WorldWideScience

Sample records for technologies organic coating

  1. Unidirectional coating technology for organic field-effect transistors: materials and methods

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Qian, Jun; Yin, Yao; Shi, Yi; Li, Yun

    2015-05-01

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V-1 s-1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed.

  2. Coating technologies in the nuclear industry

    International Nuclear Information System (INIS)

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  3. Foundry Coating Technology: A Review

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2011-01-01

    The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The appli-cation of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system....... These thermal shock leads to series of surface de-fects such as veining/finning, metal penetration, burn-on/in, scab, rat tail, erosion etc. The use of coatings reduces the tendency of occurrence of these defects. However, the understanding of the coating, its components, characteristics and mechanism of action...... is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach....

  4. New PVD Technologies for New Ordnance Coatings

    Science.gov (United States)

    2012-04-01

    shows the dense microstructure and moderate hardness in the bcc Ta coatings . The white tetragonal beta Ta fingers were observed in the darker bcc... hard dense quality coatings . HIPIMS technology can grow coatings of zone 2 and 3 microstructure with equiaxed structure in Thorton‟s...nucleation and growth properties; 6) Coatings characterization. 15. SUBJECT TERMS Electroplated high contraction chromium (HC Cr) coatings ; Physical

  5. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  6. Moisture in organic coatings - a review

    NARCIS (Netherlands)

    Wel, G.K. van der; Adan, O.C.G.

    1999-01-01

    A review is given on transport and equilibrium sorption of moisture in polymer films and organic coatings. Polymeric material forms the continuous phase of a coating and is therefore important for transport properties. Besides polymer, coatings consist of pigments and fillers and various additives,

  7. Thin Film Coating Technology For Ophthalmic Lenses

    Science.gov (United States)

    Guenther, K. H.

    1986-05-01

    Coating of ophthalmic lenses is an application of high-vacuum coating technology which must satisfy not only physical and technical requirements but also customer demands with respect to aesthetics, color fidelity, and exchangeability of coated ophthalmic lenses. Because this application caters specifically to the consumer market, ophthalmic lenses are subject to certain fashion trends which frequently require quick adaptation of the coating technique. The state-of-the-art of ophthalmic lens coating is reviewed in this paper, with particular emphasis on the durability requirements in daily use by untrained consumers as well as on the applicable testing methods.

  8. Coatings Technology Integration Office (CTIO)

    Data.gov (United States)

    Federal Laboratory Consortium — CTIO serves as the Air Force's central resource for aircraft coating systems and their applications. CTIO's primary objectives are pollution prevention and improved...

  9. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  10. ENVIRONMENTAL AND ENERGY QUALITY TECHNOLOGIES Task Order 0005: Organic Finishing Technologies Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping

    Science.gov (United States)

    2015-06-22

    strippers include disposal of chemical soaked rags, mats, and personal protective equipment (PPE), as well as chemical soaked coating sludge . Current...the cost savings, there were projected environmental waste disposal avoidances of about 120,000 pounds of spent media and about 18,000 pounds of...16 3.1.4 Initial Cost Benefit Analysis

  11. Environmental and Energy Quality Technologies. Task Order 0005: Organic Finishing Technologies, Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping : Project: WP 2146

    Science.gov (United States)

    2015-06-22

    strippers include disposal of chemical soaked rags, mats, and personal protective equipment (PPE), as well as chemical soaked coating sludge . Current...the cost savings, there were projected environmental waste disposal avoidances of about 120,000 pounds of spent media and about 18,000 pounds of...16 3.1.4 Initial Cost Benefit Analysis

  12. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  13. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, B. G.; Kim, Y. K.

    2009-04-01

    UO 2 kernel fabrication technology was developed at the lab sacle(20∼30g-UO 2 /batch). The GSP technique, modified method of sol-gel process, was used in the preparation of spherical ADU gel particle and these particles were converted to UO 3 and UO 2 phases in calcination furnace and sintering furnace respectively. Based on the process variables optimized using simulant kernels in 1-2 inch beds, SiC TRISO-coated particles were fabricated using UO 2 kernel. Power densities of TRISO coated particle fuels and gamma heat of the tubes are calculated as functions of vertical location of the fuel specimen in the irradiation holes by using core physics codes, MCNP and Helios. A finite model was developed for the calculations of temperatures and stresses of the specimen and the irradiation tubes. Dimensions of the test tubes are determined based on the temperatures and stresses as well as the gamma heat generated at the given condition. 9 modules of the COPA code (MECH, FAIL, TEMTR, TEMBL, TEMPEB, FPREL, MPRO, BURN, ABAQ), the MECH, FAIL, TEMTR, TEMBL, TEMPEB, and FPREL were developed. The COPA-FPREL was verified through IAEA CRP-6 accident benchmarking problems. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. The inspection and test plan describing specifications and inspection method of coated particles was developed to confirm the quality standard of coated particles. The quality inspection instructions were developed for the inspection of coated particles by particle size analyzer, density inspection of coating layers by density gradient column, coating thickness inspection by X-ray, and inspection of optical anistropy factor of PyC layer. The quality control system for the TRISO-coated particle fuel was derived based on the status of quality control systems of other countries

  14. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Laser Coating Technology; A Commercial Reality

    Science.gov (United States)

    Blake, Andrew G.; Mangaly, A. A.; Everett, M. A.; Hammeke, A. H.

    1988-10-01

    Commercial acceptance of laser coating technology suffered for many years due to questions about its economic viability. During this period, however, many companies, universities, and government research groups were busy developing the technology to overcome these questions. Today, laser coating technology is having a major impact as a high quality, economical method of hardfacing for wear and corrosion resistance in several key industries. This has occurred because of advances in five key areas: 1. High power laser design 2. Method of alloy deposition, and associated hardware 3. In-process feed back control system hardware/software development 4. Alloy systems 5. Marketing/sales sophistication High power lasers have improved in mode stability, power conversion efficiency, and optical flexibility (reflective vs. transmissive materials). This has enabled the process engineer to increase deposition efficiency, and maintain flexibility on the use of optics specifically designed for a user application. Improvements in the method of alloy deposition have led to developments such as the DPF system with specialized nozzles developed for specific user applications. Another effective technique includes the use of pre-fabricated cast alloy chips that are welded to the component surface on the specific area requiring protection. The development of feedback control systems that integrate process control software with hard tooling, the laser, and the alloy delivery system are greatly improving process reliability and product quality. Because of this, "in-process" quality control is becoming a viable alternative to traditional methods of quality control. Metallurgical evaluations of some of the most widely used hardfacing alloys and base materials have been investigated by numerous researchers. Analysis has confirmed that laser applied coatings are of high metallurgical quality, extremely low in dilution, and distort less due to low heat input. The technology can also be used to

  16. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  17. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  18. Technologies in organic farming

    DEFF Research Database (Denmark)

    Lassen, Jesper

    2015-01-01

    (pollution) and consequences for human health. Broader ideas about ecosystems and the recycling of nutrients between the agricultural sector and the urban population are notably absent. On the basis of these findings the paper concludes by discussing the relationship between the consumers’ values that guide...... to phase out their use of conventional manure before 2021. This, however, raises a number of questions about consumers’ acceptance of the alternative technologies that have been proposed to close the nutrient gap. Drawing on qualitative interviews with Danish organic consumers, this paper first discusses...... what, from a consumers perspective, characterizes the technologies consumers associate with organic production. This part of the analysis shows that by and large consumers regard organic technologies as the opposite of conventional farming. Second, consumers’ perceptions of solutions suggested to close...

  19. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION COATINGS AND COATING EQUIPMENT PROGRAM (ETV CCEP), FINAL TECHNOLOGY APPLICATIONS GROUP TAGNITE--TESTING AND QUALITY ASSURANCE PLAN (T/QAP)

    Science.gov (United States)

    The overall objective of the Environmental Testing and Verification Coatings and Coating Equipment Program is to verify pollution prevention and performance characteristics of coating technologies and make the results of the testing available to prospective coating technology use...

  1. ORGANIC ELECTRODE COATINGS FOR NEXT-GENERATION NEURAL INTERFACES

    Directory of Open Access Journals (Sweden)

    Ulises A Aregueta-Robles

    2014-05-01

    Full Text Available Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

  2. Determining the coating speed limitations for organic photovoltaic inks

    DEFF Research Database (Denmark)

    Jakubka, Florian; Heyder, Madeleine; Machui, Florian

    2013-01-01

    To determine the output capability of present organic photovoltaic (OPV) materials, it is important to know the theoretical maximum coating speeds of the used semiconductor formulations. Here, we present a comprehensive investigation of the coating stability window of several prototype organic...... semiconductor inks relevant for organic solar cells. The coating stability window was first determined experimentally by a sheet to sheet coater at velocities of up to 10 m/min. A numerical simulation model based on the Coating Window Suite 2010 software was established to give insight into the coating......-xylene and tetrahydronaphthalene showed the possibility of coating speeds up to 60 m/min. The simulation further revealed the maximum coating head distances for a given wet film thickness. Finally, we show a solar-cell with slot-die coated PEDOT:PSS and P3HT:PCBM-layer based on the parameters obtained by the simulated data, which...

  3. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    OpenAIRE

    V. V. Okovity; O. G. Devoino; V. A. Okovity; V. M. Astashinsky

    2016-01-01

    A technology for formation of thermal barrier coatings (TBC) based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperat...

  4. Methods for Reducing Volatile Organic Content in Fabric Waterproof Coatings

    National Research Council Canada - National Science Library

    Keohan, Francis

    1994-01-01

    .... Regulatory pressure for environmental protection and worker safety has become a potent driving force in eliminating volatile organic solvents and toxic additives from commercial coating products...

  5. Hybrid organic-inorganic coatings via electron transfer behaviour.

    Science.gov (United States)

    Zoubi, Wail Al; Min, Ji Hoon; Ko, Young Gun

    2017-08-01

    A novel method to functionalize the surface of inorganic coating by growing organic coating has been investigated based on microstructural interpretation, electrochemical assessment, and quantum chemical analysis. For this purpose, inorganic coating with magnesium aluminate, magnesium oxide, and titanium dioxide was prepared on magnesium alloy via plasma electrolytic oxidation (PEO), and, then, subsequent dip-coating method was used to tailor organic coating using diethyl-5-hydroxyisophthalate (DEIP) as organic molecules. The incorporation of TiO 2 particles worked as a sealing agent to block the micro-defects which resulted mainly from the intense plasma sparks during PEO. In addition, such incorporation played an important role in enhancing the adhesion between inorganic and organic coatings. The use of DEIP as organic corrosion inhibitor resulted in a significant decrease in porosity of inorganic coating. Quantum chemical calculation was used to clarify the corrosion inhibition mechanism which was activated by introduction of DEIP. Thus, the electrochemical analysis based on potentiodynamic polarization and impedance spectroscopy tests in 3.5 wt% NaCl solution suggested that corrosion resistance of magnesium alloy sample was enhanced significantly due to a synergistic effect arising from the hybrid inorganic and organic coatings. This phenomenon was explained in relation to electron transfer behaviour between inorganic and organic coatings.

  6. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    1 (2009): pp 1012-1013. 9. X. Zhang, F.Wang, Y. Du, “Effect of Nano-Sized Titanium Powder Addition on Corrosion Performance of Epoxy Coatings...choosing a coating is the substrate in question, the desired end use for the final product , and the environment in which the final product will be... product . Herein, we discuss the performance of one type of organic coating – metal-rich organic primer – as an ionic and electronic barrier for

  7. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  8. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in

  9. Diffusion of sulfuric acid in protective organic coatings

    DEFF Research Database (Denmark)

    Wang, Ting; Møller, Victor Buhl; Dam-Johansen, Kim

    Organic protective coatings and linings are widely used to prevent corrosion in industrial processes. However, the permeation of aggressive chemicals through coatings can induce failures. These are described in the literature, but rarely quantified. To measure the diffusion rates of aggressive...... chemicals through organic coatings, a diffusion cell was designed. The diffusion cell designed is simple, small and suitable for scaling up to a battery of cells. A concentration profile of H3O+ through epoxy coatings was achieved for sulfuric acid aqueous solutions, which can be used to estimate diffusion...

  10. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  11. Radiation cure technology used in inks and coatings

    International Nuclear Information System (INIS)

    Ravijst, J.-P.

    1995-01-01

    The radiation cure technology in inks and coatings by ultraviolet light (UV) and electron beam (EB) was introduced. The technology is the only one which meets the 3-E rules. An advantage of this technology is that a wide range of substrates can be printed such as paper, card, metal and even heat sensitive plastics

  12. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  13. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  14. Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance.

    Science.gov (United States)

    Castells-Gil, Javier; Novio, Fernando; Padial, Natalia M; Tatay, Sergio; Ruíz-Molina, Daniel; Martí-Gastaldo, Carlos

    2017-12-27

    Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal-organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

  15. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  16. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  17. Biorepellent Organic Coatings for Improved Microsieve Filtration

    NARCIS (Netherlands)

    Rosso, M.; Schroën, C.G.P.H.; Zuilhof, H.

    2009-01-01

    Microsieves are a new type of Si-based membranes, which are coated with a SixN4 top layer. Although SixN4 is known to be relatively inert, surface contamination (fouling through e.g. protein adsorption) is critical for application in microfiltration. As a result, surface modification is needed to

  18. Organic coatings for marine and shipping applications

    NARCIS (Netherlands)

    Wit, J.H.W. de; Mol, J.M.C.; Bos, W.M.; Ferrari, G.M.

    2008-01-01

    Since the maritime environment is strongly aggressive, coatings needed to protect steel can be classifi ed as ‘heavy duty coatings’. In most maritime applications because of maintenance diffi culties a long service life is generally required. This, together with safety and environmental issues,

  19. Analysis of Properties of Hard Coatings and Wear Resistance of Chemical Vapour Deposition (PVD Coated Technology

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2015-01-01

    Full Text Available Modern coating methods are having become an important part of industry. Wear resistance, durability, toughness (breakage resistance and hot hardness (high hardness and chemical stability at high temperature are the four main technological properties necessary for durability and long life time. These proprieties are for productivity, economy and ecology very important point. This resource deals with the analysis of properties of hard coatings and wear resistance of chemical vapour deposition (PVD coated technology. It focuses on the preparation, execution and evaluation of test coatings on the front ball-milling cutters. Examination of these characteristic properties may give into an insight to the reason why some systems show excellent wear characteristic.

  20. Relative effectiveness of electron-proton damage on organic coatings

    International Nuclear Information System (INIS)

    Bartolomei, P.; Cabrini, A.

    1988-01-01

    With aim to verify the validity of simulation with photon irradiators, of damage caused on internal containment coatings by beta plus gamma mixed field following to a LOCA in LWR, irradiation tests with Co 60 photon and with nearly 1.5 MeV mean energy electrons have been performed. Changes of some properties of coating film have been verified versus absorbed doses up to 1000 KGy (100 Mrad). A special technique for measurement of dose absorbed in thin film of coating has been tested, to be related to absorbed dose in organic dosimeters and in water (Fricke solution) dosimeter. The changes of considered properties (tensile strength, ease to decontamination, color, brightness) do not allow at the moment, to determine undoubtedly the degree of equivalence between radiation damage to coatings by two types of radiation. A strong backscatter effect mainly evident in electron irradiation, has been pointed out, which contribute to damage to coating film

  1. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  2. Hybrid laser technology for composite coating and medical applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Písařík, Petr; Mikšovský, Jan; Remsa, Jan; Mihailescu, I. N.; Kopeček, Jaromír

    2014-01-01

    Roč. 10, č. 1 (2014), s. 1-8 ISSN 1823-3430 R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : hybrid technology * pulsed laser deposition * biocompatible composites * doped coating * composite coating Subject RIV: BM - Solid Matter Physics ; Magnetism http://web.usm.my/jes/pastIssue.html

  3. Reduction of organic solvent emission by industrial use of electron-beam curable coatings

    International Nuclear Information System (INIS)

    Haering, E.

    1982-01-01

    Most industrial finishing processes operate by the use of liquid organic coating materials drying by solvent evaporation and subsequent chemical crosslinking reactions, in many cases also releasing cleavage products. These organic emissions contribute to air pollution and therefore many countries have issued restrictions in order to protect the environment. Complementary to other modern methods for reducing this problem, radiation chemistry enables an approach by radical chain polymerization which can be induced by exposure to electron radiation. This procedure is known as electron-beam curing of coatings or the EBC process. It utilizes well-developed accelerator equipment with voltages of 150 to 400kV at a minimum energy consumption. There is no necessity to use irradiation facilities based on the decay of radioisotopes. Free radical polymerization requires unsaturated resins as pain binders and polymerizable liquid compounds (monomers) as reactive diluents. Their crosslinking yields a high molecular network, the coating, without any emission of organic solvents or cleavage products. Moreover, the radiochemical formation of the paint film occurs extremely rapidly. The technical application of EBC coatings began by coating automotive plastic parts; a little later the finishing of wood products gained more industrial use as a non-polluting and energy-saving coating technology. Application methods in coating plastic foils in combination with vacuum metallizing and the production of decorative laminating papers for furniture followed. In 1981 new EBC pilot lines were installed for curing top coats on PVC foil and also for the coating of prefinished steel wheels for automobiles. In comparison with conventional solvent-based methods the industrial EBC process results in a nearly complete reduction of organic solvent emission avoiding air pollution and saving valuable petrochemical raw materials. This paper reviews the development of EBC during the last decade. (author)

  4. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  5. Rapid heterogeneous oxidation of organic coatings on submicron aerosols

    Science.gov (United States)

    Lim, C. Y.; Browne, E. C.; Sugrue, R. A.; Kroll, J. H.

    2017-03-01

    Laboratory studies have found that heterogeneous oxidation can affect the composition and loading of atmospheric organic aerosol particles over time scales of several days, but most studies have examined pure organic particles only. In this study, in order to probe the reactivity of organic species confined near the particle surface, the rates and products of the OH-initiated oxidation of pure squalane particles are compared to oxidation of thin coatings of squalane on ammonium sulfate particles. The squalane reaction rate constant shows a linear dependence on the organic surface area-to-volume ratio, with rate constants for coated particles up to 10 times larger than for pure particles. Changes in the carbon oxidation state and fraction of particulate carbon remaining show similar enhancements, implying that heterogeneous oxidation may exhibit a stronger effect on the loadings and properties of organic aerosol than previously estimated from laboratory studies.

  6. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  7. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  8. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  9. Printing versus coating - What will be the future production technology for printed electronics?

    Science.gov (United States)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank

    2015-02-01

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  10. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    Science.gov (United States)

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.

