WorldWideScience

Sample records for technology accelerator theory

  1. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  2. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  3. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  4. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  5. An accelerator technology legacy

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1994-01-01

    Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production

  6. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  7. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  8. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  9. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  10. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  11. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  12. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  13. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  14. Accelerator technology working group summary

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1985-01-01

    A summary is presented of workshop deliberations on basic scaling, the economic viability of laser drive power for HEP accelerators, the availability of electron beam injectors for near-term experiments, and a few very general remarks on technology issues

  15. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  16. Technological spinoff from accelerators -1

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1994-01-01

    Continuing this year's CERN Courier theme of the spinoff and technological derivatives arising from fundamental physics is this series of two articles on the industrial benefits from the central tool of high energy physics - the particle accelerator. It is based on a report initially prepared at the request of the International Committee for Future Accelerators' (ICFA) panel on spinoff from particle physics research

  17. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  18. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approach 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  19. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  20. Research in accelerator physics (theory)

    International Nuclear Information System (INIS)

    Ohnuma, Shoroku.

    1993-01-01

    The authors discuss the present status, expected effort during the remainder of the project, and some of the results of their activities since the beginning of the project. Some of the areas covered are: (1) effects of helical insertial devices on beam dynamics; (2) coupling impedance of apertures in accelerator beam pipes; (3) new calculation of diffusion rate; (4) integrable polynomial factorization for symplectic map tracking; and (5) physics of magnet sorting in superconducting rings

  1. Research in accelerator physics (theory)

    International Nuclear Information System (INIS)

    Ohnuma, Shoroku.

    1991-01-01

    This report discusses the following topics: beam-beam interaction in colliders with momentum oscillation; isolated difference resonance and evolution of the particle distribution; study of magnet sorting for the SSC High Energy Booster; development of a discrete HESQ; beam dynamics in compact synchrotrons; theoretical problems in multi-stage FEL for two-beam acceleration; operation of Tevatron near integer tunes; and detailed examination of coupling impedance of various devices in storage rings; impact on beams from the insertion devices

  2. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  3. Research needs of the new accelerator technologies

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research

  4. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  5. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2001-01-01

    Full text: In view of limited number of scientific and technical staff, it was necessary to focus the activity on most important subjects and to keep balance between current duties and development of future projects. The dominant item was realisation of research and designing works in the Ordered Project for New Therapeutical Accelerator with two energies of photon beam 6 and 15 MeV. During the reported year, main efforts were oriented on: - computation and experimental works on optimization of electron gun parameters and electron optics in the injection system for accelerating structure, - calculation and modelling of standing wave, S-band accelerating structure to achieve broad range of electron energy variation with good phase acceptance and narrow energy spectrum of the output beam, - calculation and design of beam focusing and transport system, with deflection of the output beam for 2700 in achromatic sector magnet, - design and modelling of microwave power system, with pilot generator, klystron 6 MW amplifier, pulse modulator, waveguide system, four-port circulator and automatic frequency control, - preparative works on metrological procedures and apparatus for accelerated beam diagnostics comprising measurements of energy spectrum, beam intensity, transmission factor, leakage radiation, and other important beam parameters. Other important subject, worth mentioning are: - Advance in forming and metrology of narrow X-ray photon beams, dedicated to stereotactic radiosurgery and radiotherapy, - Adaptation of a new version of EGS-4, MC type code for computer simulation of dose distribution in therapeutical beams, - Participation in selected items of the TESLA Project in cooperation with DESY - Hamburg, - theory and computer simulation of higher order modes in superconducting accelerating structures, - technological research of methods and apparatus for thin layer coating of r.f. resonators and subunits in transmission circuits - Conceptual studies of proposed new

  6. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  7. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  8. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  9. Silvio Gesell's Theory and Accelerated Money Experiments

    OpenAIRE

    Jérôme Blanc

    1998-01-01

    A former version of this paper was published as “Free Money for Social Progress : Theory and practice of Gesell's accelerated money”, American Journal of Economics and Sociology, 57(8), October, 1998, pp. 469-483.; Silvio Gesell (1862-1930) proposed a system of stamped money in order to accelerate monetary circulation and to free money from interest. This was part of a global socialist system intended to free economy from rent and interest. In the 1930s, Irving Fisher, who proposed the system...

  10. Moments method in the theory of accelerators

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.

    1984-01-01

    The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge

  11. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  12. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  13. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  14. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  15. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  16. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  17. Accelerator technology program. Status report, October 1984-March 1985

    International Nuclear Information System (INIS)

    Jameson, R.A.; Schriber, S.O.

    1986-04-01

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period

  18. Development of Flow Accelerated Corrosion Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Min Bum; Choi, Won Yeol; Lee, Jong Chan; Lim, Dong Seok; Kwon, Byung Il; Ku, Hee Kwon; Kim, Jong Uk [FNC Tech, Yongin (Korea, Republic of)

    2015-10-15

    Development of flow accelerated corrosion reduction technology is necessary for prevent this kind of accidents. This study deals with development of flow accelerated corrosion reduction technology through platinum injection and developed of flow accelerated corrosion reduction technology by imitating water chemical condition in PWR secondary system in practice. In addition, in order to get reliability of water chemical simulator in PWR secondary system, analyzed and compared with test result through CFD analysis. This study composed test device that can simulate water chemical environment in PWR secondary system, in order to develop flow accelerated corrosion reduction , and evaluated the ratio of corrosion in water chemical environment in PWR secondary system. In conclusion, corrosion ratio of low alloy steel material that includes more Cr and Mo was lower. And the results were confirmed to be the maximum corrosion rate in the case that replicate the 90 elbow. Additionally, inserted Pt nano particle for developing flow accelerated corrosion rate reduction technology, the test results, it was confirmed for about 80% of the flow accelerated corrosion rate reduction than before input.

  19. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  20. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  1. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  2. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  4. Accelerator Technology Program. Status report, October 1983-March 1984

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1985-01-01

    This report covers major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first sections highlight activities related to beam dynamics, inertial fusion, structure development, the racetrack microtron, and the CERN high-energy physics experiment NA-12. Discussed next is the Fusion Materials Irradiation Test Facility, followed by a summary of progress on the Proton Storage Ring and activities of the Theory and Simulation Group. The report concludes with a discussion of the H- accelerator program and a listing of papers published by AT-Division personnel during this reporting period

  5. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2004-01-01

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  6. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  7. A Critical Theory Perspective on Accelerated Learning.

    Science.gov (United States)

    Brookfield, Stephen D.

    2003-01-01

    Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)

  8. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  9. Technology and applications of electron accelerator

    International Nuclear Information System (INIS)

    Natsir, M.

    1998-01-01

    Technology of electron accelerator have been developed so fast in advanced countries. It was applied in the research and development (R and D) and comercially in various industries. The industries applying electron accelerator includes polymers industry, sterilization of medical tools, material surface modification, and environmental management. The radiation process using electron beam is an ionization radiation process. Two facilities of electron accelerator have been established in pilot scale at the Centre for the Application of Isotope and Radiation CAIR-BATAN, Jakarta, for the RandD of radiation process technology and in demonstrating the electron accelerator application in industry in Indonesia. The first has low energy specification of 300 keV, 50 mA, EPS-300 type and the second has medium energy specification of 2 MeV, 10 mA dynamitron model GJ-2 type. Both the electron accelerators have an electron penetration depth capability of 0.6 and 12 mm, respectively, for the double side irradiation in the materials with density of 1 g/cm 3 . They also highly capacity production and electron beam cross-section of 120 cm length and 10 cm width. The beam will go through the atmosphere for irradiation samples or industrial products. The radiation dose can be selected precisely by adjusting the electron beam current and conveyor speed. Both of these facilities were applied in many aspects RandD, for examples dosimetry, wood surface coating, cross-linking of polymer, heatshrincable tube, polymer grafting, plastic degradation, food preservation, sterilization and so on. Engineering factors of radiation design process and general observation of electron accelerator application in RandD for various industries in Indonesia are briefly discussed

  10. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    Full text: The main activities of the Accelerator Physics and Technology Department were focused on following subjects: - contribution to development and building of New Therapeutical Electron Accelerator delivering the photon beams of 6 and 15 MeV, - study of the photon and electron spectra of narrow photon beams with the use of the BEAM/EGSnrc codes, - design and construction of special RF structures for use in CLIC Test Facility in CERN, - design and construction of 1:1 copper, room temperature models of accelerating superconducting 1.3 GHz structures for TESLA Project in DESY. In spite of drastic reduction of scientific and technical staff (from 16 to 10 persons) the planned works were successfully completed, but requested some extraordinary efforts. In realisation of 6/15 MeV Accelerator Project, the Department was responsible all along the project for calculations of all most important parts (electron gun, accelerating structure, beam focusing, achromatic deviation) and also for construction and physical modelling of some strategic subassemblies. The results of scientific and technical achievements of our Department in this work are documented in the Annex to Final Report on realisation of KBN Scientific Project No PBZ 009-13 and earlier Annual Reports 2000 and 2001. The results of Monte Carlo calculations of narrow photon beams and experimental verification using Varian Clinac 2003CD, Simens Mevatron and CGR MeV Saturn accelerators ended up with PhD thesis prepared by MSc Anna Wysocka. Her thesis: Collimation and Dosimetry of X-ray Beams for Stereotactic Radiotherapy with Linear Accelerators was sponsored by KBN scientific Project Nr T11E 04121. In collaboration with LNF INFN Frascati the electron beam deflectors were designed for CERN CLIC Test Facility CTF3. These special type travelling wave RF structures were built by our Department and are actually operated in CTF3 experiment. As the result of collaboration with TESLA-FEL Project in DESY, the set of RF

  11. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  12. Accelerator technology program. Status report, July-December 1982

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1984-05-01

    Major projects of the Los Alamos National Laboratory's Accelerator Technology Division are discussed, covering activities that occurred during the last six months of calendar 1982. The first sections report highlights in beam dynamics, accelerator inertial fusion, radio-frequency structure development, the racetrack microtron, CERN high-energy physics experiment NA-12, and high-flux radiographic linac study. Next we report on selected proton Storage Ring activities that have made significant progress during this reporting period, followed by an update on the free electron laser. The Fusion Materials Irradiation Test Facility work is discussed next, then progress on the klystron development project and on the gyrocon project. The activities of the newly formed Theory and Simulation Group are outlined. The last section covers activities concerning the accelerator test stand for the neutral particle beam program

  13. FILMMUSIC: THE THEORY OF TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Chernyshov Alexander V.

    2014-04-01

    Full Text Available The article presents a review of the basic literature on the theory of film music technologies. Basic concepts of sound film music are discussed on the examples of works of Russian (Soviet and post-Soviet and foreign scholars: Polish, German, French, English, and American. Analyzed the music theory, starting from the works by Sergey Eisenstein and Hanns Eisler to modern researchers such as George Burt and Michel Chion. Author of the article demarcated "functional theories of filmmusic" and "theories of sound layers".

  14. Theory in learning technology

    Directory of Open Access Journals (Sweden)

    Laura Czerniewicz

    2011-12-01

    Full Text Available This special issue is being published at a significant point in time in relation tosimultaneous changes in higher education, in technology and in the field of learningtechnology itself. As the 2011 ALT C conference themes clearly state, learningtechnology needs to learn to thrive in a colder and more challenging climate. In thisdifficult political and economic environment technological trends continue todevelop in terms of mobility, cloud computing, ubiquity and the emergence of whathas been called big data. E-learning has become mainstream and the field of learningtechnology itself is beginning to stabilise as a profession. Profession here isunderstood as a knowledge-based occupation and a form of cultural work where thetasks addressed are human problems amenable to expert advice and distinguishablefrom other kinds of work by the fact that it is underpinned by abstract knowledge(Macdonald, 1995.

  15. Department of Accelerator Physics And Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2009-01-01

    Full text: The activity of department P-10 is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. In 2008, the following topics were investigated and/or realized: 1. A linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy). Basically a proton linac of modified Alvarez type working at 3000 MHz frequency and delivering beams in the energy range from 65 MeV to 200 MeV. In 2005, a contract was signed between ENEA and SINS-Swierk for the design, manufacture and delivery to Frascati of the input section of a 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 16 MeV. In 2008, the field distribution in the manufactured structure was measured and optimized using available universal test stand. Measurements were also performed in ENEA/Frascati in October; a small difference in results, around 0.25%, is under investigation. Beam dynamics calculations using 3D codes have been started in parallel. 2. Preparation for participation in the international X-FEL project. Calculations of the parasitic Higher Order Modes (HOMs) induced in superconducting accelerating structures by very short electron bunches have been continued. Thanks to the special research grant received by department P-10 the design and completion of the HOM elements has been started for two accelerating modules, where each module consists of eight superconducting accelerating structures and focusing/correcting elements. 3. Superconducting layers; studies in INFN-Roma. Within the European CARE/JRA1/WP4-2 project, serious modification of the Nb-coating stand for the 1.3 GHz single-cell copper resonators using a vacuum arc was performed. Thanks to this stand the internal surface of the resonator was successfully coated. 4. TiN coating vacuum stand for RF components. At this stand the analysis of the TiN layer thickness as a function of reactive atmosphere pressure

  16. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2002-01-01

    accelerator radiation head. These programmes enable us to take into account the data of all components along the beam transportation path, and facilitate the design of beam forming systems, e.g. narrow photon beams for stereotactic radiosurgery. * Preliminary studies of a bunching system for high power electron accelerator. Such an accelerator for radiation technology was planned in the programme ''Isotopes and Accelerators'' which was accepted by the Government but not put in operation. It is worthwhile to prepare for possible work on this task by a study of most crucial problems of new design. In effect it was proposed to divide the accelerating structure into two separate parts - bunching and accelerating sections. This solution should improve the efficiency of beam capture and transport. This is very important hut not easy for a beam with high space charge. * An interesting item was the study of possible solutions of a linear energy booster for upgrading proton energy achievable in existing cyclotrons, to get an energy useful for hadron therapy. The principal feature of this idea is to use typical structures of proton linear accelerators, with the RF frequency band in the range of 3000 MHz. It gives the possibility to diminish the dimensions of the structure, and also to achieve high gradients of the accelerating field. In this way it is possible in the module with length about 1.2 m, to get the energy increase of about 15 MeV. In the international collaboration, the Italian INFN-Frascati proposed to undertake a common task on the design and construction of travelling wave sections operating in a deflecting mode, for application in CLIC Test Facility as beam kickers. CLIC is the CERN competitor to the TESLA project of high energy linear beam collider, operating at room temperature but at extremely high frequency, 30 GHz. To join the proposed task it was necessary to make an initial theoretic study and to build an aluminium model in order to formulate the principal design

  17. Field bus technology in accelerator control systems

    International Nuclear Information System (INIS)

    Tang Shuming

    1999-01-01

    Since eighties to now, the computer technology, network communication and ULSI technology have been developing rapidly. The level of control for industries and scientific experiments has been upgraded accordingly, so as to meet the increasing requirements for automation. The control systems become more complicated; the devices in control systems become more and more intelligent. However the cost of DCS (Distributed Control System) is quite expensive and the period of system integration is very long. More than ten measurement results for two methods defined in the world, in order to get inter operability of intelligent devices and reduce the costs. The author presents the development trend of fieldbuses briefly and describes the main performances of CAN, LONWORKS, WOLDFIP and PROFIBUS which are mainly used in the world today. The author proposes that the field bus technology will be introduced into the accelerator control systems in the country

  18. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1998-01-01

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  19. Kinetic theory in maximal-acceleration invariant phase space

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)

  20. Electron gun for technological linear accelerator

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.; Mirochenko, V.V.; Stepin, D.L.; Zavada, L.M.

    2000-01-01

    The work is purposed to the design of diode electron gun for powerful technologic electron linac and to experimental investigations of the beam parameters at the gun exit.The gun feature is the quick cathode replacement.This is very impotent for operating of the accelerator.The gun optics and beam parameters were calculated using the EGUN code.Beam parameters were investigated as at the special test stand so as component of the linac injector.The gun produces the beam current of 2 A at the anode voltage 25 kV.Measured beam parameters correspond to calculated results

  1. Southern California Regional Technology Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Rosibel [Univ. of California, San Diego, CA (United States). Jacobs School of Engineering; Rasochova, Lada [Univ. of California, San Diego, CA (United States). Rady School of Management

    2014-09-30

    UC San Diego and San Diego State University are partnering to address these deficiencies in the renewable energy space in the greater San Diego region, accelerating the movement of clean energy innovation from the university laboratory into the marketplace, building on the proven model of the William J. von Liebig Center’s (vLC’s) Proof of Concept (POC) program and virtualizing the effort to enable a more inclusive environment for energy innovation and expansion of the number of clean energy start-ups and/or technology licenses in greater California.

  2. Coordination theory and collaboration technology

    CERN Document Server

    Olson, Gary M; Smith, John B

    2001-01-01

    The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been

  3. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2006-01-01

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  4. Summary of the second international conference on electrostatic accelerator technology

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1977-01-01

    A review is given of the history of electrostatic accelerator technology, including a technology assessment of acceleration tubes, vacuum systems, voltage gradients, charging systems, and ion sources. Improvements in the performance of electrostatic accelerators during the last four years and of those currently under construction are discussed. The improved performance has greatly expanded the heavy ion research capabilities of the entire research community

  5. Theory Challenges of the Accelerating Universe

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2007-01-01

    The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations

  6. Accelerator Technology Program. Status report, January-September 1983

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1984-07-01

    This report presents highlights of major projects in the Accelerator Technology Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility's 2-MeV accelerator on which tests began in May, as scheduled. Then, activities are reported on beam dynamics, inertial fusion, structure development, the racetrack microtron, the CERN high-energy physics experiment NA-12, and LAMPF II. The Proton Storage Ring is discussed next, with emphasis on the computer control system, diagnostics interfacing, and theoretical support. Other sections summarize progress on a portable radiographic linac, developments on the klystron code, and on permanent magnets. Activities of the Theory and Simulation Group are outlined next, followed by discussion of the oscillator experiment and the energy-recovery experiment in the free electron laser project. The last section reports on the accelerator test stand. An unusual and very satisfying activity for the Division was the hosting of the 1983 Particle Accelerator Conference in Santa Fe, March 21-23, 1983. The conference had the largest attendance ever, with 895 registrants, 61 invited papers, and 521 contributed papers

  7. Emerging landscape of accelerator science and technology

    International Nuclear Information System (INIS)

    Chattopadhyay, Swapan

    2011-01-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. In the second half of the twentieth century, we witnessed the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. We give a glimpse of the recent developments and innovations in the conception, production and control of charged particle beams in the service of scientific society. (author)

  8. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Wronka, S.

    2010-01-01

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  9. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  10. Cosmological consistency tests of gravity theory and cosmic acceleration

    Science.gov (United States)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  11. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  12. Recent technological developments in accelerating structures

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    1992-01-01

    A variety of high-β accelerating structures for both proton and electron accelerators are reviewed from modern points of view. Both standing-and traveling-wave structures are discussed. Beam stability is one of the most important factors which must be taken into account regarding modern accelerators in which the beam intensity is an issue. (Author) 3 figs., 3 tabs., 60 refs

  13. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  14. Development of accelerator technology for biotechnology and materials science

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Saitoh, Yuichi; Kurashima, Satoshi; Yokota, Watalu

    2008-01-01

    The TIARA (Takasaki Ion accelerators for Advanced Radiation Application) is a unique worldwide facility for advancing the frontiers of biotechnology and materials science, consisting of four accelerators: a K110 AVF cyclotron, a 3-MV tandem accelerator, a 3-MV single-ended accelerator and a 400-kV ion implanter. The accelerator complex provides a variety of ion species from proton to bismuth in a wide energy range from keV to MeV. This report outlines the facility and the major beam applications, and describes the details of development of accelerator technology for biotechnology and materials science applications at TIARA. (author)

  15. Electrical circuit theory and technology

    CERN Document Server

    Bird, John

    2014-01-01

    This much-loved textbook explains the principles of electrical circuit theory and technology so that students of electrical and mechanical engineering can master the subject. Real-world situations and engineering examples put the theory into context. The inclusion of worked problems with solutions help you to learn and further problems then allow you to test and confirm you have fully understood each subject. In total the book contains 800 worked problems, 1000 further problems and 14 revision tests with answers online. This an ideal text for foundation and undergraduate degree students and those on upper level vocational engineering courses, in particular electrical and mechanical. It provides a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. This edition has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's An...

  16. Nuclear technology and anthroposophic theory

    International Nuclear Information System (INIS)

    Leben, S.

    1982-01-01

    The construction of nuclear power plants as a solution to the current energy, crisis is controversial. That was not so in the beginning of the 'peaceful' utilization of nuclear power; with thousands of millions to promote it given as subsidies by the governments it was developing fast, until citizens' initiatives asked ecologic and moral questions delaying the further extension of this energy production. Both positions can be substantiated. But can a first judgement, too, be given with any degree of safety. And what cognitive aids are provided by the anthroposophic theory. This is demonstrated in some aspects. From the contents: The energy crisis and its apparent way out; of the causes: modern scientific methods; New forces: some facts and phenomena; Destructive powers as viewed by ancient mysteries; Of desirable states of conscience and technical forms; spelling their distortion; Nuclear powers and morality; Untimeliness in historicity; 'What's the stance of anthroposophic theory with regard to nuclear technology'. (orig./HP) [de

  17. Electromagnetic forming - a potentially viable technique for accelerator technology

    International Nuclear Information System (INIS)

    Rajawat, R.K.; Desai, S.V.; Kulkarni, M.R.; Dolly Rani; Nagesh, K.V.; Sethi, R.C.

    2003-01-01

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  18. The theory of accelerated particles in AVF cyclotrons

    International Nuclear Information System (INIS)

    Schulte, W.M.

    1978-01-01

    This thesis deals with the study of the motion of accelerated charged particles in an AVF cyclotron. This study has been done on behalf of the VICKSI- project of the Hahn-Meitner-Institut in West Berlin. A new theory is developed which facilitates an accurate description of the influence of the acceleration on the motion in the median plane of a cyclotron. The theory is applied to systems with 1 or 2 Dee electrodes, the frequency of the accelerating voltage being equal to the revolution frequency of the particles or a higher harmonic of this frequency. It turned out that the betatron oscillations in the radial phase space may be disturbed considerably as a result of the acceleration. In the theory the author makes use of the Hamilton formalism. After a number of canonical transformations a Hamilton function was found, in which the most important effects show themselves clearly. The corresponding equations of motion can be solved very quickly with the help of a simple computer program. The results of this theory are in agreement with those of extensive numerical orbit integration programmes. In this thesis attention is also devoted to the centering of the beam in the VICKSI cyclotron just after injection, the possibility to obtain single-turn extraction and the interpretation of the high frequency phase measurements. (Auth.)

