, J.J.L.; Belanche, D.

    2016-01-01

    Purpose – Customers often think that innovations, such as self-service technologies (SSTs), are introduced by service providers to cut costs rather than extend customer service levels. The purpose of this paper is to investigate how customers use such attributions to adjust their perceptions of

  19. Design and Implementation of Technology Enabled Affective Learning Using Fusion of Bio-Physical and Facial Expression

    Science.gov (United States)

    Ray, Arindam; Chakrabarti, Amlan

    2016-01-01

    Technology Enabled Learning is a cognitive, constructive, systematic, collaborative learning procedure, which transforms teaching-learning pedagogy where role of emotion is very often neglected. Emotion plays significant role in the cognitive process of human being, so the transformation is incomplete without capturing the learner's emotional…

  20. Tensile Properties of Single Jersey and 1×1 Rib Knitted Fabrics Made from 100% Cotton and Cotton/Lycra Yarns

    Directory of Open Access Journals (Sweden)

    Dereje Berihun Sitotaw

    2017-01-01

    Full Text Available The tensile properties such as tensile strength which is measured as breaking force in Newton (N and elongation percent (% at break of single jersey and 1×1 rib (knitted with full needles knitted fabrics made from 100% cotton and cotton/Lycra yarns (5% Lycra yarn content in 95% combed cotton yarn are investigated in this research. The sample fabrics are conditioned for 24 hours at 20±1°C temperature and 65±2% relative humidity before testing. Ten specimens (five for lengthwise and five for widthwise have been taken from each of the two knitted structures, those made from 100% cotton and cotton/Lycra (at 95/5 percent ratio blend yarns. According to the discussion and as found from the investigations, the tensile properties of single jersey and 1×1 rib knitted fabrics made from 100% cotton and cotton/Lycra yarns are significantly different from each other and both of the knitted fabrics have high elongation percent at break with cotton/Lycra blend yarns as compared to 100% cotton yarn. Knitted fabrics made from cotton/Lycra blended yarn have low breaking force and high elongation percent at break relative to knitted fabrics made from 100% cotton yarns.