  11. Quantification of organic content and coating on laboratory generated dust particles and their effect on ice nucleation processes

    Science.gov (United States)

    Mohr, Claudia; Saathoff, Harald; Möhler, Ottmar; Hiranuma, Naruki

    2015-04-01

    The ice nucleation efficiencies of various dust, mineral, and soot particles as a function of mineral composition, ambient temperature, freezing mode, and organic and sulfuric acid coating were investigated within the first part of the Fifth International Ice Nucleation Workshop (FIN-1) at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A high-resolution time-of-flight aerosol mass spectrometer was used to quantify non-refractory components of particles with a vacuum aerodynamic diameter of up to 3 microns using a high-pressure aerodynamic lens. Measurements revealed that laboratory generated dust and mineral particles already contain an atmospherically relevant fraction of organic matter. For particles in the ~1 micron size range, the mass of this inherent organic fraction can correspond to that of several monolayers of organic molecules generated by ozonolysis of α-pinene. High-resolution analysis of organic mass spectra indicates differences in the composition of the inherent organic content and the organic coating added. Furthermore, changes in single particle morphology were observed with the onset of coating. We will present quantitative data of the inherent organic fraction for the different dust, mineral, and soot particles. We will discuss the importance of organic content and the effect of the additional organic coating as well as sulfuric acid coating for ice nucleation at various temperatures and freezing modes, and its implications for the real atmosphere.

  12. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji

    2016-06-28

    Quartz crystal microbalance (QCM) coated with poly-4-vinylpyridine (PVP) and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  13. Humidity Detection Using Metal Organic Framework Coated on QCM

    Directory of Open Access Journals (Sweden)

    Lakshmoji Kosuru

    2016-01-01

    Full Text Available Quartz crystal microbalance (QCM coated with poly-4-vinylpyridine (PVP and metal organic framework HKUST-1 are investigated and compared for humidity sensing. Drop casting method is employed to coat the PVP and HKUST-1 solutions onto the surface of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times of these sensors are studied. The sensitivities of uncoated, PVP, and HKUST-1 coated QCM sensors are 7 Hz, 48 Hz, and 720 Hz, respectively, in the range of 22% RH–69% RH. The extraction of desorption rate and adsorption energy associated with the adsorption and desorption of water molecules on these surfaces reveals that HKUST-1 has better sensing properties than PVP and uncoated QCM sensors. In this work, the HKUST-1 coated QCM is shown to be a promising material for moisture detection.

  14. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  15. Biomimetic organic-inorganic nanocomposite coatings for titanium implants.

    Science.gov (United States)

    Sikirić, Maja Dutour; Gergely, Csilla; Elkaim, Rene; Wachtel, Ellen; Cuisinier, Frederic J G; Füredi-Milhofer, Helga

    2009-06-01

    A new class of organic-inorganic nanocomposites, to be used as coatings for surface enhancement of metal implants for bone replacement and repair, has been prepared by a biomimetic three-step procedure: (1) embedding amorphous calcium phosphate (ACP) particles between organic polyelectrolyte multilayers (PE MLs), (2) in situ transformation of ACP to octacalcium phospate (OCP) and/or poorly crystalline apatite nanocrystals by immersion of the material into a metastable calcifying solution (MCS) and (3) deposition of a final PE ML. The organic polyelectrolytes used were poly-L-glutamic acid and poly-L-lysine. The nanocomposites obtained by each successive step were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDS), and XRD, and their suitability as coatings for metal implants was examined by mechanical and in vitro biological tests. Coatings obtained by the first deposition step are mechanically unstable and therefore not suitable. During the second step, upon immersion into MCS, ACP particles were transformed into crystalline calcium phosphate, with large platelike OCP crystals as the top layer. After phase transformation, the nanocomposite was strongly attached to the titanium, but the top layer did not promote cell proliferation. However, when the coating was topped with an additional PE ML (step 3), smoother surfaces were obtained, which facilitated cell adhesion and proliferation as shown by in vitro biological tests using primary human osteoblasts (HO) directly seeded onto the nanocomposites. In fact, cell proliferation on nanocomposites with top PE MLs was far superior than on any of the individual components and was equivalent to proliferation on the golden standard (plastic). 2008 Wiley Periodicals, Inc.

  16. Theorizing the Organization of Technology Entrepreneurship

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    In this paper, we explore how, why and which structures are consequential to the organization of technology entrepreneurship. Technology entrepreneurship is a relatively unexplored field of research; yet body of research in this promising area of scholarly enquiry, both theoretically...... are presented as an integrative model of technology entrepreneurship. From the emergent model of technology entrepreneurship we move to a higher level of theorizing and develop a framework of the organization of technology entrepreneurship....

  17. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    Science.gov (United States)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  18. IBAD-MgO technology for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, William [Dept. of Physics, Ewha Womans University, Seoul (Korea, Republic of)

    2016-09-15

    Ion-beam assisted deposition (IBAD) technology has been successfully applied to high-temperature superconductor coated conductors (CC) as textured substrates. Since the coated conductors were proposed as a potential framework for utilizing the superior transport characteristics of YBa2Cu3O7 and related cuprate oxides, several methods including rolling-assisted bi-axial textured substrates (RABiTS) and inclined substrate deposition (ISD), as well as IBAD, have been attempted. As of 2016, most companies that are trying to commercialize CC adapt IBAD technology except for American Superconductors who use RABiTS predominantly. For the materials in the IBAD process, initial efforts to use yttria-stabilized zirconia (YSZ) or related fluorites in Fujikura in Japan have quickly given way to MgO which technique was developed by Stanford University in the USA. In this review, we present a historical overview of IBAD technology, in particular, for the application of CC. We describe the key scientific understanding of nucleation, the texturing mechanism, and the growth of large bi-axial grains and discuss some potential new IBAD materials and systems for large-scale production.

  19. Influence of Information Technology on Organization Strategy

    OpenAIRE

    Sibanda Mabutho; Ramrathan Durrel

    2017-01-01

    The exponential development of information technology has presented many opportunities to organizations; however, it has also presented several challenges. A key challenge is how do organizations effectively use information technology and incorporate it into their strategies to make full use of its capabilities as an enabler. The fast-changing nature of information technology has resulted in little empirical evidence on how it influences organization strategy. The Strategic Alignment Model wa...

  20. Information technology and mindfulness in organizations

    OpenAIRE

    Mikko Valorinta

    2009-01-01

    The concept of mindfulness has lately been applied to organizations that are increasingly attentive to their environment and adaptive to unanticipated events. This article analyzes how information technology impacts mindfulness in organizations. Information technology is proposed to promote mindfulness by engaging organizations in more extensive search processes and by fuelling organizational innovations with a repertoire of routines. However, information technology is also found to decrease ...

  1. Refinement of Magnetite Nanoparticles by Coating with Organic Stabilizers.

    Science.gov (United States)

    Cîrcu, Monica; Nan, Alexandrina; Borodi, Gheorghe; Liebscher, Jürgen; Turcu, Rodica

    2016-11-29

    Magnetite nanoparticles are of great importance in nanotechnology and nanomedicine and have found manifold applications. Here, the effect of coating of magnetite nanoparticles with organic stabilizers, such as O -phosphoryl ethanolamine, glycerol phosphate, phospho-l-ascorbic acid, phospho-d,l-serine, glycolic acid, lactic acid, d,l-malic acid, and d,l-mandelic acid was studied. Remarkably, this procedure led to an improvement of saturation magnetization in three cases rather than to an unfavorable decrease as usually observed. Detailed X-ray powder diffraction investigations revealed that changes in the average crystallite occurred in the coating process. Surprisingly, changes of the average crystallite sizes in either direction were further observed, when the exposure time to the stabilizer was increased. These results imply a new mechanism for the well-known coating of magnetite nanoparticles with stabilizers. Instead of the hitherto accepted simple anchoring of the stabilizers to the magnetite nanoparticle surfaces, a more complex recrystallization mechanism is likely, wherein partial re-dispersion of magnetite moieties from the nanoparticles and re-deposition are involved. The results can help producers and users of magnetite nanoparticles to obtain optimal results in the production of core shell magnetite nanoparticles.

  2. Refinement of Magnetite Nanoparticles by Coating with Organic Stabilizers

    Directory of Open Access Journals (Sweden)

    Monica Cîrcu

    2016-11-01

    Full Text Available Magnetite nanoparticles are of great importance in nanotechnology and nanomedicine and have found manifold applications. Here, the effect of coating of magnetite nanoparticles with organic stabilizers, such as O-phosphoryl ethanolamine, glycerol phosphate, phospho-l-ascorbic acid, phospho-d,l-serine, glycolic acid, lactic acid, d,l-malic acid, and d,l-mandelic acid was studied. Remarkably, this procedure led to an improvement of saturation magnetization in three cases rather than to an unfavorable decrease as usually observed. Detailed X-ray powder diffraction investigations revealed that changes in the average crystallite occurred in the coating process. Surprisingly, changes of the average crystallite sizes in either direction were further observed, when the exposure time to the stabilizer was increased. These results imply a new mechanism for the well-known coating of magnetite nanoparticles with stabilizers. Instead of the hitherto accepted simple anchoring of the stabilizers to the magnetite nanoparticle surfaces, a more complex recrystallization mechanism is likely, wherein partial re-dispersion of magnetite moieties from the nanoparticles and re-deposition are involved. The results can help producers and users of magnetite nanoparticles to obtain optimal results in the production of core shell magnetite nanoparticles.

  3. Reducing bleaching effects in organic nanofibers by coating

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    Para-hexaphenylene (p-6P) organic nanofibers emit polarized, blue light upon UV excitation with a peak wavelength of the emitted light of 425 nm [1] and a spatially anisotropic distribution of the emitted light [2]. These features could enable future (opto-)electronic applications [3], since......, we present results of systematic bleaching experiments, in which we have investigated diverse mono- and multilayer coating materials. It is found that the most promising combination results in a significant reduction of bleaching without affecting significantly the emission spectrum....

  4. Technology of combined chemical-mechanical fabrication of durable coatings

    Science.gov (United States)

    Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.

    2018-03-01

    The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.

  5. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Levard, Clément; Marinakos, Stella M.; Cheng, Yingwen; Liu, Jie; Michel, F. Marc; Brown, Jr., Gordon E.; Lowry, Gregory V. (Duke)

    2012-04-02

    The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.

  6. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  8. Ultrarobust Biochips with Metal-Organic Framework Coating for Point-of-Care Diagnosis.

    Science.gov (United States)

    Wang, Congzhou; Wang, Lu; Tadepalli, Sirimuvva; Morrissey, Jeremiah J; Kharasch, Evan D; Naik, Rajesh R; Singamaneni, Srikanth

    2018-02-23

    Most biosensors relying on antibodies as recognition elements fail in harsh environment conditions such as elevated temperatures, organic solvents, or proteases because of antibody denaturation, and require strict storage conditions with defined shelf life, thus limiting their applications in point-of-care and resource-limited settings. Here, a metal-organic framework (MOF) encapsulation is utilized to preserve the biofunctionality of antibodies conjugated to nanotransducers. This study investigates several parameters of MOF coating (including growth time, surface morphology, thickness, and precursor concentrations) that determine the preservation efficacy against different protein denaturing conditions in both dry and wet environments. A plasmonic biosensor based on gold nanorods as the nanotransducers is employed as a model biodiagnostic platform. The preservation efficacy attained through MOF encapsulation is compared to two other commonly employed materials (sucrose and silk fibroin). The results show that MOF coating outperforms sucrose and silk fibroin coatings under several harsh conditions including high temperature (80 °C), dimethylformamide, and protease solution, owing to complete encapsulation, stability in wet environment and ease of removal at point-of-use by the MOF. We believe this study will broaden the applicability of this universal approach for preserving different types of on-chip biodiagnostic reagents and biosensors/bioassays, thus extending the benefits of advanced diagnostic technologies in resource-limited settings.

  9. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2010-01-01

    Organic semiconductors based on small molecules are receiving increased attention due in part to their application potential within various opto-electronic devices such as transistors, light-emitting diodes, and solar cells, but also due to their relative ease of processing, low price, and tunabi......Organic semiconductors based on small molecules are receiving increased attention due in part to their application potential within various opto-electronic devices such as transistors, light-emitting diodes, and solar cells, but also due to their relative ease of processing, low price...... the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiOx [2] and Al2O3) were applied onto p6P nanofibers....... These treatments caused a reduction of the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings (P(TFE-PDD), and PMMA) do not interfere with the luminescence spectrum from the p6P but are not effective in stopping...

  10. Organizing for Networked Information Technologies

    DEFF Research Database (Denmark)

    The book provides seven practical examples of how Danish companies implemented new information technology in order to transform their internal and external business processes. The purpose is to share some of the companies' concerns and hopes during this implementation process, with each case...

  11. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  12. Influence of Information Technology on Organization Strategy

    Directory of Open Access Journals (Sweden)

    Sibanda Mabutho

    2017-02-01

    Full Text Available The exponential development of information technology has presented many opportunities to organizations; however, it has also presented several challenges. A key challenge is how do organizations effectively use information technology and incorporate it into their strategies to make full use of its capabilities as an enabler. The fast-changing nature of information technology has resulted in little empirical evidence on how it influences organization strategy. The Strategic Alignment Model was a popular model created to assist organizations to align their information technology and their business strategy; however, the growth of technology may have made this model irrelevant in this age. Therefore, organizations need to determine what factors drive this alignment. Using hermeneutic phenomenology, 12 in-depth interviews were conducted within IBM South Africa to determine real-life drivers that help create this alignment. The themes derived from the interview texts reveal that consumers are becoming more empowered; therefore, organizations need to be more flexible in their business models and strategies. Furthermore, the integration of cross-functional roles in the organization at the management level allow for improved alignment between information technology and strategy as better integrated roles bring a combination of these two elements.

  13. Technology Integration and Technology Leadership in Schools as Learning Organizations

    Science.gov (United States)

    Cakir, Recep

    2012-01-01

    The purpose of this study was to investigate technology integration in primary schools from the perspective of leadership in learning organizations. To that end, the study examines two groups: school administrators who play effective roles in technology integration in schools and computer teachers who are mainly responsible for schools' technology…

  14. Treatment technology for organic radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. J.; Lee, Y. H.; Shon, J. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    In this report, various alternative technologies to the incineration for the treatment of radioactive organic wastes were described and reviewed, fallen into two groups of low temperature technologies and high temperature technologies. These technologies have the advantages of low volume gaseous emission, few or no dioxin generation, and operation at low enough temperature that radionuclides are not volatilized. Delphi chemical oxidation, mediated electrochemical oxidation, and photolytic ultraviolet oxidation appear to be the most promising low temperature oxidation process and steam reforming and supercritical water oxidation in the high temperature technologies. 52 refs., 39 figs., 2 tabs. (Author)

  15. THE ROLE OF INFORMATION TECHNOLOGY IN ORGANIZATIONS

    OpenAIRE

    Ramin Bashir Khodaparasti

    2012-01-01

    Development of organization started in period with agriculture and industrial during the period came and information. Today in period of competition, information is very important needed. So competitive advantage in the information provided to achieve goals is necessary. Entrance of this technology in organizations conjectural attitude changed and evolved functions their managers. The purpose of this paper is to define the correct information and the role technology has in improving the situa...

  16. Comparison of additive amount used in spin-coated and roll-coated organic solar cells

    DEFF Research Database (Denmark)

    Cheng, Pei; Lin, Yuze; Zawacka, Natalia Klaudia

    2014-01-01

    All-polymer and polymer/fullerene inverted solar cells were fabricated by spin-coating and roll-coating processes. The spin-coated small-area (0.04 cm(2)) devices were fabricated on indium tin oxide (ITO) coated glass substrates in nitrogen. The roll-coated large-area (1.0 cm(2)) devices were...... the spin-coating process, and increased from 1.37% to 2.09% with 5% (v/v) DIO in the roll-coating process. The PCE of all-polymer solar cells increased from 1.44% to 3.51% with 4% (v/v) DIO when employing the spin-coating process. For the roll-coated large area devices the PCE increased from 0.15% to 0.......73% with 9% (v/v) DIO. The optimal amounts of DIO, when using the roll-coating process for the two different active layers (5% and 9% respectively) are significantly higher than those for the spin-coating process (2.5% and 4%, respectively), which is ascribed to a fundamentally different drying mechanism....

  17. 3D Layer Coating Technology on Zirconium Alloy Cladding Tube Applied to Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    Kim, Hyungil; Kim, Ilhyun; Jung, Yangil; Park, Dongjun; Park, Junghwan; Park, Jeongyong; Koo, Yanghyun

    2014-01-01

    The current method used to decrease the corrosion rate of zirconium alloy for a nuclear application adjusts the alloying elements such as Nb, Sn, Fe, or Cr, and their ratios. However, the oxidation resistance of zirconium-based alloys at a high-temperature is not considerably improved by the addition of alloying elements. Research on new materials and concepts has been suggested to overcome the acceleration of high-temperature oxidation rate of zirconium-based alloys. A 3D laser coating of in-corrodible materials on a zirconium alloy surface can be considered in this study. The coating technology is widely applied in other industrial materials to reduce the corrosion and wear damages, as the corrosion and wear resistances can be easily obtained by a coating technology without a change in the base material. This work is focused on the 3D laser coating techniques for both coating methods and coating materials to apply to accident tolerant fuel. From the Fukushima accident, it is now recognized that a hydrogen-related explosion, which is caused by the severe oxidation of zirconium alloy, is one of the major concerns of reactor safety. A coating technology for the zirconium alloy surface was considered to decrease the high-temperature oxidation rate of zirconium-based alloy. The 3D laser coating technology using Cr powders to reduce the high-temperature oxidation rate in a steam environment was developed. The Cr-coated layer by this technology was successfully produced on the Zircaloy-4 cladding tube, and it was identified that the Cr-coated layer showed a good oxidation resistance without severe damage from the results of the high-temperature oxidation test and the microstructure analysis. From this study, the hydrogen generation of zirconium alloy caused by an excess oxidation reaction in a high-temperature steam environment can be considerably reduced by the application of the Cr coating technology using the 3D laser coating supplied with Cr powders

  18. Work and technological innovation in organic agriculture.

    Science.gov (United States)

    Tereso, M J A; Abrahão, R F; Gemma, S F B; Montedo, U B; Menegon, N L; Guarneti, J E; Ribeiro, I A V

    2012-01-01

    Organic agriculture is a sustainable cultivation ecologically, economically and socially. Several researches in organic agriculture have been made from technical perspectives, economic traits or related to ecological aspects. There are practically no investigations into the nature of the technology used in organic agriculture, especially from an ergonomic perspective. From the activity analysis, this study aimed to map the technology used in the production of organic vegetables. Properties producing organic vegetables were selected representing the State of São Paulo. It was applied an instrument (questionnaire and semi-structured interview) with their managers and it was made visual records to identify adaptations, innovations and technological demands that simultaneously minimize the workload and the difficulties in performing the tasks and increase work productivity. For some of the technological innovations a digital scanner was used to generate a virtual solid model to facilitate its redesign and virtual prototyping. The main results show that organic farmers have little technology in product form. The main innovations that enable competitive advantage or allow higher labor productivity occur in the form of processes, organization and marketing.