  19. Accelerating Technologies: Consequences for the Future Wellbeing of Students

    Science.gov (United States)

    Saltinski, Ronald

    2015-01-01

    Today's students, K-12 and beyond, will face an ominous future unless educators quickly invest in preparing student perspectives for the accelerating technologies that will have global implications for the wellbeing of all humanity. Accelerating technologies are quietly, almost insidiously, transforming the world with little fanfare and certainly…

  20. Electron accelerator technology research in food irradiation

    International Nuclear Information System (INIS)

    Jin Jianqiao; Ye Mingyang; Zhang Yue; Yang Bin; Xu Tao; Kong Xiangshan

    2014-01-01

    Electronic accelerator was applied to instead of cobalt sources for food irradiation, to keep food quality and to improve the effect of the treatment. Appropriate accelerator parameters lead to optimal technique. The irradiation effect is associated with the relationship between uniformity and irradiating speed, the effect of cargo size on radiation penetration, as well as other factors that affect the irradiation effects. Industrialization of electron accelerator irradiation will be looked to the future. (authors)

  1. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  2. Future accelerators using micro-fabrication technology

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1983-01-01

    Historically, each generation of new accelerators has produced a thousand-fold increase over their predecessors. Thus, the d.c. accelerators were surpassed by weak focusing cyclotrons and synchrotrons. Then strong focusing machines surpassed the weak focusing ones, and now we are in the process of designing machines for 10 to 20 TeV. This paper is devoted to the study of the next generation of accelerators which we can contemplate will be in the range of 1000 TeV. The radiation loss in a circular machine would correspond to approximately 20 TeV/turn. It is clear then that the future generation of accelerators will have to be linear accelerators. Furthermore, since the center of mass energy of a 1000 TeV machine is only approximately 1.5 TeV, these linacs will be built in pairs and operated primarily as linear colliders. This meas that the average beam power in one of the devices will be quite large. This in turn leads us toward high efficiency acceleration schemes, capable of high repetition rates. The poor efficiency of laser accelerators and other exotic proposals make them poor candidates for a future generation collider

  3. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  4. Technology and application of two sets of industrial electron accelerators

    International Nuclear Information System (INIS)

    Hua Degen

    2000-01-01

    The radiation industry in China Academy of Engineering Physics (CAEP) has had a big scale, and the two sets of industrial electron accelerators play important roles. The Electron Processing System (E.P.S), which was introduced in 1987, is a powerful electron accelerator. And the 10 MeV Accelerator, which is a traveling wave linear electron accelerator, has the higher electron energy. Both of the stes are equipped the driving devices under the beam, and has made a considerable economic results. This article describes the technology and application of the two electron accelerators. (author)

  5. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  6. Transmission Control of Transport and Technological Cars in Acceleration Mode

    Directory of Open Access Journals (Sweden)

    B. I. Plujnikov

    2015-01-01

    Full Text Available In most structures a transmission of the transport-technological machine (TTM is controlled by automatic systems. In their creating it is necessary to specify the appropriate parameters and algorithms. In the total balance of the machine run time the acceleration mode is the most important. Therefore, an algorithm of the transmission gear ratio change during acceleration largely provides desirable rating of machines.It is known that the process of acceleration is estimated by its dynamic quality and fuel economy. To reach the best rating of both simultaneously is impossible. Therefore, as the criteria of estimate, were chosen the time and fuel consumption during acceleration to a fixed speed value.From a mathematical point of view, these criteria represent the sum of integrals, each of which defines the time or the fuel consumption during acceleration with a certain transmission gear ratio. The problem is formulated as follows: to determine the speed values of the TTM at the moments when the transmission gear ratio is changed providing the minimum values during fixed fuel supply for the estimate criteria. The latter condition in a certain way limits the task, but in explicit form there is no this control action in the dependence data.Given the variety of possible design options for the TTM, the solution is given by a specific example that simplifies the mathematics and makes it easier to understand the results obtained. As a TTM, is considered a passenger car with petrol engine and automatic transmission, which includes a hydrodynamic transformer and three-speed gearbox.A chosen way of solving the problem involves using the theory of ordinary maxima and minima, which allows finding the unknown values of independent variables. The expressions of sub-integral functions are in explicit form obtained and studied for meeting the necessary and sufficient conditions for existence of the extreme point. The result was a proof that in the case of

  7. Reviews of accelerator science and technology

    CERN Document Server

    Chou, Weiren

    2008-01-01

    Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fas...

  8. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  9. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    The activities of Department P-10 in 2006 were as follows: - continuation of development of radiographic 5-6 MeV electron accelerator, - study of very compact accelerating standing wave RF structures for electrons and ions, - Monte Carlo simulations applied to ion radiotherapy. The compact 6 MeV electron linac constructed in Department P-10 were further developed. Some equipment (low input impedance amplifier for beam transformer, up-to-date power supplies for beam position steering coils, magnetron frequency control unit) was added or replaced. The old control racks were replaced by a new single more compact control console. This will allow us to introduce a PLC based control system of accelerator (when money for necessary PLCs is granted). After additional amelioration of radiation shielding followed by Radiological Inspection, the permanent permission No D-15917 for routine operation of this accelerator in electron and X-ray mode was issued by the National Atomic Energy Agency. This allows us to render services to external customers. As it was already reported in 2005, two regimes of operation are actually possible: with X ray output beam or electron beam, depending on user demand. The triode gun, originally thought of as a part of the 6/15 MeV medical accelerator is still showing excellent performance on experimental stand; it was opened to air for about 2 hours to repair the broken wire of the beam scanner. This confirms the possibility of repeated formation of gun dispenser cathode. A new pulse modulator was routinely used in these tests. The special set-up, designed and made in our Department for the TiN coating of accelerator components, was routinely used for coating of various types of RF high power vacuum windows for conventional and superconducting 1.3 GHz accelerating structures. Cooperation with foreign enterprises is promising. Accel Instruments GmbH ordered the coating of two sets (in total 18 pieces) of coaxial and cylindrical vacuum windows for

  10. Advanced Computing for 21st Century Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Dragt, Alex J.

    2004-01-01

    Dr. Dragt of the University of Maryland is one of the Institutional Principal Investigators for the SciDAC Accelerator Modeling Project Advanced Computing for 21st Century Accelerator Science and Technology whose principal investigators are Dr. Kwok Ko (Stanford Linear Accelerator Center) and Dr. Robert Ryne (Lawrence Berkeley National Laboratory). This report covers the activities of Dr. Dragt while at Berkeley during spring 2002 and at Maryland during fall 2003

  11. Theory, technology, and technique of stochastic cooling

    International Nuclear Information System (INIS)

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques

  12. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  13. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  14. Fourier acceleration in lattice gauge theories. I. Landau gauge fixing

    International Nuclear Information System (INIS)

    Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.

    1988-01-01

    Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations

  15. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  16. Control system technology for particle accelerators

    International Nuclear Information System (INIS)

    Tsumura, Yoshihiko; Matsuo, Keiichi; Maruyama, Takayuki.

    1995-01-01

    Control systems for particle accelerators are being designed around open-architecture systems, which allows easy upgrading, high-speed networks and high-speed processors. Mitsubishi Electric is applying realtime Unix operating systems, fiber-distributed data interface (FDDI), shared memory networks and remote I/O systems to achieve these objectives. In the area of vacuum control systems, which requires large-scale sequence control, the corporation is employing general-purpose programmable logic controllers (PLCs) to achieve cost-effective design. Software for these applications is designed around a library of application program interfaces (APIs) that give users direct access to key system functions. (author)

  17. Accelerator science and technology in Europe 2008-2017

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  18. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  19. Discovery machines accelerators for science, technology, health and innovation

    CERN Document Server

    Australian Academy of Sciences

    2016-01-01

    Discovery machines: Accelerators for science, technology, health and innovation explores the science of particle accelerators, the machines that supercharge our ability to discover the secrets of nature and have opened up new tools in medicine, energy, manufacturing, and the environment as well as in pure research. Particle accelerators are now an essential ingredient in discovery science because they offer new ways to analyse the world, such as by probing objects with high energy x-rays or colliding them beams of electrons. They also have a huge—but often unnoticed—impact on all our lives; medical imaging, cancer treatment, new materials and even the chips that power our phones and computers have all been transformed by accelerators of various types. Research accelerators also provide fundamental infrastructure that encourages better collaboration between international and domestic scientists, organisations and governments.

  20. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  1. The possibility of an accelerating cosmology in Rastall's theory

    International Nuclear Information System (INIS)

    Capone, M; Cardone, V F; Ruggiero, M L

    2010-01-01

    In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T μ v;μ ≠ 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical Ω M ≅ 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.

  2. Accelerator Technology: Injection and Extraction Related Hardware: Kickers and Septa

    CERN Document Server

    Barnes, M J; Mertens, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.7 Injection and Extraction Related Hardware: Kickers and Septa' of the Chapter '8 Accelerator Technology' with the content: 8.7 Injection and Extraction Related Hardware: Kickers and Septa 8.7.1 Fast Pulsed Systems (Kickers) 8.7.2 Electrostatic and Magnetic Septa

  3. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Since 1988, epidemics of African cassava mosaic disease (ACMD) caused by a whitefly-transmitted geminivirus have caused severe devastation in Uganda resulting in food shortages and famine in some areas. In order to control the disease and restore food security in the country, appropriate technologies had to be ...

  4. Accelerator technology program. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report

  5. Review of equipment aging theory and technology. Final report

    International Nuclear Information System (INIS)

    Carfagno, S.P.; Gibson, R.J.

    1980-09-01

    The theory and technology of equipment aging is reviewed, particularly as they relate to the qualification of safety-system equipment for nuclear power generating stations. A fundamental degradation model is developed, and its relation to more restricted models (e.g., Arrhenius and inverse-stress models) is shown. The most common theoretical and empirical models of aging are introduced, and limitations on their practical application are analyzed. Reliability theory and its application to the acceleration of aging are also discussed. A compendium of aging data for materials and components, including degradation mechanisms, failure modes and activation energies, is included

  6. Review of equipment aging theory and technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carfagno, S.P.; Gibson, R.J.

    1980-09-01

    The theory and technology of equipment aging is reviewed, particularly as they relate to the qualification of safety-system equipment for nuclear power generating stations. A fundamental degradation model is developed, and its relation to more restricted models (e.g., Arrhenius and inverse-stress models) is shown. The most common theoretical and empirical models of aging are introduced, and limitations on their practical application are analyzed. Reliability theory and its application to the acceleration of aging are also discussed. A compendium of aging data for materials and components, including degradation mechanisms, failure modes and activation energies, is included.

  7. Quantum: information theory: technological challenge

    International Nuclear Information System (INIS)

    Calixto, M.

    2001-01-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs

  8. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  9. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  10. The Use of Linear Accelerator Technology for Health Purpose

    International Nuclear Information System (INIS)

    Susworo, R.

    2003-01-01

    Radiotherapy as a treatment modality has been achieved not long after the discovery of X ray at the end of 19th century, aside from other modalities such as surgery and chemotherapy. The development of this treatment modality consistent with the advanced of technology in general. External radiation which commenced with the usage of 10 KV energy, nowadays energy of 15 MV and electron beams, for health purpose, could be produced thanks to the progress of accelerator technology. In the developed world the usage of proton, neutron and heavy particles which produced by accelerator for cancer treatment has been done since several years ago. (author)

  11. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  12. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  13. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  14. Growth of Structure in Theories of Cosmic Acceleration

    DEFF Research Database (Denmark)

    Cataneo, Matteo

    ) Einstein's General Relativity is the correct theory of gravity in the classical limit. The former implies that regardless of our location in the universe, its properties look the same if smoothed on large enough scales. The latter dictates how the universe as a whole and the structures within it evolve....... Although both dark components are so far in the realm of speculation, a cosmological constant suffers from important theoretical shortcomings. An alternative is to question the validity of General Relativity on cosmological scales. In fact, cosmic acceleration could stem from gravity behaving differently...... on the largest scales, eliminating the need for dark energy. Moreover, modifications to General Relativity lead to changes in the formation of structures compared to standard gravity. In particular, the accretion history of collapsed objects, as well as their abundance as a function of mass and time are key...

  15. SDM center technologies for accelerating scientific discoveries

    International Nuclear Information System (INIS)

    Shoshani, Arie; Altintas, Ilkay; Choudhary, Alok; Critchlow, Terence; Kamath, Chandrika; Ludaescher, Bertram; Nieplocha, Jarek; Parker, Steve; Ross, Rob; Samatova, Nagiza; Vouk, Mladen

    2007-01-01

    With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive, end-to-end data management solutions ranging from initial data acquisition to final analysis and visualization. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced data management technologies to DOE application scientists in astrophysics, climate, fusion, and biology. Equally important, it established collaborations with these scientists to better understand their science as well as their forthcoming data management and data analytics challenges. Our future focus is on improving the SDM framework to address the needs of ultra-scale science during SciDAC-2. Specifically, we are enhancing and extending our existing tools to allow for more interactivity and fault tolerance when managing scientists' workflows, for better parallelism and feature extraction capabilities in their data analytics operations, and for greater efficiency and functionality in users' interactions with local parallel file systems, active storage, and access to remote storage. These improvements are necessary for the scalability and complexity challenges presented by hardware and applications at ultra scale, and are complemented by continued efforts to work with application scientists in various domains

  16. Accelerator Technology Program: Status report, October 1985--March 1986: Volume 1

    International Nuclear Information System (INIS)

    Jameson, R.A.; Schriber, S.O.

    1988-07-01

    This report presents highlights of the major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section details progress associated with the accelerator test stand. Following sections cover achievements in accelerator theory and simulation, LAMPF II accomplishments, and updates on BEAR, beam dynamics, the rf laboratory, p-bar gravity experiment, University of Illinois racetrack microtron, and NBS microtron. Also included are results from the Proton Storage Ring commissioning, developments in very high microwave systems, and advances in the Fusion Materials Irradiation Test rf technology. In addition, the Phoenix Project and the Krypton Fluoride Project are discussed. The report concludes with a listing of papers published by AT-Division personnel during this reporting period. 42 figs., 5 tabs

  17. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  18. Hadron-therapy: applications of accelerator technologies to tumour treatments

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    In the second part the technologies of dose delivery are described emphasising the main challenges of modern radiotherapy, in particular the treatment of moving organs. In this framework the properties of the beams produced by conventional accelerators (cyclotrons and synchrotrons) are compared with the ones due to two novel approaches based on fast cycling machines, as FFAGs and cyclinacs.

  19. Does new product growth accelerate across technology generations?

    NARCIS (Netherlands)

    S. Stremersch (Stefan); E. Muller (Erwin); R. Peres (Renana)

    2010-01-01

    textabstractThe academic literature on the growth acceleration of new products presents a paradox. On the one hand, the diffusion literature concludes that more recently introduced products show faster diffusion than older ones. On the other hand, technology generation literature argues that growth

  20. Development of advanced technological systems for accelerator transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P. [Russian Academy of Sciences, Moscow (Russian Federation)] [and others

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  1. Organizational Theory and Work Technology

    Science.gov (United States)

    Waters, Max L.

    1974-01-01

    Exponential technological change must be accepted and managed as the means to achieve goals of good ethics and an even more satisfying standard of living for all. This will become a reality only to the extent that, as a service function in the organization, clerical procedures become a facilitating catalyst. (Author/SC)

  2. Accelerating Universe and the Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Yasunori Fujii

    2012-10-01

    Full Text Available To understand the accelerating universe discovered observationally in 1998, we develop the scalar-tensor theory of gravitation originally due to Jordan, extended only minimally. The unique role of the conformal transformation and frames is discussed particularly from a physical point of view. We show the theory to provide us with a simple and natural way of understanding the core of the measurements, Λobs ∼ t0−2 for the observed values of the cosmological constant and today’s age of the universe both expressed in the Planckian units. According to this scenario of a decaying cosmological constant, Λobs is this small only because we are old, not because we fine-tune the parameters. It also follows that the scalar field is simply the pseudo Nambu–Goldstone boson of broken global scale invariance, based on the way astronomers and astrophysicists measure the expansion of the universe in reference to the microscopic length units. A rather phenomenological trapping mechanism is assumed for the scalar field around the epoch of mini-inflation as observed, still maintaining the unmistakable behavior of the scenario stated above. Experimental searches for the scalar field, as light as ∼ 10−9 eV, as part of the dark energy, are also discussed.

  3. Technology development for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Kirbie, H.C.

    1993-01-01

    The open-quotes recirculator,close quotes a recirculating heavy-ion accelerator has been identified as a promising approach for an inertial fusion driver. System studies have been conducted to evaluate the recirculator on the basis of feasibility and cost. The recirculator has been shown to have significant cost advantages over other potential driver schemes, but some of the performance requirements exceed the capabilities of present technology. The system studies identified the high leverage areas where advances in technology will significantly impact the cost and performance of a recirculator. One of the high leverage areas is the modulator system which generates the acceleration potentials in the induction cells. The modulator system must be capable of generating the acceleration potentials at peak repetition rates in excess of 100 kHz with variable pulse widths. LLNL is developing a modulator technology capable of driving induction cells using the latest in solid state MOSFET technology. A small scale modulator has been built and tested to prove the concept and the next version is presently being designed. The objective is to demonstrate a modulator operating at 5 kV, 1 kA, with 0.2--1 μs pulse widths while driving an induction cell at >100 kHz within the next year. This paper describes the recirculator, the technology requirements necessary to implement it and the modulator system development that is being pursued to meet these requirements

  4. Applications of ultra-compact accelerator technologies for homeland security

    International Nuclear Information System (INIS)

    Sampayan, S.; Caporaso, G.; Chen, Y.J.; Falabella, S.; Guethlein, G.; Harris, J.R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.C.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Shaklee, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2007-01-01

    We report on a technology development to address explosive detector system throughout with increased detection probability. The system we proposed and are studying consists of a pixelized X-ray based pre-screener and a pulsed neutron source quantitative post verifier. Both technologies are derived from our compact accelerator development program for the Department of Energy Radiography Mission that enables gradients >10MV/m. For the pixelized X-ray source panel technology, we have performed initial integration and testing. For the accelerator, we are presently integrating and testing cell modules. For the verifier, we performed MCNP calculations that show good detectability of military and multi-part liquid threat systems. We detail the progress of our overall effort, including research and modeling to date, recent high voltage test results and concept integration

  5. Accelerating innovation in information and communication technology for health.

    Science.gov (United States)

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts.

  6. Bookshelf (Advances of Accelerator Physics Technologies, edited by Herwig Schooper)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Particle accelerators have always drawn upon the most advanced technologies. For Cockcroft and Walton it was high voltages, while the cyclotrons and synchrotrons that followed depended upon acceleration systems designed in the race to perfect wartime radar. As accelerators became too big for the university workshop to handle, the manufacturers of heavy electrical machinery were brought in to make hundreds of metres of electromagnets. They found the requirements of precision and reliability surpassed the quality of the best of their products and had to develop new methods of insulation and precision assembly. They now readily admit that in meeting our challenge they extended their own grasp of technology to the benefit of their less exotic customers; not to mention their shareholders. The stimulation of industry did not stop there - the physicist, by the nature of his craft, is always the first to know of what has just become possible. In their turn many industries, from those which prospect for petrochemicals to others constructing the channel tunnel, have become the technological beneficiaries of this big science. The latest of these technologies is of course that of superconductivity, and this is fully covered in this book. But in the many chapters which describe the state of the art of accelerator design, the reader will encounter numerous examples where the possible awaits an everyday application. This excellent compendium of advances in the accelerator field is therefore obligatory reading for anyone in an industry striving to deserve the label of high-tech. Not only does it for the first time draw together authoritative contributions by those who lead these technologies, but it explains how the large majority of today's accelerators are put to work to cure patients in hospital and to provide synchrotron radiation for a rich spectrum of new industrial applications. In addition there is much in the volume that is essential reading for the accelerator

  7. Comparison of accelerator technologies for use in ADSS

    International Nuclear Information System (INIS)

    Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P.; Sattarov, A.

    2011-01-01

    accelerators that can provide intense CW proton beams are isochronous cyclotrons (IC) and superconducting linacs. We have examined a case study using a hypothetical ADS core configuration to guide our thinking in evaluating those two accelerator technologies for use in ADS systems. Issues of accelerator power, multiplicity of accelerators, and options for core neutronics and fuel form are discussed.

  8. Self-acceleration in scalar-bimetric theories

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick

    2018-05-01

    We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth

  9. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-01-01

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  10. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  11. EuCARD 2010 Accelerator Technology in Europe

    CERN Document Server

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new infrastructure, develop the existing, and generally make the infrastructure available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD –European Coordination of Accelerator R&D. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement – control systems, RF-gun co-design, thin-film superconducting technology, superconducting transpo...

  12. Primer on theory and operation of linear accelerators in radiation therapy

    International Nuclear Information System (INIS)

    Karzmark, C.J.; Morton, R.J.

    1981-12-01

    This primer is part of an educational package that also includes a series of 3 videotapes entitled Theory and Operation of Linear Accelerators in Radiation Therapy, Parts I, II, and III. This publication provides an overview of the components of the linear accelerator and how they function and interrelate. The auxiliary systems necessary to maintain the operation of the linear accelerator are also described

  13. Accelerator Technology Program. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H - ion sources and injectors, then with accelerator instrumentation and beam dynamics

  14. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Chu, W.T.; Rawls, J.M.

    2000-01-01

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  15. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  16. Study of the Accelerator Technology Development for Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sudjatmoko; Triyono; E-Supriyatni

    2000-01-01

    The hadronic particle beams including both protons, neutrons and charged particles have been studied for cancer therapy by a number of research centers in several countries during the past two decades. In this paper is briefly discussed concerning the accelerator type and its applications. The future trends are seen in the new technological developments like the use of proton gantries, beam scanning techniques, improved patient handling system and in the increasing precision of treatment. (author)

  17. Technology benefits resulting from accelerator production of tritium

    International Nuclear Information System (INIS)

    1998-01-01

    One of the early and most dramatic uses of nuclear transformations was in development of the nuclear weapons that brought World War II to an end. Despite that difficult introduction, nuclear weapons technology has been used largely as a deterrent to war throughout the latter half of the twentieth century. The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium (a heavy form of hydrogen) needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of about 5.5% per year; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within ten years. Some benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high power spallation targets. The APT may save thousands of lives through the production of medical isotopes, and it may contribute to solving the nation's problem in disposing of long-lived nuclear wastes. But the most significant benefit may come from advancing the technology, so that the great potential of accelerator applications can be realized during our lifetimes

  18. Accelerator technology program. Progress report, July-December 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-01-01

    The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H - ion sources and injectors

  19. Leveraging Old Intellectual Property to Accelerate Technology Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Derek Smith

    2013-06-01

    Full Text Available Acquiring or licensing assets to older technologies, including surviving intellectual property rights, is an often-overlooked viable strategy for accelerating technology entrepreneurship. This strategy can help entrepreneurs short-cut the growth of a customer base, reduce development effort, and shorten the time to market with a minimum viable product. However, this strategy is not without risk; entrepreneurs need to be careful that the acquired intellectual property rights are not fraught with issues that could severely outweigh any perceived value. Proper investigation is required to ensure success because the current literature fails to provide tools that an entrepreneur can apply when considering the acquisition of intellectual property. This article includes a case study of a technology company – Piranha Games – that indirectly acquired sole and exclusive access to a substantial historical customer base by acquiring and licensing older technology and surviving intellectual property assets. The founders then leveraged the existing product brand and its historical customers to acquire significant funding and went global with a minimum viable product in three years. The copyright and trademark assets provided value on day one to Piranha Games by making it difficult and risky for others to exploit the technology. Based on this case study, this article offers recommendations to entrepreneurs who may benefit from acquiring old intellectual property to accelerate the growth of their startups.

  20. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fernandez, Alisha R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modular hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.