  19. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  20. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-01-01

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr -1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  1. Organic electronics emerging concepts and technologies

    CERN Document Server

    Santato, Clara

    2013-01-01

    An overview of the tremendous potential of organic electronics, concentrating on those emerging topics and technologies that will form the focus of research over the next five to ten years. The young and energetic team of editors with an excellent research track record has brought together internationally renowned authors to review up-and-coming topics, some for the first time, such as organic spintronics, iontronics, light emitting transistors, organic sensors and advanced structural analysis. As a result, this book serves the needs of experienced researchers in organic electronics, graduate

  2. LCA of strippable coatings and of steam vacuum technology used for nuclear plants decontamination

    International Nuclear Information System (INIS)

    Guidi, Giambattista; Cumo, Fabrizio; Santoli, Livio de

    2010-01-01

    The application of strippable coatings is an innovative technology for decontamination of nuclear plants and for any decontamination project aiming at removing surface contamination. An adhesive plastic coating is applied on the contaminated surface. The strippable coating is allowed to cure for up to 24 h, after which it can be easily peeled. The coating traps the contaminants in the polymer matrix. Strippable coatings are non-toxic and do not contain volatile compounds or heavy metals. Since the coating constitutes a solid waste, disposal is easier than treating contaminated liquid wastes, produced by the baseline technology: steam vacuum cleaning, based upon superheated pressurized water in order to remove contaminants from floors and walls. A life cycle assessment (LCA) has been carried out with the purpose of comparing the strippable coating with the steam vacuum technology. The functional unit of the study is represented by a surface of 1 m 2 to be decontaminated. The results of LCA achieved using Sima Pro 5.0 registered software confirm the good environmental performances of strippable coatings. Taking into account both LCA and environmental costs for liquid wastes, the advantages of strippable coatings will be more and more evident. (orig.)

  3. Failure of aluminium metal spray/organic duplex coating systems on structural steel

    OpenAIRE

    Sumon, T. A.; Scantlebury, J. D.; Lyon, S. B.

    2013-01-01

    Individually, aluminium metal spray (AMS) and organic paints are well established as effective protective coatings for steel substrates. These coatings are also frequently used together as duplex systems where their combination should produce a synergistic effect. However in certain, mainly marine, environments premature failure of such coatings, involving early blistering of the paint, has been observed in service after 3-5 years. This work aims to understand the mechanisms associated with t...

  4. Evaluation of Surface Characteristics of Denture Base Using Organic-Inorganic Hybrid Coating: An SEM Study.

    Science.gov (United States)

    Aa, Jafari; Mh, Lotfi-Kamran; M, Ghafoorzadeh; Sm, Shaddel

    2017-06-01

    Despite the numerous positive features of acrylic denture base, there are a number of undeniable associated disadvantages. The properties of denture base have been improved through various interventions including application of different types of filler and coatings. This study aimed to evaluate the surface roughness, thickness and coating quality of organic-inorganic coating on the denture base through scanning electron microscopy. Moreover, the colour change was evaluated visually. The organic-inorganic hybrid coatings were prepared. Acrylic discs of 10×10 mm were fabricated. The test discs were dipped in the hybrid coating and cured. In order to evaluate the surface roughness and coating thickness, the surface and cross-section of the samples in both coated and control groups were subjected to scanning electron microscopy. The colour change and transparency were visually evaluated with naked eyes. The data were statistically analyzed by student's t test. The hybrid materials perfectly covered all the surfaces of acrylic resin and established proper thickness. The coated group seemed smoother and flatter than the control group; however, the difference was not statistically significant ( for all parameters p > 0.05). It was quite a thin coating and no perceptible colour change was observed. The hybrid coating maintained good binding, caused no noticeable discoloration, and thoroughly covered the acrylic resin surface with uniform delicate thickness. It also slightly improved the acrylic resin surface roughness.

  5. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...... and durability of anticorrosive coatings have been included. The different types of anticorrosive coatings are presented, and the most widely applied generic types of binders and pigments in anticorrosive coatings are listed and described. Furthermore, the protective mechanisms of barrier, sacrificial...

  6. Recent RHIC in-situ coating technology developments

    CERN Document Server

    Hershcovitch, A.; Brennan, J.M.; Chawla, A.; Fischer, W.; Liaw, C-J; Meng, W.; Todd, R.; Custer, A.; Erickson, M.; Jamshidi, N.; Kobrin, P.; Laping, R.; Poole, H.J.; Jimenez, J.M.; Neupert, H.; Taborelli, M.; Yin-Vallgren, C.; Sochugov, N.

    2013-04-22

    To rectify the problems of electron clouds observed in RHIC and unacceptable ohmic heating for superconducting magnets that can limit future machine upgrades, we started developing a robotic plasma deposition technique for $in-situ$ coating of the RHIC 316LN stainless steel cold bore tubes based on staged magnetrons mounted on a mobile mole for deposition of Cu followed by amorphous carbon (a-C) coating. The Cu coating reduces wall resistivity, while a-C has low SEY that suppresses electron cloud formation. Recent RF resistivity computations indicate that 10 {\\mu}m of Cu coating thickness is needed. But, Cu coatings thicker than 2 {\\mu}m can have grain structures that might have lower SEY like gold black. A 15-cm Cu cathode magnetron was designed and fabricated, after which, 30 cm long samples of RHIC cold bore tubes were coated with various OFHC copper thicknesses; room temperature RF resistivity measured. Rectangular stainless steel and SS discs were Cu coated. SEY of rectangular samples were measured at ro...

  7. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  8. Coated fuel particles: requirements and status of fabrication technology

    International Nuclear Information System (INIS)

    Huschka, H.; Vygen, P.

    1977-01-01

    Fuel cycle, design, and irradiation performance requirements impose restraints on the fabrication processes. Both kernel and coating fabrication processes are flexible enough to adapt to the needs of the various existing and proposed high-temperature gas-cooled reactors. Extensive experience has demonstrated that fuel kernels with excellent sphericity and uniformity can be produced by wet chemical processes. Similarly experience has shown that the various multilayer coatings can be produced to fully meet design and specification requirements. Quality reliability of coated fuel particles is ensured by quality control and quality assurance programs operated by an aduiting system that includes licensing officials and the customer

  9. Evaluation of Volatile Organic Compound Emissions from Line-X XS-350 Polymer Coating

    National Research Council Canada - National Science Library

    Henley, M

    2002-01-01

    The use of Line-X XS-350 polymer as an interior retrofit coating for occupied building Structures to improve their blast resistance has raised a major concern by potential users of the polymer retrofit technology...

  10. Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings

    Science.gov (United States)

    Schuöcker, Georg D.; Bielak, Robert

    2007-05-01

    During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse

  11. Application of low-energy electron-beam curing in plastics processing and coating technologies

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Industrial radiation processing using low-energy electron beam (EB) offers high-speed technologies for converting thin layers of plastics, coatings, varnishes, printing inks etc., on different surfaces. Overviewing the main features of the corresponding technique, machines and materials used, the current state of chemistry and technology of EB-curable polymeric systems, is discussed based on some examples taken from the plastics processing, paper-converting, wood-panel coating, and other industries. (author)

  12. Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Stejskal, Jaroslav

    2008-01-01

    Roč. 62, č. 1 (2008), s. 105-116 ISSN 0300-9440 Institutional research plan: CEZ:AV0Z40500505 Keywords : pigment * coating * corrosion Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.375, year: 2008

  13. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Science.gov (United States)

    2010-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  14. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    Science.gov (United States)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  15. Electrochemical Impedance of Organic Coated Steel: Correlation of Impedance Parameters with Long Term Coating Deterioration

    Science.gov (United States)

    1988-04-01

    cell processes , where Rc describes the unit cell faradaic process , shorted together by a series tangential coating resistance, R, representative of...important question relative to this overall process is the time required for each stage. Since the first two stages involve transport of species to...the reaction site, the times required to complete those stages can be examined.Water and oxygen are reported to be transported through coatings rapidly

  16. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    pH and chloride ion concentration levels over time. As the corrosion protection of the coating decreases, chloride ion concentration will increase...Hitorff cell, the nine independent formulations from the orthogonal matrix were tested for pH and chloride ion concentration levels over time. As the...corrosion protection of the coating decreases, chloride ion concentration will increase. Preliminary tests indicate that the effects of MPV percent

  17. Circuit design in organic semiconductor technologies

    NARCIS (Netherlands)

    Heremans, P.; Dehaene, W.; Steyaert, M.; Myny, K.; Mariën, H.; Genoe, J.; Gelinck, G.H.; Veenendaal, E. van

    2011-01-01

    In this paper, we review the state of the art of digital and analog circuits that have been shown in recent years in organic thin-film transistor technology on flexible plastic foil. The transistors are developed for backplanes of displays, and therefore have the characteristics to be unipolar and

  18. Technological status of organic photovoltaics (OPV)

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Krebs, Frederik C

    2013-01-01

    This paper gives a technological status of organic and polymer photovoltaics (OPV) for both single and tandem junctions. We list the current state-of-the-art at the laboratory level for very small rigid and mostly vacuum processed devices to larger area flexible and printed devices. In comparison...

  19. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    Energy Technology Data Exchange (ETDEWEB)

    De, Souvik [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Nandasiri, Manjula I. [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland WA 99352 USA; Schaef, Herbert T. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; McGrail, Benard Peter [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Nune, Satish K. [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Lutkenhaus, Jodie L. [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Department of Materials Science & Engineering, Texas A& M University, 3122 TAMU College Station TX 77843-3122 USA

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  20. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry......, with a comparison to alternative resistant materials based on metals or ceramics. In addition, coating degradation phenomena, caused by acid exposure, are mapped to the extent possible, and analysis methods for detecting coating degradation type and severity are listed and discussed. It is concluded that more...

  1. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers

    Science.gov (United States)

    Betz, Michael A.; Büchele, Patric; Brünnler, Manfred; Deml, Sonja; Lechner, Alfred

    2017-01-01

    Improvements on spray coating are of particular interest to different fields of technology as it is a scalable deposition method and processing from solutions offer various application possibilities outside of typical facilities. When it comes to the deposition of expensive and film-forming media such as organic semiconductors, consumption and nozzle cleaning issues are of particular importance. We demonstrate the simple steps to design and fabricate micro venturi nozzles for economical spray coating with a consumption as low as 30-50 µl · min-1. For spray coating an active area of 25 cm2 a 2.45-4.01 fold coating efficiency is observed compared to a conventional airbrush nozzle set. The electrical characterization of first diodes sprayed with an active layer thickness of ~750 nm using a single micronozzle at a coating speed of 1.7 cm2 · min-1 reveals a good external quantum efficiency of 72.9% at 532 nm and a dark current of ~7.4 · 10-5 mA · cm-2, both measured at  -2 V. Furthermore, the high resistance of the micronozzles against solvents and most acids is provided through realization in a silicon wafer with silicon dioxide encapsulation, therefore allowing easy and effective cleaning.

  2. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers

    International Nuclear Information System (INIS)

    Betz, Michael A; Brünnler, Manfred; Deml, Sonja; Lechner, Alfred; Büchele, Patric

    2017-01-01

    Improvements on spray coating are of particular interest to different fields of technology as it is a scalable deposition method and processing from solutions offer various application possibilities outside of typical facilities. When it comes to the deposition of expensive and film-forming media such as organic semiconductors, consumption and nozzle cleaning issues are of particular importance. We demonstrate the simple steps to design and fabricate micro venturi nozzles for economical spray coating with a consumption as low as 30–50 µ l · min −1 . For spray coating an active area of 25 cm 2 a 2.45–4.01 fold coating efficiency is observed compared to a conventional airbrush nozzle set. The electrical characterization of first diodes sprayed with an active layer thickness of ∼750 nm using a single micronozzle at a coating speed of 1.7 cm 2 · min −1 reveals a good external quantum efficiency of 72.9% at 532 nm and a dark current of ∼7.4 · 10 −5 mA · cm −2 , both measured at  −2 V. Furthermore, the high resistance of the micronozzles against solvents and most acids is provided through realization in a silicon wafer with silicon dioxide encapsulation, therefore allowing easy and effective cleaning. (paper)

  3. An Application of X-ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    Science.gov (United States)

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-03-30

    An attempt to apply X-ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  4. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  5. Organic coatings silane-based for AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Junying; Li Qing; Zhong Xiankang; Li Longqin; Zhang Liang

    2010-01-01

    Organic coatings silane-based containing electron withdrawing group or electron donating group have been synthesized and evaluated as prospective surface treatments for AZ91D magnesium alloy by hydrolysis and condensation reaction of the different silanes. Electrochemical tests were employed to confirm the corrosion resistance ability of the two kinds of organic coatings. The results showed that the coating with electron donating group had better corrosion protection performance. On the basis of the spatial configuration and the density of charge of those silanes molecules which was obtained through Gaussian 03 procedure based on B3LYP and density functional theory, combining experiment results, the rational explanation was provided.

  6. Improvement on the Fatigue Performance of 2024-T4 Alloy by Synergistic Coating Technology

    Directory of Open Access Journals (Sweden)

    Xi-Shu Wang

    2014-05-01

    Full Text Available In this paper, rotating bending fatigue tests of 2024-T4 Al alloy with different oxide coatings were carried out. Compared to the uncoated and previously reported oxide coatings of aluminum alloys, the fatigue strength is able to be enhanced by using a novel oxide coating with sealing pore technology. These results indicate that the better the coating surface quality is, the more excellent the fatigue performance under rotating bending fatigue loading is. The improvement on the fatigue performance is mainly because the fatigue crack initiation and the early stage of fatigue crack growth at the coating layer can be delayed after PEO coating with pore sealing. Therefore, it is a so-called synergistic coating technology for various uses, including welding thermal cracks and filling micro-pores. The effects of different oxide coatings on surface hardness, compressive residual stress, morphology and fatigue fracture morphology are discussed. A critical compressive residual stress of about 95–100 MPa is proposed.

  7. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  8. Ultrasensitive humidity detection using metal-organic framework-coated microsensors.

    Science.gov (United States)

    Robinson, Alex L; Stavila, Vitalie; Zeitler, Todd R; White, Michael I; Thornberg, Steven M; Greathouse, Jeffery A; Allendorf, Mark D

    2012-08-21

    The use of metal-organic framework (MOF) thin films to detect water vapor across a wide concentration range is demonstrated using MOF-functionalized quartz surface acoustic wave (SAW) sensors. A range of 3-14,800 ppmv was obtained with thin films of the MOF Cu(3)(benzenetricarboxylate)(2) (Cu-BTC) deposited by an automated layer-by-layer method. Devices coated by a manual technique demonstrated sensitivity from 0.28 to 14,800 ppmv, the limit of our test system. This exceeds the sensitivity of many commercially available sensors. Cu-BTC layers were covalently bonded directly to the silicon oxide surface, allowing devices to be heated beyond 100 °C to desorb water adsorbed in the pores without decomposition, thereby regenerating the sensors. Sensor response as a function of coating thickness was evaluated, showing that the SAW sensor response is bounded by maximum and minimum layer thicknesses. Computer simulation of H(2)O uptake shows a multistep adsorption isotherm defined by initial adsorption at open Cu-sites, followed by pore-filling and finally full saturation. Modeling and experimental results are consistent. Calculated uptake values suggest an efficient adsorption of H(2)O by Cu-BTC. These results provide the first convincing evidence that MOF functionalization of compact sensing technologies such as SAW devices and microcantilevers can compete with state-of-the art devices.

  9. Interactions between wood and coatings with low organic solvent content

    OpenAIRE

    Meijer, de, M.

    1999-01-01

    The aim of the work described in this thesis is to improve the knowledge on the fundamental interactions between low VOC-coatings and wood, in particular in relation to wood protection in exterior use. To avoid environmental damage and dangerous conditions in the workplace, low-VOC paints have gained increasing importance by the use of waterborne and so called high solids paints. These low-VOC coatings are more and more being used on wood species with: a reduced natural durability ag...

  10. Handbook of polymer coatings for electronics chemistry, technology and applications

    CERN Document Server

    Licari, James J

    1990-01-01

    This completely revised edition remains the only comprehensive treatise on polymer coatings for electronics. Since the original edition, the applications of coatings for the environmental protection of electronic systems have greatly increased, largely driven by the competitive need to reduce costs, weight and volume. The demands for high-speed circuits for the rapid processing of signals and data, high-density circuits for the storage and retrieval of megabits of memory, and the improved reliability required of electronics for guiding and controlling weapons and space vehicles have triggered

  11. Science, Technology and Innovation Policy Research Organization

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce financement contribuera à renforcer le rôle de la Science, Technology and Innovation Policy Research Organization (STIPRO) en tant qu'organisme crédible de recherche sur les politiques publiques en Tanzanie, en améliorant sa capacité à fournir des recherches de qualité supérieure, influentes et utiles en matière de ...

  12. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Interactions between wood and coatings with low organic solvent content

    NARCIS (Netherlands)

    Meijer, de M.

    1999-01-01

    The aim of the work described in this thesis is to improve the knowledge on the fundamental interactions between low VOC-coatings and wood, in particular in relation to wood protection in exterior use. To avoid environmental damage and dangerous conditions in the workplace, low-VOC paints

  14. Sorbent-coated diffusion denuders for direct measurement of gas/particle partitioning by semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, L.A. [Lawrence Berkeley National Lab., CA (United States); Lane, D.A. [Atmospheric Environment Service, North York, Ontario (Canada)

    1998-01-01

    Sorbent-coated annular denuder-based samplers have been developed for direct determination of both gaseous and particulate semi-volatile organic species. The first such sampler, the Integrated Organic Vapor/Particle Sampler, has been validated for sampling semi-volatile PAH in ambient air and environmental tobacco smoke. Multi-channel versions of the IOVPS have been used successfully for investigation of gas/particle partitioning of a variety of semi-volatile organic species in combustion source-enriched environmental chambers. Subsequent improvements have resulted in two new higher-capacity samplers, the IOGAPS and the jumbo-IOGAPS, that use the same sorbent for sampling trace organics in the ambient atmosphere for 24--48 hr periods over a wide temperature range. Construction of these new samplers began by incorporating the IOVPS coating technology onto the gas collection surfaces of the higher capacity GAP sampler. Substantial design effort aims to ensure that vapor phase components as volatile as naphthalene can be trapped efficiently and retained by the sorbent-coated surface while the particles pass through to the filter.