  1. Accelerator technology program. Progress report, July-December 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-08-01

    We report on the major projects of the Los Alamos National Laboratory's Accelerator Technology Division during the last 6 months of calendar year 1981. We have continued work on the radio-frequency quadrupole linear accelerator; we are doing studies of octupole focusing. We have completed the design study on an unusual electron-linear radiographic machine that could obtain x rays of turbine engines operating under simulated flight-maneuver conditions on a centrifuge. In September we completed the 5-y PIon Generator for Medical Irradiation (PIGMI) program to develop the concept and technology for an accelerator-based facility to treat cancer in a hospital environment. The design and construction package for the site, building, and utilities for the Fusion Materials Irradiation Test (FMIT) facility has been completed, and we have begun to concentrate on tests of the rf power equipment and on the design, procurement, and installation of the 2-MeV proto-type accelerator. The Proton Storage Ring project has continued to mature. The main effort on the racetrack microtron (RTM) has been on the design and construction of various components for the demonstration RTM. On the gyrocon radio-frequency generator project, the gyrocon was rebuilt with a new electron gun and new water-cooled gun-focus coil; these new components have performed well. We have initiated a project to produce a klystron analysis code that will be useful in reducing the electrical-energy demand for accelerators. A free-electron laser amplifier experiment to test the performance of a tapered wiggler at high optical power has been successfully completed

  2. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    Science.gov (United States)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  3. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and its Application

    International Nuclear Information System (INIS)

    Sudjatmoko; Anggraita, P.; Darsono; Sudiyanto; Kusminarto; Karyono

    1999-07-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on Accelerator Technology and Its Application, held in Yogyakarta, 16 january 1996. This proceeding contains papers on accelerator technology, especially electron beam machine. There are 11 papers indexed individually. (ID)

  4. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  5. Compact and energy saving magnet technology for particle accelerators

    International Nuclear Information System (INIS)

    Baurichter, A.

    2013-01-01

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  6. Technological acceleration and organizational transformations in the upstream oil and gas industry

    International Nuclear Information System (INIS)

    Isabelle, M.

    2000-12-01

    The upstream oil and gas industry experienced a dramatic technological acceleration in the early 1970's. The relationships between the agents in this industry have themselves undergone deep changes since that date. This thesis shows that a tight link exists between the technological acceleration and the organizational transformations in the upstream oil and gas industry. In a first part, it focuses on the economic theory's developments concerning industrial organization. In a second part, it applies these developments to three types of relations: those between the owner-states of hydrocarbon resources and the international petroleum companies; those between the international petroleum companies and their subcontractors; and finally those between the international petroleum companies themselves. (author)

  7. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    International Nuclear Information System (INIS)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-01-01

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current (∼1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets

  8. The impact of the ISR on accelerator physics and technology

    International Nuclear Information System (INIS)

    Bryant, P J

    2012-01-01

    The ISR (Intersecting Storage Rings) were two intersecting proton synchrotron rings each with a circumference of 942 m and eight-fold symmetry that were operational for 13 years from 1971 to 1984. The CERN PS injected 26 GeV/c proton beams into the two rings that could accelerate up to 31.4 GeV/c. The ISR worked for physics with beams of 30-40 A over 40-60 hours with luminosities in its superconducting low-β insertion of 1031-1032 cm-2 s-1. The ISR demonstrated the practicality of collider beam physics while catalysing a rapid advance in accelerator technologies and techniques. (author)

  9. Analysis of accelerants and fire debris using aroma detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  10. Summary of Section New Accelerators, Detectors, Calculus and New Technologies

    International Nuclear Information System (INIS)

    Catani, L.; Tangaro, S.; Tessarotto, F.

    2009-01-01

    Deployment and development of advanced technologies for accelerators, detectors, electronics and computing is inherent in everyday activity of all research projects and experiments funded by INFN. However, when a part of the research work can be clearly identified as an R D activity aimed at the development of a new technology or procedure for specific, or a more general, application it is worthwhile to cut it off and manage it as an independent self-consistent experiment. For many of them it is also easy to find applications in other research discipline or industry. In this case it is important to verify the potentiality of the technology, customize it and improve it, in collaboration with the end user, for the specific application.

  11. Accelerating nano-technological innovation in the Danish construction industry

    DEFF Research Database (Denmark)

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

    . The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked......  By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which...... concludes that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterised by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse...

  12. Governance in Blockchain Technologies & Social Contract Theories

    Directory of Open Access Journals (Sweden)

    Wessel Reijers

    2016-12-01

    Full Text Available This paper is placed in the context of a growing number of social and political critiques of blockchain technologies. We focus on the supposed potential of blockchain technologies to transform political institutions that are central to contemporary human societies, such as money, property rights regimes, and systems of democratic governance. Our aim is to examine the way blockchain technologies canbring about - and justify - new models of governance. To do so, we draw on the philosophical works of Hobbes, Rousseau, and Rawls, analyzing blockchain governance in terms of contrasting social contract theories. We begin by comparing the justifications of blockchain governance offered by members of the blockchain developers’ community with the justifications of governance presented within social contract theories. We then examine the extent to which the model of governance offered by blockchain technologies reflects key governance themes and assumptions located within social contract theories, focusing on the notions of sovereignty, the initial situation, decentralization and distributive justice.

  13. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  14. CLIC: Key technology developments for the CLIC accelerator

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  15. Acceleration of cell factories engineering using CRISPR-based technologies

    DEFF Research Database (Denmark)

    Ronda, Carlotta

    potentially be standardized in an automatable platform and, in the future be integrated with metabolic modeling tools. In particularly it describes the technologies developed in the three widely used organisms: E. coli, S. cerevisiae and CHO mammalian cells using the recent breakthrough CRISPR/ Cas9 system....... These include CRMAGE, a MAGE improved recombineering platform using CRISPR negative selection, CrEdit, a system for multi-loci marker-free simultaneous gene and pathway integrations and CRISPy a platform to accelerate genome editing in CHO cells....

  16. Use of permanent magnets in accelerator technology: Present and future

    International Nuclear Information System (INIS)

    Halbach, K.

    1987-05-01

    This report is a collection of viewgraphs discussing accelerator magnets. Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildly preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted. 4 refs., 33 figs

  17. Proceeding on the scientific meeting and presentation on accelerator technology and its applications: physics, nuclear reactor

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Sudjatmoko; Darsono; Tri Marji Atmono; Tjipto Sujitno; Wahini Nurhayati

    2012-01-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  18. Proceeding on the Scientific Meeting and Presentation on Accelerator Technology and Its Applications

    International Nuclear Information System (INIS)

    Susilo Widodo; Darsono; Slamet Santosa; Sudjatmoko; Tjipto Sujitno; Pramudita Anggraita; Wahini Nurhayati

    2015-11-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PSTA BATAN on 30 November 2015. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 20 papers about physics and nuclear reactor. (PPIKSN)

  19. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  20. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  1. Accelerator technology program. Progress report, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Jameson, R.A. (comps.)

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  2. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  3. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  4. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology; FINAL

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  5. Education in a rapidly advancing technology: Accelerators and beams

    International Nuclear Information System (INIS)

    Month, Mel

    2000-01-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  6. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  7. Immersed in media telepresence theory, measurement & technology

    CERN Document Server

    Lombard, Matthew; Freeman, Jonathan; IJsselsteijn, Wijnand; Schaevitz, Rachel J

    2015-01-01

    Highlights key research currently being undertaken within the field of telepresence, providing the most detailed account of the field to date, advancing our understanding of a fundamental property of all media - the illusion of presence; the sense of "being there" inside a virtual environment, with actual or virtual others. This collection has been put together by leading international scholars from America, Europe, and Asia. Together, they describe the state-of-the-art in presence theory, research and technology design for an advanced academic audience. Immersed in Media provides research t

  8. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  9. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  10. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  11. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  12. Technological acceleration and organizational transformations in the upstream oil and gas industry; Acceleration technologique et transformations organisationnelles dans l'industrie d'exploration-production d'hydrocarbures

    Energy Technology Data Exchange (ETDEWEB)

    Isabelle, M

    2000-12-15

    The upstream oil and gas industry experienced a dramatic technological acceleration in the early 1970's. The relationships between the agents in this industry have themselves undergone deep changes since that date. This thesis shows that a tight link exists between the technological acceleration and the organizational transformations in the upstream oil and gas industry. In a first part, it focuses on the economic theory's developments concerning industrial organization. In a second part, it applies these developments to three types of relations: those between the owner-states of hydrocarbon resources and the international petroleum companies; those between the international petroleum companies and their subcontractors; and finally those between the international petroleum companies themselves. (author)

  13. Study of Tandem Accelerator Technology and Its Prospects

    International Nuclear Information System (INIS)

    Sigit-Hariyanto; Sudjatmoko; Djoko-S-Pudjorahardjo; Suryadi; Widdi-Usada; Suprapto; Djasiman; Tono-Wibowo; Agus-Purwadi

    2000-01-01

    Tandem accelerator is an ion acceleration tool in which negative ions injected in the accelerator tube and stripped to become positive ions, then accelerated by electrostatic high voltage such that its energy is multiplied. In this paper, we describe the prospect of accelerator application briefly in agriculture and biotechnology, industry, health and medicine, environment fields. Technical study on tandem accelerator included SNICS and alphatross ion sources, acceleration system and stripper system. The study result for many kinds of negative ions and its current which should be injected in the accelerator tube and the output of tandem accelerator H + , and the distribution of C + , Ni + , Au + , Br + ion on varying charge state is shown. (author)

  14. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  15. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  16. Theory and measurements of emittance preservation in plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditions necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.

  17. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  18. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  19. Theoretical and technological building blocks for an innovation accelerator

    Science.gov (United States)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  20. Recent progress in accelerator activities at Raja Ramanna Centre for Advanced Technology, Indore

    International Nuclear Information System (INIS)

    Gupta, P.D.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology, Indore is a premier national institute engaged in R and D work in front-line areas of accelerator science, technology, and applications. The Centre has designed, developed, and commissioned two synchrotron radiation sources: Indus-1 and Indus-2, serving as national facilities. The Centre is pursuing various other accelerator activities viz. development of a high energy proton accelerator for a spallation neutron source, electron accelerators for food irradiation and industrial applications and free electron lasers (FEL) in THz and IR spectral region, study of innovative schemes of laser driven electron acceleration, and development of advanced technologies to support these activities such as superconducting RF (SCRF) technology, cryogenics, RF power, magnets, ultra high vacuum and control instrumentation. In this talk, an overview of the progress made in accelerator activities at Raja Ramanna Centre for Advanced Technology in recent years is be presented

  1. Basics of Accelerator Science and Technology at CERN

    CERN Document Server

    2013-01-01

    This course will provide an introductory level training in General Accelerator Physics for CERN staff (mainly engineers and technical engineers) who have not yet attended one of the regular CERN Accelerator School Introductory courses. This one-week course will review the core topics of accelerator physics with special emphasis on CERN machines and CERN applications, respectively. Application is by invitation only.

  2. Self-accelerating universe in scalar-tensor theories after GW170817

    Science.gov (United States)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  3. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  4. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb$_{3}$Sn for realizing Higher Field - NbTi to Nb$_{3}$Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb$_{3}$Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb$_{3}$Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb$_{3}$Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phase...

  5. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  6. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    Science.gov (United States)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  7. New generation of compact electron accelerators for radiation technologies

    International Nuclear Information System (INIS)

    Auslender, V.L.; Balakin, V.E.; Kraynov, G.S.

    1995-01-01

    Compact electron accelerators with energy range 0.25-1.0 MeV and beam power up to 32 kw are described. The feeding high voltage is formed by converter (working frequency 20 khz), coreless step-up transformer and a set of rectifying sections. The rectifying multiplier circuit used in rectifying sections permits to reach voltage gradient along accelerator's axis up to 14 kV/cm. The accelerators with vertical and horizontal position are described. The accelerators can be produced together with local radiation shielding and various underbeam transportation systems for irradiation of different products. Such version can be installed in any room facing general requirements for electric equipment

  8. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  9. A theory of two-beam acceleration of charged particles in a plasma waveguide

    International Nuclear Information System (INIS)

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates

  10. ACCELERATOR TRANSMUTATION OF WASTE TECHNOLOGY AND IMPLEMENTATION SCENARIOS

    International Nuclear Information System (INIS)

    Beller, D.; Tuyle, G. van

    2000-01-01

    During 1999, the U.S. Department of Energy, in conjunction with its nuclear laboratories, a national steering committee, and a panel of world experts, developed a roadmap for research, development, demonstration, and deployment of Accelerator-driven Transmutation of Waste (ATW). The ATW concept that was examined in this roadmap study was based on that developed at the Los Alamos National Laboratory (LANL) during the 1990s. The reference deployment scenario in the Roadmap was developed to treat 86,300 tn (metric tonnes initial heavy metal) of spent nuclear fuel that will accumulate through 2035 from existing U.S. nuclear power plants (without license extensions). The disposition of this spent nuclear reactor fuel is an issue of national importance, as is disposition of spent fuel in other nations. The U.S. program for the disposition of this once-through fuel is focused to characterize a candidate site at Yucca Mountain, Nevada for a geological repository for spent fuel and high-level waste. The ATW concept is being examined in the U.S. because removal of plutonium minor actinides, and two very long-lived isotopes from the spent fuel can achieve some important objectives. These objectives include near-elimination of plutonium, reduction of the inventory and mobility of long-lived radionuclides in the repository, and use of the remaining energy content of the spent fuel to produce power. The long-lived radionuclides iodine and technetium have roughly one million year half-lives, and they are candidates for transport into the environment via movement of ground water. The scientists and engineers who contributed to the Roadmap Study determined that the ATW is affordable, doable, and its deployment would support all the objectives. We report the status of the U.S. ATW program describe baseline and alternate technologies, and discuss deployment scenarios to support the existing U.S. nuclear capability and/or future growth with a variety of new fuel cycles

  11. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  12. Assessment of the adequacy of US accelerator technology for Department of Energy missions

    International Nuclear Information System (INIS)

    Gerry, E.T.; Mani, S.A.

    1983-09-01

    Accelerator technology has made enormous impact across a wide field of research, industrial, and commercial endeavor and new developments are projected to broaden this technology transfer and open up new applications not previously possible or economically attractive. At the same time, however, the broad multi-agency base of support for the development of accelerator technology has largely evaporated leaving the program with the Department of Energy (DOE) Office of Energy Research (OER) as the only major National effort not directed at specific narrow applications. In order to continue to reap the benefits and spin-offs from this area of technology, an expanded long-term funding committment is vigorously endorsed since there appear to be major payoff potential in several areas of national need. Three specific recommendations are made that would accelerate the projected benefits from accelerator technology. An expanded effort should be undertaken to develop the key technologies of high brightness, high current, large area, long life, reliable ion, electron and RF sources along with associated studies directed toward accelerator design optimization. A centralized computational facility with a dedicated staff and library of programs for simulation of accelerator phenomenology should be created similar to that for the magnetic fusion program. Advanced accelerator R and D should be funded at a steady level to support a long range accelerator applications program

  13. Proceedings of the 5th symposium on accelerator science and technology

    International Nuclear Information System (INIS)

    1985-01-01

    This proceedings are included 157 papers to submitting 5th Symposium on Accelerator Science and Technology. The papers are presented under the following main topics: a) invited talk (3 papers), b) status of accelerator construction and operation (12 papers), c) ion source and DC accelerator(7 papers), d) linac (16 papers), e) RF acceleration system (15 papers), f) beam monitor and beam handling (20 papers), g) magnet and power supply (13 papers), h) vacuum (12 papers), i) beam dynamics (20 papers), j) accelerator operation and control (22 papers), k) radiation and safety (8 papers), 1) future project (8 papers) and so on. (J.P.N.)

  14. Technological Mediation and Power: Postphenomenology, Critical Theory, and Autonomist Marxism

    NARCIS (Netherlands)

    Bantwal Rao, M.; Jongerden, J.P.; Lemmens, P.C.; Ruivenkamp, G.T.P.

    2015-01-01

    This article focuses on the power of technological mediation from the point of view of autonomist Marxism (Hardt, Negri, Virno, Berardi, Lazzarrato). The first part of the article discusses the theories developed on technological mediation in postphenomenology (Ihde, Verbeek) and critical theory of

  15. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  16. Accelerating technological change. Towards a more sustainable transport system

    NARCIS (Netherlands)

    van der Vooren, A.

    2014-01-01

    This thesis provides insights into the mechanisms of technological change by capturing the complexity that characterises the current technological transition of the transport system into existing evolutionary models of technological change. The transition towards a more sustainable transport system

  17. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K [Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark); Nielsen, Niels Axel; Moeller, J S; Hansen, Jakob Fritz; Froekjaer Strand, I [Technical Univ. of Denmark, Kgs. Lyngby (Denmark)

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  18. The key physics and technology issues in the intense-beam proton accelerators

    International Nuclear Information System (INIS)

    Fu Shinian; Fang Shouxian

    2002-01-01

    Beam power is required to raise one order in the next generation spallation neutron source. There are still some physics and technology difficulties need to be overcome, even though no fatal obstacle exists due to the rapid development of the technology in intense-beam accelerator in recent years. Therefore, it is highly demanded to clarify the key issues and to lunch an R and D program to break through the technological barriers before author start to build the expansive machine. The new technological challenge arises from the high beam current, the high accelerator power and the high demand on the reliability and stability of the accelerator operation. The author will discuss these issues and the means to resolve them, as well as the state of the art in a few of major technological disciplines. Finally, the choice the framework of intense-beam accelerator is discussed

  19. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  20. Examining Philosophy of Technology Using Grounded Theory Methods

    Directory of Open Access Journals (Sweden)

    Mark David Webster

    2016-03-01

    Full Text Available A qualitative study was conducted to examine the philosophy of technology of K-12 technology leaders, and explore the influence of their thinking on technology decision making. The research design aligned with CORBIN and STRAUSS grounded theory methods, and I proceeded from a research paradigm of critical realism. The subjects were school technology directors and instructional technology specialists, and data collection consisted of interviews and a written questionnaire. Data analysis involved the use of grounded theory methods including memo writing, open and axial coding, constant comparison, the use of purposive and theoretical sampling, and theoretical saturation of categories. Three broad philosophy of technology views were widely held by participants: an instrumental view of technology, technological optimism, and a technological determinist perspective that saw technological change as inevitable. Technology leaders were guided by two main approaches to technology decision making, represented by the categories Educational goals and curriculum should drive technology, and Keep up with technology (or be left behind. The core category and central phenomenon that emerged was that technology leaders approached technology leadership by placing greater emphasis on keeping up with technology, being influenced by an ideological orientation to technological change, and being concerned about preparing students for a technological future. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs160252

  1. Development plan of basic technology for a high intensity proton linear accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.

    1990-01-01

    The national program called OMEGA (Option Making Extra Gains from Actinide and Fission Products) has started with the aim of promoting the research and development of the new technologies for nuclear waste partitioning and transmutation. As a part of this program, Japan Atomic Energy Research Institute, JAERI, has laid out several R and D plans for accelerator based actinide transmutation. The present article first outlines the status of the high intensity proton linear accelerator. Then it describes the time schedule for the development of a high intensity proton linac, focusing on the first step development (basic technology accelerator), second step development (engineering test accelerator, and third step development (commercial plant). It also outlines the conceptual design study and preliminary design calculations for basic technology accelerator, focusing on general consideration, ion source, radio frequency quadrupole, drift tube linac, and high beta linac. (N.K.)

  2. From tracking code to analysis generalised Courant-Snyder theory for any accelerator model

    CERN Document Server

    Forest, Etienne

    2016-01-01

    This book illustrates a theory well suited to tracking codes, which the author has developed over the years. Tracking codes now play a central role in the design and operation of particle accelerators. The theory is fully explained step by step with equations and actual codes that the reader can compile and run with freely available compilers. In this book, the author pursues a detailed approach based on finite “s”-maps, since this is more natural as long as tracking codes remain at the center of accelerator design. The hierarchical nature of software imposes a hierarchy that puts map-based perturbation theory above any other methods. This is not a personal choice: it follows logically from tracking codes overloaded with a truncated power series algebra package. After defining abstractly and briefly what a tracking code is, the author illustrates most of the accelerator perturbation theory using an actual code: PTC. This book may seem like a manual for PTC; however, the reader is encouraged to explore...

  3. Comparing technological hype cycles: Towards a theory

    NARCIS (Netherlands)

    Lente, H. van; Spitters, C.; Peine, A.

    2013-01-01

    The notion of ‘hype’ iswidely used and represents a temptingway to characterize developments in technological fields. The term appears in business as well as in academic domains. Consultancy firms offer technological hype cycle models to determine the state of development of technological fields

  4. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  5. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  6. SRF technology at accel for worldwide accelerator projects

    International Nuclear Information System (INIS)

    Bauer, S.; Griep, B.; Peiniger, M.; Pekeler, M.; Piel, C.; Stein, P. vom; Vogel, H.

    2003-01-01

    Within the last two years activities at ACCEL for international accelerator projects using superconducting cavities have steadily increased. We report on our production work for CERN (HOM couplers for LHC cavities), DESY (TESLA cavities and couplers), Forschungszentrum Juelich (turn key low beta SRF module), SRRC, CLS and Cornell (turn key 500 MHz SRF modules. The production a superconducting Landau accelerator module for BESSY has started recently. In addition studies are under way for a superconducting 40 MeV proton/deuteron linac and for superconducting low beta multi gap structures. (author)

  7. The impact of new computer technology on accelerator control

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.; Paxson, V.

    1987-01-01

    This paper describes some recent developments in computing and stresses their application to accelerator control systems. Among the advances that promise to have a significant impact are: i) low cost scientific workstations; ii) the use of ''windows'', pointing devices and menus in a multitasking operating system; iii) high resolution large-screen graphics monitors; iv) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, the authors examine the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  8. The impact of new computer technology on accelerator control

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.; Paxson, V.

    1987-04-01

    This paper describes some recent developments in computing and stresses their application in accelerator control systems. Among the advances that promise to have a significant impact are (1) low cost scientific workstations; (2) the use of ''windows'', pointing devices and menus in a multi-tasking operating system; (3) high resolution large-screen graphics monitors; (4) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, this paper examines the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  9. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    Science.gov (United States)

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  10. Technological Innovation and Strategic Human Resource Management: Developing a Theory.

    Science.gov (United States)

    Gattiker, Urs E.

    Technological innovation affects the structure and content of jobs. Research indicates that there is a need for a theory of technological innovation and strategic human resource management considering several factors, such as an employee's beliefs about the effect of technological innovations on the quality of work life and work content.…

  11. Role of accelerator science and technology in medical science

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2006-01-01

    Updated status of compact and advanced-compact medical accelerator development is reviewed. In their applications, medical physics and medical physicist are necessary. Their educational programs have started in several universities and institutes. As one important new trend on life-science, the research on the synergy of DDS (Drug Delivery System) and physical energies are proposed. (author)

  12. The accelerated site technology deployment program presents the segmented gate system

    International Nuclear Information System (INIS)

    Patteson, Raymond; Maynor, Doug; Callan, Connie

    2000-01-01

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country

  13. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  14. The R/D of high power proton accelerator technology in China

    Science.gov (United States)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  15. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P., E-mail: povinec@fmph.uniba.sk; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-15

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for {sup 14}C and {sup 129}I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  16. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Science.gov (United States)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  17. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  18. Accelerating Atmospheric Modeling Through Emerging Multi-core Technologies

    OpenAIRE

    Linford, John Christian

    2010-01-01

    The new generations of multi-core chipset architectures achieve unprecedented levels of computational power while respecting physical and economical constraints. The cost of this power is bewildering program complexity. Atmospheric modeling is a grand-challenge problem that could make good use of these architectures if they were more accessible to the average programmer. To that end, software tools and programming methodologies that greatly simplify the acceleration of atmospheric modeling...

  19. Linking theory to practice in learning technology research

    Directory of Open Access Journals (Sweden)

    Cathy Gunn

    2012-03-01

    Full Text Available We present a case to reposition theory so that it plays a pivotal role in learning technology research and helps to build an ecology of learning. To support the case, we present a critique of current practice based on a review of articles published in two leading international journals from 2005 to 2010. Our study reveals that theory features only incidentally or not at all in many cases. We propose theory development as a unifying theme for learning technology research study design and reporting. The use of learning design as a strategy to develop and test theories in practice is integral to our argument. We conclude by supporting other researchers who recommend educational design research as a theory focused methodology to move the field forward in productive and consistent ways. The challenge of changing common practice will be involved. However, the potential to raise the profile of learning technology research and improve educational outcomes justifies the effort required.

  20. Development of small applied accelerator in Tokyo Institute of Technology

    CERN Document Server

    Hattori, T

    2002-01-01

    Interdigital-H(IH) Linac was constructed and applied to materials research in the University. IH Linac uses 1.6 MV small tandem pelletron and accelerates ion (>Q/A=1/4) from 240 KeV to 2.4 MeV. The secondary IH Linac was built and increased the energy to 3.4 MeV/u. In order to apply linac to therapy, IH Linac for PET (Position Emission Tomography), Carbon 6 MeV/u Linac for cancer therapy, APF (Alternating Phase Focus)-IH prototype linac, Carbon 2 MeV/u test APF-IH linac were developed. On application to semiconductor and industry, IHQ type MeV ion implantation device, APF-IH type MeV ion implantation device and high-energy electron accelerator were developed. A bone density measurement instrument was developed and the data was proved better values than ordinary instrument. The problems of prototype small accelerator are summarized. (S.Y.)

  1. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    CERN Document Server

    Bryl-Sandelewska, T

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (approx 3 to approx 30 kGy and approx 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations.

  2. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    International Nuclear Information System (INIS)

    Bryl-Sandelewska, T.; Panta, P.P.

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (∼ 3 to ∼30 kGy and ∼ 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations. (author)

  3. Applying Social Capital Theory and the Technology Acceptance ...

    African Journals Online (AJOL)

    Applying Social Capital Theory and the Technology Acceptance Model in information and knowledge sharing research. ... Inkanyiso: Journal of Humanities and Social Sciences ... The paper explains the components, relevance and practical applicability of the two theories to information and knowledge sharing research.

  4. Linking Theory to Practice in Learning Technology Research

    Science.gov (United States)

    Gunn, Cathy; Steel, Caroline

    2012-01-01

    We present a case to reposition theory so that it plays a pivotal role in learning technology research and helps to build an ecology of learning. To support the case, we present a critique of current practice based on a review of articles published in two leading international journals from 2005 to 2010. Our study reveals that theory features only…

  5. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  6. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  7. Integrative production technology theory and applications

    CERN Document Server

    Özdemir, Denis

    2017-01-01

    This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. .

  8. Catastrophe theory with application in nuclear technology

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    The monograph is structured on the following seven chapters: 1. Correlation of risk, catastrophe and chaos at the level of polyfunctional systems with nuclear injection; 1.1 Approaching the risk at the level of power systems; 1.2 Modelling the chaos-catastrophe-risk correlation in the structure of integrated classical and nuclear processes; 2. Catastrophe theory applied in ecosystems models and applications; 2.1 Posing the problems in catastrophe theory; 2.2 Application of catastrophe theory in the engineering of the power ecosystems with nuclear injection; 4.. Decision of abatement of the catastrophic risk based on minimal costs; 4.1 The nuclear power systems sensitive to risk-catastrophe-chaos in the structure of minimal costs; 4.2 Evaluating the market structure on the basis of power minimal costs; 4.3 Decisions in power systems built on minimal costs; 5. Models of computing the minimal costs in classical and nuclear power systems; 5.1 Calculation methodologies of power minimal cost; 5.2 Calculation methods of minimal costs in nuclear power sector; 6. Expert and neuro expert systems for supervising the risk-catastrophe-chaos correlation; 6.1 The structure of expert systems; 6.2 Application of the neuro expert program; 7. Conclusions and operational proposals; 7.1 A synthesis of the problems presented in this work; 7.2 Highlighting the novel aspects applicable in the power systems with nuclear injection

  9. Linking theory to practice in learning technology research

    OpenAIRE

    Cathy Gunn; Caroline Steel

    2012-01-01

    We present a case to reposition theory so that it plays a pivotal role in learning technology research and helps to build an ecology of learning. To support the case, we present a critique of current practice based on a review of articles published in two leading international journals from 2005 to 2010. Our study reveals that theory features only incidentally or not at all in many cases. We propose theory development as a unifying theme for learning technology research study design and repor...

  10. Accelerating the green agenda through innovative building technologies

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2015-08-01

    Full Text Available facilities. However, the delivery process associated with conventional building technologies, i.e., brick and mortar, is slow due, in large part, to the technology requirements (diverse and plentiful building systems, products and components assembled... in countries that have a tradition of brick and mortar construction. However the market penetration of IBT is increasing in the latter markets in response to the pressures emanating from raw materials scarcity, the demand for higher performing buildings...

  11. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  12. The Temporal Sensitivity of Enforced Accelerated Work Pace: A grounded theory building approach

    Directory of Open Access Journals (Sweden)

    Graham John James Kenealy, BA (Hons, Ph.D. Candidate

    Full Text Available This research explores how a large national UK government organisation copes with radical structural change over time and provides an insight into the temporal effects of ‘Enforced Accelerated Work Pace’ on behaviour and receptivity within an organisational context. The stages of ‘Acceptance’, ‘Reaction’ and‘Withdrawal’ capture the essence of the ‘Coping Reflex Actions relating to Enforced Accelerated Work Pace’, all sensitive to the effects of time. ‘Temporal Sensitivity’; the duration of the changes to work patterns played a large part in the behavioural responses. The underlying logic of this research is grounded theory building, a general method that works well with qualitative data collection approaches and involves inducting insights from field based, case data (Glaser, 1998. A methodology discovered and developed by Glaser and Strauss (1967, negating all others.

  13. Clock hypothesis of relativity theory, maximal acceleration, and Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Potzel, W., E-mail: wpotzel@ph.tum.de [Technische Universität München, Physik-Department E15 (Germany)

    2016-12-15

    Results obtained several years ago using the high-resolution 93.3 keV Mössbauer resonance in {sup 67}ZnO and β{sup ′}-brass have been reanalyzed with the notion that the clock hypothesis of Special Relativity Theory is not sufficient, but that a maximal acceleration a{sub m} exists and that an acceleration a contributes to the temperature dependence of the center shift by a term ±(1/2)(a/a{sub m}){sup 2}. The significance of the sign of this term is discussed in detail. For both substances a lower limit of a{sub m}>1.5⋅10{sup 21}m/s {sup 2} is inferred which is more than two orders of magnitude larger than - and thus excludes - the value a{sub m}=1⋅10{sup 19}m/s {sup 2} suggested by {sup 57}Fe rotor experiments.

  14. The overview and history of permanent magnet devices in accelerator technology

    International Nuclear Information System (INIS)

    Kraus, R.H.

    1994-01-01

    This paper looks at the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. A brief history of permanent-magnet use in accelerator physics and technology is outlined, some of the general design considerations are presented, and several material properties of concern for particle accelerator applications are discussed

  15. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  16. The overview and history of permanent magnet devices in accelerator technology

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1993-01-01

    This paper reviews the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. The history of permanent-magnet use in accelerator physics and technology is outlined, general design considerations are presented, and material properties of concern for particle accelerator applications are discussed

  17. A proton medical accelerator by the SBIR route — an example of technology transfer

    Science.gov (United States)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  18. A proton medical accelerator by the SBIR route - an example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1989-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience on this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. (orig.)

  19. A proton medical accelerator by the SBIR route: An example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig

  20. Current and future accelerator technologies for charged particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Hywel, E-mail: hywel.owen@manchester.ac.uk [School of Physics and Astronomy, University of Manchester (United Kingdom); Cockcroft Institute for Accelerator Science and Technology, Daresbury Science and Innovation Campus, Warrington WA4 4AD (United Kingdom); Lomax, Antony [Paul Scherrer Institute, Villigen (Switzerland); Department of Physics, ETH Zurich (Switzerland); Jolly, Simon [Department of Physics and Astronomy, University College London (United Kingdom)

    2016-02-11

    The past few years have seen significant developments both of the technologies available for proton and other charged particle therapies, and of the number and spread of therapy centres. In this review we give an overview of these technology developments, and outline the principal challenges and opportunities we see as important in the next decade. Notable amongst these is the ever-increasing use of superconductivity both in particle sources and for treatment delivery, which is likely to greatly increase the accessibility of charged particle therapy treatments to hospital centres worldwide.

  1. Improving superconducting RF technology for high energy particle accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1991-01-01

    A review of the state of the art is given. It shows recent proofs of success of the technology. An important R and D effort remains to be done in order to collect all the expectable benefits of RF superconductivity. (author)

  2. Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories

    OpenAIRE

    Chernicoff, Mariano; Guijosa, Alberto

    2008-01-01

    We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N=4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a ...

  3. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

    Energy Technology Data Exchange (ETDEWEB)

    Caryotakis, G.

    2004-12-15

    This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

  4. Materials technology for accelerator production of fissile isotopes

    International Nuclear Information System (INIS)

    Horak, J.A.

    1978-02-01

    The materials used for the accelerator production of fissile isotopes must enable the facility to achieve maximum fuel production at a minimum cost. Neutron production in the target would be maximized by use of thorium cooled with Pb--56 percent Bi or with sodium. The thorium should be ion-plated with approximately 1 mil of nickel or stainless steel for retention of fission products. The target container will have to be replaced at frequent intervals because of the copious quantities of neutronically produced helium and hydrogen in the container. Replacement would coincide with shutdown of the facility for the removal of the fissile material produced. If sodium is used to cool both the target and fertile blanket, a simple basket-type target container could be used. This would greatly reduce radiation effects in the target container. Type 316 stainless steel or V--20 wt percent Ti should perform satisfactorily as a target container. The fertile blanket should be 233 Th or 238 U that is coated with approximately 1 mil of nickel or stainless steel and cooled with sodium. The blanket container could be an austenitic stainless steel such as type 304 or 316; some ferritic alloys may also provide a satisfactory blanket container. 31 references

  5. Accelerating the deployment of offshore renewable energy technologies. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2011-02-15

    Offshore wind energy and ocean energy (i.e. wave and tidal) are at different stages of technology development and deployment, and, as such, they require different approaches for successful deployment. However, regardless of their deployment stage, these technologies may face common hurdles in their way to market competitiveness. IEA-RETD has completed a study with the overall objective to assist policy makers and project developers in a better understanding of these barriers and the specifics of offshore renewable energy and to give them practical guidelines. These include an offshore energy deployment framework, substantiated by evidence-based analyses, and recommendations for future policies design, including best practices for allocation of seafloor rights.

  6. To accelerate technology of in situ leaching and heap leaching for mining mineral resources of China

    International Nuclear Information System (INIS)

    Luo Mei

    1999-01-01

    Recently, in situ leaching and heap leaching are the most advanced technology for mining low-grade mineral resources in the world. The author briefly expounds the basic concept and advantages of in situ leaching and heap leaching and deals with the main research content of the hydrometallurgical technology of in situ leaching and heap leaching, its development and present application at home and abroad. Having expounded the gap existing between China's technology of in situ leaching and heap leaching and the foreign technology, the author forecasts the prospects of accelerating the mining of China's mineral resources by using the technology of in situ leaching and heap leaching

  7. Use of permanent magnets in accelerator technology: Present and future

    International Nuclear Information System (INIS)

    Halbach, K.

    1987-01-01

    Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildy preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted

  8. Recent advances in the technology of superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Taylor, C.E.

    1985-05-01

    Recent progress in technology of high-current-density cables for SSC model magnets is summarized. NbTi cable with J/sub c/ up to 50% higher than Tevatron cable can be expected. Magnetization effects can be predicted and corrected with several new techniques. Development of Superconductor with 2 to 3 μm filament diameter and high J/sub c/ is expected. 15 refs., 3 figs

  9. Accelerator driven transmutation technologies conference wrap-up

    Energy Technology Data Exchange (ETDEWEB)

    Favale, A.J. [Grumman Aerospace Corporation, Las Vegas, NV (United States)

    1995-10-01

    This presentation is the viewgraphs used by the author to summarize the highlights of the presentations made at the conference. No article was available for this presentation. The author highlights what he felt were the major highlights of this conference. He looks at the conference in terms of five major areas which he encompases in terms of general questions: why are they needed?; what technologies are involved?; what countries have shown interest?; what are the issues?; and what are the underlying drivers?

  10. Marine Forces Reserve: Accelerating Knowledge Flow through Asynchronous Learning Technologies

    Science.gov (United States)

    2014-12-19

    pedagogic techniques that are infeasible in the classroom, and they suggest that in some respects technologically intermediated learning can be even better...appropriate for this research (Yin, 1994). We employ multiple techniques for data collection in the field. Foremost, through a unique relationship between...initial interpretations are both grounded firmly in the data and meaningful to organization participants. The Researchers’ relationship with the focal

  11. Accelerating cancer systems biology research through Semantic Web technology.

    Science.gov (United States)

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  12. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  13. Omega-mode perturbation theory and reactor kinetics for analyzing accelerator-driven subcritical systems

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2003-01-01

    An ω-mode first-order perturbation theory is developed for analyzing the time- and space-dependent neutron behavior in Accelerator-Driven Subcritical Systems (ADSS). The generalized point-kinetics equations are systematically derived using the ω-mode first-order perturbation theory and Fredholm Alternative Theorem. Seven sets of the ω-mode eigenvalues exist with using six groups of delayed neutrons and all ω eigenvalues are negative in ADSS. Seven ω-mode adjoint and forward eigenfunctions are employed to form the point-kinetic parameters. The neutron flux is expressed as a linear combination of the products of seven ω-eigenvalue-mode shape functions and their corresponding time functions up to the first order terms, and the lowest negative ω-eigenvalue mode is the dominant mode. (author)

  14. The accelerating universe under Poincaré gauge theory of gravtiy

    Directory of Open Access Journals (Sweden)

    AO Xichen

    2014-08-01

    Full Text Available The accelerating expansion was discovered at the end of the last century, which violates humans′ fundamental intuition of gravity. Trying to explaining this weird observational fact became the principal task of cosmologists, who proposed various models. Among these models, gauge theories of gravity , for its solid theoretical foundation, attract widespread attention. In this paper, we study the cosmology based on the Poincaré gauge theory of gravity. We obtain the analytical solution which describes the evolution history of the universe. And we fit these analytical results to the Type Ia Supernova observation data, and obtain the best-fit value for model parameters and initial conditions, and the confidence level of these parameters.

  15. [Attachment theory and baby slings/carriers: technological network formation].

    Science.gov (United States)

    Lu, Zxy-Yann Jane; Lin, Wan-Shiuan

    2011-12-01

    Healthcare providers recognize the important role played by attachment theory in explaining the close relationship between mental health and social behavior in mothers and their children. This paper uses attachment theory in a socio-cultural context to ascertain the mechanism by which baby slings/carriers, a new technology, produced and reproduced the scientific motherhood. It further applies a social history of technology perspective to understand how baby carriers and attachment theory are socially constructed and historically contingent on three major transformations. These transformations include the use of attachment theory-based baby carriers to further scientific motherhood; the use of baby slings/carriers to further the medicalization of breastfeeding and enhance mother-infant attachment; and the use of baby slings/carriers to transform woman's identities by integrating scientific motherhood, independence and fashion. Implications for nursing clinical policy are suggested.

  16. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    Science.gov (United States)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  17. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    International Nuclear Information System (INIS)

    Ryne, Robert D

    2006-01-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, 'Facilities for the Future of Science: A Twenty-Year Outlook'. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  18. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  19. Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Ryne, Robert D.

    2006-01-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  20. Array Phase Shifters: Theory and Technology

    Science.gov (United States)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  1. The possibility of an accelerating cosmology in Rastall's theory

    Energy Technology Data Exchange (ETDEWEB)

    Capone, M [Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, 10125 - Torino (Italy); Cardone, V F [Dipartimento di Fisica Generale ' Amedeo Avogadro' , Universita di Torino, Via Pietro Giuria 1, 10125 - Torino (Italy); Ruggiero, M L, E-mail: monica.capone@unito.i [UTIU, Universita Telematica Internazionale Uninettuno, Corso Vittorio Emanuele II 39, 00186 - Roma (Italy)

    2010-04-01

    In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T{sup {mu}}{sub v;{mu}} {ne} 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical {Omega}{sub M} {approx_equal} 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.

  2. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  3. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  4. Effect of accelerated electron beams on technological properties of ferriquarzites of the Mikhajlovskij ore deposit

    International Nuclear Information System (INIS)

    Potapov, S.A.; Chakturiya, V.A.; Polyakov, V.A.; Rostovtsev, V.I.

    1989-01-01

    Method for enrichment of ferruginous quartzites of the Kursk magnetic anomaly, using electron irradiation was tested. Samples were irradiated by 2 MeV accelerated electron beam from IZU-6 industrial accelerator. The absorbed dose was equal to 0.14; 0.40; 0.75 Mrad for different types of quartzites. It is shown that sample irradiation elevates grindability of ferrugineous quartzites of all technological types. Enrichment factors increase. Iron extraction to concentrate grows. Extraction of easily enriched ores increases after irradiation by 2.86 %, quality - by 0.6 %; for oxidized ferruginous quartzites - 3.7 % and 1.5 % respectively. Productivity of grinding process increases 1.8-1.3 times. The described technique is promising and should be introduced possibility of elevating grinding productivity 2.0-2.2 times with increase of technological indices of magnetic separation by 2.5-4.0 % when using more powerful accelerators was established

  5. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  6. SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run

    CERN Document Server

    Hogan, John; Daly, Edward; Drury, Michael A; Fischer, John; Hiatt, Tommy; Kneisel, Peter; Mammosser, John; Preble, Joseph P; Whitlatch, Timothy; Wilson, Katherine; Wiseman, Mark

    2005-01-01

    This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and d...

  7. Accelerating the deployment of energy efficient and renewable energy technologies in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Shickman, Kurt [Trust for Conservation Innovation, San Francisco, CA (United States). Global Cool Cities Alliance (GCCA)

    2017-02-13

    Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.

  8. Metal forming technology for the fabrication of seamless Superconducting radiofrequency cavities for particle accelerators

    Directory of Open Access Journals (Sweden)

    Palmieri Vincenzo

    2015-01-01

    Full Text Available The world of Particle accelerators is rather unique, since in a few high-energy Physics great laboratories, such at CERN for example, there have been built the largest technological installations ever conceived by humankind. The Radiofrequency resonant cavities are the pulsing heart of an accelerator. In case of superconducting accelerators, bulk niobium cavities, able to perform accelerating gradients up to 40 MeV/m, are just a jewel of modern technology. The standard fabrication technology foresees the cutting of circular blanks, their deep-drawing into half-cells, and its further joining by electron beam welding under ultra high vacuum environment that takes several hours. However, proposals such as the International Linear Collider, to which more than 900 scientists from all over the world participate, foresee the installation of 20.000 cavities. In numbers, it means the electron beam weld one by one under Ultra High Vacuum of 360,000 hemi-cells. At a cost of 500 €/Kg of high purity Niobium, this will mean a couple of hundreds of millions of Euros only for the bare material. In this panorama it is evident that a cost reducing approach must be considered. In alternative the author has proposed a seamless and low cost fabrication method based on spinning of fully resonators. Preliminary RF tests at low temperatures have proved that high accelerating gradients are achievable and that they are not worse than those obtainable with the standard technology. Nevertheless up to when the next accelerator will be decided to be built there is still room for improvement.

  9. Accelerating discovery with open-source technology at eLife

    OpenAIRE

    Penfold, Naomi

    2017-01-01

    Accelerating discovery with open-source technology. Talks presented May 2017.Files can be found at https://github.com/npscience/eLife-innovation-May2017-presentation.These slides are derived from a deck shared by Jennifer McLennan. All other sources acknowledged throughout the presentation.

  10. Nb3Sn accelerator magnet technology R&D at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; DiMarco, J.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; /Fermilab

    2007-06-01

    Accelerator magnets based on Nb{sub 3}Sn superconductor are being developed at Fermilab. Six nearly identical 1-m long dipole models and several mirror configurations were built and tested demonstrating magnet performance parameters and their reproducibility. The technology scale up program has started by building and testing long dipole coils. The results of this work are reported in the paper.

  11. Nb3Sn accelerator magnet technology R and D at Fermilab

    International Nuclear Information System (INIS)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; DiMarco, J.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Fermilab

    2007-01-01

    Accelerator magnets based on Nb 3 Sn superconductor are being developed at Fermilab. Six nearly identical 1-m long dipole models and several mirror configurations were built and tested demonstrating magnet performance parameters and their reproducibility. The technology scale up program has started by building and testing long dipole coils. The results of this work are reported in the paper

  12. Overview of CERN Technology Transfer Strategy and Accelerator-Related Activities

    CERN Document Server

    Chesta, E; Wuensch, W; Sgobba, S; Stora, T; Chiggiato, P; Taborelli, M

    2013-01-01

    CERN, the European Organization for Nuclear Research, is actively engaged in identifying technologies developed for its accelerator complex that could be profitably used by partner research organizations or commercial companies in applications with potentially high socio-economic impact beyond pure fundamental physics research. \

  13. Science, Technology and Innovation: Concepts, Theory and Policy

    OpenAIRE

    Zehra Taşkın; Güleda Doğan

    2016-01-01

    This study is a review of the book entitled “Science, Technology and Innovation: Concepts, Theory and Policy”. In the converging world, the book is an important contribution not only for the field of economy, but also information science which includes information-economy concepts.

  14. Consumer Culture Theory: Ideology, Mythology and Meaning in Technology Consumption

    DEFF Research Database (Denmark)

    Bajde, Domen

    2014-01-01

    innovations, thus shaping the value of technologies as cultural resources sustaining consumer identities. In its urge to shed light on these aspects, CCT tends to reinforce the gaps and asymmetries between the “socio-cultural” and the “techno-material”, leaving plenty of room for further study. The authors......Consumer culture theory helps us take note of the cultural forces and dynamics in which technology consumption is entangled. It enables people to articulate the cultural processes (ideological, mythic, ritualistic, etc.) through which cultural meanings become granted to or denied to technological...

  15. Cold rolling precision forming of shaft parts theory and technologies

    CERN Document Server

    Song, Jianli; Li, Yongtang

    2017-01-01

    This book presents in detail the theory, processes and equipment involved in cold rolling precision forming technologies, focusing on spline and thread shaft parts. The main topics discussed include the status quo of research on cold rolling precision forming technologies; the design and calculation of process parameters; the numerical simulation of cold rolling forming processes; and the equipment used in cold rolling forming. The mechanism of cold rolling forming is extremely complex, and research on the processes, theory and mechanical analysis of spline cold rolling forming has remained very limited to date. In practice, the forming processes and production methods used are mainly chosen on the basis of individual experience. As such, there is a marked lack of both systematic, theory-based guidelines, and of specialized books covering theoretical analysis, numerical simulation, experiments and equipment used in spline cold rolling forming processes – all key points that are included in this book and ill...

  16. Practice Theory and Pragmatism in Science & Technology Studies

    DEFF Research Database (Denmark)

    Buch, Anders

    2015-01-01

    begin by an introduction to some of the proponents of practice theory and of pragmatism. Regarding the latter, I primarily present work by Dewey because this is what I am most familiar with. Although I recognize that practice theory and pragmatism differ on fundamental philosophical issues in relation...... to the normative evaluation of action, I show that the two intellectual traditions have much in common when it comes to what they do to STS studies. After this introduction to practice theory, my paper will proceed in the following steps. Firstly, I will briefly survey practice theoretical and pragmatist......Science & Technology Studies (STS) and social science has made a turn, a ‘practice turn’, and the notion ‘practice theory’ has made its way into the field of STS. But it is notable that proponents of this turn and theory rarely mention American pragmatism as a source of inspiration or refer...