  15. Platform technologies for tubular organ regeneration.

    Science.gov (United States)

    Basu, Joydeep; Ludlow, John W

    2010-10-01

    As a result of recent successes in regenerative medicine approaches to engineering multiple disparate tubular organs, methodology commonalities are emerging. Principal themes include the importance of a biodegradable scaffold seeded with a population of smooth muscle cells. Such composites trigger a regenerative response following in vivo implantation, resulting in de novo organogenesis. In this review, we examine bladder regeneration as a foundational platform technology to highlight key principles applicable to the regeneration of any tubular organ, and illustrate how these general concepts underlie current strategies to regenerate components of gastrointestinal, vascular, pulmonary and genitourinary systems. We focus on identifying the elements of this platform that have facilitated the transition of tubular organ regeneration from academic proof-of-concept to commercial viability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept

    NARCIS (Netherlands)

    García, S.J.; Fischer, H.R.; White, P.A.; Mardel, J.; González-García, Y.; Mol, J.M.C.; Hughes, A.E.

    2011-01-01

    In this paper a self-healing anticorrosive organic coating based on an encapsulated water reactive organic agent is presented. A reactive silyl ester is proposed as a new organic reactive healing agent and its synthesis, performance, incorporation into an organic coating and evaluation of

  17. Equipment and technologies of air-plasma spraying of functional coatings

    Directory of Open Access Journals (Sweden)

    Kuzmin Viktor

    2017-01-01

    Full Text Available This article presents a short description of the DC plasma torch "PNK-50" structural features (ITAM SB RAS, Novosibirsk used for spraying of functional coatings with powder materials as well as gives the results of thermophysical and technological studies of spraying regimes. We present preliminary results of the plasma torch supersonic modification development and the results of industrial approbation of the plasma torch and of multi-purposes functional coatings deposition processes.

  18. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-06-01

    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  19. Process for Non-Contact Removal of Organic Coatings from the Surface of Paintings

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.

  20. Ultrasonic Coating and Holographic Exposure Technology. Phase 1

    Science.gov (United States)

    2015-09-01

    Metrology Imaging methods were utilized to create a surface model using the Beer - Lambert relationship: By taking images of a coated substrate, A(x, y...any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...CONTRACT NUMBER W911QY-13-C-0080 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Matt Kinzler and Shaun Abraham 5d. PROJECT NUMBER

  1. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  2. Biomimetic organic-inorganic nanocomposite coatings for titanium implants. In vitro and in vivo biological testing.

    Science.gov (United States)

    Schade, R; Sikirić, M Dutour; Lamolle, S; Ronold, H J; Lyngstadass, S P; Liefeith, K; Cuisinier, F; Füredi-Milhofer, H

    2010-12-01

    Recently described organic-inorganic nanocomposite coatings of the chemical composition: (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4) (coating A) and (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4)(PLL/PGA)(5) (coating B), applied to chemically etched titanium plates, have been tested by extensive cell culture tests and in vivo biological experiments, with uncoated titanium plates serving as controls. Before testing, coated samples were stored for extended periods of time (from 2 weeks to 8 months) under dry, sterile conditions. Cells of the cell-lines MC3T3-E1 and/or SAOS-2 were used for the following cell culture tests: initial adhesion (4 h) and proliferation (up to 21 days), cell activity (XTT test), morphology, synthesis of collagen type I and alkaline phosphatase activity (all incubation up to 21 days). In addition, coating B was tested against uncoated control in a validated in vivo pull-out model in rabbit tibia. The results of both in vitro and in vivo experiments show excellent biological properties of chemically etched titanium which are even surpassed by surfaces covered with coating B. Thus, after 8 weeks of healing the implants coated with B were significantly better attached to the cortical bone of rabbit thibiae than uncoated titanium controls with more than twice the force needed to detach coated implants. However, coating A (top crystal layer) had an adverse effect on both cell proliferation and activity, which is explained by morphological observations, showing inhibited spreading of the cells on its rough surfaces. The results also show the remarkable stability of the coatings when shelved under dry and sterile conditions. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  3. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    Science.gov (United States)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  4. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization...

  5. Reduction of aesthetical properties of organic coatings caused by mechanical damage

    International Nuclear Information System (INIS)

    Rossi, S.; Deflorian, F.; Scrinzi, E.

    2009-01-01

    Organic coatings are the most commonly used system for protection from corrosion. In many applications, the protective properties against corrosion are associated with several other properties, including resistance to abrasion and good aesthetic appearance. This is particularly important for the automotive and transport industry, building trade, domestic products, packaging. To evaluate the abrasion resistance of organic coatings the Taber Abraser test is frequently used. The aim of this work is to evaluate the reduction of aesthetical properties, caused by abrasion by Taber test, using different abrasive pastes. The level of damage was evaluated through gloss measurements; 20 deg. was the most sensitive angle to gloss changes, with this geometry different samples could be compared. The correlation between the changes of gloss and the damage was investigated using optical microscopy and environmental scanning electron microscopy. With increase of grain dimensions, the paste became more abrasive with negative effect on the aesthetical aspect of the organic coating

  6. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, S.; Funke, F.; Greger, G.U.; Bleier, A.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  7. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  8. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2017-12-01

    Full Text Available Black carbon (BC emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS. The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC particles and their coatings. Using the −log(NOx ∕ NOy ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7–20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  9. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  10. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.

    Science.gov (United States)

    Sharma, Anirudh; Cornejo, Christine; Mihalic, Jana; Geyh, Alison; Bordelon, David E; Korangath, Preethi; Westphal, Fritz; Gruettner, Cordula; Ivkov, Robert

    2018-03-20

    Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.

  11. Synthesis and characterization of TiO{sub 2} nanoparticle films coated with organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Rika [College of Engineering, Universiti Tenaga Nasional, 43009, Kajang, Selangor (Malaysia); Rahman, M.Y.A., E-mail: yusri@uniten.edu.m [College of Engineering, Universiti Tenaga Nasional, 43009, Kajang, Selangor (Malaysia); Salleh, M.M.; Umar, A.A. [Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Ahmad, A. [Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia)

    2009-05-01

    The synthesis and characterization of TiO{sub 2} nanoparticle coated with organic dyes, coumarin and methyl orange was reported. The films were deposited onto ITO-covered glass substrate by controlled hydrolysis technique assisted with spin coating technique. The films were characterized by scanning electron microscope (SEM), X-ray dispersive (XRD) technique and ultraviolet-visible (UV-Vis) spectrophotometer. The average grain size of the TiO{sub 2} films is about 76 nm. The uncoated TiO{sub 2} film is crystalline with anatase and rutile structure. The coated TiO{sub 2} films with dye are also crystalline since the diffraction peaks have been observed at three angles. The maximum absorption of the film coated with coumarine dye is at 480 nm.

  12. Synthesis and characterization of TiO 2 nanoparticle films coated with organic dyes

    Science.gov (United States)

    Rika; Rahman, M. Y. A.; Salleh, M. M.; Umar, A. A.; Ahmad, A.

    2009-05-01

    The synthesis and characterization of TiO 2 nanoparticle coated with organic dyes, coumarin and methyl orange was reported. The films were deposited onto ITO-covered glass substrate by controlled hydrolysis technique asssited with spin coating technique. The films were characterized by scanning electron microscope (SEM), X-ray dispersive (XRD) technique and ultraviolet-visible (UV-Vis) spectrophotometer. The average grain size of the TiO 2 films is about 76 nm. The uncoated TiO 2 film is crystalline with anatase and rutile structure. The coated TiO 2 films with dye are also crystalline since the diffraction peaks have been observed at three angles. The maximum absorption of the film coated with coumarine dye is at 480 nm.

  13. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance

    Science.gov (United States)

    Peng, Chaoyi; Chen, Zhuyang; Tiwari, Manish K.

    2018-03-01

    Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to 35 m s-1 and a Weber number of 43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.

  14. Technology transfer and application of SERS continuous monitor for trace organic compounds

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.; Vo-Dinh, T.; Yalcintas, M.G.

    1992-01-01

    An in situ-enhanced Raman Scattering (SERS) continuous monitoring system was developed for exciting and collecting SERS signals generated on silver-coated microparticles deposited on a continuously rotating filter-paper support. SERS measurements were successfully conducted for several organic compounds. An in situ SERS fiber-optic system was also developed for exciting and collecting SERS signals generated from a sensing tip having silver-coated microparticles deposited on a glass-plate support. These devices will be very useful in remote identification of unknown chemicals from hazardous waste sites. This patented technology has been licensed from Oak Ridge National Laboratory to an analytical instrumentation firm which is in the process of completing development and marketing these detectors. Advantages to using this technology range from increased safety and sensitivity for detecting hazardous compounds to better statistics and reliable results. During this presentation, efforts of the Environmental Restoration Program to evaluate and support development of this technology will be described

  15. In vitro cell quality of buffy coat platelets in additive solution treated with pathogen reduction technology

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Bochsen, Louise; Salado-Jimena, José A

    2010-01-01

    Pathogen reduction technologies (PRTs) may induce storage lesion in platelet (PLT) concentrates. To investigate this, buffy coat PLTs (BCPs) in PLT additive solution (AS; SSP+) with or without Mirasol PRT (CaridianBCT Biotechnologies) were assessed by quality control tests and four-color flow cyt...

  16. Coatings manufactured using magnetron sputtering technology to protect against infrared radiation for use in firefighter helmets

    Directory of Open Access Journals (Sweden)

    Fejdyś Marzena

    2016-09-01

    Full Text Available The aim of this study was to test the usefulness of magnetron sputtering technology to produce coatings on selected elements of a firefighter’s helmet to protect against infrared radiation (PN-EN 171 standard. The scope of research includes testing the deposition produced via magnetron sputtering of metallic and ceramic coatings on plastics, which are used to manufacture the components comprising the personal protection equipment used by firefighters. The UV-VIS, NIR used to research the permeation coefficients and reflections for light and infrared light and the emission spectrometry with ICP-AES used for the quantitative analysis of elements in metallic and ceramic coatings. Microstructural and micro-analytical testing of the coatings were performed using scanning electron microscopy (SEM. Measurements of the chemical compositions were conducted using energy-dispersive X-ray spectroscopy (EDS. The hardnesss of the coatings were tested using a indentation method, and the coating thicknesses were tested using a ellipsometry method.

  17. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  18. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    International Nuclear Information System (INIS)

    Zhang, Pengjie; Xu, Guangqing; Liu, Jiaqin; Yi, Xiaofei; Wu, Yucheng; Chen, JingWu

    2016-01-01

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm 2 ) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  19. One-step surface selective modification of UV-curable hard coatings with photochemical metal organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Kwang; Park, Chang-Sun; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr

    2016-12-15

    Graphical abstract: This study demonstrates suitable for exceptional hybrid film under UV exposure. A small quantity of the dispersive photochemical precursor Sr 2-ethylhexanoate was mixed and the composition altered from the surface to the bottom, forming an organic layer and a densely concentrated SrO surface layer. The surface-selective SrO strongly enhanced the surface flatness and hardness of the UV-curable organic coating film. - Highlights: • Hybrid bi-layer coating was synthesized through one-pot UV exposure chemical route. • The influence of additive and different reactivity formed densely concentrated SrO surface layer. • Chemical composition and continuous interface between organic and inorganic were analyzed. • Surface flatness and mechanical property were improved by inorganic material. - Abstract: An organic–inorganic hybrid bi-layer film with a selective distribution of inorganic components was synthesized from a one-pot process of UV irradiation. A photochemical metal oxide precursor (Sr 2-ethylhexanoate) varying from 0 to 4 wt% was dispersed in UV-curable coating materials. Under UV exposure, the bi-layer started reacting simultaneously but at different rates due to differences in the two UV-condensable components’ reactivity. The effects of the dispersed inorganic component on the surface morphology and mechanical properties were investigated by atomic force microscopy and nanoindentation, respectively. The reaction process and rates were studied from linkage change using Fourier transform infrared spectroscopy at various UV exposure times (0–30 min). The elemental distribution and the interface on the coating layer were characterized by X-ray photoelectron spectroscopy from Ar etching, revealing continuous and gradual composition changes in depth. The results showed that a flattened and surface-selectively hardened SrO containing the coating film could be obtained by this simple process. Consequently, a small ratio of photochemical

  20. The effect of chromium coating in RP technology for airfoil ...

    Indian Academy of Sciences (India)

    Most wind tunnel models are fabricated of all metal components using computerized numerical control (CNC) milling machines. Fabrication of metal wind tunnel models is very expensive and time consuming. The models can require months to manufacture and are often made by small high technology companies that ...

  1. The effect of chromium coating in RP technology for airfoil ...

    Indian Academy of Sciences (India)

    The file data is sliced into cross sections of 0·0762 to 0·254 mm. thickness. The cross sections are then fabricated in a layer additive process using one of the three available. RP technologies. The precursor study wind tunnel model was constructed using the fused deposition method (FDM) and FDM model with chromium ...

  2. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties.

    Science.gov (United States)

    Karbowniczek, Joanna; Cordero-Arias, Luis; Virtanen, Sannakaisa; Misra, Superb K; Valsami-Jones, Eugenia; Tuchscherr, Lorena; Rutkowski, Bogdan; Górecki, Kamil; Bała, Piotr; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R

    2017-08-01

    To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media

    Science.gov (United States)

    Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa

    2017-08-01

    This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.

  4. Corrosion protection by organic coatings containing polyaniline salts prepared by oxidative polymerization

    Czech Academy of Sciences Publication Activity Database

    Kohl, M.; Kalendová, A.; Černošková, E.; Bláha, Michal; Stejskal, Jaroslav; Erben, M.

    2017-01-01

    Roč. 14, č. 6 (2017), s. 1397-1410 ISSN 1945-9645 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polyaniline * oxidative polymerization * organic coatings Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.557, year: 2016

  5. The application of ion-exchanged clay as corrosion inhibiting pigments in organic coatings

    Science.gov (United States)

    Chrisanti, Santi

    High strength aluminum alloys are used in aerospace industry and are normally coated to prevent corrosion. The corrosion protection of the coatings is mainly provided by pigmented-primer layer. Strontium chromate pigments are widely used, but they are toxic and carcinogenic. The objective of the current study is to develop and characterize the ion exchange compounds bentonite and hydrotalcite as corrosion inhibiting pigments. These compounds were synthesized with different cations and anions, and were used either alone or in mixtures as particulate additive in organic coatings. In coating applications as well as bulk solution, the inhibitor release mechanism is based on ion exchange. To evaluate corrosion inhibition, pigments extract solutions were used in potentiodynamic polarization as well as electrochemical impedance spectroscopy (EIS) experiments on bare aluminum alloy 2024-T3. Cathodic polarization showed that zinc- and cerium-containing filtrate solutions modestly inhibited cathodic current density. These solutions also decreased the extent of pitting damage formed on the surface, as compared to uninhibited 0.5 M NaCl solution. Pigments were also added as primer additives, and painted on AA2024-T3. The coated panels were then subjected to salt spray exposure testing. The possibility of sensing inhibitor exhaustion by means of X-ray diffraction interrogation of the pigment in a coating is demonstrated and discussed on cerium bentonite-pigmented coatings. Although cerium bentonite-pigmented coatings did not show behavior indicative of self-healing, the combination of bentonite and hydrotalcite that released Ce3+, Zn 2+, and PO43- showed potent scribe protection even after 3000 h exposure in salt spray. Promising self-healing was also demonstrated by pigments that consisted of decavanadate-hydrotalcite and zinc pyrovanadate, as indicated by a shiny scribed area after 1000h exposure in salt spray. When these pigments are used, blistering is minimized.

  6. Impact of organic contamination on laser-induced damage threshold of high reflectance coatings in vacuum

    International Nuclear Information System (INIS)

    Cui Yun; Zhao Yuanan; Yu Hua; He Hongbo; Shao Jianda

    2008-01-01

    The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO 2 /SiO 2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N 2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings

  7. Development of hybrid organic-inorganic optical coatings to prevent laser damage

    International Nuclear Information System (INIS)

    Compoint, Francois

    2015-01-01

    The optical devices (lents, mirrors, portholes...) that are set on the chains of the Laser Megajoule (LMJ) may be damaged by the high energy laser beam especially around the UV wavelength of 351 nm. The damages are micronic craters on the rear of the optics that grows exponentially after each laser shots. The study aims at developing some optical thin coatings on the rear of the optical substrates to prevent the growth of the damage by amortizing the laser shock wave, self-healing the craters that has appeared, or repairing the laser hole after the damage occurs. The thin coatings have been prepared by a sol-gel method by using silica precursor and a polydimethylsiloxane (PDMS) elastomer. The two species reacted together to get a hybrid organic-inorganic Ormosil (organically modified silica) material, by creating a silica network linked to the PDMS species with covalent and hydrogen bounds. The thin layers are obtained from the sol-gel solution by using a dip and spin coating method. The coatings have an excellent optical transmission around the UV (351 nm) wavelength. They also have some self-healing properties by using mechanical (viscoelastic) mechanism and chemical reversible hydrogen bounds action in the materials. The silica-PDMS coatings prove to be resistant to the laser beam at 351 nm, despite some optimizations that still need to be done to reach the sought laser damage threshold. (author) [fr

  8. Bilayer polymer/oxide coating for organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. p6P nanofibers can emit polarized light with a highly anisotr...

  9. Bilayer polymer/oxide coating for electroluminescent organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. Para-hexaphenylene (p6P) nanofibers emit polarized light with...