  17. Promoting International Cooperation and Public Acceptance in Utilizing Proton Accelerator Technology

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Hahn, Bong Oh; Lee, Jae Hyung; Kim, Kyu Ryung; Joo, Po Kook; Kim, In Kyu; Kim, Hyun Joon; Noh, Seung Jeong

    2002-11-01

    Proton engineering's main tool will be a high power proton accelerator which is to be established within next 10 years in the frame of Proton engineering Frontier Project. It is necessary for public to understand the meaning and importance of the project so that Project activities such as site preparation can be efficiently completed. And, it is required to establish a sound plan of international cooperation, and to develop user program to establish domestic foundation in utilizing the accelerator. Along with public relations activities through newspapers and broadcasting, there were more than 20 times of project presentations requested by various local governments, universities, and scientific societies. which resulted in strong support of the project from various societies. Based on collected information through actual visits to and internet surveys on foreign accelerators, a recommendation of international cooperation scheme has been made to complement domestic technological weak points, and there were discussions with some foreign organizations for that purpose. Especially, KEK of Japan, IHEP of China and KAERI have been deliberating on planning detail cooperation programs in developing and utilizing accelerator among 3 countries Some research items related with NT/BT/IT and utilizing proton beam were planned to be implemented in the Project. And a user program implemented in the Project In order to be prepared for future use of the accelerator. In order to upbring junior researchers for future days, an accelerator summer school has been planned to be held annually inviting prominent foreign and domestic lecturers

  18. Accelerated Internationalization in Emerging Markets: Empirical Evidence from Brazilian Technology-Based Firms

    Directory of Open Access Journals (Sweden)

    Fernanda Ferreira Ribeiro

    2014-04-01

    Full Text Available This paper offers an analysis into the external factors influencing the accelerated internationalization of technology-based firms (TBFs in the context of an emerging country, Brazil. This type of firm is typically called born global and has been reported mainly in high technology sectors and from developed countries. A survey was applied to small and medium Brazilian TBFs. Logistic regression was used to test the research hypotheses. The results suggest that new and small Brazilian technology-based firms, which followed an accelerated internationalization process, are most likely to be integrated into a global production chain. Results also show that TBFs which take more than five years to enter the international market, benefit more from the location in an innovation habitat, the partnerships in the home country, and the pro-internationalization government policies. Therefore, this research contributes to a better understanding of the phenomenon and points to new perspectives of studies.

  19. The role of accelerated power generation technology development to carbon dioxide emissions

    International Nuclear Information System (INIS)

    Russ, P.

    2004-01-01

    The paper focuses on the role of advanced power generation technology in the reduction of carbon dioxide emissions. In order to quantify the importance of these technologies a scenario approach is applied comparing a 'business as usual' scenario with technology cases which assume the accelerated development and earlier availability of certain advanced technologies. The simulations with the POLES world energy model demonstrate that the availability of advanced technology for power generation alone does not lead to emission reductions needed to stabilise carbon dioxide emissions in the atmosphere at a sustainable level. To achieve that additional policy measures are necessary. It is however shown, that the availability of advanced technology has a crucial impact on the cost to meet emission reduction targets. (Author)

  20. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2002-01-01

    38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

  1. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA.

  2. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA

  3. Acceleration, energy loss and screening in strongly-coupled gauge theories

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto

    2008-06-01

    We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in Script N = 4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a static heavy quark is accelerated by an external force, its rate of energy loss is initially insensitive to the plasma, and there is a delay before this rate approaches the value derived previously from the analysis of stationary or late-time configurations. Following up on work by Herzog et al., we also consider the evolution of a quark and antiquark as they separate from one another after formation, learning how the AdS/CFT setup distinguishes between the singlet and adjoint configurations, and locating the transition to the stage where the deceleration of each particle is properly accounted for by a constant friction coefficient. Additionally, we examine the way in which the energy of a quark-antiquark pair moving jointly through the plasma scales with the quark mass. We find that the velocity-dependence of the screening length is drastically modified in the ultra-relativistic region, and is comparable with that of the transition distance mentioned above.

  4. Acceleration, energy loss and screening in strongly-coupled gauge theories

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Gueijosa, Alberto

    2008-01-01

    We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N = 4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a static heavy quark is accelerated by an external force, its rate of energy loss is initially insensitive to the plasma, and there is a delay before this rate approaches the value derived previously from the analysis of stationary or late-time configurations. Following up on work by Herzog et al., we also consider the evolution of a quark and antiquark as they separate from one another after formation, learning how the AdS/CFT setup distinguishes between the singlet and adjoint configurations, and locating the transition to the stage where the deceleration of each particle is properly accounted for by a constant friction coefficient. Additionally, we examine the way in which the energy of a quark-antiquark pair moving jointly through the plasma scales with the quark mass. We find that the velocity-dependence of the screening length is drastically modified in the ultra-relativistic region, and is comparable with that of the transition distance mentioned above.

  5. Theory of mutation induction by accelerated very heavy ions in cells

    International Nuclear Information System (INIS)

    Kozubek, S.; Ryznar, L.

    1995-01-01

    Stochastic effects of ionising radiation in humans are related to mutation induction in cells. Therefore experimental data on mutation induction represents one of the endpoints used for the estimation of risk in radiation protection. Only very rough estimates can be made owing to the fact that a suitable theoretical approach does not exist. A simple method is proposed for the evaluation of the efficiency of mutation induction by accelerated very heavy ions in mammalian cells. The approach is based on the calculation of the fraction of energy deposited by accelerated particles in indirect collisions (hits) in the cells. Two different modes of particle mutagenic action can be distinguished. δ ray mutagenesis is related to those particles that preferentially kill the cells in direct hits. Track-core mutagenesis arises from direct hits and is observed for lighter ions or ions with very high energy (LET ≤ 500 keV.μm -1 ). Available experimental data agree reasonably well with the results based on theory. (author)

  6. Technological acceleration and organizational transformations in the upstream oil and gas industry; Acceleration technologique et transformations organisationnelles dans l'industrie d'exploration-production d'hydrocarbures

    Energy Technology Data Exchange (ETDEWEB)

    Isabelle, M

    2000-12-15

    The upstream oil and gas industry experienced a dramatic technological acceleration in the early 1970's. The relationships between the agents in this industry have themselves undergone deep changes since that date. This thesis shows that a tight link exists between the technological acceleration and the organizational transformations in the upstream oil and gas industry. In a first part, it focuses on the economic theory's developments concerning industrial organization. In a second part, it applies these developments to three types of relations: those between the owner-states of hydrocarbon resources and the international petroleum companies; those between the international petroleum companies and their subcontractors; and finally those between the international petroleum companies themselves. (author)

  7. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-01-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning

  8. Harnessing collaborative technology to accelerate achievement of chronic disease management objectives for Canada.

    Science.gov (United States)

    Thompson, Leslee J; Healey, Lindsay; Falk, Will

    2007-01-01

    Morgan and colleagues put forth a call to action for the transformation of the Canadian healthcare system through the adoption of a national chronic disease prevention and management (CDPM) strategy. They offer examples of best practices and national solutions including investment in clinical information technologies to help support improved care and outcomes. Although we acknowledge that the authors propose CDPM solutions that are headed in the right direction, more rapid deployment of solutions that harness the potential of advanced collaborative technologies is required. We provide examples of how technologies that exist today can help to accelerate the achievement of some key CDPM objectives.

  9. Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    P. Bauer et al.

    2002-12-05

    The following presents a study of the accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders (VLHCs). The main accelerator physics limitations to ultimate energy and luminosity in future energy frontier hadron colliders are synchrotron radiation (SR) power, proton-collision debris power in the interaction regions (IR), number of events-per-crossing, stored energy per beam and beam-stability [1]. Quantitative estimates of these limits were made and translated into scaling laws that could be inscribed into the particle energy versus machine size plane to delimit the boundaries for possible VLHCs. Eventually, accelerator simulations were performed to obtain the maximum achievable luminosities within these boundaries. Although this study aimed at investigating a general VLHC, it was unavoidable to refer in some instances to the recently studied, [2], 200 TeV center-of-mass energy VLHC stage-2 design (VLHC-2). A more thorough rendering of this work can be found in [3].

  10. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  11. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?

    Science.gov (United States)

    Gourlay, S. A.

    2018-06-01

    Superconducting magnets for accelerators were first suggested in the mid-60's and have since become one of the major components of modern particle colliders. Technological progress has been slow but steady for the last half-century, based primarily on Nb-Ti superconductor. That technology has reached its peak with the Large Hadron Collider (LHC). Despite the superior electromagnetic properties of Nb3Sn and adoption by early magnet pioneers, it is just now coming into use in accelerators though it has not yet reliably achieved fields close to the theoretical limit. The discovery of the High Temperature Superconductors (HTS) in the late '80's created tremendous excitement, but these materials, with tantalizing performance at high fields and temperatures, have not yet been successfully developed into accelerator magnet configurations. Thanks to relatively recent developments in both Bi-2212 and REBCO, and a more focused international effort on magnet development, the situation has changed dramatically. Early optimism has been replaced with a reality that could create a new paradigm in superconducting magnet technology. Using selected examples of magnet technology from the previous century to define the context, this paper will describe the possible innovations using HTS materials as the basis for a new paradigm.

  12. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  13. Toward a Theory for the Design of Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten; Nielsen, Jørgen Lerche

    2014-01-01

    Design is increasingly becoming a part of the university curriculum and research agenda. A theory about the pro-cess and practice of design might be important to estab-lish design as a main subject at universities. We believe it is in the interest of many design communities – not least...... the Participatory Design (PD) community – to engage in theorizing design, on the basis of our understanding of design and design practices. This theory could be posi-tioned as an alternative to other attempts to theorize design, for example the influential efforts of the Information Systems (IS) community. We urge...... the PD community to engage in collective theory building, and we present a framework intended to support our shared reflections on the design of human technologies....

  14. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  15. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  16. Uranium exploration: new thinking, new theories and new technologies

    International Nuclear Information System (INIS)

    Dai Jiemin

    2000-01-01

    Uranium prospecting and exploration in China have almost past a course of a half century. At the boundary of two centuries, what is the trend of uranium prospecting and exploration? The coming uranium prospecting and exploration will be dependent on the enlightenment of new thinking, the guidance of new theories and the support of new technologies and methods. In a word, the authors must set up a creation system for uranium prospecting and exploration. The above-mentioned ideas are discussed

  17. WILGA Photonics and Web Engineering, January 2012; EuCARD Sessions on HEP and Accelerator Technology

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium held two times a year is a summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP st...

  18. Using perceptual control theory to analyse technology integration in teaching

    Directory of Open Access Journals (Sweden)

    D W Govender

    2013-07-01

    Full Text Available Contrary to the more traditional scenario of instructor-focused presentation, contemporary education allows individuals to embrace modern technological advances such as computers to concur with, conceptualize and substantiate matters presented before them. Transition from instructor-focused to student-centred presentation is prone to dissension and strife, motivating educators to assess elements of learner-centred teaching in conjunction with traditional teaching mechanisms and how individuals perceive and comprehend information (Andersson, 2008; Kiboss, 2010; United Nations Educational, Scientific and Cultural Organization (UNESCO, 2004. Computers can assist when used in the traditional teacher-student interface, but consideration must be given to teaching method variations and the students embracing these learning applications. If learner-centred teaching is to become accepted certain elements need to be introduced: revision of educators’ learning and teaching applications, time to facilitate knowledge and use of applicable contemporary technologies, and methods compatible with various technologies (Kiboss, 2010. Change is often not easy – while acknowledging the need to alter and revise methods they were taught to instil, educators may fail to embrace incorporation of technology into their teaching platform. Why are educators, who are quite knowledgeable and competent in computer applications and their merits, failing to embrace the benefits of technology in the classroom? A critical assessment of this mandates a transdisciplinary disposition in order to come to an amenable resolution. Perception, inhibition, ignorance and goals are just some reasons why educators are reluctant to incorporate technology despite their proficiency. Perceptual control theory (PCT will be implemented to assess these reasons as a means towards achieving change and assessing how to move forward. Issues associated with educators’ short- and long-term goals as

  19. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1995-01-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  20. Basis and objectives of the Los Alamos accelerator driven transmutation technology project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1997-01-01

    The paper describes a new accelerator-based nuclear technology developed at Los Alamos National Laboratory which offers total destruction of the weapons Plutonium inventory, a solution to the commercial nuclear waste problem which greatly reduces or eliminates the requirement for geologic waste storage, and a system which generates potentially unlimited energy from Thorium fuel while destroying its own waste and operating in a new regime of nuclear safety

  1. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    Science.gov (United States)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  2. Annotated bibliography of Accelerator Technology Division research and development, 1978-1985

    International Nuclear Information System (INIS)

    Jameson, R.A.; Nicol, C.S.; Cochran, M.A.

    1985-09-01

    A bibliography is presented of unclassified published and in-house technical material written by members of the Accelerator Technology Division, Los Alamos National Laboratory, since its inception in January, 1978. The author and subject concordances in this report provide cross-reference to detailed citations kept in a computer database and a microfilm file of the documents. The citations include an abstract and other notes, and can be searched for key words and phrases

  3. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the ...

  4. Current status of neutron scattering research and accelerator technology in Indonesia

    International Nuclear Information System (INIS)

    Ridwan; Ikram, Abarul; Wuryanto

    2001-01-01

    The neutron beam generated from steady state reactor 30 MW RSG-GAS are used mainly for neutron scattering studies and isotope production. There are seven neutron scattering facilities under responsible and operated by Research and Development Center for Materials Science and Technology of National Nuclear Energy Agency (Batan) of Indonesia. In this report, current conditions of the facilities namely, DN1-M, HRPD, FCD/TD, SANS, HRSANS, TAS and NRF and research activities will be described. Also, a part of research activities by using accelerator technology at Batan-Yogyakarta will be reviewed. (author)

  5. Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization

    KAUST Repository

    Gower, Robert M.

    2018-02-12

    We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices in such a way that all iterates (approximate solutions) generated by the algorithm are positive definite matrices themselves. This opens the way for many applications in the field of optimization and machine learning. As an application of our general theory, we develop the {\\\\em first accelerated (deterministic and stochastic) quasi-Newton updates}. Our updates lead to provably more aggressive approximations of the inverse Hessian, and lead to speed-ups over classical non-accelerated rules in numerical experiments. Experiments with empirical risk minimization show that our rules can accelerate training of machine learning models.

  6. Damage Based Analysis (DBA): Theory, Derivation and Practical Application - Using Both an Acceleration and Pseudo-Velocity Approach

    Science.gov (United States)

    Grillo, Vince

    2016-01-01

    The objective of this presentation is to give a brief overview of the theory behind the (DBA) method, an overview of the derivation and a practical application of the theory using the Python computer language. The Theory and Derivation will use both Acceleration and Pseudo Velocity methods to derive a series of equations for processing by Python. We will take the results and compare both Acceleration and Pseudo Velocity methods and discuss implementation of the Python functions. Also, we will discuss the efficiency of the methods and the amount of computer time required for the solution. In conclusion, (DBA) offers a powerful method to evaluate the amount of energy imparted into a system in the form of both Amplitude and Duration during qualification testing and flight environments. Many forms of steady state and transient vibratory motion can be characterized using this technique. (DBA) provides a more robust alternative to traditional methods such Power Spectral Density (PSD) using a Maximax approach.

  7. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  8. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-12-15

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ{sup 1/2}. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  9. Theory of accelerated orbits and space charge effects in an AVF cyclotron

    International Nuclear Information System (INIS)

    Kleeven, W.J.G.M.

    1988-01-01

    In the first part of this thesis the influence of the accelerating electric field upon the motion of particles in a cyclotron is studied. A general relativistic Hamiltonian theory is derived which allows for a simultaneous study of the transverse and longitudinal motion as well as the coupling between both motions. It includes azimuthally varying magnetic fields and therefore describes phenomena which are due to the interfering influences of a given geometrical dee system with the azimuthally varying part of the magnetic field. As an example the electric gap crossing resonance is treated. The second part deals with space charge effects in a AVF cyclotron. The properties of the bunch, like the sizes, emittances and momentum spread, are represented in terms of second order moments of the phase space distribution function, and two sets of differential equations are derived which describe the time evolution of these moments under space charge conditions. The model takes into account the coupling between the longitudinal and radial motion, and the fact that the revolution frequency of the particles is independent of their energy. The analytical models developed can be applied to a given cyclotron by adopting the relevant parameters. Some calculations are presented for the small 3 MeV Iscochroneous Low Energy Cyclotron ILEC which is presently under construction at the Eindhoven University. Also some attention to the construction of this machine is given. (H.W.). 49 refs.; 37 figs

  10. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory

    International Nuclear Information System (INIS)

    Mohan, N.D.J.; Sasidharan, Athira; Mathew, Titus K.

    2017-01-01

    The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ 1/2 . We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > -1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values. (orig.)

  11. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1983-01-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)

  12. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.

  13. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.Oc.

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.

  14. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    Hightower, M.

    1995-01-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  15. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  16. Developments of linacs for accelerator-driven transmutation technology in the USA. Revision

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1997-03-01

    Interesting developments in linear accelerators have been attained over the past 45 years. The status of linear accelerators and future possibilities are described in context of demanding applications and technology maturity. Features of industrial or factory-type applications are high availability, economic operations, low investment cost and ease of running a facility. All features have been demonstrated in one manner or another at large operating facilities for the research community; within a different context that has been argued in the past to be not as demanding as for a factory installation. In addition, comments are made relative to intense beam power levels and choices that can be made for power levels below 10 MW, on the assumption that a cw beam is required

  17. Development of free electron laser and accelerator technology in Poland (CARE and EuCARD projects)

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  18. Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    CERN Document Server

    Romaniuk, R

    2008-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  19. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  20. Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics

    International Nuclear Information System (INIS)

    Brown, James; Hendry, Chris

    2009-01-01

    The paper considers the role of government funded demonstration projects and field trials (DTs) in accelerating the commercialisation of new energy technologies that meet a public good but do not have immediate market appeal [Sagar, A.D., van der Zwaan, B., 2006. Technological innovation in the energy sector: R and D, deployment, and learning-by-doing. Energy Policy 34, 2601-2608]. Drawing on an original database of DTs in the EU, Japan and USA from 1973 to 2004, we review the history of DTs in photovoltaic technology for electricity generation, and its subsequent take up as a commercial energy source. We find that DTs that are aimed purely at discovering suitable market opportunities are less successful in achieving diffusion than projects that target a particular application and concentrate resources on it. The former nevertheless have a vital role to play in the learning process, while a targeted focus is often dependent on national industrial and institutional factors.

  1. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    International Nuclear Information System (INIS)

    Mazari, M.

    1989-01-01

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  2. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  3. Accelerator physics and technology challenges of very high energy hadron colliders

    Science.gov (United States)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  4. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  5. How can public policies accelerate the progress in technologies for the struggle against climate change?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2008-01-01

    After having recalled the three stages of the technical progress according to Schumpeter (invention, innovation and diffusion), and the roles of R and D and learning in this process, the author briefly comments the cost evolution of different energy production technologies between 1980 and 1995, proposes a simple modelling of the learning system under the influence of public policies, and indicates the research themes by 2050. Then, she discusses the fact that the R and D level is not socially optimal, notably because of market imperfections, and also because some innovations may have applications within a time which is too long for companies. This is the reason why the State generally takes care of fundamental research. She discusses either demand-based or supply-based public policies aiming at accelerating the progress in low carbon technologies, describes the international cooperation in R and D (agreement on research on low carbon technologies, standards), and how to promote the diffusion of technology towards developing countries (problem of emission increase in these countries, technology transfer in general and within the frame of the convention on climate change, public development support and direct foreign investments)

  6. Accelerating the market penetration of renewable energy technologies in South Africa

    International Nuclear Information System (INIS)

    Martens, J.W.; De Lange, T.J.; Cloin, J.; Szewczuk, S.; Morris, R.; Zak, J.

    2001-03-01

    There exists a large potential for renewable energy technologies in South Africa and despite the fact that rapid growth of the application of renewable energy takes place in many parts of the world, the current installed renewable capacity in South Africa is negligible. The objective of this study is to address this gap by analysing ways to accelerate the market penetration of renewable energy technologies in South Africa. The activities undertaken in this study comprise two major components: a thorough analysis of South Africa's specific constraints and barriers to renewable energy implementation, and a review of the lessons learnt from Member States of the European Union (EU) on the promotion of renewable energy development. The focus of the study was restricted to the analysis of electricity generating technologies, in particular solar energy, biomass, wind power and mini-hydro renewable energy technologies. Recommendations to stimulate the market penetration of renewable energy technologies in South Africa are formulated. They are structured in: actions to enhance the policy framework for renewable power generation, actions to enhance the policy framework for off-grid renewable energy, and recommendations to stimulate renewable energy project development. 44 refs

  7. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  8. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  9. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  10. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    International Nuclear Information System (INIS)

    Bauke, W.; Clark, D.A.; Trujillo, P.B.

    1985-01-01

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results

  11. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  12. Accelerator-driven transmutation technology: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2001-01-01

    This paper discusses current technical and non-technical issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution of the current U.S. conceptual design is identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Although a number of key challenges are identified in this paper, the benefits of the research and development effort and the potential paradigm shift in attitude toward resource stewardship could greatly enhance public confidence in nuclear waste management that will have rapid positive repercussions on nuclear technology research and commercial applications. (author)

  13. Theory and simulation of ion acceleration with circularly polarized laser pulses; Theorie et simulation de l'acceleration des ions par impulsions laser a polarisation circulaire

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, A. [CNR/INFM/polyLAB, Pisa (Italy); Macchi, A.; Tuveri, S.; Veghini, S. [Pisa Univ., Dept. of Physics E. Fermi (Italy); Liseikina, T.V. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    2009-03-15

    Ion acceleration driven by the radiation pressure of circularly polarized pulses is investigated via analytical modeling and particle-in-cell simulations. Both thick and thin targets, i.e. the 'hole boring' and 'light sail' regimes are considered. Parametric studies in one spatial dimension are used to determine the optimal thickness of thin targets and to address the effects of preformed plasma profiles and laser pulse ellipticity in thick targets. Three-dimensional (3D) simulations show that 'flat-top' radial profiles of the intensity are required to prevent early laser pulse breakthrough in thin targets. The 3D simulations are also used to address the issue of the conservation of the angular momentum of the laser pulse and its absorption in the plasma. (authors)

  14. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  15. The joint accelerator conferences website, JACoW. An open access website for the publication of conference proceedings in accelerator science and technology

    International Nuclear Information System (INIS)

    Christine, Petit-Jean-Genaz

    2015-01-01

    The Joint Accelerator Conferences Website (JACoW), at http://www.JACoW.org came into being in the mid-nineties with the publication of the first electronic set of European Particle Accelerator Conference (EPAC) proceedings on the World Wide Web, on a server located at CERN. The publication of that first set of conference proceedings 18 years ago had developed into an international collaboration in electronic publication of accelerator science and technology conference proceedings, with at the time of writing, 18 collaborating conference series and 167 sets of proceedings published. The story of how this came about, the lessons learned along the way, are described by the author who has been part of this exciting adventure from the earliest days. This article will avoid detail of the technicalities of electronic publication, which are fully documented at the site mentioned above. It will simply tell the tale of JACoW, the people involved and their adventures. (author)

  16. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [Univ. of Maryland, College Park, MD (United States)

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  17. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2

    International Nuclear Information System (INIS)

    Fernandez Bertos, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J.

    2004-01-01

    Moist calcium silicate minerals are known to readily react with carbon dioxide (CO 2 ). The reaction products can cause rapid hardening and result in the production of monolithic materials. Today, accelerated carbonation is a developing technology, which may have potential for the treatment of wastes and contaminated soils and for the sequestration of CO 2 , an important greenhouse gas. This paper reviews recent developments in this emerging technology and provides information on the parameters that control the process. The effects of the accelerated carbonation reaction on the solid phase are discussed and future potential applications of this technology are also considered

  18. ACCELERATION DEVELOPMENT OF CORN ICM TECHNOLOGY INNOVATION AT SEVERAL AGROECOSYSTEM AGRICULTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M.P. Sirappa

    2014-02-01

    Full Text Available Technology innovation of corn integrated crop management (ICM is formed of concept with integrated a variety of technology component which synergy interdependent so disperse local problem, increasing eficiency input, take care of and increasingsoil fertility. Agriculture Agency of Research Development agitating for assemble new superior varieties which have a highest production, early ripening, resistent main pest and disease, tolerance of marginal domain, and yield quality which accord with consumer preference. A new superior variety which admissible for agroecosystem rain field are Lamuru, Srikandi Kuning-1, Srikandi Putih-1, Bima-1, dan Semar-10; For dry land wet climate are Bisma, Lamuru, Srikandi Kuning-1, Srikandi Putih-1, Bima-1 and Semar-10; For acid dry land wet climate are Sukmaraga; and for dry land and dry climate are Lamuru, Srikandi Kuning-1 and Srikandi Putih-1. For necessity silage, development directed towards varieties of Bisma, Lamuru, Bima-1, and Semar-10, whereas for food matter are Srikandi Kuning-1 and Srikandi Putih-1. Several strategy for accelerate of corn development, especially varieties which producting by Agriculture Agency of Research Development for farmer are trough survey or PRA, verification and evaluation technology production, field encountered, socialization of technology production, and management of seed measuring.

  19. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    Science.gov (United States)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  20. New Ways to Consider: Towards a Design Theory for Hybrid Intelligence Accelerators

    OpenAIRE

    Dellermann, Dominik; Lipusch, Nikolaus; Ebel, Philipp; Leimeister, Jan Marco

    2017-01-01

    Setting a new venture is a challenging tasks which leads to dramatic numbers of failures. To support early stage ventures and accelerate their growth support service providers such as business incubators and accelerators gain increasing popularity. Yet, in particular the latter one is still on its rise and current practices of supporting startups have several limitations such as limited capabilities, networks or are faced with the bound rationality of individual mentors. To overcome these def...

  1. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.

    Science.gov (United States)

    Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang

    2015-05-08

    This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical

  2. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  3. Applying the Theory of the Firm to Examine a Technology Startup at the Investment Stage

    Directory of Open Access Journals (Sweden)

    Michael Ayukawa

    2012-05-01

    Full Text Available The investment stage of a new technology firm is when resources, opportunities, investors, and early customers first converge. Currently, technology entrepreneurs make many expensive mistakes. They invest in assets and develop capabilities that prove to have limited value. They take too long to discover and validate the product-market fit for their firms during the investment stage and run out of time and money. Understanding how theory can help entrepreneurs make decisions during the investment stage is important to accelerate new-firm formation and growth as well as to reduce the uncertainty of founders and stakeholders of technology firms. This article introduces a model developed to examine deal making during the investment stage of a new technology firm. It is an extension of a model of lateral firm scope proposed by Oliver Hart and Bengt Holmstrom. The extensions come from considering a technology firm as being both a deal-making entity and a pool of resources during the investment stage. A deal is the result of a decision the entrepreneur and others make to coordinate (i.e., work together to achieve a common objective. Benefits from a deal include cash profits for the firm and private benefits for the entrepreneur. This extended model is then applied to examine the author’s firm which is still in the investment stage. Application of the extended model to a real-life situation generated two important insights: i when private benefits include learning from experimentation, the number of deals increases and ii at the start of the investment stage, private benefits drive deal-making, whereas at the end of the investment stage, cash profits derived from asset ownership drive deal-making.

  4. Literacity: A multimedia adult literacy package combining NASA technology, recursive ID theory, and authentic instruction theory

    Science.gov (United States)

    Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob

    1994-01-01

    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'

  5. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    International Nuclear Information System (INIS)

    Lee, Young Ouk

    2005-10-01

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements

  6. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ouk

    2005-10-15

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  7. Activity theory as a potential framework for technology research in ...

    African Journals Online (AJOL)

    This article attempts to expand and elaborate Activity Theory as a theory for studying human computer interaction in South Africa. It first sketches ways in which. Russian activity theory arising out of the work of Vygotsky may expand understandings of learning before elaborating the theory in terms of Engestrom's

  8. Current status of electron beam processing applications and accelerator technology in India

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Lavale, D.S.; Sabharwal, S.

    2001-01-01

    Full text: Electron Beam (EB) processing is now a well established technology world over in a few specific sections of the industry, particularly the polymer industry. The actual use of the technology however is dependent upon the specific socioeconomic needs of the individual country. In India, an industrial type EB accelerator has been operative since 1988 at Bhabha Atomic Research Centre, Mumbai. This 2 MeV, 20 kW machine is being utilized to develop and optimize process and material process techniques for research, development and industry in the fields viz., crosslinking, degradation and grafting of polymers; color enhancement in precious and semi-precious stones, lifetime control in semi-conductor devices; food irradiation. Some of these processes have developed into products that are now being carried out on regular commercial basis, meeting the requirements of the Indian industry. These include crosslinked high temperature PE 'O' rings, wire and cable insulation, heat shrinkable tubes; micro-fine PTFE powder, degraded viscose rayon pulp and color diamonds, With the collaboration of Indian cable industry, EB crosslinkable insulation formulations were developed. Suitable irradiation parameters and techniques have been studied, optimized and standardized. Over 100 km length of cables based on PE, PVC and elastomer blends has been irradiated and the results were found to be very encouraging. Since the main parameters to be monitored in the radiation processing is the absorbed dose and its uniformity in the product, dose evaluation and optimization hb been carried out specific to the process and the product under treatment. EB dosimetry based on the graphite calorimetry, thin film and alanine powder dosimeters has been standardized and being used in the facility for dose evaluation and optimization studies. An endless stainless steel mesh conveyor is available in the facility to carry out product irradiation. An eight type cable irradiation gadget has been

  9. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  10. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  11. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  12. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  13. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  14. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Fermilab

    2007-01-01

    Fermilab is working on the development of Nb 3 Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb 3 Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models

  15. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  16. Application of linear accelerator technology to the detection of trace amounts of transuranics in waste barrels

    International Nuclear Information System (INIS)

    Cates, M.R.; Noel, B.W.; Caldwell, J.T.; Kunz, W.E.; Close, D.A.; Franks, L.A.; Pigg, J.L.

    1980-01-01

    Electron linear accelerators (linacs), as sources of photons and neutrons, can produce a significant number of fissions in transuranic isotopes contained in large barrels of waste material. Both photons and thermal neutrons have been used to detect about 1 mg of plutonium in 105-kg matrices. A sequential interrogation with neutrons and photons, easily possible with linacs, can show both fertile and fissile constituents among the heavy-mass isotopes. The advantages of linacs in solving existing assay problems include: (1) high available beam current; (2) variable beam current, beam energy, pulse width, and pulse repetition frequency; and (3) beam-scanning ability. They also are compatible with passive assay instruments. Their versatility makes it likely that they will remain useful as assay technology advances

  17. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  18. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  19. A novel source convergence acceleration scheme for Monte Carlo criticality calculations, part I: Theory

    International Nuclear Information System (INIS)

    Griesheimer, D. P.; Toth, B. E.

    2007-01-01

    A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems is presented. Smoothed Residual Acceleration (SRA) is based on a modification to the well known fixed-parameter extrapolation method for power iterations. In SRA the residual vector is passed through a low-pass filter before the extrapolation step. Filtering limits the extrapolation to the lower order Eigenmodes, improving the stability of the method and allowing the use of larger extrapolation parameters. In simple tests SRA demonstrates superior convergence acceleration when compared with an optimal fixed-parameter extrapolation scheme. The primary advantage of SRA is that it can be easily applied to Monte Carlo criticality calculations in order to reduce the number of discard cycles required before a stationary fission source distribution is reached. A simple algorithm for applying SRA to Monte Carlo criticality problems is described. (authors)

  20. Particle acceleration at quasi-perpendicular shock waves: Theory and observations at 1 AU

    International Nuclear Information System (INIS)

    Parker, L. Neergaard; Zank, G. P.; Hu, Q.

    2014-01-01

    The injection of particles into the diffusive shock acceleration mechanism at highly perpendicular (where θ Bn > 70°) interplanetary shocks is investigated. This extends the previous study of Neergaard Parker and Zank which focused on the injection problem at quasi-parallel interplanetary shocks. We use observations at 1 AU to construct upstream Maxwellian and κ-distributions that are then diffusively accelerated by the shock, thus yielding the downstream accelerated particle distribution. We compare the theoretical accelerated particle distribution to observations at 1 AU using Advanced Composition Explorer data. We classify our results for quasi-perpendicular shocks into three subcategories: those with ratios of the theoretical spectral index to observed power law of >1, ∼ 1, and <1, and compare the magnetic power spectral density plots of these categories. We find that in general the assumed upstream particle distribution that best fits the energetic particle observations is best represented by a κ-distribution, with κ = 4. The magnetic field fluctuations were representative of quasi-perpendicular shocks and showed no particular bias toward our spectral ratio subcategories. The subcategory with spectral ratio <0.9 yielded the largest injection energies for all groups. In all but two of the cases in this study, there were enough particles in the solar wind thermal core to account for the accelerated distribution, thereby giving a lower limit to the required injection energy needed to diffusively accelerate particles at a quasi-perpendicular interplanetary shock. In the remaining two cases, an additional population of particles was required to match the appropriate amplitude of the spectral index. For these cases, we used a low energy (1-50 keV) v –5 spectrum advocated by Fisk and Gloeckler.

  1. From theory to practice: integrating instructional technology into veterinary medical education.

    Science.gov (United States)

    Wang, Hong; Rush, Bonnie R; Wilkerson, Melinda; Herman, Cheryl; Miesner, Matt; Renter, David; Gehring, Ronette

    2013-01-01

    Technology has changed the landscape of teaching and learning. The integration of instructional technology into teaching for meaningful learning is an issue for all educators to consider. In this article, we introduce educational theories including constructivism, information-processing theory, and dual-coding theory, along with the seven principles of good practice in undergraduate education. We also discuss five practical instructional strategies and the relationship of these strategies to the educational theories. From theory to practice, the purpose of the article is to share our application of educational theory and practice to work toward more innovative teaching in veterinary medical education.

  2. Minimising the economic cost and risk to accelerator-driven subcritical reactor technology: The case of designing for flexibility: Part 1

    International Nuclear Information System (INIS)

    Steer, Steven J.; Cardin, Michel-Alexandre; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.

    2012-01-01

    Highlights: ► Accelerator performance is a risk to ADSR reactor technology demonstration. ► Sensitivity of ADSR economic value to accelerator performance is assessed. ► Economic value of ADSRs with and without accelerator redundancy is tested. ► Real options identify design flexibility to accelerator performance uncertainty. ► Multiple ADSR “park” with a single integrated accelerator system is proposed. - Abstract: Demonstrating the generation of electricity for commercial markets with accelerator-driven subcritical reactor (ADSR) technology will incur substantial financial risk. This risk will arise from traditional uncertainties associated with the construction of nuclear power stations and also from new technology uncertainties such as the reliability of the required accelerator system. The sensitivity of the economic value of ADSRs to the reliability of the accelerator system is assessed. Using linear accelerators as an example of choice for the accelerator technology, the economic assessment considers an ADSR with either one or two accelerators driving it. The extent to which a second accelerator improves the accelerator system reliability is determined, as are the costs for that reliability improvement. Two flexible designs for the accelerator system are also considered, derived from the real options analysis technique. One seeks to achieve the benefits of both the single and dual accelerator ADSR configurations through initially planning to build a second accelerator, but only actually constructing it once it is determined to be economically beneficial to do so. The other builds and tests an accelerator before committing to constructing a reactor. Finally, a phased multiple-reactor park with an integrated system of accelerators is suggested and discussed. The park uses the principles of redundancy as for the Dual accelerator ADSR and flexibility as for the real options design, but for a lower cost per unit of electricity produced.

  3. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    Science.gov (United States)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  4. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    Science.gov (United States)

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment

  5. Clean Coal Technologies: Accelerating Commercial and Policy Drivers for Deployment [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world’s most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry’s considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol’s Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbonconstrained world.

  6. The importance of educational theories for facilitating learning when using technology in medical education.

    Science.gov (United States)

    Sandars, John; Patel, Rakesh S; Goh, Poh Sun; Kokatailo, Patricia K; Lafferty, Natalie

    2015-01-01

    There is an increasing use of technology for teaching and learning in medical education but often the use of educational theory to inform the design is not made explicit. The educational theories, both normative and descriptive, used by medical educators determine how the technology is intended to facilitate learning and may explain why some interventions with technology may be less effective compared with others. The aim of this study is to highlight the importance of medical educators making explicit the educational theories that inform their design of interventions using technology. The use of illustrative examples of the main educational theories to demonstrate the importance of theories informing the design of interventions using technology. Highlights the use of educational theories for theory-based and realistic evaluations of the use of technology in medical education. An explicit description of the educational theories used to inform the design of an intervention with technology can provide potentially useful insights into why some interventions with technology are more effective than others. An explicit description is also an important aspect of the scholarship of using technology in medical education.

  7. Neutron data for accelerator-driven transmutation technologies. Annual Report 2004/2005

    International Nuclear Information System (INIS)

    Blomgren, J.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oehrn, A.; Oesterlund, M.

    2005-09-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: An article on three-body force effects has been on the top-ten downloading list of Physics Letters B. Uppsala had the largest foreign delegation at the International Conference on Nuclear Data for Science and Technology in Santa Fe, NM, USA, and presented the largest number of papers of all experimental groups. A neutron flux monitor for the new FOI neutron beam facility has been developed, commissioned and taken into regular operation. Within the project, one licentiate exam has been awarded. The new neutron beam facility at TSL has been taken into commercial operation and is now having the largest commercial turnover of all European facilities in the field

  8. A quality assurance program for ancillary high technology devices on a dual-energy accelerator

    International Nuclear Information System (INIS)

    Klein, Eric E.; Low, Daniel A.; Maag, Derek; Purdy, James A.

    1996-01-01

    Our facility has added high-technology ancillary devices to our dual-energy linear accelerator. After commissioning and acceptance testing of dual asymmetric jaws, dynamic wedge, portal imaging, and multileaf collimation (MLC), quality assurance programs were instituted. The programs were designed to be both periodic and patient specific when required. In addition, when dosimetric aspects were affected by these technologies, additional quality assurance checks were added. Positional accuracy checks (light and radiation) are done for both asymmetric jaws and MLC. Each patient MLC field is checked against the original simulation or digitally reconstructed radiographs. Off-axis factors and output checks are performed for asymmetric fields. Dynamic wedge transmission factors and profiles are checked periodically, and a patient diode check is performed for every new dynamic wedge portal. On-line imaging checks encompass safety checks along with periodic measurement of contrast and spatial resolution. The most important quality assurance activity is the annual review of proper operation and procedures for each device. Our programs have been successful in avoiding patient-related errors or device malfunctions. The programs are a team effort involving physicists, maintenance engineers, and therapists

  9. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Larsen, P.J.; Garcia, J.; Estes, C.H.; Palmer, C.R.; Meyers, G.S.

    2006-01-01

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  10. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  11. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    National Research Council Canada - National Science Library

    Ferrucci, David; Lally, Adam

    2003-01-01

    ... accelerate scientific advance. Furthermore, the ability to reuse and combine results through a common architecture and a robust software framework would accelerate the transfer of research results in HLT into IBM's product platforms...

  12. Analysis of the Science and Technology Preservice Teachers' Opinions on Teaching Evolution and Theory of Evolution

    Science.gov (United States)

    Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi

    2014-01-01

    In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…

  13. School Finance and Technology: A Case Study Using Grid and Group Theory to Explore the Connections

    Science.gov (United States)

    Case, Stephoni; Harris, Edward L.

    2014-01-01

    Using grid and group theory (Douglas 1982, 2011), the study described in this article examined the intersections of technology and school finance in four schools located in districts differing in size, wealth, and commitment to technology integration. In grid and group theory, grid refers to the degree to which policies and role prescriptions…

  14. Short Cuts and Extended Techniques: Rethinking Relations between Technology and Educational Theory

    Science.gov (United States)

    Thumlert, Kurt; de Castell, Suzanne; Jenson, Jennifer

    2015-01-01

    Building upon a recent call to renew actor-network theory (ANT) for educational research, this article reconsiders relations between technology and educational theory. Taking cues from actor-network theorists, this discussion considers the technologically-mediated networks in which learning actors are situated, acted upon, and acting, and traces…

  15. Theories and Research in Educational Technology and Distance Learning Instruction through Blackboard

    Science.gov (United States)

    Ouyang, John Ronghua; Stanley, Nile

    2014-01-01

    Educational technology is a fast-growing and increasingly developed subject in education during the past 50 years. The focus of the development of its theories and research is oriented into the methods and effectiveness of its implementation. This presentation is reviewing various educational technology related theories, exploring and discussing…

  16. New pellet production and acceleration technologies for high speed pellet injection system 'HIPEL' in large helical device

    International Nuclear Information System (INIS)

    Viniar, I.; Sudo, S.

    1994-12-01

    New technologies of pellet production and acceleration for fueling and diagnostics purposes in large thermonuclear reactors are proposed. The technologies are intended to apply to the multiple-pellet injection system 'HIPEL' for Large Helical Device of NIFS in Japan. The pellet production technology has already been tested in a pipe-gun type pellet injector. It will realize the repeating pellet injection by means of decreasing of the pellet formation time into the pipe-gun barrel. The acceleration technology is based upon a new pump tube operation in two-stage gas gun and also upon a new conception of the allowable pressure acting on a pellet into a barrel. Some preliminary estimations have been made, and principles of a pump tube construction providing for a reliable long term operation in the repeating mode without any troubles from a piston are proposed. (author)

  17. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-07-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report.

  18. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    International Nuclear Information System (INIS)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-01-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report

  19. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    Science.gov (United States)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  20. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  1. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    Science.gov (United States)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  2. Breakdown of the Frozen-in Condition and Plasma Acceleration: Dynamical Theory

    Science.gov (United States)

    Song, Y.; Lysak, R. L.

    2007-12-01

    The magnetic reconnection hypothesis emphasizes the importance of the breakdown of the frozen-in condition, explains the strong dependence of the geomagnetic activity on the IMF, and approximates an average qualitative description for many IMF controlled effects in magnetospheric physics. However, some important theoretical aspects of reconnection, including its definition, have not been carefully examined. The crucial components of such models, such as the largely-accepted X-line reconnection picture and the broadly-used explanations of the breakdown of the frozen-in condition, lack complete theoretical support. The important irreversible reactive interaction is intrinsically excluded and overlooked in most reconnection models. The generation of parallel electric fields must be the result of a reactive plasma interaction, which is associated with the temporal changes and spatial gradients of magnetic and velocity shears (Song and Lysak, 2006). Unlike previous descriptions of the magnetic reconnection process, which depend on dissipative-type coefficients or some passive terms in the generalized Ohm's law, the reactive interaction is a dynamical process, which favors localized high magnetic and/or mechanical stresses and a low plasma density. The reactive interaction is often closely associated with the radiation of shear Alfvén waves and is independent of any assumed dissipation coefficients. The generated parallel electric field makes an irreversible conversion between magnetic energy and the kinetic energy of the accelerated plasma and the bulk flow. We demonstrate how the reactive interaction, e.g., the nonlinear interaction of MHD mesoscale wave packets at current sheets and in the auroral acceleration region, can create and support parallel electric fields, causing the breakdown of the frozen-in condition and plasma acceleration.

  3. Accelerated Expansion of the Universe: Dark Energy or modifications to the theory of gravity to Einstein?

    International Nuclear Information System (INIS)

    Quiros, I.

    2008-01-01

    Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)

  4. Internationalisation theory and technological accumulation - an investigation of multinational affiliates in East Germany

    OpenAIRE

    Jindra, Bjorn

    2010-01-01

    This dissertation applies the theory of technology accumulation to explain the internationalisation of foreign and West German multinational enterprises (MNEs) into East Germany. This theory shifts the focus from technology transfer to the international diffusion of innovation within the MNE. It rejects the position that all MNEs offer the same technological opportunities to host economies. Yet, most of the existing empirical research on postcommunist transition economies including East Germa...

  5. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL

  6. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL.

  7. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  8. Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Veda, Santosh; Wu, Hongyu; Martin, Maurice; Baggu, Murali

    2017-05-12

    Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation. This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.

  9. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology.

    Science.gov (United States)

    Khoury, Joseph; Maxwell, Melissa; Cherian, Raymond E; Bachand, James; Kurz, Arthur C; Walsh, Michael; Assad, Michel; Svrluga, Richard C

    2017-04-01

    Polyetheretherketone (PEEK) is growing in popularity for orthopedic, spinal, and trauma applications but has potential significant limitations in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent, but is inert and therefore does not integrate well with bone. Current efforts are focusing on increasing the bioactivity of PEEK with surface modifications to improve the bone-implant interface. We used a novel Accelerated Neutral Atom Beam (ANAB) technology to enhance the bioactivity of PEEK. Human osteoblast-like cells seeded on ANAB-treated PEEK result in significantly enhanced proliferation compared with control PEEK. Cells grown on ANAB-treated PEEK increase osteogenic expression of ALPL (1.98-fold, p PEEK implants resulted in enhanced bone-in-contact by 3.09-fold (p PEEK has the potential to enhance its bioactivity, leading to bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants. ANAB treatment, therefore, may significantly enhance the performance of PEEK medical implants and lead to improved clinical outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 531-543, 2017. © 2015 Wiley Periodicals, Inc.

  10. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Science.gov (United States)

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  11. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Directory of Open Access Journals (Sweden)

    Edward T Kipreos

    Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  12. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [University of Maryland; Antonsen, Thomas M. [University of Maryland; Kishek, Rami [University of Maryland

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  13. [Theory of elementary particles studies in weak interaction and grand unification and studies in accelerator design

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses topics on: Rare B decay; Physics beyond the standard model; Intermittency; Relativistic heavy-ion collisions; Cross section for jet production in hadron collisions; Factorization; Determination of the parton distribution function; Left-right electroweak theories; and Supersymmetry at Lepton colliders

  14. Technology and Occupation: Past, Present, and the Next 100 Years of Theory and Practice.

    Science.gov (United States)

    Smith, Roger O

    During the first 100 years of occupational therapy, the profession developed a remarkable practice and theory base. All along, technology was an active and core component of practice, but often technology was mentioned only as an adjunct component of therapy and as if it was a specialty. This lecture proposes a new foundational theory that places technology at the heart of occupational therapy as a fundamental part of human occupation and the human experience. Moreover, this new Metaphysical Physical-Emotive Theory of Occupation pushes the occupational therapy profession and the occupational science discipline to overtly consider occupation on the level of a metaphysical-level reality. The presentation of this theory at the Centennial of the profession charges the field to test and further define the theory over the next 100 years and to leverage technology and its role in optimizing occupational performance into the future. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  15. Infographic Development by Accelerated Bachelor of Science in Nursing Students: An Innovative Technology-Based Approach to Public Health Education.