  10. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  11. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    All cells of living organisms are separated from their surroundings and organized internally by means of flexible lipid membranes. In fact, there is consensus that the minimal requirements for self-replicating life processes include the following three features: (1) information carriers (DNA, RNA), (2) a metabolic system, and (3) encapsulation in a container structure [1]. Therefore, encapsulation can be regarded as an essential part of life itself. In nature, membranes are highly diverse interfacial structures that compartmentalize cells [2]. While prokaryotic cells only have an outer plasma membrane and a less-well-developed internal membrane structure, eukaryotic cells have a number of internal membranes associated with the organelles and the nucleus. Many of these membrane structures, including the plasma membrane, are complex layered systems, but with the basic structure of a lipid bilayer. Biomembranes contain hundreds of different lipid species in addition to embedded or peripherally associated membrane proteins and connections to scaffolds such as the cytoskeleton. In vitro, lipid bilayers are spontaneously self-organized structures formed by a large group of amphiphilic lipid molecules in aqueous suspensions. Bilayer formation is driven by the entropic properties of the hydrogen bond network in water in combination with the amphiphilic nature of the lipids. The molecular shapes of the lipid constituents play a crucial role in bilayer formation, and only lipids with approximately cylindrical shapes are able to form extended bilayers. The bilayer structure of biomembranes was discovered by Gorter and Grendel in 1925 [3] using monolayer studies of lipid extracts from red blood cells. Later, a number of conceptual models were developed to rationalize the organization of lipids and proteins in biological membranes. One of the most celebrated is the fluid-mosaic model by Singer and Nicolson (1972) [4]. According to this model, the lipid bilayer component of

  12. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory

    Directory of Open Access Journals (Sweden)

    Fandi Meng

    2017-06-01

    Full Text Available A rapid degradation of wet adhesion is the key factor controlling coating lifetime, for the organic coatings under marine hydrostatic pressure. The mathematical models of wet adhesion have been studied by Grey System Theory (GST. Grey models (GM (1, 1 of epoxy varnish (EV coating/steel and epoxy glass flake (EGF coating/steel have been established, and a lifetime prediction formula has been proposed on the basis of these models. The precision assessments indicate that the established models are accurate, and the prediction formula is capable of making precise lifetime forecasting of the coatings.

  13. Metal-organic aerogel as a coating for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir; Shahvar, Ali

    2017-06-22

    An iron-based metal-organic aerogel was synthesized using metal-organic framework nanoparticles and applied as a fiber coating for solid-phase microextraction (SPME). Chemical, thermal and morphological characteristics of the material were investigated. Headspace SPME followed by gas chromatography-electron capture detection was used for the determination of chlorobenzenes in the environmental samples. The key experimental factors affecting the extraction efficiency of the analytes, such as ionic strength, extraction and desorption temperature, and extraction time were investigated and optimized. The applicability of the coating for the extraction of chlorobenzenes from the environmental samples including river and tap water, sludge, and coastal soil was evaluated. The detection limits were in the range of 0.1–60 ng L{sup −1}. The relative standard deviations were between 2.0 and 5.0%. The extraction recovery of the analytes was in the range of 88–100%. Compared to the commercial PDMS fiber, the present fiber showed better extraction efficiency. - Highlights: • Metal-organic aerogel was synthesized and used as a novel fiber coating for SPME. • The new coating material showed high surface area and good thermal stability. • GC-ECD was used for determination of chlorobenzenes in environmental samples. • The method showed fast extraction and better efficiency than PDMS commercial fiber.

  14. [Organization and technology in the catering sector].

    Science.gov (United States)

    Tinarelli, Arnaldo

    2014-01-01

    The catering industry is a service characterized by a contract between customer and supplier. In institutional catering industry, the customer is represented by public administration; in private catering industry, the customer is represented by privates. The annual catering trades size is about 6.74 billions of euros, equally distributed between health sector (hospitals, nursing homes), school sector and business sector (ivorkplace food service), with the participation of nearly 1.200 firms and 70.000 workers. Major services include off-premises catering (food prepared away from the location where it's served) and on-premises catering (meals prepared and served at the same place). Several tools and machineries are used during both warehousing and food refrigerating operations, and during preparation, cooking, packaging and transport of meals. In this sector, injuries, rarely resulting serious or deadly, show a downward trend in the last years. On the contrary, the number of occupational diseases shows an upward trend. About the near future, the firms should become global outsourcer, able to provide other services as cleaning, transport and maintenance. In addition, they should invest in innovation: from tools and machineries technology to work organization; from factory lay-out to safely and health in the workplaces.

  15. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  16. Atomic Oxygen Treatment for Non-Contact Removal of Organic Protective Coatings from Painting Surfaces

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    Current techniques for removal of varnish (lacquer) and other organic protective coatings from paintings involve contact with the surface. This contact can remove pigment, or alter the shape and location of paint on the canvas surface. A thermal energy atomic oxygen plasma, developed to simulate the space environment in low Earth orbit, easily removes these organic materials. Uniform removal of organic protective coatings from the surfaces of paintings is accomplished through chemical reaction. Atomic oxygen will not react with oxides so that most paint pigments will not be affected by the reaction. For paintings containing organic pigments, the exposure can be carefully timed so that the removal stops just short of the pigment. Color samples of Alizarin Crimson, Sap Green, and Zinc White coated with Damar lacquer were exposed to atomic oxygen. The lacquer was easily removed from all of the samples. Additionally, no noticeable change in appearance was observed after the lacquer was reapplied. The same observations were made on a painted canvas test sample obtained from the Cleveland Museum of Art. Scanning electron microscope photographs showed a slight microscopic texturing of the vehicle after exposure. However, there was no removal or disturbance of the paint pigment on the surface. It appears that noncontact cleaning using atomic oxygen may provide a viable alternative to other cleaning techniques. It is especially attractive in cases where the organic protective surface cannot be acceptably or safely removed by conventional techniques.

  17. Innovative technologies for SFA occlusions: drug coated balloons in SFA lesions.

    Science.gov (United States)

    Minar, E; Schillinger, M

    2012-08-01

    The concept of using a balloon catheter to directly deliver an antiproliferative drug at the site of injury has become one of the most interesting technological developments in endovascular therapy. There have been important advances in knowledge concerning balloon-based drug delivery technologies during the last years, and different methods have been developed by different companies to coat the balloon with the antiproliferative agent. Currently there is a rapidly increasing clinical study program using drug coated balloons (DCB) in different locations and indications. There are four already finished randomized studies in patients with superficial femoral artery lesions investigating the efficacy of paclitaxel release by DCB, and all demonstrated significantly improved patency rates compared to balloon angioplasty with non coated balloons. DCB offer several advantages compared to drug eluting stents, since any stentless technology for improvement of longterm patency is preferable to overcome the drawbacks of stenting. This technology has demonstrated the capacity to have a significant impact on the practice of percutaneous cardiovascular interventions in the future.

  18. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors

    International Nuclear Information System (INIS)

    Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2014-01-01

    Hexamethyldisiloxane (HMDSO) thin films coated quartz crystal microbalance (QCM) electrodes have been characterized for the detection of volatile organic compounds (VOCs). The sensitive coatings were plasma polymerized in pure vapor of HMDSO and HMDSO/O 2 mixture. The sensor sensitivity was evaluated by monitoring the frequency shift (∆f) of the coated QCM electrode exposed to different concentrations of VOC vapors, such as ethanol, methanol, benzene and chloroform. The isotherm response characteristics showed good reproducibility and reversibility. For all types of analyte, ∆f were found to be linearly correlated with the concentration of VOC vapor. It was shown that it is possible to tune the chemical affinity of the sensor by changing the oxygen ratio in the deposition gas mixture. Contact angle measurements (CA), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study surface wettability, chemical composition and surface morphology of the coated QCM electrodes. ATR-FTIR analysis showed the presence of methyl groups around 840 cm −1 due to Si-(CH 3 ) 3 rocking vibration making the elaborated sensor surface hydrophobic. When the coating is performed in HMDSO/O 2 mixture, AFM and SEM images showed an increase in the effective specific surface area of the sensor due to the increase in surface roughness. Surface morphology combined with chemical composition significantly affects the sensitivity of the QCM-based sensor. - Highlights: • Hexamethyldisiloxane layers were evaluated for volatile organic compounds detection. • The kinetic response of the sensor showed good reproducibility and reversibility. • Hydrophobic coating and high specific surface area increase the sensor sensitivity. • Sensor affinity can be controlled by controlling oxygen proportion in the mixture

  19. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boutamine, M. [Laboratoire des Etudes de Matériaux d' Electronique pour Applications Médicales (LEMEAMED), Faculté des Sciences de la Technologie, Université Constantine 1, Constantine 25000 (Algeria); Bellel, A., E-mail: azzedine.bellel@gmail.com [Laboratoire des Etudes de Matériaux d' Electronique pour Applications Médicales (LEMEAMED), Faculté des Sciences de la Technologie, Université Constantine 1, Constantine 25000 (Algeria); Sahli, S. [Laboratoire de Microsystèmes et Instrumentation (LMI), Faculté des Sciences de la Technologie, Université Constantine 1, Constantine 25000 (Algeria); Segui, Y.; Raynaud, P. [Laboratoire Plasma et Conversion de l' Energie (LAPLACE), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)

    2014-02-03

    Hexamethyldisiloxane (HMDSO) thin films coated quartz crystal microbalance (QCM) electrodes have been characterized for the detection of volatile organic compounds (VOCs). The sensitive coatings were plasma polymerized in pure vapor of HMDSO and HMDSO/O{sub 2} mixture. The sensor sensitivity was evaluated by monitoring the frequency shift (∆f) of the coated QCM electrode exposed to different concentrations of VOC vapors, such as ethanol, methanol, benzene and chloroform. The isotherm response characteristics showed good reproducibility and reversibility. For all types of analyte, ∆f were found to be linearly correlated with the concentration of VOC vapor. It was shown that it is possible to tune the chemical affinity of the sensor by changing the oxygen ratio in the deposition gas mixture. Contact angle measurements (CA), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study surface wettability, chemical composition and surface morphology of the coated QCM electrodes. ATR-FTIR analysis showed the presence of methyl groups around 840 cm{sup −1} due to Si-(CH{sub 3}){sub 3} rocking vibration making the elaborated sensor surface hydrophobic. When the coating is performed in HMDSO/O{sub 2} mixture, AFM and SEM images showed an increase in the effective specific surface area of the sensor due to the increase in surface roughness. Surface morphology combined with chemical composition significantly affects the sensitivity of the QCM-based sensor. - Highlights: • Hexamethyldisiloxane layers were evaluated for volatile organic compounds detection. • The kinetic response of the sensor showed good reproducibility and reversibility. • Hydrophobic coating and high specific surface area increase the sensor sensitivity. • Sensor affinity can be controlled by controlling oxygen proportion in the mixture.

  20. Development of fi lm forming formulation and technology of polymeric fi lm coating on Indotril tablets

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2013-09-01

    Full Text Available Introduction. In previous researches we grounded expedience of «Indotril» tablets development; formulation and technology of "Indotril" tablet cores were developed. Received tablet cores should be covered by protective polymeric film with the purpose of unpleasant taste elimination, increase of tablets expiration date. Objective. The aim of our investigation was to develop the film forming composition and technology of polymeric film coating on «Indotril» tablets in pseudo-fluidized layer. Materials and Methods. As “Indotril” tablets cores should be covered by protective polymeric film we performed research designed to select efficient film forming solution. Thus modern filming agents were studied, besides such factors were investigated: concentration of film forming suspension, increase of tablet coat in mass, air temperature under gas distribution grid. Obtained tablets were checked according to pharmacopeia methods. Results and discussion. First we studied tablet compression force influence on main parameters of «Indotril» cores tablets: on crushing strength, abrasion in pseudo-fluidized layer unit and disintegration. Then for further investigation we chose «Indotril» cores tablets with crushing strength near 70 H, abrasion - up to 0,5% and disintegration time - not more than 10 minutes. We performed research to select film forming solution for covering “Indotril” tablets in pseudo-fluidized layer unit. As filming agents we used different samples of hydroxypropyl methylcellulose (HPMC by Japan company Shin-Etsu Chemical Co and English company Colorcon. Water HPMC solutions were prepared which contained plasticizer (propylene glycol, pigment (titanium IV dioxide and dye (tartrazine. Coating process of “Indotril” tablets was performed in laboratory pseudo-fluidized layer unit with the air temperature 75ºC under gas distribution grid. Variance analysis of experimental data on quality of coat surface showed insignificance as

  1. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  2. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S. [Wood Research Institute, Kyoto Univ., Uji, Kyoto (Japan); Yano, K. [Tokyo National University of Fine Arts and Music, Uenokouen, Tokyo (Japan); Sera, K. [Cyclotron Research Center, Iwate Medical Univ., Takizawa, Iwate (Japan); Futatsugawa, S. [Nishina Memorial Cyclotron Center, Japan Radioisotope Association, Takizawa, Iwate (Japan); Nakamura, Y. [Kyoto National Museum, Higashiyama, Kyoto (Japan)

    1999-07-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  3. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S.; Yano, K.; Sera, K.; Futatsugawa, S.; Nakamura, Y.

    1999-01-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  4. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  5. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  6. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  7. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan

    Directory of Open Access Journals (Sweden)

    Raquel P Campos

    2011-10-01

    Full Text Available The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a control; b 2% cassava starch; c 1% chitosan; and d 2% cassava starch + 1% chitosan. Physical and chemical characteristics of fruits were evaluated at 3, 6 and 9 days of storage, and microbiological and sensory analyses were carried out at the end of the storage period. The treatments influenced positively the post-harvest quality of organic strawberries. The coating cassava starch + chitosan provided the best results, with less than 6% of loss in fruit mass, lower counts of yeast and psychrophilic microorganisms and the best appearance according to the sensory analysis.

  8. The influence of additives on mechanical properties of organic-inorganic coatings

    Czech Academy of Sciences Publication Activity Database

    Dajbychová, L.; Bláhová, O.; Špírková, Milena

    2011-01-01

    Roč. 105, s2 (2011), s175-s177 ISSN 0009-2770 R&D Projects: GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposite materials * hybrid organic -inorganic * nanocomposite coatings Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.529, year: 2011 http://www.chemicke-listy.cz/common/content-issue_s2-volume_105-year_2011.html

  9. Slot-Die-Coated V2O5 as Hole Transport Layer for Flexible Organic Solar Cells and Optoelectronic Devices

    DEFF Research Database (Denmark)

    Beliatis, Michail; Helgesen, Martin; Garcia Valverde, Rafael

    2016-01-01

    Vanadium pentoxide has been proposed as a good alternative hole transport layer for improving device lifetime of organic photovoltaics. The article presents a study on the optimization of slot-die-coated vanadium oxide films produced with a roll coating machine with the aim of achieving scalable ...

  10. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications

    Science.gov (United States)

    Eliaz, Noam; Metoki, Noah

    2017-01-01

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697

  11. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  12. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  13. Development of the destruction technology for radioactive organic solid wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Park, H.S.; Lee, K.W.

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs

  14. Development of the destruction technology for radioactive organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Park, H.S.; Lee, K.W. [and others

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs.

  15. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography.

    Science.gov (United States)

    Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo

    2018-01-12

    The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column

  16. Social Technologies and Informal Knowledge Sharing within and across Organizations

    Science.gov (United States)

    Jarrahi, Mohammad Hosein

    2013-01-01

    This doctoral dissertation is focused on both empirical and conceptual contributions relative to the roles social technologies play in informal knowledge sharing practices, both within and across organizations. Social technologies include (a) traditional social technologies (e.g., email, phone and instant messengers), (b) emerging social…

  17. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  18. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    OpenAIRE

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especial...

  19. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  20. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengjie [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Jiaqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Yi, Xiaofei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, JingWu [Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China)

    2016-02-15

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm{sup 2}) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  1. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles.

    Science.gov (United States)

    Layet, Clément; Auffan, Mélanie; Santaella, Catherine; Chevassus-Rosset, Claire; Montes, Mélanie; Ortet, Philippe; Barakat, Mohamed; Collin, Blanche; Legros, Samuel; Bravin, Matthieu N; Angeletti, Bernard; Kieffer, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Doelsch, Emmanuel

    2017-09-05

    The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg -1 of dissolved Ce 2 (SO 4 ) 3 , bare and citrate-coated CeO 2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO 2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.

  2. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    COWGILL, M.G.; MOSKOWITZ, P.D.; CHERNAENKO, L.M.; NAZARIAN, A.; GRIFFITH, A.; DIASHEV, A.; ENGOY, T.

    2000-01-01

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  3. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  4. In situ electrochemical studies of forming-induced defects of organic coatings on galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueppel, Ingo [Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, 44145 Dortmund (Germany); Max-Planck-Institut fuer Eisenforschung GmbH, Department for Interface Chemistry and Surface Engineering, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Schinkinger, Bernhard [Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, 44145 Dortmund (Germany); Grundmeier, Guido [University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)], E-mail: g.grundmeier@tc.uni-paderborn.de

    2009-05-01

    A new electrochemical setup is presented for in situ measurements during uniaxial forming of thin film coated metal substrates. This approach allows the formability analysis of a zinc pigmented organic coating on a galvanised steel substrate. The aim is to monitor the formation of defects during the forming process. The setup comprises an electrochemical microcapillary cell in a three-electrode arrangement and a miniaturised linear stretching device. The development of forming-induced defects is monitored in situ by applying electrochemical impedance spectroscopy (EIS) and also microscopically analysed by means of field emission scanning electron microscopy (FE-SEM). The studies were supported by GOM grid measurements and finite element simulations of model sample forming degrees. The established technique enables the evaluation of the correlation between forming degree and degradation of the barrier properties of organic coatings. Finally a phosphating process on the unformed and formed specimen is electrochemically and microscopically analysed to correlate the respective defect size with its local reactivity. The results show that stretching-induced defects occur at the interface between spherical Zn particles and the epoxy binder matrix. The defect size increases with increasing strain values. The phosphating process leads to the nucleation of phosphate crystals especially in the forming-induced defects and thereby reduces the free zinc in the defect area. The kinetic of the phosphating is accelerated with increasing size of the defect.

  5. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines.

    Science.gov (United States)

    Jimenez, Ambar S; Jaramillo, Francesca; Hemraz, Usha D; Boluk, Yaman; Ckless, Karina; Sunasee, Rajesh

    2017-01-01

    Cellulose nanocrystals (CNCs) have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide ( β -cyclodextrin), a thermoresponsive polymer (poly[ N -isopropylacrylamide]), and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7), using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study.

  6. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  7. Interactive Communication Technologies in Business Organizations.

    Science.gov (United States)

    Rogers, Everett M.; Allbritton, Marcel M.

    1995-01-01

    Explores the distinctive aspects of the new interactive communication technologies (electronic mail over the Internet) in business communication and their implications. Discusses the growth of interactive communication, the concept of interactivity, physical distance and social presence, getting to critical mass, and flexibility and control of…

  8. Patterning technology for solution-processed organic crystal field-effect transistors

    Science.gov (United States)

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-01-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656

  9. Patterning technology for solution-processed organic crystal field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yun Li

    2014-04-01

    Full Text Available Organic field-effect transistors (OFETs are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

  10. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Jimenez AS

    2017-09-01

    Full Text Available Ambar S Jimenez,1 Francesca Jaramillo,1 Usha D Hemraz,2 Yaman Boluk,3 Karina Ckless,1 Rajesh Sunasee1 1Department of Chemistry, State University of New York at Plattsburgh, Plattsburgh, NY, USA; 2National Research Council, Montreal, QC, Canada, 3Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada Abstract: Cellulose nanocrystals (CNCs have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (β-cyclodextrin, a thermoresponsive polymer (poly[N-isopropylacrylamide], and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7, using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study. Keywords: cellulose nanocrystals, surface coating, cell viability, MTT, LDH

  11. Intumescent coatings based on an organic-inorganic hybrid resin and the effect of mineral fibres on fire-resistant properties of intumescent coatings

    Czech Academy of Sciences Publication Activity Database

    Otáhal, R.; Veselý, D.; Násadová, J.; Zima, Vítězslav; Němec, P.; Kalenda, P.