    Science.gov (United States)

    Falk, Nancy L

    Health communications and baccalaureate nursing education are increasingly impacted by new technological tools. This article describes how an Accelerated Bachelor of Science in Nursing program incorporates an infographic assignment into a graduate-level online health information and technology course. Students create colorful, engaging infographics using words and visuals to communicate public health information. The assignment, which incorporates the use of data and evidence, provides students the opportunity to acquire new research and technology skills while gaining confidence creating and innovating. The finished products may be disseminated, serving as vehicles to influence public health and well-being.

  16. Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; King, T.C.; Hes, J.H.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Puretzky, A.A.; Donato, J.M.

    1999-01-01

    A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/v m =α+(1-α)ξ, where v m is the maximum expansion velocity, α is a constant, and ξ=x/v m t. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to α, where 1-α is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, α is reduced from its value of conventional free expansion. This reduction on α increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models

  17. Making Sense of Young People, Education and Digital Technology: The Role of Sociological Theory

    Science.gov (United States)

    Selwyn, Neil

    2012-01-01

    This paper considers the contribution of sociological theory to the academic study of young people, education and digital technology. First it discusses the shortcomings of the technological and socially determinist views of technology and education that prevail in current academic and policy discussions. Against this background the paper outlines…

  18. Current sheet particle acceleration - theory and observations for the geomagnetic tail

    International Nuclear Information System (INIS)

    Speiser, T.W.

    1984-01-01

    It has been found that the current sheet in the geomagnetic tail is a source of plasma and energetic particles for the magnetospheric ring current and radiation belts. It is also a seat for instabilities and magnetospheric substorms. Theoretical studies related to the geomagnetic tail are discussed, taking into account Dungey's (1953) original ideas concerning neutral point acceleration, and studies of particle motion in current sheets conducted by many authors. A description of observations concerning the geomagnetic tail is also provided, taking into account plasma sheet populations, and the plasma sheet boundary layer. Some remaining problems are partly related to the location and the behavior of the distant source, the nature of the relative (time-dependent) ionospheric versus solar wind contributions, and the role of the solar wind in the initiation of distant or near-earth neutral lines. 56 references

  19. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  20. Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M.

    2001-07-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.

  1. Pre-Game-Theory Based Information Technology (GAMBIT) Study

    National Research Council Canada - National Science Library

    Polk, Charles

    2003-01-01

    .... The generic GAMBIT scenario has been characterized as Dynamic Hierarchical Gaming (DHG). Game theory is not yet ready to fully support analysis of DHG, though existing partial analysis suggests that a full treatment is practical in the midterm...

  2. Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates

    Directory of Open Access Journals (Sweden)

    Marco de Cesare

    2017-01-01

    Full Text Available We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.

  3. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

    Science.gov (United States)

    Tsai, Chung-Hung

    2014-05-07

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  4. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    Directory of Open Access Journals (Sweden)

    Chung-Hung Tsai

    2014-05-01

    Full Text Available Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory, technological factors (TAM, and system self-efficacy (social cognitive theory in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively, which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  5. High energy physics advisory panel's composite subpanel for the assessment of the status of accelerator physics and technology

    International Nuclear Information System (INIS)

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation's scientific research, and it has significantly enhanced the nation's biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE's OER programs and the DOE's predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation

  6. Learning Theories Applied to Teaching Technology: Constructivism versus Behavioral Theory for Instructing Multimedia Software Programs

    Science.gov (United States)

    Reed, Cajah S.

    2012-01-01

    This study sought to find evidence for a beneficial learning theory to teach computer software programs. Additionally, software was analyzed for each learning theory's applicability to resolve whether certain software requires a specific method of education. The results are meant to give educators more effective teaching tools, so students…

  7. Proceedings of the first topical meeting on Asian network for accelerator-driven systems and nuclear transmutation technology

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2016-03-01

    The first topical meeting on Asian Network for Accelerator-driven System (ADS) and Nuclear Transmutation Technology (NTT) was held on 26-27 October 2015 at the J-PARC Center, Japan Atomic Energy Agency, Japan. The topical meeting was an optional one in-between the regular meeting, which is held in every two years. Instead of the regular meetings, which cover all research fields for ADS and NTT, such as accelerator, spallation target, subcritical reactor, fuel, and material, the topical meeting is focused on a specific topic to make technical discussions more deeply. In this meeting, the technology for lead-bismuth eutectic alloy was selected, as it was one of the hot issues in the world, and the topic was deeply discussed by specialists in Asian countries. This report summarizes all presentation materials discussed in the meeting. (author)

  8. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  9. On the acceleration of convergence of many-body perturbation theory. Pt. 2

    International Nuclear Information System (INIS)

    Dietz, K.; Schmidt, C.; Warken, M.; Hess, B.A.

    1992-07-01

    We employ the method developed in a previous paper to small systems-Be, LiH, H 2 -where full CI-calculations are available for monitoring convergence of many-body perturbation theory. It is shown that divergent series, in particular for excited states, can be transformed into fast converging ones. In essence our method consists in performing infinite subsummations of perturbation series in order to improve convergence: coupling constants are redefined such that singularities are incorporated in a non-perturbative manner and remaining correlations can be expanded in a larger domain of the complex coupling constant plane. It is in this way that the notion of 'improved convergence' has a well defined meaning. (orig.)

  10. Ghost-Free Massive $f(R)$ Theories Modelled as Effective Einstein Spaces and Cosmic Acceleration

    CERN Document Server

    Vacaru, Sergiu I

    2014-01-01

    We study how massive ghost-free gravity $f(R)$-modified theories, MGFTs, can be encoded into generic off-diagonal Einstein spaces. Using "auxiliary" connections completely defined by the metric fields and adapted to nonholonomic frames with associated to nonlinear connection structure, we decouple and integrate in certain general forms the field equations in MGFT. Imposing additional nonholonomic constraints, we can generate Levi--Civita, LC, configurations and mimic MGFT effects via off-diagonal interactions of effective Einstein and/or Einstein-Cartan gravity with nonholonomically induced torsion. The cosmological evolution of ghost-free off--diagonal Einstein spaces is investigated. Certain compatibility of MGFT cosmology to small off-diagonal deformations of $\\Lambda $CDM models is established. %

  11. Disruptive media technologies : theories and application to the Czech media environment

    OpenAIRE

    Kyjonková, Petra

    2010-01-01

    Diploma thesis "Disruptive media technologies - theories and application to the Czech media environment" deals with a concept of disruptive technologies, which results from the economical model of creative destruction made by founder of innovation theories Joseph Alois Schumpter. Although he had described adverse impact on present market structure at the beginning of 20th century, media studies revealed them lately, precisely in the year 1995 in an economical model of another economist Clayto...

  12. Information Technology from Theory to Practice in Higher Education Structure

    OpenAIRE

    Tooraj Sadeghi; Zahra Piroziyan; Mehrdad Ebrahimpur

    2016-01-01

    In the past two decades, developments process of higher education dependence on the increased demand for admission to higher education, development of communication technologies, need for human resource development, rapid technological changes, accumulated knowledge and information and leads to serious challenges and changes in the role of universities and higher education in the new millennium. So dramatic changes of higher education and move it towards the universalization and interpreta...

  13. General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.

    Science.gov (United States)

    Chen, David; Stroup, Walter

    1993-01-01

    Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…

  14. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    Science.gov (United States)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  15. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    Silakhuddin; Mulyaman, Maman

    2002-01-01

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  16. Impact of accelerator based technologies on nuclear fission safety - Share cost project of the European Community

    International Nuclear Information System (INIS)

    1997-01-01

    As a result of the growing interest in Accelerator-Driven Systems (ADS), some European institutes have established a shared cost project in the framework of the European Community. The overall objective of the project is to make an assessment of the possibilities of accelerator-driven hybrid reactor systems from the point of view of safe energy production, minimum waste production and transmutation capabilities

  17. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Antonella [Grupo de Cosmología y Gravitación GCG-UBB and Departamento de Física, Universidad del Bío-Bío, Casilla 5-C, Concepción (Chile); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Leyva, Yoelsy, E-mail: acidm@ubiobio.cl, E-mail: genly.leon@ucv.cl, E-mail: yoelsy.leyva@uta.cl [Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Casilla 7-D, Arica (Chile)

    2016-02-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, φ, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field φ is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ''intermediate accelerated'' solution of the form a(t) ≅ e{sup α{sub 1} t{sup p{sup {sub 1}}}}, as t → ∞ where α{sub 1} > 0 and 0 < p{sub 1} < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ''intermediate accelerated'' solution of the form a(t) ≅ e{sup α{sub 2} tp{sub 2}} as t → ∞ where α{sub 2} > 0 and 0accelerated

  18. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    International Nuclear Information System (INIS)

    Cid, Antonella; Leon, Genly; Leyva, Yoelsy

    2016-01-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, φ, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field φ is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ''intermediate accelerated'' solution of the form a(t) ≅ e α 1  t p 1 , as t → ∞ where α 1  > 0 and 0 < p 1  < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ''intermediate accelerated'' solution of the form a(t) ≅ e α 2  tp 2 as t → ∞ where α 2  > 0 and 0

    accelerated'' solution does not exist, and the attractor

  19. An Analysis of Theories Related to Experiential Learning for Practical Ethics in Science and Technology

    Science.gov (United States)

    Parahakaran, Suma

    2017-01-01

    Learners in higher education are self -driven to attain goals and objectives of what is required by the Universities for career prospects in the fields of Sciences and Technology. This paper analyses theories of experiential learning which will contribute to implementation of Ethical behaviors in science and technology towards citizenship…

  20. Testing the Utility of Person-Environment Correspondence Theory with Instructional Technology Students in Turkey

    Science.gov (United States)

    Perkmen, Serkan

    2012-01-01

    The main objective of this study was to examine the validity and usefulness of the person-environment correspondence theory with instructional technology students in Turkey. The participants included 211 students and three teachers. Results revealed that instructional technology students value achievement most and that they believe that entering a…

  1. Leading Effective Educational Technology in K-12 School Districts: A Grounded Theory

    Science.gov (United States)

    Hill, Lara Gillian C.

    2011-01-01

    A systematic grounded theory qualitative study was conducted investigating the process of effectively leading educational technology in New Jersey public K-12 school districts. Data were collected from educational technology district leaders (whether formal or non-formal administrators) and central administrators through a semi-structured online…

  2. Examining the Use of Theory within Educational Technology and Media Research

    Science.gov (United States)

    Bulfin, Scott; Henderson, Michael; Johnson, Nicola

    2013-01-01

    Academic research in the areas of educational technology and media is often portrayed to be limited in terms of its use of theory. This short paper reports on data collected from a survey of 462 "research active" academic researchers working in the broad area of educational technology and educational media. The paper explores their use…

  3. Emergent theory and technology in e-learning

    NARCIS (Netherlands)

    Browaeys, M.-J.; Wahyudi, S.

    2006-01-01

    E-learning should be approached via a new paradigm, one where instruction and information are involved in a recursive process, an approach which counters the concept of linearity. New ways of thinking about how people learn and new technologies favour the emergence of principles of e-learning that

  4. Forecasting and Technology Management: Statistical Theory and Methodological Issues

    DEFF Research Database (Denmark)

    Madsen, Henning

    of directions and targets for a R and D project, monitoring of a given area by a public agency, and evaluation of the future competitive situation for a company. This paper gives a brief introduction to the field of technological forecasting especially in relation to the strategic planning process...

  5. The Deming Method: Systems Theory for Educational Technology Services.

    Science.gov (United States)

    Richie, Mark L.

    1993-01-01

    Discusses quality management principles as taught by W. Edwards Deming and describes their applications to educational technology services. Traditional organizational charts are explained; and benefits of using flow charts in Deming's systems are described, including better communications between departments, building teamwork, and opportunities…

  6. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    International Nuclear Information System (INIS)

    Niendorf, Thoralf; Sodickson, Daniel K.

    2008-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  7. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  8. Theory and technology of rock excavation for civil engineering

    CERN Document Server

    Zou, Dingxiang

    2017-01-01

    This book summarizes the technical advances in recent decades and the various theories on rock excavation raised by scholars from different countries, including China and Russia. It not only focuses on rock blasting but also illustrates a number of non-blasting methods, such as mechanical excavation in detail. The book consists of 3 parts: Basic Knowledge, Surface Excavation and Underground Excavation. It presents a variety of technical methods and data from diverse sources in the book, making it a valuable theoretical and practical reference resource for engineers, researchers and postgraduates alike.

  9. Application of Java Technology to Simulation of Transient Effects in Accelerator Magnets

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Superconducting magnets are one of the key building blocks of modern high-energy particle accelerators. Operating at extremely low temperatures (1.9 K), superconducting magnets produce high magnetic field needed to control the trajectory of beams travelling at nearly the speed of light. With high performance comes considerable complexity represented by several coupled physical domains characterized by multi-rate and multi-scale behaviour. The full exploitation of the LHC, as well as the design of its upgrades and future accelerators calls for more accurate simulations. With such a long-term vision in mind, the STEAM (Simulation of Transient Effects in Accelerator Magnets) project has been establish and is based on two pillars: (i) models developed with optimised solvers for particular sub-problems, (ii) coupling interfaces allowing to exchange information between the models. In order to tackle these challenges and develop a maintainable and extendable simulation framework, a team of developers implemented a ...

  10. Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Chung, Kie Hyung; Hong, Sang Hee; Hwang, Il Soon; Park, Byung Gi; Yang, Hyung Lyeol; Kim, Duk Kyu; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to replace the geological waste disposal due to the technical uncertainties in the long-time scale. Nuclear data, categorized in high -and low-energy neutron cross-sections, were investigated and the structures, principles, and recent progresses of proton linac were reviews, Also the accelerator power for transmutation and the economics were referred, The comparison of the transmutation concepts concentrated on two: Japanese OMEGA program of alloy fuelled system, Minor actinide molten salt system, and Eutectic alloy system and American ATW program of aqueous system and molten salt system. From the comparative study, a state-of-art of the technology has been identified as a concept employing proton-accelerate of 800 {approx} 1600 MeV with 100 mA capacity combined with liquid lead target, molten salt blanket and on-line chemical separation using centrifuge and electrowinning technology. 34 refs., 25 tabs., 64 figs. (author)

  11. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  12. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  13. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  14. Current status on research and development of accelerator-driven system and nuclear transmutation technology in Asian countries

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2013-01-01

    This status report describes the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Japan, Korea and China. The report also includes all presentation materials presented in 'the 10th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2012)' held at the Kyoto University Research Reactor Institute, Osaka, Japan on 6th and 7th December, 2012. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The 5 of 27 papers presented at the entitled report and meeting are indexed individually. (J.P.N.)

  15. Proceedings of the international conference on vacuum science and technology and SRS vacuum systems. V.1: accelerators and SRS systems

    International Nuclear Information System (INIS)

    Venkatramani, N.; Sinha, A.K.

    1995-01-01

    An International Conference on Vacuum Science and Technology, INCOVAST-95 was held during January 30 - February 2, 1995 at the Centre for Advanced Technology (CAT), Indore under the aegis of the Indian Vacuum Society. Centre for Advanced Technology has a major programme of design and construction of a 450 MeV electron storage ring, synchrotron radiation source Indus-1 followed by the 1.25 GeV Indus-2. To match the activities at the centre, the present conference had ultrahigh vacuum for Synchrotron Radiation Sources (SRSs) as the main theme. Three major topics, namely accelerators and SRS systems, thin films and surfaces, vacuum components and applications were covered in detail. A short summary of the discussions is also included in the proceedings. Papers relevant to INIS are indexed separately

  16. Development of millimeter-wave accelerating structures using precision metal forming technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-03

    High gradients in radio-frequency (RF) driven accelerators require short wavelengths that have the concomitant requirements of small feature size and high tolerances, 1-2 {micro}m for millimeter wavelengths. Precision metal-forming stampling has the promise of meeting those tolerances with high production rates. This STI will evaluate that promise.

  17. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    Science.gov (United States)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  18. Developing a clinical proton accelerator facility: Consortium-assisted technology transfer

    International Nuclear Information System (INIS)

    Slater, J.M.; Miller, D.W.; Slater, J.W.

    1991-01-01

    A hospital-based proton accelerator facility has emerged from the efforts of a consortium of physicists, engineers and physicians from several high-energy physics laboratories, industries and universities, working together to develop the requirements and conceptual design for a clinical program. A variable-energy medical synchrotron for accelerating protons to a prescribed energy, intensity and beam quality, has been placed in a hospital setting at Loma Linda University Medical Center for treating patients with localized cancer. Treatments began in October 1990. Scientists from Fermi National Accelerator Laboratory; Harvard Cyclotron Laboratory; Lawrence Berkeley Laboratories; the Paul Scherrer Institute; Uppsala, Sweden; Argonne, Brookhaven and Los Alamos National Laboratories; and Loma Linda University, all cooperated to produce the conceptual design. Loma Linda University contracted with Fermi National Accelerator Laboratory to design and build a 250 MeV synchrotron and beam transport system, the latter to guide protons into four treatment rooms. Lawrence Berkeley Laboratories consulted with Loma Linda University on the design of the beam delivery system (nozzle). A gantry concept devised by scientists at Harvard Cyclotron Laboratory, was adapted and fabricated by Science Applications International Corporation. The control and safety systems were designed and developed by Loma Linda University Radiation Research Laboratory. Presently, the synchrotron, beam transport system and treatment room hardware have been installed and tested and are operating satisfactorily

  19. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    Science.gov (United States)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  20. Deviation Among Technology Reviews: An Informative Enrichment of Technology Evolution Theory for Marketing

    OpenAIRE

    Sood, Ashish; Stremersch, Stefan

    2010-01-01

    textabstractUnderstanding technological change is of critical importance to marketers, as it bears new markets, new brands, new customers, and new market leaders. This paper examines the deviation among reviews of a technology’s performance and its consequences for inferences on technology evolution patterns. The basic premise of the current paper is that technology evolution literature, while highly relevant, is misguided in that it ignores potential deviation among technology reviews. Using...

  1. Towards a Theory for Strategic Posture in New Technology Based Firms

    Directory of Open Access Journals (Sweden)

    Héctor Montiel-Campos

    2014-06-01

    Full Text Available This paper elaborates a theory from the existing literature on subjects about entrepreneurship, strategy and innovation. Dubin’s methodology approach is used in order to develop a theory that helps better understand the strategic posture adopted by a New Technology Based Firm in its competitive environment. The theory proposes the competitive context conditions as precedents of the dominant logic and the technology strategy, which, in turn, influence in the competitive behavior adopted by the new firm. An Entrepreneurial Orientation by the new firm, combined with very particular dynamic capabilities, improve the firm’s performance. From the achieved performance, a feedback process to the strategic stance initiates. In addition to the theory, interaction laws, a set of propositions, as well as suggestions for future research projects are presented.

  2. Review: Jörg Strübing (2005. Pragmatistische Wissenschafts- und Technikforschung. Theorie und Methode. [Pragmatist Science and Technology Research: Theory and Method

    Directory of Open Access Journals (Sweden)

    Dirk vom Lehn

    2006-09-01

    Full Text Available There is a curious ignorance of interactionist theory and research in German sociology. Whilst Symbolic Interactionism plays a central role in courses on social theory, such courses often neglect more recent interactionist concepts and studies. Jörg STRÜBING's book introduces some of these concepts and ideas to German sociology by revealing their contribution to science and technology research and to social theory. The book explains in detail the development of interactionism and its contribution to science and technology studies. It is of interest to those studying science and technology research as well as to those interested in social theory. It should be added to reading lists of courses on science and technology studies and should contribute to the wider dissemination of interactionist theories and studies as well as to interactionist science and technology research. URN: urn:nbn:de:0114-fqs0604249

  3. A grounded theory study of the acquisition of technology by Danish dairy producers

    DEFF Research Database (Denmark)

    Brinkmann, Troels Vammen; Tandrup, Peter René; Brandt, Charlotte J.

    The problem of technology acquisition in SMEs represents an under-investigated area in IS research. Most IS literature focuses on either the internal development of systems, which SMEs rarely do, or on issues of usage after the acquisition has taken place. This gap is problematic since acquisition...... grounded theory method for this research. We carried out and analyzed 28 interviews with milk producers and 5 with technology vendors. Our results show that motivations for technology acquisition for milk producers include the economic situation of the farmer, the perceived value of the technology...

  4. Talking back to theory: the missed opportunities in learning technology research

    Directory of Open Access Journals (Sweden)

    Martin Oliver

    2011-12-01

    Full Text Available Research into learning technology has developed a reputation for being drivenby rhetoric about the revolutionary nature of new developments, for payingscant attention to theories that might be used to frame and inform research, andfor producing shallow analyses that do little to inform the practice of education.Although there is theoretically-informed research in learning technology, this isin the minority, and has been actively marginalised by calls for applied designwork. This limits opportunities to advance knowledge in the field. Using threeexamples, alternative ways to engage with theory are identified. The paper concludesby calling for greater engagement with theory, and the development of ascholarship of learning technology, in order to enrich practice within the fieldand demonstrate its relevance to other fields of work.

  5. Tandem accelerators in Romania: Multi-tools for science, education and technology

    Science.gov (United States)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  6. Electron source with a carbon-fibrous cathode for radiation-technology accelerator

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The paper analyses the circuit of a full operating voltage electron source which is a direct-action electron accelerator. The electron source consists of a power supply, high-voltage multiplier-rectifier, vacuum planar diode, vacuum system and control system. The vacuum electron diode contains an autoemission carbon-fibrous cathode and beryllium foil strip anode. The results of measurements of emission characteristics of alumosilicate and carbon-fibrous cathodes are presented. The investigations into test electron source show that it can be used as a basis for creating an electron accelerator which will be capable of generating 1 MW electron beams of 1-2 MeV energy and 1 A current. 3 refs., 1 fig., 1 tab

  7. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  8. On the Emergence and Diffusion of Technological Capabilities and the Theory of the MNC

    DEFF Research Database (Denmark)

    Blomkvist, Katarina; Kappen, Philip; Zander, Ivo

    2015-01-01

    This paper intersects extant theories of the MNC with empirically observed patterns in the intra-company emergence and diffusion of technological capabilities. It draws upon a database containing the complete patenting history of 24 Swedish multinationals over the 1890-2008 period, which allows...... as distinctive and differentiated diffusion patterns across headquarters, greenfield subsidiaries, and acquired units in the MNC group. We conclude that a theory of the MNC should recognize the shift towards more equal conditions for the generation of new technology within the multinational organization......, but that within this overall development some conspicuous inequalities in intra-company capability dif-fusion remain to be accounted for....

  9. Deviation Among Technology Reviews: An Informative Enrichment of Technology Evolution Theory for Marketing

    NARCIS (Netherlands)

    A. Sood (Ashish); S. Stremersch (Stefan)

    2010-01-01

    textabstractUnderstanding technological change is of critical importance to marketers, as it bears new markets, new brands, new customers, and new market leaders. This paper examines the deviation among reviews of a technology’s performance and its consequences for inferences on technology evolution

  10. Evaluation and selection of energy technologies using an integrated graph theory and analytic hierarchy process methods

    Directory of Open Access Journals (Sweden)

    P. B. Lanjewar

    2016-06-01

    Full Text Available The evaluation and selection of energy technologies involve a large number of attributes whose selection and weighting is decided in accordance with the social, environmental, technical and economic framework. In the present work an integrated multiple attribute decision making methodology is developed by combining graph theory and analytic hierarchy process methods to deal with the evaluation and selection of energy technologies. The energy technology selection attributes digraph enables a quick visual appraisal of the energy technology selection attributes and their interrelationships. The preference index provides a total objective score for comparison of energy technologies alternatives. Application of matrix permanent offers a better appreciation of the considered attributes and helps to analyze the different alternatives from combinatorial viewpoint. The AHP is used to assign relative weights to the attributes. Four examples of evaluation and selection of energy technologies are considered in order to demonstrate and validate the proposed method.