    2011-01-01

    Roč. 40, č. 4 (2011), s. 247-253 ISSN 0369-9420 Institutional research plan: CEZ:AV0Z40500505 Keywords : intumescent coatings * organic - inorganic hybrid resins Subject RIV: CA - Inorganic Chemistry Impact factor: 0.707, year: 2011

  12. Automated System Organizations Under Spatial Grasp Technology

    Science.gov (United States)

    2014-06-01

    This mode of high-level system vision based on holistic and gestalt principles [6-8] rather than cooperating parts or agents [1] has psychological ...M. Wertheimer, “ Gestalt Theory“, Erlangen. Berlin, 1925. [7] P. Sapaty, “ Gestalt -Based Ideology and Technology for Spatial Control of Distributed...Dynamic Systems”, International Gestalt Theory Congress, 16th Scientific Convention of the GTA, University of Osnabrück, Germany, March 26 - 29

  13. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  14. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization.

    Science.gov (United States)

    Wang, Heping; Jiao, Fenglong; Gao, Fangyuan; Zhao, Xinyuan; Zhao, Yan; Shen, Yehua; Zhang, Yangjun; Qian, Xiaohong

    2017-03-01

    Deep and efficient proteolysis is the critical premise in mass spectrometry-based bottom-up proteomics. It is difficult for traditional in-solution digestion to meet the requirement unless prolonged digestion time and enhanced enzyme dosage are employed, which makes the whole workflow time-consuming and costly. The abovementioned problems could be effectively ameliorated by anchoring many proteases on solid supports. In this work, covalent organic framework-coated magnetic graphene (MG@TpPa-1) was designed and prepared as a novel enzyme carrier for the covalent immobilization of trypsin with a high degree of loading (up to 268 μg mg -1 ). Profiting from the advantages of magnetic graphene and covalent organic frameworks, the novel trypsin bioreactor was successfully applied for the enzymatic digestion of a model protein with dramatically improved digestion efficiency, stability, and reusability. Complete digestion could be achieved in a time period as short as 2 min. For the digestion of proteins extracted from Amygdalus pedunculata, a total of 2833 protein groups were identified, which was slightly more than those obtained by 12 h of in-solution digestion (2739 protein groups). All of the results demonstrate that MG@TpPa-1-trypsin is an excellent candidate for sample preparation in a high-throughput proteomics analysis. Graphical abstract Covalent organic frameworks-coated magnetic graphene was prepared as novel carrier for highly efficient tryptic immobilization.

  15. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  16. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating.

    Science.gov (United States)

    Liu, Feng; Ferdous, Sunzida; Schaible, Eric; Hexemer, Alexander; Church, Matthew; Ding, Xiaodong; Wang, Cheng; Russell, Thomas P

    2015-02-04

    The mini-slot-die coater offers a simple, convenient, materials-efficient route to print bulk-heterojunction (BHJ) organic photovoltaics (OPVs) that show efficiencies similar to spin-coating. Grazing-incidence X-ray diffraction (GIXD) and GI small-angle X-ray scattering (GISAXS) methods are used in real time to characterize the active-layer formation during printing. A polymer-aggregation-phase-separation-crystallization mechanism for the evolution of the morphology describes the observations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Three Essays on Information Technology Security Management in Organizations

    Science.gov (United States)

    Gupta, Manish

    2011-01-01

    Increasing complexity and sophistication of ever evolving information technologies has spurred unique and unprecedented challenges for organizations to protect their information assets. Companies suffer significant financial and reputational damage due to ineffective information technology security management, which has extensively been shown to…

  18. A decade of 3C technologies: insights into nuclear organization

    NARCIS (Netherlands)

    de Wit, E.; de Laat, W.

    2012-01-01

    Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably

  19. Technology Support for Self-Organized Learners (Guest Editorial)

    NARCIS (Netherlands)

    Kalz, Marco; Koper, Rob; Hornung-Prähauser, Veronika

    2010-01-01

    Kalz, M., Koper, R., & Hornung-Prähauser, V. (2009). Technology Support for Self-Organized Learners (Guest Editorial) [Special issue]. In M. Kalz, R. Koper & V. Hornung-Prähauser (Eds.), Journal of Educational Technology & Society, 12(3), 1-3.

  20. Large area SiC coating technology of RBSC for semiconductor processing component

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described

  1. Eddy current testing technology research of aluminum coating thickness on stainless steel tube inwall

    International Nuclear Information System (INIS)

    Li Xiaona; Hao Xingui

    2014-01-01

    Dynamic testing method of coating layer thickness of stainless steel tube is built up using eddy current testing technology. It is determined that others-contrast point-type probe is adopted, by comparing the detection performance of self-contrast and others-contrast type probes. To effectively solve the lift-off effect between dynamic detection, 3 nylon (4 m long per piece) is distributed by 120° in the circumferential direction of tube to be tested, which ensure the rotational alignment and avoid point-type probe lifting off the tube inner surface. And the special tighten clamping fixture is used for fixing stainless steel tube; so, the dynamic transmission device is designed and realized. Accuracy study under the condition of different frequency and gain is carried out using multi-frequency detection technology. At the same time, the detection precision under quadratic curve and exponential curve calibration modal is compared. And then, test parameters and curve generated model is determined to achieve the best accuracy. Finally, spiral scanning eddy current method is achieved for testing the aluminium cladding thickness on stainless steel tube inwall. The accuracy of detecting the thickness of coating layer by this method is ±3μm, the instability of rotating tooling is lower than 10%. This method achieved the domestic leading level. (authors)

  2. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  3. Management and Information Technology Challenges for the Modern Organization

    CERN Document Server

    Ekman, Peter

    2011-01-01

    Information technology has come to play an important role in organizations over the last few decades. Though it began as an entity dealt with by specialists, IT has evolved to become an everyday tool with both operational and strategic impacts. Most modern organizations have adopted different forms of IT, and become dependent on their computer-based information systems and their peripherals for everyday operations. Information technology offers opportunities to increase efficiency, customer value, and competitiveness. Given the financial investment in IT required by organizations to remain com

  4. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  5. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  7. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    Science.gov (United States)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  8. Fabrication of photo-patternable inorganic-organic hybrid film by spin-coating

    International Nuclear Information System (INIS)

    Jeong, Sunho; Jang, Woo-Hyuk; Moon, Jooho

    2004-01-01

    Organically modified silicate (ORMOSIL) was synthesized by the sol-gel process. The control of the refractive index was achieved by varying the content of phenyltrimethoxysilane as a refractive index modifier. The refractive index variations as a function of UV illumination and baking conditions were analyzed using Fourier transform infrared spectrometer. Incorporation of 3-(trimethoxysilyl)propylmethacrylate as a UV-sensitive functional group allowed to obtain high-resolution patterned films with 7 μm linewidth using a conventional photo-lithography. Relatively thick layers of ORMOSIL film with 11 μm thickness were obtained by a single spin-coating without producing any crack. Heat-treatment at temperatures lower than 150 deg. C resulted in inorganic-organic hybrid films that exhibited dense microstructure

  9. Cover layer technology and a new hard coat for cartridge-free Blu-ray disc

    Science.gov (United States)

    Kang, Tae-Sik; Han, Mi Young; Lee, Seong-Keun; Jang, Sung Hoon; Hong, Young Jun; Seo, Hun; Lee, Chang-Ho

    2004-09-01

    Spin coating method for cover layer of Blu-ray Disc (BD) has been studied and a new hard coat resin including antifouling property has been developed. A vacuum chuck was newly designed to minimize the ski-jump effect. 3 mm hard coat layer was stacked onto the 97 mm cover layer by spin coating method.

  10. Technology of Anticorrosive Protection of Steel Constructions by Coatings Based on Rapid-Hardening Bitumen-Latex Emulsion

    Directory of Open Access Journals (Sweden)

    Nykyforchyn, H.M.

    2016-01-01

    Full Text Available The recipes of rapid-hardening bitumen-latex emulsions and coatings on its base are created, in-laboratory tests of their physical, chemical and anticorrosive properties are carried out. The technology of anticorrosive protection and the installation technical documentation for making of aqueous bitumen-latex emulsion is developed, installation is mounted and a pilot lot of rapid-hardening emulsion is produced. Experimental-industrial approbation of the technology of coating formation on pipes in oil and gas industry is carried out.

  11. Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology

    Science.gov (United States)

    Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina

    2017-06-01

    Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.

  12. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: Application to model antifouling coatings

    NARCIS (Netherlands)

    Goodes, L.R.; Dennington, S.P.; Schuppe, H.; Wharton, J.A.; Bakker, M.; Klijnstra, J.W.; Stokes, K.R.

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu 2O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to

  13. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology.

    Science.gov (United States)

    Wu, Chunnuan; Sun, Le; Sun, Jin; Yang, Yajun; Ren, Congcong; Ai, Xiaoyu; Lian, He; He, Zhonggui

    2013-09-10

    The aim of the present study was to correlate in vitro properties of drug formulation to its in vivo performance, and to elucidate the deciding properties of oral absorption. Gastrointestinal simulation technology (GST) was used to simulate the in vivo plasma concentration-time curve and was implemented by GastroPlus™ software. Lansoprazole, a typical BCS class II drug, was chosen as a model drug. Firstly, physicochemical and pharmacokinetic parameters of lansoprazole were determined or collected from literature to construct the model. Validation of the developed model was performed by comparison of the predicted and the experimental plasma concentration data. We found that the predicted curve was in a good agreement with the experimental data. Then, parameter sensitivity analysis (PSA) was performed to find the key parameters of oral absorption. The absorption was particularly sensitive to dose, solubility and particle size for lansoprazole enteric-coated tablets. With a single dose of 30 mg and the solubility of 0.04 mg/ml, the absorption was complete. A good absorption could be achieved with lansoprazole particle radius down to about 25 μm. In summary, GST is a useful tool for profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets and guiding the formulation optimization. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

    Science.gov (United States)

    Wang, Xilong; Ma, Enxing; Shen, Xiaofang; Guo, Xiaoying; Zhang, Meng; Zhang, Haiyun; Liu, Ye; Cai, Fei; Tao, Shu; Xing, Baoshan

    2014-11-01

    Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ecotoxicological standard tests confirm beneficial effects of nitrate capture in organically coated grapewood biochar

    Science.gov (United States)

    Haller, Andreas; Kammann, Claudia; Löhnertz, Otmar

    2017-04-01

    Due to the rising use of mineral N fertilizers and legume use in agriculture, the input of reactive N into the global N cycle has dramatically increased. Therefore new agricultural techniques that increase N use efficiency and reduce the loss of soil mineral N to surface and ground waters are urgently required. Pyrogenic carbon (biochar) produced from biomass may be used as a beneficial soil amendment to sequester carbon (C) in soils, increase soil fertility in the long term, and reduce environmental pollution such as nitrate leaching or N2O emissions. However, reduced nitrate leaching is not a constant finding when using biochar as a soil amendment and the mechanisms are poorly understood. To investigate if biochar is able to reduce nitrate pollution and its subsequent effects on soil and aquatic fauna, we conducted a series of experiments using standard ecotoxicological test methods: (1) the collembolan reproduction test (ISO 11267 (1999)), (2) the earthworm reproduction test (ISO 11268-2 (1998)), (3) the aquatic Daphnia acute test (ISO 6341 (1996)) and (4) a seedling emergence and growth test (ISO 11269-2 (2006)) also involving leaching events. For the tests grapewood biochar produced with a Kon-Tiki kiln (600-700°C) was used which had previously demonstrated nitrate capture; terrestrial tests were carried out with loamy sand standard soil 2.2 (LUFA-Speyer, Germany). The tests included the factors: (A) nitrate addition (using critical values for the test organisms) or no nitrate addition, (B) control (no biochar), pure biochar and organically-coated biochar. In the aquatic test (3), a nitrate amount which caused 50% of the Daphnia-immobilizing toxic nitrate concentration in leachates was applied to the soil or soil-biochar mixtures. Subsequently, soils were incubated overnight and leached on the next day, producing (in the control) the calculated nitrate concentrations. Daphnids were incubated for 48 hours. Test results without nitrate confirmed that soil

  16. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Composting-derived organic coating on biochar enhances its affinity to nitrate

    Science.gov (United States)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    energy loss spectroscopy - STEM-EELS, scanning transmission X-ray microscopy STXM) revealed the formation of a nano-porous organic coating on co-composted biochar. This coating alters the interaction of biochar with water as evidenced by proton fast field cycling nuclear magnetic resonance (1H FFC NMR) relaxometry and might explain its distinct characteristics. Our findings offer a roadmap for future research to design sustainable slow-release nitrogen fertilizers based on biochar to reduce the environmental impact of agriculture. Further microscopic studies are necessary to understand the preconditions of the formation of organic coatings on biochar on a holistic basis to design biochar post-production treatments.

  18. PROCESS CONTROL IN THE EDUCATION OF ORGANIC CHEMICAL TECHNOLOGY

    OpenAIRE

    Csontos, lstván; Department of Organic Chemical Technology, Budapest University of Technology and Economics; Marosi, György; Department of Organic Chemical Technology, Budapest University of Technology and Economics; Faigl, Ferenc; Department of Organic Chemical Technology, Budapest University of Technology and Economics

    2013-01-01

    Laboratory practices for demonstrating the importance of advanced process control methods in the organic chemical technologies have been elaborated. It required the development of a system tha tintegrates the advantages of a reaction calorimeter and a model system of industrial controlled reactors. The hardware and software configuration support the transfer of elaborated control programs of reactions from laboratory level to the industrial technology. General control algorithms of diazotizat...

  19. Hemostatic function of buffy coat platelets in additive solution treated with pathogen reduction technology

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Bochsen, Louise; Windeløv, Nis Agerlin

    2011-01-01

    BACKGROUND: Pathogen reduction technologies (PRTs) may influence the hemostatic potential of stored platelet (PLT) concentrates. To investigate this, buffy coat PLTs (BCPs) stored in PLT additive solution (SSP+) with or without Mirasol PRT treatment (CaridianBCT Biotechnologies) were compared...... by functional hemostatic assays. STUDY DESIGN AND METHODS: We performed in vitro comparison of PRT (PRT-BCP) and control pooled-and-split BCPs (CON-BCP) after 2, 3, 6, 7, and 8 days' storage. Hemostatic function was evaluated with thrombelastography (TEG) and impedance aggregometry (Multiplate), the latter also...... in a sample matrix (Day 2) with or without addition of red blood cells (RBCs), control plasma, and/or PRT-treated plasma. RESULTS: PRT treatment of 8-day-stored BCPs influenced clot formation (TEG) minimally, with reductions in maximum clot strength (maximum amplitude, p = 0.014) but unchanged initial fibrin...

  20. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  1. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    Science.gov (United States)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  2. Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating

    KAUST Repository

    Jaber, Nizar

    2017-11-03

    We report a resonant gas sensor, uniformly coated with a metal-organic framework (MOF), and excited it near the higher order modes for a higher attained sensitivity. Also, switching upon exceeding a threshold value is demonstrated by operating the resonator near the bifurcation point and the dynamic pull-in instabilities. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOF functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  3. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  4. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    Science.gov (United States)

    Cuddihy, E. F.; Willis, P. B.

    1984-11-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  5. Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    Directory of Open Access Journals (Sweden)

    Maria Eliziane Pires de Souza

    2006-03-01

    Full Text Available The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.

  6. NATO Conference on Work, Organizations, and Technological Change

    CERN Document Server

    Niehaus, Richard

    1982-01-01

    This volume is the proceedings of the Symposium entitled, "Work, Organizations and Technological Change" which was held in Garmisch-Partenkirchen, West Germany, 14-19 June 1981. The meeting was sponsored by the Special Panel on Systems Sciences of the NATO Scientific Affairs Division. In proposing this meeting the Symposium Directors built upon several preceding NATO conferences in the general area of personnel systems, manpower modelling, and organization. The most recent NATO Conference, entitled "Manpower Planning and Organization Design," was held in Stresa, Italy in 1977. That meeting was organized to foster research on the interrelationships between programmatic approaches to personnel planning within organizations and behavioral science approachs to organization design. From that context of corporate planning the total internal organizational perspective was the MACRO view, and the selection, assignment, care and feeding of the people was the MICRO view. Conceptually, this meant that an integrated appr...

  7. Spray coated indium-tin-oxide-free organic photodiodes with PEDOT:PSS anodes

    Directory of Open Access Journals (Sweden)

    Morten Schmidt

    2014-10-01

    Full Text Available In this paper we report on Indium Tin Oxide (ITO-free spray coated organic photodiodes with an active layer consisting of a poly(3-hexylthiophen (P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM blend and patterned poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS electrodes. External quantum efficiency and current voltage characteristics under illuminated and dark conditions as well as cut-off frequencies for devices with varying active and hole conducting layer thicknesses were measured in order to characterize the fabricated devices. 60% quantum efficiency as well as nearly four orders of magnitude on-off ratios have been achieved. Those values are comparable with standard ITO devices.

  8. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell.

    Science.gov (United States)

    Rout, Michael P; Field, Mark C

    2017-06-20

    Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with β-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.

  9. Film coated tablets (ColoPulse technology) for targeted delivery in the lower intestinal tract : influence of the core composition on release characteristics

    NARCIS (Netherlands)

    Schellekens, Reinout C. A.; Baltink, Jan H.; Woesthuis, Ellen M.; Stellaard, Frans; Kosterink, Jos G. W.; Woerdenbag, Herman J.; Frijlink, Henderik W.

    2010-01-01

    The design of a film coating technology which allows a tablet to deliver the drug in the ileocolonic segment would offer new treatment possibilities. The objective is to develop a platform technology that is suitable for a broad range of drug compounds. We developed a coated tablet with a delayed,

  10. Synthesis, characterization, and applications of electroactive polymeric nanostructures for organic coatings

    Science.gov (United States)

    Suryawanshi, Abhijit Jagnnath

    Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.

  11. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  12. Technology management of intellectual capital in the organization.

    OpenAIRE

    Бех, Юлія Володимирівна

    2014-01-01

    The article defined the totality of organizational tools methodological knowledge management, consisting of technologies, systems and methods. Revealed knowledge management software, formal and informal tools of intellectual capital management organization. By formal tools include expert control systems, artificial intelligence, automated decision-making systems, decision support systems and support systems work with clients. Informal tools (training, cross-functional project teams and intra)...

  13. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    Science.gov (United States)

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  14. Development and in-line validation of a Process Analytical Technology to facilitate the scale up of coating processes.

    Science.gov (United States)

    Wirges, M; Funke, A; Serno, P; Knop, K; Kleinebudde, P

    2013-05-05

    Incorporation of an active pharmaceutical ingredient (API) into the coating layer of film-coated tablets is a method mainly used to formulate fixed-dose combinations. Uniform and precise spray-coating of an API represents a substantial challenge, which could be overcome by applying Raman spectroscopy as process analytical tool. In pharmaceutical industry, Raman spectroscopy is still mainly used as a bench top laboratory analytical method and usually not implemented in the production process. Concerning the application in the production process, a lot of scientific approaches stop at the level of feasibility studies and do not manage the step to production scale and process applications. The present work puts the scale up of an active coating process into focus, which is a step of highest importance during the pharmaceutical development. Active coating experiments were performed at lab and production scale. Using partial least squares (PLS), a multivariate model was constructed by correlating in-line measured Raman spectral data with the coated amount of API. By transferring this model, being implemented for a lab scale process, to a production scale process, the robustness of this analytical method and thus its applicability as a Process Analytical Technology (PAT) tool for the correct endpoint determination in pharmaceutical manufacturing could be shown. Finally, this method was validated according to the European Medicine Agency (EMA) guideline with respect to the special requirements of the applied in-line model development strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Kathryn L. [Univ. of Illinois, Chicago, IL (United States)

    2015-08-18

    Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood. The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6

  16. Highly aligned conjugated polymer films prepared by rotation coating for high-performance organic field-effect transistors

    Science.gov (United States)

    Van Tho, Luu; Park, Won-Tae; Choi, Eun-Young; Noh, Yong-Young

    2017-04-01

    Recently, exceptionally high field-effect mobility in organic field-effect transistors (OFETs) has been fabricated using semiconducting films with one-dimensionally aligned, highly planar electron donor-acceptor copolymers, within the channel of transistors. Here, we propose an extremely simple coating method, called rotation coating, for preparing highly aligned, conjugated polymer thin films for applications in various organic electronic devices. We realize highly aligned polymer films using various conjugated polymers and applied the films as active layers for high-performance OFETs. Significantly high field-effect mobility values of 1.45 ± 0.46 cm2/Vs have been achieved for rotation coated diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer films.

  17. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    Science.gov (United States)

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  18. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy

    DEFF Research Database (Denmark)

    Arredondo, B.; Romero, B.; Beliatis, M. J.

    2018-01-01

    In this work we study the degradation of roll-coated flexible inverted organic solar cells in different atmospheres. We demonstrate that impedance spectroscopy is a powerful tool for elucidating degradation mechanisms; it is used here to distinguish the different degradation mechanisms due to water...

  19. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    Science.gov (United States)

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  20. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles.

    Science.gov (United States)

    Yin, Yongguang; Shen, Mohai; Tan, Zhiqiang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-06-02

    Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM are natural polymer mixture with wide molecular weight (MW) distribution, probing the particle coating-dependent interaction of MW fractionated natural organic matter (Mf-NOM) with various coatings is helpful for understanding the differential aggregation and transport behavior of engineered AgNPs as well as other metal nanoparticles. In this study, we investigated the role of pristine and Mf-NOM on the aggregation of AgNPs with Bare, citrate, and PVP coating (Bare-, Cit-, and PVP-AgNP) in mono- and divalent electrolyte solutions. We observed that the enhanced aggregation or dispersion of AgNPs in NOM solution highly depends on the coating of AgNPs. Pristine NOM inhibited the aggregation of Bare-AgNPs but enhanced the aggregation of PVP-AgNPs. In addition, Mf-NOM fractions have distinguishing roles on the aggregation and dispersion of AgNPs, which also highly depend on the AgNPs coating as well as the MW of Mf-NOM. Higher MW Mf-NOM (>100 kDa and 30-100 kDa) enhanced the aggregation of PVP-AgNPs in mono- and divalent electrolyte solutions, whereas lower MW Mf-NOM (10-30 kDa, 3-10 kDa and coating are important for better understanding of the transport and subsequent transformation of AgNPs in aquatic environment.

  1. Polyimide Dielectric Layer on Filaments for Organic Field Effect Transistors: Choice of Solvent, Solution Composition and Dip-Coating Speed

    Directory of Open Access Journals (Sweden)

    Rambausek Lina

    2014-09-01

    Full Text Available In today’s research, smart textiles is an established topic in both electronics and the textile fields. The concept of producing microelectronics directly on a textile substrate is not a mere idea anymore and several research institutes are working on its realisation. Microelectronics like organic field effect transistor (OFET can be manufactured with a layered architecture. The production techniques used for this purpose can also be applied on textile substrates. Besides gate, active and contact layers, the isolating or dielectric layer is of high importance in the OFET architecture. Therefore, generating a high quality dielectric layer that is of low roughness and insulating at the same time is one of the fundamental requirements in building microelectronics on textile surfaces. To evaluate its potential, we have studied polyimide as a dielectric layer, dip-coated onto copper-coated polyester filaments. Accordingly, the copper-coated polyester filament was dip-coated from a polyimide solution with two different solvents, 1-methyl-2-pyrrolidone (NMP and dimethylformaldehyde. A variety of dip-coating speeds, solution concentrations and solvent-solute combinations have been tested. Their effect on the quality of the layer was analysed through microscopy, leak current measurements and atomic force microscopy (AFM. Polyimide dip-coating with polyimide resin dissolved in NMP at a concentration of 15w% in combination with a dip-coating speed of 50 mm/min led to the best results in electrical insulation and roughness. By optimising the dielectric layer’s properties, the way is paved for applying the subsequent semi-conductive layer. In further research, we will be working with the organic semiconductor material TIPS-Pentacene

  2. Quantifying "Softness" of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering.

    Science.gov (United States)

    Diroll, Benjamin T; Weigandt, Katie M; Jishkariani, Davit; Cargnello, Matteo; Murphy, Ryan J; Hough, Lawrence A; Murray, Christopher B; Donnio, Bertrand

    2015-12-09

    Small-angle X-ray and neutron scattering provide powerful tools to selectively characterize the inorganic and organic components of hybrid nanomaterials. Using hydrophobic gold nanoparticles coated with several commercial and dendritic thiols, the size of the organic layer on the gold particles is shown to increase from 1.2 to 4.1 nm. A comparison between solid-state diffraction from self-assembled lattices of nanoparticles and the solution data from neutron scattering suggests that engineering softness/deformability in nanoparticle coatings is less straightforward than simply increasing the organic size. The "dendritic effect" in which higher generations yield increasingly compact molecules explains changes in the deformability of organic ligand shells.

  3. Coating, Degrading and Testing of Organic Polymer Devices - Reducing the route from Laboratory to Production scale devices

    DEFF Research Database (Denmark)

    Dam, Henrik Friis

    scale manufacturing of organic electronics to the large scale manufacturing, by downscaling some of the methods used in full size roll to roll (R2R) coating techniques into a lab scale setting. The enabling of similar techniques in both lab and production settings allows an optimization in the lab...... scale fabrication of organic electronic devices, using the techniques of the larger R2R systems. The lab scale slot-die roll coating technique reported, not only allow a faster route from lab scale to production scale, but also has the added advantage of a smaller material consumption. The solution......Organic electronics is a vast and fast improving research area, with widespread uses proposed since the 1991 discovery of semiconducting polymers. The premise of this thesis is based on finding more effective ways towards making cheap organic electronics and enabling a shorter path from the lab...

  4. PERFORMANCE MANAGEMENT APPROACHES IN ECONOMIC ORGANIZATIONS USING INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Anca Mehedintu

    2012-03-01

    Full Text Available Performance management includes activities that ensure that goals are consistently being met inan effective and efficient manner. Performance management can focus on the performance of an organization, adepartment, employee, or even the processes to build a product or service, as well as many other areas.In these days of globalization and intensive use of information technology, the organizations must defineand implement an appropriate strategy that would support their medium-term development, stability andcompetitiveness. This is achieved through a coherent and interrelated set of activities for understanding thecustomer expectations and the level at which the offer of organization add value to customers and satisfy theirneeds, define their internal organization to allow timely response to market demands without losing focus on client,tracking strategy and business model for the accomplishment of the organization mission, aligning the existing ITproject management or under development implementation in organization with the strategic management oforganization etc. Strategic Management determines the improvement of processes, effective use of resources, focuson critical areas in terms of finance, creating opportunities for innovation and technological progress, improvementof the supply mechanism and the duty to promote personal interaction and negotiation at all levels, continuousassessment of organization and its technological trends, analyze the market potential and competence field etc.Strategic management system will not give good results if the strategy is not defined by a set of operationalobjectives clearly at all levels.Business performance is based on a set of analytical processes of business, supported by informationtechnology that defines the strategic goals that can be measured by performance indicators. EnterprisePerformance Management creates a powerful and precise environment, characterized by data consistency,efficiency analysis

  5. 40 CFR Table 2 to Subpart Vvvv of... - Alternative Organic HAP Content Requirements for Open Molding Resin and Gel Coat Operations

    Science.gov (United States)

    2010-07-01

    ... Requirements for Open Molding Resin and Gel Coat Operations 2 Table 2 to Subpart VVVV of Part 63 Protection of... Organic HAP Content Requirements for Open Molding Resin and Gel Coat Operations As specified in §§ 63.5701... organic HAP content (weight percent) requirement— 1. Production resin operations Atomized (spray) 28...

  6. Technological and life cycle assessment of organics processing odour control technologies

    International Nuclear Information System (INIS)

    Bindra, Navin; Dubey, Brajesh; Dutta, Animesh

    2015-01-01

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  7. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  8. Identification of organic pigments in automotive coatings using laser desorption mass spectrometry.

    Science.gov (United States)

    Stachura, Sylwia; Desiderio, Vincent J; Allison, John

    2007-05-01

    When one looks at an automotive coating, one sees color due to pigments. Modern organic pigments, with high molar absorptivities, may be only minor components of the mixture. Laser desorption mass spectrometry (LDMS) has been shown to be a useful tool for the analysis of colorants such as pen ink dyes. Here, LDMS is used to determine its utility for the identification of pigments, in simple media and in more complex paints. Small paint chips can be introduced into the LDMS instrument, and when an ultraviolet laser is focused on a portion of a chip, ions representative of the pigment(s) are selectively formed. Some pigments such as quinacridones and copper phthalocyanine are very stable and are desorbed and ionized intact. In contrast, benzimidazolones, which contain some single-skeletal bonds, form fragment ions. This method proves to be sensitive and convenient, as no sample preparation is required. The presence of inorganic pigments in addition to modern organic pigments can be determined, and pigments can be directly identified in actual automotive paint chip samples.

  9. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  10. Technology Innovation Of Organic Waste Decomposition In Providing Feedstuffs

    Directory of Open Access Journals (Sweden)

    S. Prawirodigdo

    2011-06-01

    Full Text Available Previous investigations in Indonesia indicated that an inactive ovary was a chronically reproduction problem in ruminants. There was a tendency that nutrition deficiency inhibited ovulation, oestrus occurrence, and conception in ruminants. Obviously, there is a correlation between sufficient nutrient consumption and reproduction performance of such animals. Thus, application of the production/reproduction technology innovation for improving ruminant’s productivity in the villages needs to be supported by the availability of sufficient feed. Whilst, there is a competition among ruminants in fulfilling feed requirement. On the other hand, there are large amounts of organic waste of food and plantation estate industries which are potential for non-traditional feedstuffs. The examples of such organic wastes are: 4,817,630 ton dry matter (DM of cacao pod, 314,042.51 ton DM of coffee pulp and hulls, and 29,700,000 ton DM of palm frond, leaves and trunks. Unfortunately, such materials contain anti-nutritive substance. Nevertheless, technology innovation for decomposing organic waste is available and its validity has been proven to be satisfactory and appropriate. Regarding the limitation of feedstuffs, introduction of technology innovation for organic waste decomposition to provide feed for improving livestock productivity is promising to be applied.

  11. The influence of nanoadditives on surface, permeability and mechanical properties of self-organized organic-inorganic nanocomposite coatings

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Brožová, Libuše; Brus, Jiří; Strachota, Adam; Urbanová, Martina; Šlouf, Miroslav; Bláhová, O.; Duchek, P.

    2008-01-01

    Roč. 29, č. 8 (2008), s. 1-9 ISSN 0140-8798. [Additives for Coatings Conference. Frankfurt, 20.05.2008-21.05.2008] R&D Projects: GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coatings * nanoadditives * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  12. Structure and wear behavior of NiCr–Cr3C2 coatings sprayed by supersonic plasma spraying and high velocity oxy-fuel technologies

    International Nuclear Information System (INIS)

    Lin, Li; Li, Guo-Lu; Wang, Hai-Dou; Kang, Jia-Jie; Xu, Zhong-Lin; Wang, Hai-Jun

    2015-01-01

    Highlights: • The SPS and HVOF technologies are used to prepare NiCr–Cr 3 C 2 coatings. • Coating microstructure and properties are systematically investigated and compared. • Wear behaviors of coatings are comprehensively and thoroughly evaluated. - Abstract: The 25%NiCr–Cr 3 C 2 coatings in the experiment were sprayed on 1045 steel substrates by supersonic plasma spraying (SPS) and high velocity oxy-fuel (HVOF) technologies. The microstructures of the coatings were evaluated using environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector (EDX); the phase composition and chemical composition were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS); the distribution status and quantity of pores were assessed by an software named as ImageJ2x; the bonding strength, micro-hardness, elastic modulus were respectively experimented and analyzed by different equipments and methods. Besides, wear properties of coatings were determined by UMT-3MT. The results showed that both coatings fabricated by SPS and HVOF had a high micro-hardness, elastic modulus and low porosity; The phase composition of both coatings were similar to that of the NiCr–Cr 3 C 2 feedstock, while the coating deposited by HVOF (HVOF coating) produced a new compound Cr 23 C 6 and was somehow oxidized for the emerging of oxygen analyzed by XPS. Both coefficient of friction (COF) and the mass loss of coating deposited by SPS (SPS coating) were lower than those of HVOF coating under same test conditions. The HVOF coating had an obvious spalling and a deeper scratch. And there was a great deal of micro-cracks around the scratch, especially on both ends of scratch. The main wear mechanisms of both coatings were abrasive wear and lamellar spalling.

  13. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll-coating...

  14. In situ UV-visible absorption during spin-coating of organic semiconductors: A new probe for organic electronics and photovoltaics

    KAUST Repository

    Abdelsamie, Maged

    2014-01-01

    Spin-coating is the most commonly used technique for the lab-scale production of solution processed organic electronic, optoelectronic and photovoltaic devices. Spin-coating produces the most efficient solution-processed organic solar cells and has been the preferred approach for rapid screening and optimization of new organic semiconductors and formulations for electronic and optoelectronic applications, both in academia and in industrial research facilities. In this article we demonstrate, for the first time, a spin-coating experiment monitored in situ by time resolved UV-visible absorption, the most commonly used, simplest, most direct and robust optical diagnostic tool used in organic electronics. In the first part, we successfully monitor the solution-to-solid phase transformation and thin film formation of poly(3-hexylthiophene) (P3HT), the de facto reference conjugated polymer in organic electronics and photovoltaics. We do so in two scenarios which differ by the degree of polymer aggregation in solution, prior to spin-coating. We find that a higher degree of aggregation in the starting solution results in small but measurable differences in the solid state, which translate into significant improvements in the charge carrier mobility of organic field-effect transistors (OFET). In the second part, we monitor the formation of a bulk heterojunction photoactive layer based on a P3HT-fullerene blend. We find that the spin-coating conditions that lead to slower kinetics of thin film formation favour a higher degree of polymer aggregation in the solid state and increased conjugation length along the polymer backbone. Using this insight, we devise an experiment in which the spin-coating process is interrupted prematurely, i.e., after liquid ejection is completed and before the film has started to form, so as to dramatically slow the thin film formation kinetics, while maintaining the same thickness and uniformity. These changes yield substantial improvements to the

  15. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  16. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  17. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  18. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  19. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

    Science.gov (United States)

    Banerjee, Indrani; Pangule, Ravindra C; Kane, Ravi S

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Beeswax-Colophony Blend: A Novel Green Organic Coating for Protection of Steel Drinking Water Storage Tanks

    Directory of Open Access Journals (Sweden)

    Sara Abdikheibari

    2015-09-01

    Full Text Available Beeswax-colophony blend is mainly used as a sealant mixture for preservation applications. The beeswax itself, however, has had a long way in history taking part in conservation processes including mummification. In this research, this blend was used as a protective coating for drinking water distribution tanks. Initially, a layer with 400 μm thickness was applied on a sand blasted mild steel plate. The long-term electrochemical behavior of the coating was investigated by open circuit potential (OCP and electrochemical microbiological characteristics of the coating, microbial and chemical examinations were performed on drinking water samples that had been in contact with the coating. Furthermore, its behavior in an up-flow anaerobic sludge blanket reactor (UASBR in a wastewater treatment plant was investigated using the scanning electron microscopy (SEM technique. Regarding the consistency of experimental results, it was concluded that this proposed recyclable blend could be considered as a novel green organic coating and also a good corrosion barrier even in aggressive environments.

  1. Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent.

    Science.gov (United States)

    Ye, Long; Xiong, Yuan; Zhang, Qianqian; Li, Sunsun; Wang, Cheng; Jiang, Zhang; Hou, Jianhui; You, Wei; Ade, Harald

    2018-02-01

    The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin-coated FTAZ:IT-M devices using a single halogen-free solvent. More importantly, chlorine-free, blade coating of FTAZ:IT-M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X-ray scattering results reveal that large π-π coherence length, high degree of face-on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Treatment of organic waste using thermal plasma pyrolysis technology

    International Nuclear Information System (INIS)

    Huang, H.; Tang, L.