  11. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-03-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators

  12. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  13. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A.; Yang, Xiaohan

    2017-07-05

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.

  14. Accelerating the Pace of Change in Energy Technologies Through an Integrated Federal Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-11-01

    In this report, the President’s Council of Advisors on Science and Technology (PCAST) calls for the development of a coordinated government-wide Federal energy policy. This will be a major undertaking, given the large number of Federal policies that affect the development, implementation, and use of energy technologies. For that reason, we recommend that the Administration initiate a process analogous to the Quadrennial Defense Review undertaken every four years by the Department of Defense

  15. Enabling Chemistry Technologies and Parallel Synthesis-Accelerators of Drug Discovery Programmes.

    Science.gov (United States)

    Vasudevan, A; Bogdan, A R; Koolman, H F; Wang, Y; Djuric, S W

    There is a pressing need to improve overall productivity in the pharmaceutical industry. Judicious investments in chemistry technologies can have a significant impact on cycle times, cost of goods and probability of technical success. This perspective describes some of these technologies developed and implemented at AbbVie, and their applications to the synthesis of novel scaffolds and to parallel synthesis. © 2017 Elsevier B.V. All rights reserved.

  16. Teachers and Technology: Development of an Extended Theory of Planned Behavior

    Science.gov (United States)

    Teo, Timothy; Zhou, Mingming; Noyes, Jan

    2016-01-01

    This study tests the validity of an extended theory of planned behaviour (TPB) to explain teachers' intention to use technology for teaching and learning. Five hundred and ninety two participants completed a survey questionnaire measuring their responses to eight constructs which form an extended TPB. Using structural equation modelling, the…

  17. Theory Development and Convergence of Human Resource Fields: Implications for Human Performance Technology

    Science.gov (United States)

    Cho, Yonjoo; Yoon, Seung Won

    2010-01-01

    This study examines major theory developments in human resource (HR) fields and discusses implications for human performance technology (HPT). Differentiated HR fields are converging to improve organizational performance through knowledge-based innovations. Ruona and Gibson (2004) made a similar observation and analyzed the historical evolution…

  18. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    Science.gov (United States)

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  19. Talking Back to Theory: The Missed Opportunities in Learning Technology Research

    Science.gov (United States)

    Bennett, Sue; Oliver, Martin

    2011-01-01

    Research into learning technology has developed a reputation for being driven by rhetoric about the revolutionary nature of new developments, for paying scant attention to theories that might be used to frame and inform research, and for producing shallow analyses that do little to inform the practice of education. Although there is…

  20. Learning in Context: Technology Integration in a Teacher Preparation Program Informed by Situated Learning Theory

    Science.gov (United States)

    Bell, Randy L.; Maeng, Jennifer L.; Binns, Ian C.

    2013-01-01

    This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2-year Master of Teaching program. A specific program goal was to…

  1. Exploring the Theory-Practice Gap: Applications to Health Information Management/Technology Education and Training

    Science.gov (United States)

    Green, Zakevia Denise

    2013-01-01

    Although research on the theory-practice gap is available across multiple disciplines, similar studies focusing on the profession of health information management/technology (HIM/T) are not yet available. The projected number of qualified HIM/T needed with advanced skills and training suggests that skillful use of electronic health records (EHR)…

  2. Reactors, Weapons, X-Rays, and Solar Panels: Using SCOT, Technological Frame, Epistemic Culture, and Actor Network Theory to Investigate Technology

    Science.gov (United States)

    Sovacool, Benjamin K.

    2006-01-01

    The article explores how four different theories have been used to investigate technology. It highlights the worth and limitations of each theory and argues that an eclectic, ever-evolving approach to the study of technology is warranted. (Contains 1 table.)

  3. PSS Support for Maritime Technology Ventures: From Exploration to Methodology and Theory

    DEFF Research Database (Denmark)

    Andersen, Jakob Axel Bejbro

    -efficient, competitive Eastern suppliers. The Danish suppliers - by some considered the world leaders in terms of technological knowledge - are faced with a difficult choice: Either try to survive by cutting costs and competing on price or attempt to leverage their unique knowledge of technology to the market and build...... new business ventures, which are not dependent on cost as a competitive factor. The recommendation of this thesis is to pursue the latter option and adopt entrepreneurial strategies as a means to future prosperity. To achieve this goal, the area of Product/Service-Systems (PSS) is introduced...... to validate an existing theory for entrepreneurship process against the data. This study fails to find proof for or against the assertions of the theory. In the last study, a grounded theory approach is used for building a conceptual framework for entrepreneurship processes. As such, the framework is entirely...

  4. Decision-making model of generation technology under uncertainty based on real option theory

    International Nuclear Information System (INIS)

    Ming, Zeng; Ping, Zhang; Shunkun, Yu; Ge, Zhang

    2016-01-01

    Highlights: • A decision-making model of generation technology investment is proposed. • The irreversible investment concept and real option theory is introduced. • Practical data was used to prove the validity of the model. • Impact of electricity and fuel price fluctuation on investment was analyzed. - Abstract: The introduction of market competition and the increased uncertainty factors makes the generators have to decide not only on whether to invest generation capacity or not but also on what kind of generation technology to choose. In this paper, a decision-making model of generation technology investment is proposed. The irreversible investment concept and real option theory is introduced as the fundamental of the model. In order to explain the decision-making process of generator’s investment, the decision-making optimization model was built considering two generation technologies, i.e., the heat-only system and the combined heat and power generation. Also, we discussed the theory deducing process, which explained how to eliminate the overrated economic potential caused by risk hazard, based on economic evaluation of both generation technologies. Finally, practical data from electricity market of Inner Mongolia was used to prove the validity of the model and the impact of uncertainties of electricity and fuel price fluctuation on investment was analyzed according to the simulated results.

  5. Shape Memory Alloy connectors for Ultra High Vacuum applications: a breakthrough for accelerator technologies

    CERN Document Server

    AUTHOR|(CDS)2091326; Garion, Cedric

    Beam-pipe coupling in particle accelerators is nowadays provided by metallic flanges that are tightly connected by several screws or heavy collars. Their installation and dismounting in radioactive areas contribute to the radiation doses received by the technical personnel. Owing to the increased proton-beam intensity and luminosity of the future High-Luminosity LHC (HL-LHC), radioactivity in some specific zones will be significantly higher than in the present LHC; the presence of the technical staff in these areas will be strictly controlled and minimized. Remote interventions are being considered, too. Shape Memory Alloys (SMAs) offer a unique possibility to generate tight connections and fast clamping/unclamping by remotely changing the temperature of the junction unit. In fact, SMAs exhibit unique strain and stress recovery capabilities which are related to reversible phase transition mechanisms, induced thermally or mechanically. In this PhD work, a novel Ultra-High Vacuum (UHV) coupling system based on ...

  6. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  7. Accelerating the output of technology for auxillary processes in open cast mines

    Energy Technology Data Exchange (ETDEWEB)

    Matantsev, A.I.

    1984-01-01

    An analysis of the current state of track-laying operations in open-cut mines is given and their labor intensive nature is noted. The lag in the technological development of mechanization equipment for track laying and repair operations is noted. Results are given from developments by the Scientific Research Institute of Open-Pit Mining Operations in the field of mobile transportation technology and promising modular route design. Also examined are the problems of improving the routing bases in the industry. The absence of factories for manufacturing transportation technology and equipment is reflected most evidently in the technical and cost characteristics of coal production by an open-cut method and requires immediate solution.

  8. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  9. The NC3Rs gateway: Accelerating scientific discoveries with new 3Rs models and technologies.

    Science.gov (United States)

    Percie du Sert, Nathalie; Robinson, Vicky

    2018-01-01

    This editorial introduces the NC3Rs gateway, which publishes articles and reviews on new models and technologies emerging from NC3Rs-funded research. The aim is to raise awareness about these approaches, increase confidence in their capability, and provide sufficient information to facilitate their uptake by others.

  10. Application of PLC technology in measurement of beam profile on 100 MeV accelerator

    International Nuclear Information System (INIS)

    Yu Luyang; Chinese Academy of Sciences, Beijing; Chen Yongzhong; Chen Yongzhong; Liu Dekang; Chinese Academy of Sciences, Beijing

    2005-01-01

    A comprehensive introduction is given to the real-time measuring method, which is based on the Programmable Logic Controller (PLC) technology and can measure intensity and profile of the beam by a scintillator screen. The whole system has many advantages, such as good reliability, high precision, intuitional measurement, etc. due to the use of the PLC and Labview software. (authors)

  11. The transfer to technology to manufacture the disk of X-band accelerator structure

    International Nuclear Information System (INIS)

    Ueno, Kenji; Kawamata, Hiroshi; Takatomi, Toshikazu; Kume, Tatsuya; Funahashi, Yoshisato

    2005-01-01

    We research the transfer of manufacturing technology on X-band structure disks. From this issue we confirm that the venders will be able to manufacture disks when they get the process sheet method and drawings. More it is clear that we have to consider the automation process in order to get the repeatability of the disks. (author)

  12. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned

    International Nuclear Information System (INIS)

    Okazaki, Teruo; Yamaguchi, Mitsutsune

    2011-01-01

    It is imperative to tackle the issue globally mobilizing all available policies and measures. One of the important ones among them is technology transfer and diffusion. By utilizing international co-operation, industry can promote such measures in two ways: through government policy and through industry's own voluntary initiative. Needless to say, various government policies and measures play essential role. By the same token, industry initiative can complement them. There is much literature documenting the former. On the contrary there are few on the latter. This paper sheds light on the latter. The purpose of this paper is to explore the effectiveness of global voluntary sectoral approach for technology diffusion and transfer based on steel sector experience. The goal is to contribute toward building a worldwide low-carbon society by manufacturing goods with less energy through international cooperation of each sector. The authors believe that the voluntary sectoral approach is an effective method with political and practical feasibilities, and hope to see the continued growth of more initiatives based on this approach. - Highlights: → There exist huge reduction potentials in steel industries globally. → Technology transfer and diffusion are keys to achieve reductions. → Main barriers are economic, technological and policy-related. → Case studies in overcoming barriers are discussed. → In steel industry, a voluntary sectoral approach has shown to be effective.

  13. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  14. Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization

    KAUST Repository

    Gower, Robert M.; Hanzely, Filip; Richtarik, Peter; Stich, Sebastian

    2018-01-01

    We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite

  15. Future aesthetics of technology; context specific theories from design and philosophy of technology

    NARCIS (Netherlands)

    Eggink, Wouter; Snippert, Jeroen

    2017-01-01

    Since Postmodernism, presenting universal guidelines for aesthetics is highly suspect. However, aesthetics can play a significant role in the acceptance of technology and its success in society, so this paper argues for the generating of specific aesthetic guidelines, based on a general perspective.

  16. A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need.

    Science.gov (United States)

    Bareither, Rachel; Pollard, David

    2011-01-01

    The pharmaceutical and biotech industries face continued pressure to reduce development costs and accelerate process development. This challenge occurs alongside the need for increased upstream experimentation to support quality by design initiatives and the pursuit of predictive models from systems biology. A small scale system enabling multiple reactions in parallel (n ≥ 20), with automated sampling and integrated to purification, would provide significant improvement (four to fivefold) to development timelines. State of the art attempts to pursue high throughput process development include shake flasks, microfluidic reactors, microtiter plates and small-scale stirred reactors. The limitations of these systems are compared to desired criteria to mimic large scale commercial processes. The comparison shows that significant technological improvement is still required to provide automated solutions that can speed upstream process development. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  17. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    Science.gov (United States)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  18. Current status of electron beam processing applications and the latest accelerator technologies in Japan

    International Nuclear Information System (INIS)

    Hoshi, Yasuhisa

    1998-01-01

    Electron Beam (EB) processing has been increasing in popularity as a cross-linking process since the beginning of its industrial use. Examples are heat resistance improvement of electric wires, high quality foamed polyethylene (PE) and polypropylene (PP), automotive tire manufacturing and heat shrinkable products. EB is also used in the tire manufacturing process as a pre-vulcanisation of rubber sheet before forming process. Cross-linking of electric wire insulators is the most popular industrial application of electron beam accelerators in Japan. EB cross-linked wires are widely used in electrical appliances and automotive wire harnesses. Curing of inks or coating is a promising application of low energy EB. EB cure is often compared with Ultra-Violet (UV) curing. Both has a common advantage compared with a conventional heat curing process such as no solvent requirement. A typical advantage is that no initiators are required to start curing process. EB can also be used to remove SO 2 and NO x from coal flue gas. This paper reports some of these applications and discusses the latest equipment design. (author)

  19. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2006-01-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb 3 Sn coils, Fermilab has started a Nb 3 Sn technology scale-up program using the dipole mirror design and the developed Nb 3 Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb 3 Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb 3 Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure

  20. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb{sub 3}Sn coils, Fermilab has started a Nb{sub 3}Sn technology scale-up program using the dipole mirror design and the developed Nb{sub 3}Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb{sub 3}Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb{sub 3}Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure.

  1. Prospects of improvement of accelerated bread technologies by usage of dogrose and hawthorn

    OpenAIRE

    Лебеденко, Тетяна Євгеніївна; Кожевнікова, Вікторія Олегівна; Новічкова, Тамара Петрівна

    2014-01-01

    In this article the analysis of main problems of baking industry connected with introduction of resource-saving technologies and reduction of quality of derivable product has been conducted; the current problems facing bread manufacturers have been determined. The objective of this research is the development of methods of complex increase of quality of products, their consumer properties, safety and nutritional value by usage of fruit phyto-additives.In this work on the basis of analysis of ...

  2. Innovative ion sources for accelerators: the benefits of the plasma technology

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Ciavola, G.; Celona, L.; Torrisi, L.; Ando, L.; Presti, M.; Láska, Leoš; Krása, Josef; Wolowski, J.

    2004-01-01

    Roč. 54, Suppl. C (2004), s. C883-C888 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21./. Praha, 14.06.2004-17.06.2004] R&D Projects: GA AV ČR IAA1010405 Institutional research plan: CEZ:AV0Z1010921 Keywords : plasma sources * ion sources * proton sources * ECR Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  3. Development of a new bonding material and its trial application to accelerator technology

    International Nuclear Information System (INIS)

    Tanaka, Yasuhito; Yamano, Kiyoshi; Saito, Kenji

    2001-01-01

    We have succeeded to develop a new bonding material for new television technology, which has a very low outgas property. This bonding material has been tested and confirmed the excellent sealing or outgas property in various institutes. We have tried it to use as a vacuum sealant against the super-leaking in He-II. In this report, we will present the motivation of the bonding material development, and the result of the application to cryogenics. (author)

  4. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  5. Dynamical assessment for evolutions of Atomic-Multinology (AM) in technology innovation using social network theory

    International Nuclear Information System (INIS)

    Woo, Taeho

    2012-01-01

    Highlights: ► The popularity of AM is analyzed by the social network theory. ► The graphical and colorful configurations are used for the meaning of the incident. ► The new industrial field is quantified by dynamical investigations. ► AM can be successfully used in nuclear industry for technology innovation. ► The method could be used for other industries. - Abstract: The technology evolution is investigated. The proposed Atomic Multinology (AM) is quantified by the dynamical method incorporated with Monte-Carlo method. There are three kinds of the technologies as the info-technology (IT), nano-technology (NT), and bio-technology (BT), which are applied to the nuclear technology. AM is initiated and modeled for the dynamic quantifications. The social network algorithm is used in the dynamical simulation for the management of the projects. The result shows that the successfulness of the AM increases, where the 60 years are the investigated period. The values of the dynamical simulation increase in later stage, which means that the technology is matured as time goes on.

  6. Rotec Theory: planning tool to position hospitals on the technology curve.

    Science.gov (United States)

    Roberts, R

    1990-06-01

    The mission statement of a prominent California hospital has been revised as part of a strategic planning process less than two years before the hospital began experiencing substantial financial difficulties. When the "red numbers" began to appear, management was quick to blame changing demographic patterns and the competitive environment. Those were not the only problems. A major contributing factor that management failed to recognize was a delay in how quickly the hospital moved to adopt high technology or new medical procedures. In a few short years, it had changed from being the first community hospital to implement state-of-the-art programs to one that was slow to introduce technology. In retrospect, the hospital's mission statement did not address the role of technology and therefore it could not detect the movement away from one of its critical success factors. The Rotec Theory was developed to assist this hospital to understand the economics of technology on its current and planned operations.

  7. Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions

    Science.gov (United States)

    2014-09-01

    today, hydraulic fracking technology has created a boom in U.S. oil and gas production that may allow us to achieve that goal of energy independence by...has seen a seismic shift, as vast North American reserves of oil and gas have been unlocked by hydraulic fracking and horizontal drilling. This will...www.disa.mil/About/Our-Work/JIE 94 For a good overview, see http://www.cfr.org/energy-and-environment/ hydraulic -fracturing- fracking /p31559 95 For a

  8. Accelerated Adoption of Advanced Health Information Technology in Beacon Community Health Centers.

    Science.gov (United States)

    Jones, Emily; Wittie, Michael

    2015-01-01

    To complement national and state-level HITECH Act programs, 17 Beacon communities were funded to fuel community-wide use of health information technology to improve quality. Health centers in Beacon communities received supplemental funding. This article explores the association between participation in the Beacon program and the adoption of electronic health records. Using the 2010-2012 Uniform Data System, trends in health information technology adoption among health centers located within and outside of Beacon communities were explored using differences in mean t tests and multivariate logistic regression. Electronic health record adoption was widespread and rapidly growing in all health centers, especially quality improvement functionalities: structured data capture, order and results management, and clinical decision support. Adoption lagged for functionalities supporting patient engagement, performance measurement, care coordination, and public health. The use of advanced functionalities such as care coordination grew faster in Beacon health centers, and Beacon health centers had 1.7 times higher odds of adopting health records with basic safety and quality functionalities in 2010-2012. Three factors likely underlie these findings: technical assistance, community-wide activation supporting health information exchange, and the layering of financial incentives. Additional technical assistance and community-wide activation is needed to support the use of functionalities that are currently lagging. © Copyright 2015 by the American Board of Family Medicine.

  9. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  10. Accelerating the development and diffusion of new energy technologies: Beyond the 'valley of death'

    International Nuclear Information System (INIS)

    Weyant, John P.

    2011-01-01

    There are at least three motivations for government intervention in GHG mitigation: (1) inducing the private sector to reduce GHG emissions directly by setting a price on emissions, (2) increasing the amount of innovative activity in GHG mitigation technology development, and (3) educating the public regarding GHG-reducing investment opportunities, allowing consumers to make better private decisions. This paper discusses the pros and cons of policy instruments that might be used to respond to these motivations and makes recommendations for an appropriate mix of policy instruments over time given both economic and policital/instituional considerations. - Research Highlights: → Increases in pre-competitive energy R and D and energy efficiency technology diffusion policies in the US are highly desirable. → The cost of well designed programs in these areas can be low and the pay off very high. → Such policies make sense even if the GHG externality is internalized through a GHG tax or equivalent, but are even more desirable if they are not.

  11. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    Science.gov (United States)

    Willis, Jerry W.

    1993-01-01

    be the most effective or most desirable way to use computer technology in literacy programs. This project is developing a series of instructional packages that are based on a different instructional model - authentic instruction. The instructional development model used to create these packages is also different. Instead of using the traditional five stage linear, sequential model based on behavioral learning theory, the project uses the recursive, reflective design and development model (R2D2) that is based on cognitive learning theory, particularly the social constructivism of Vygotsky, and an epistemology based on critical theory. Using alternative instructional and instructional development theories, the result of the summer faculty fellowship is LiteraCity, a multimedia adult literacy instructional package that is a simulation of finding and applying for a job. The program, which is about 120 megabytes, is distributed on CD-ROM.

  12. Editorial of the Special Issue on Human-Technology Interaction and Technology Adoption: Exploring Frameworks other than Actor-Network Theory

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2014-01-01

    Actor-network theory (ANT) has established itself as a valuable resource for the analysis of technology innovation and adoption. One of the main reasons for the success of the Innovation Translation Model (a specific instantiation of ANT) is the fact that it fits very well the emerging dominance...... challenges. This is why in this special issue we have focused on exploring, in parallel to ANT, other approaches that have also proven valuable in studying technology adoption and human-technology interaction. Some of these approaches share significant common ground with ANT. They also diverge in some......, Design in-use, Practice theory, Innovation diffusion, Consumer innovativeness and Activity theory....

  13. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  14. Skin cancer interventions across the cancer control continuum: Review of technology, environment, and theory.

    Science.gov (United States)

    Taber, Jennifer M; Dickerman, Barbra A; Okhovat, Jean-Phillip; Geller, Alan C; Dwyer, Laura A; Hartman, Anne M; Perna, Frank M

    2018-06-01

    The National Cancer Institute's Skin Cancer Intervention across the Cancer Control Continuum model was developed to summarize research and identify gaps concerning skin cancer interventions. We conducted a mapping review to characterize whether behavioral interventions addressing skin cancer prevention and control from 2000 to 2015 included (1) technology, (2) environmental manipulations (policy and/or built environment), and (3) a theoretical basis. We included 86 studies with a randomized controlled or quasi-experimental design that targeted behavioral intervention in skin cancer for children and/or adults; seven of these were dissemination or implementation studies. Of the interventions described in the remaining 79 articles, 57 promoted only prevention behaviors (e.g., ultraviolet radiation protection), five promoted only detection (e.g., skin examinations), 10 promoted both prevention and detection, and seven focused on survivorship. Of the 79 non-dissemination studies, two-thirds used some type of technology (n=52; 65.8%). Technology specific to skin cancer was infrequently used: UVR photography was used in 15.2% of studies (n=12), reflectance spectroscopy was used in 12.7% (n=10), and dermatoscopes (n=1) and dosimeters (n=2) were each used in less than 3%. Ten studies (12.7%) targeted the built environment. Fifty-two (65.8%) of the studies included theory-based interventions. The most common theories were Social Cognitive Theory (n=20; 25.3%), Health Belief Model (n=17; 21.5%), and the Theory of Planned Behavior/Reasoned Action (n=12; 15.2%). Results suggest that skin cancer specific technology and environmental manipulations are underutilized in skin cancer behavioral interventions. We discuss implications of these results for researchers developing skin cancer behavioral interventions. Copyright © 2017. Published by Elsevier Inc.

  15. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  16. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  17. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology.

    Science.gov (United States)

    Nai, Corrado; Meyer, Vera

    2018-06-01

    Since the onset of microbiology in the late 19th century, scientists have been growing microorganisms almost exclusively as pure cultures, resulting in a limited and biased view of the microbial world. Only a paradigm shift in cultivation techniques - from axenic to mixed cultures - can allow a full comprehension of the (chemical) communication of microorganisms, with profound consequences for natural product discovery, microbial ecology, symbiosis, and pathogenesis, to name a few areas. Three main technical advances during the last decade are fueling the realization of this revolution in microbiology: microfluidics, next-generation 3D-bioprinting, and single-cell metabolomics. These technological advances can be implemented for large-scale, systematic cocultivation studies involving three or more microorganisms. In this review, we present recent trends in microbiology tools and discuss how these can be employed to decode the chemical language that microorganisms use to communicate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare

    Science.gov (United States)

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-01

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals. PMID:29464026

  19. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.

    Science.gov (United States)

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-19

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years