    2007-01-01

    This paper outlines the principles of thermal plasma pyrolysis processes and discusses recent research activities about organic waste treatment using thermal plasma pyrolysis technology. Different kinds of organic wastes, varying from plastic and used tires to agricultural residue and medical waste, have been subjected to thermal plasma pyrolysis tests in laboratory and pilot scale projects. Plasma pyrolysis of organic waste usually gives two product streams: a combustible gas having a calorific value in the range of 4-9 MJ/Nm 3 and a carbonaceous residue. Pyrolysis conditions as well as some technical measures such as the quenching process and steam reforming have significant influences on the properties of these pyrolysis products. Research results indicated that thermal plasma pyrolysis may be a useful way of waste management for energy and material recovery

  3. Metal-Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries.

    Science.gov (United States)

    Han, Yuzhen; Qi, Pengfei; Zhou, Junwen; Feng, Xiao; Li, Siwu; Fu, Xiaotao; Zhao, Jingshu; Yu, Danni; Wang, Bo

    2015-12-09

    A novel metal-organic framework (MOF) sandwich coating method (denoted as MOF-SC) is developed for hybrid Li ion battery electrode preparation, in which the MOF films are casted on the surface of a silicon layer and sandwiched between the active silicon and the separator. The obtained electrodes show improved cycling performance. The areal capacity of the cheap and readily available microsized Si treated with MOF-SC can reach 1700 μAh cm(-2) at 265 μA cm(-2) and maintain at 850 μAh cm(-2) after 50 cycles. Beyond the above, the commercial nanosized Si treated by MOF-SC also shows greatly enhanced areal capacity and outstanding cycle stability, 600 μAh cm(-2) for 100 cycles without any apparent fading. By virtue of the novel structure prepared by the MOFs, this new MOF-SC structure serves as an efficient protection cushion for the drastic volume change of silicon during charge/discharge cycles. Furthermore, this MOF layer, with large pore volume and high surface area, can adsorb electrolyte and allow faster diffusion of Li(+) as evidenced by decreased impedance and improved rate performance.

  4. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface.

    Science.gov (United States)

    Wu, Guozhong; Zhu, Xinzhe; Ji, Haoqing; Chen, Daoyi

    2015-01-01

    Molecular dynamic (MD) simulation was applied to evaluate the mobility, diffusivity and partitioning of SARA (saturates, aromatics, resins, asphaltenes) fractions of heavy crude oil on soil organic matter (SOM) coated quartz surface. Four types of SOM were investigated including Leonardite humic acid, Temple-Northeastern-Birmingham humic acid, Chelsea soil humic acid and Suwannee river fulvic acid. The SOM aggregation at oil-quartz interface decreased the adsorption of SARA on the quartz surface by 13-83%. Although the SOM tended to promote asphaltenes aggregation, the overall mobility of SARA was significantly greater on SOM-quartz complex than on pure quartz. Particularly, the diffusion coefficient of asphaltenes and resins increased by up to one-order of magnitude after SOM addition. The SOM increased the overall oil adsorption capacity but also mobilized SARA by driving them from the viscous oil phase and rigid quartz to the elastic SOM. This highlighted the potential of SOM addition for increasing the bioavailability of heavy crude oil without necessarily increasing the environmental risks. The MD simulation was demonstrated to be helpful for interpreting the role of SOM and the host oil phase for the adsorption and partitioning of SARA molecules, which is the key for developing more realistic remediation appraisal for heavy crude oil in soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films

    KAUST Repository

    Pokuri, Balaji Sesha Sarath

    2017-08-17

    Recent advances in efficiency of organic photovoltaics are driven by judicious selection of processing conditions that result in a “desired” morphology. An important theme of morphology research is quantifying the effect of processing conditions on morphology and relating it to device efficiency. State-of-the-art morphology quantification methods provide film-averaged or 2D-projected features that only indirectly correlate with performance, making causal reasoning nontrivial. Accessing the 3D distribution of material, however, provides a means of directly mapping processing to performance. In this paper, two recently developed techniques are integrated—reconstruction of 3D morphology and subsequent conversion into intuitive morphology descriptors —to comprehensively image and quantify morphology. These techniques are applied on films generated by doctor blading and spin coating, additionally investigating the effect of thermal annealing. It is found that morphology of all samples exhibits very high connectivity to electrodes. Not surprisingly, thermal annealing consistently increases the average domain size in the samples, aiding exciton generation. Furthermore, annealing also improves the balance of interfaces, enhancing exciton dissociation. A comparison of morphology descriptors impacting each stage of photophysics (exciton generation, dissociation, and charge transport) reveals that spin-annealed sample exhibits superior morphology-based performance indicators. This suggests substantial room for improvement of blade-based methods (process optimization) for morphology tuning to enhance performance of large area devices.

  6. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-6, Protective Coating Inspection.

    Science.gov (United States)

    Espy, John

    This sixth in a series of eight modules for a course titled Mechanical Inspection describes the duties of the nuclear quality assurance/quality control technician that are associated with protective coatings, and the national standards that govern the selection, application, and inspection of protective coatings for the reactor containment…

  7. Temperature dependence of W metallic coatings synthesized by double glow plasma surface alloying technology on CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Hei, Hongjun; Shen, Yanyan; Liu, Xiaoping; Tang, Bin; He, Zhiyong, E-mail: hezhiyong@tyut.edu.cn; Yu, Shengwang, E-mail: yushengwang@tyut.edu.cn

    2015-11-30

    Highlights: • DGPSA was firstly adopted to deposit W coatings on free-standing diamond films. • Temperature dependence of W coatings on free-standing diamond films was discussed. • W{sub 2}C and WC were formed at W/diamond interface during the DGPSA treatment. • The coatings possess continuous and compact surface structure except that made at 900 °C. • The coating obtained at 800 °C has the best adhesion and the maximum shear strength. - Abstract: W metallic coatings were synthesized on free-standing chemical vapor deposition (CVD) diamond films using double glow plasma surface alloying (DGPSA) technology. The influence of varying metalizing temperatures on the microstructures, phase composition and adhesion of the W metallic coatings were investigated. Likewise, the effectiveness of the W metallic coatings was preliminary evaluated via examining the shear strength of the brazing joints between W-metalized diamond films and commercial cemented carbide (WC–Co) inserts. The results showed that continuous and compact W metallic coatings were formed on the diamond films in the temperature range of 750–800 °C, while cracks or cavities presented at the W/diamond interface at 700 °C, 850 °C and 900 °C. Inter-diffusion of W and C atoms preformed, and WC and W{sub 2}C were formed at the W/diamond interfaces at all temperatures except 700 °C, at which only W{sub 2}C was formed. Moreover, etched cavities appeared at the W/diamond interface when the temperature exceeded 850 °C. The critical loads for coating delamination, as measured with the scratch test, increased as the temperature rose from 700 °C to 800 °C, while decreased with further increasing temperature. The maximum load was obtained at 800 °C with a value of 17.1 N. Besides, the shear strength of the brazing joints depicted the similar trend with the critical load. The highest shear strength (249 MPa) was also obtained at 800 °C.

  8. New Electronic Technology Applied in Flexible Organic Optical System

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-02-01

    Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.

  9. INFLUENCE OF TECHNOLOGICAL MODES OF MAGNETIC-ELECTRIC GRINDING ON MICROSTRUCTURE OF GAS-THERMAL SPRAYED NI–CR–B–SI-COATINGS

    Directory of Open Access Journals (Sweden)

    N. V. Spiridonov

    2009-01-01

    Full Text Available Influence of technological modes of magnetic-electric grinding on structural changes in a surface layer of gas-thermal sprayed coatings is investigated in the paper. The paper presents optimum modes of  coating roughing and finishing processes.

  10. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    Directory of Open Access Journals (Sweden)

    G. P. Schill

    2013-05-01

    Full Text Available Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid–liquid phase separation. The ice nucleation properties of particles that have undergone liquid–liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid–liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethylcyclohexanol and ammonium sulfate from 240–265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid–liquid phase separation and efflorescence was investigated from 210–235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  11. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    Science.gov (United States)

    Schill, G. P.; Tolbert, M. A.

    2013-05-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  12. Development of organic tritium light technology at Ontario Hydro

    International Nuclear Information System (INIS)

    Mullins, D.F.; Krasznai, J.P.; Mueller, D.A.

    1992-01-01

    Tritium is a by-product of CANDU heavy water reactor operations and is the major contributor to internal dose for plant workers. The Darlington Tritium Removal Facility (DTRF) is decontaminating heavy water by removing tritium and storing it as a metal hydride. In view of the large tritium separation capacity, (24 MCi/a, 888 PBq/a). This paper reports that Ontario Hydro is interested in pursuing markets for the peaceful uses of tritium. One of these peaceful uses is in self-luminous lighting. The state of the art at present is a phosphor coated tube filled with tritium gas. However, safety considerations have restricted the use of these lights to outdoor or essential safety applications. Binding the tritium to a solid non-volatile matrix would increase the safety of tritium lights and allow the use of other phosphors, matrices and construction geometries. Solid, organic based tritium lights were produced using two different polymer matrices. While both these materials produced visible light, the intensity was low and radiolytic damage to the polymers was evident

  13. Evaluation of Corrosion Behavior of Galvanized Steel Treated with Conventional Conversion Coatings and a Chromate-Free Organic Inhibitor

    Directory of Open Access Journals (Sweden)

    Laura A. Hernandez-Alvarado

    2012-01-01

    Full Text Available Conventional weight loss tests and both DC and AC electrochemical techniques were used to study if an organic inhibitor containing an alkanolamine salt of a polycarboxylic acid can substitute toxic coatings as chromating and certain phosphating procedures in the protection of galvanized steel. The electrolyte used was a 0.5 M aerated NaCl solution. All tests gave concordant results, indicating that the chromate-free organic inhibitor does protect galvanized steel in this environment, even though the provided protection was less than that of the chromate conversion coating. It was observed that, after a moderate initial attack, the corrosion rate diminishes due to the appearance and growth of passivating corrosion products layers, mainly constituted by zinc hydroxychloride (Zn5(OH8CI2⋅H2O and two varieties of zinc hydroxide, among other crystalline compounds.

  14. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application. The solution thinning and thin film formation were monitored in situ by optical reflectometry and grazing incidence wide angle X-ray scattering, respectively, both of which were performed during spin-coating. We find that OSC thin film formation is akin to a quenching process, marked by a deposition rate of ∼100 nm s-1, nearly three orders of magnitude faster than drop-casting. This is then followed by a more gradual crystallization and healing step which depends upon the spinning speed. We associate this to further crystallization and healing of defects by residency of the residual solvent trapped inside the kinetically trapped film. The residency time of the trapped solvent is extended to several seconds by slowing the rotational speed of the substrate and is credited with improving the carrier mobility by nearly two orders of magnitude. Based on this insight, we deliberately slow down the solvent evaporation further and increase the carrier mobility by an additional order of magnitude. These results demonstrate how spin-coating conditions can be used as a handle over the crystallinity of organic semiconductors otherwise quenched during initial formation only to recrystallize and heal during extended interaction with the trapped solvent. This journal is © the Partner Organisations 2014.

  15. Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys

    NARCIS (Netherlands)

    Visser, P; Liu, Y; Terryn, H.A.; Mol, J.M.C.

    2016-01-01

    Lithium salts are being investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Model coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition and the formation of a protective layer in a

  16. Design colloidal particle morphology and self-assembly for coating applications.

    Science.gov (United States)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; Bohling, James; Fasano, David; Brownell, Stan

    2017-06-19

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with less cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. These technologies also represent the most important considerations in architectural coating design.

  17. Organic light emission structures — XXI century technologies

    Directory of Open Access Journals (Sweden)

    Sorokin V. M.

    2009-02-01

    Full Text Available The given review allows to believe, that the decision of a complex technological, materialstechnological, technical problems at creation modern OLED- and PLED-devices in nearest 5—10 years will result in creation of devices with power efficiency more than 100 lm/W and service life till 100 000 hours. The realization of such parameters will allow to expand area of application of the considered systems and to create in the future unique flat powereffective organic lighting systems of new generation — light sources XXI of century.

  18. Results-Based Organization Design for Technology Entrepreneurs

    Directory of Open Access Journals (Sweden)

    Chris McPhee

    2012-05-01

    Full Text Available Faced with considerable uncertainty, entrepreneurs would benefit from clearly defined objectives, a plan to achieve these objectives (including a reasonable expectation that this plan will work, as well as a means to measure progress and make requisite course corrections. In this article, the author combines the benefits of results-based management with the benefits of organization design to describe a practical approach that technology entrepreneurs can use to design their organizations so that they deliver desired outcomes. This approach links insights from theory and practice, builds logical connections between entrepreneurial activities and desired outcomes, and measures progress toward those outcomes. This approach also provides a mechanism for entrepreneurs to make continual adjustments and improvements to their design and direction in response to data, customer and stakeholder feedback, and changes in their business environment.

  19. Personalized development of human organs using 3D printing technology.

    Science.gov (United States)

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Tribology Study of High-Technological Composite Coatings Applied Using High Velocity Oxy-Fuel

    Science.gov (United States)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Ivanov, Pl; Kalichin, Zh

    2018-01-01

    In the work are studied the differential parameters of wear and wear resistance of high-tech composite coatings of powder superalloys with nickel matrix, WC-12Co and mixed compositions. Coatings were created and applied to a substrate of steel with a different flame velocity - 700 m/s and 1000 m/s without preheating the substrate and with preheating the substrate to 650° C. The wear is carried out with a "thumb-disk" tribotester under dry surface friction with fixed black corundum abrasive particles. Comparative results were obtained for the microstructure and texture of the pre- and post- friction coating, the porosity, roughness, hardness, the dependence of mass wear, the speed and wear intensity and the wear resistance of the coatings on the number of friction cycles. Influence of the flame rate and substrate temperature on wear resistance and differential wear parameters has been determined.

  1. Citrate-coated silver nanoparticles interactions with effluent organic matter: influence of capping agent and solution conditions

    KAUST Repository

    Gutierrez, Leonardo

    2015-07-31

    Fate and transport studies of silver nanoparticles (AgNPs) discharged from urban wastewaters containing effluent organic matter (EfOM) into natural waters represent a key knowledge gap. In this study, EfOM interfacial interactions with AgNPs and their aggregation kinetics were investigated by atomic force microscopy (AFM) and time-resolved dynamic light scattering (TR-DLS), respectively. Two well-characterized EfOM isolates, i.e., wastewater humic (WW humic) and wastewater colloids (WW colloids, a complex mixture of polysaccharides-proteins-lipids), and a River humic isolate of different characteristics were selected. Citrate-coated AgNPs were selected as representative capped-AgNPs. Citrate-coated AgNPs showed a considerable stability in Na+ solutions. However, Ca2+ ions induced aggregation by cation bridging between carboxyl groups on citrate. Although the presence of River humic increased the stability of citrate-coated AgNPs in Na+ solutions due to electrosteric effects, they aggregated in WW humic-containing solutions, indicating the importance of humics characteristics during interactions. Ca2+ ions increased citrate-coated AgNPs aggregation rates in both humic solutions, suggesting cation bridging between carboxyl groups on their structures as a dominant interacting mechanism. Aggregation of citrate-coated AgNPs in WW colloids solutions was significantly faster than those in both humic solutions. Control experiments in urea solution indicated hydrogen bonding as the main interacting mechanism. During AFM experiments, citrate-coated AgNPs showed higher adhesion to WW humic than to River humic, evidencing a consistency between TR-DLS and AFM results. Ca2+ ions increased citrate-coated AgNPs adhesion to both humic isolates. Interestingly, strong WW colloids interactions with citrate caused AFM probe contamination (nanoparticles adsorption) even at low Na+ concentrations, indicating the impact of hydrogen bonding on adhesion. These results suggest the importance

  2. Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Long [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA; Xiong, Yuan [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA; Zhang, Qianqian [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA; Li, Sunsun [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Wang, Cheng [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Jiang, Zhang [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Hou, Jianhui [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; You, Wei [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA; Ade, Harald [Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh NC 27695 USA

    2018-01-10

    The commercialization of nonfullerene organic solar cells (OSCs) relies critically on the response under typical operating conditions (for instance, temperature, humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the device efficiencies of printed nonfullerene OSC devices by blade-coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and stable nonfullerene combination was introduced by pairing a commercially available nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12%-efficiency can be achieved in spincoated FTAZ:IT-M devices using a single halogen-free solvent. More importantly, chlorinefree, in air blade-coating of FTAZ:IT-M is able to yield a PCE of nearly 11%, despite a humidity of ~50%. X-ray scattering results reveal that large π-π coherence lengths, high degree of faceon orientation with respect to the substrate, and small domain spacings of ~20 nm are closely correlated with such high device performance. Our material system and approach yields the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and holds great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production.

  3. Effect of encapsulation technology on organic light emitting diode lifetime

    Science.gov (United States)

    Zhong, Jian; Gao, Zhuo; Gao, Juan; Dai, Ke; Chen, Jiule

    2012-03-01

    A kind of green organic light-emitting diodes (OLED) was prepared via vacuum thermal evaporation, of which the multilayer structure was indium-tin oxide (ITO)/copper-phthalocyanine (CuPc) (200 Å)/ N,N'-bis(1-naphthyl)- N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine ( α-NPD) (600 Å)/ N'-diphenyl- N,N'-tris(8-hydroxyquinoline) aluminium (Alq3) (400 Å):10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1 H,5 H,11 H-(l)benzopyropyrano(6,7,8- i, j)quinolizin-11-one (C545T) (2%)/Alq3 (200 Å)/LiF (10 Å)/Al (1000 Å). And we used both traditional glass encapsulation and thin film encapsulation (TFE) technologies to protect the device, reducing impact of vapor and oxygen. Organic film offered an excellent surface morphology, while inorganic film was nearly a perfect barrier to vapor and oxygen. Both of them constituted the encapsulation unit of TFE. According to the results of acceleration life test, the operation lifetime of device using TFE was 22% less than that of device using traditional glass cap encapsulation. So, the technology of TFE should be optimized further, and the quality of TFE needs a great improvement. There is a long way to go and a lot of hard work before realizing flexible display with OLED, but the dream will be true one day.

  4. Technological Innovation Management and its Role in Performance of Organizations

    Directory of Open Access Journals (Sweden)

    Laura-Diana Radu

    2012-10-01

    Full Text Available This paper aims to identify the main benefits of technological innovation in organizations and how it should be managed to ensure economic efficiency. The current level of social and economic evolution was possible only through active involvement of individuals and organizations in the innovative process. Adoption of appropriate policies and strategies at institutional, national and international level has significant impact on both the innovation process and innovation results. At company level, involvement in an innovative process depends on the financial and human resources and on the availability and interest of management and employees. The main motivating factor in adoption of technological innovation is, most often, obtaining financial benefits. This reflects itself either as a direct increase in profits, or by obtaining competitive advantage which leads, in the long run, to profits increase and achieving a favorable position on the market. Should not be neglected other motivating factors of innovation, such as compliance with environmental standards, ensuring a secure position on the market with opportunities for further expansion, reducing the cost of raw materials and / or production process, improving company image, attitude and achievements of partners in the field (competitors, suppliers, customers etc. Managers need to carefully analyze these factors and decide the manner and degree of involvement in an innovative process.

  5. Technology and potential of wear resistant thermal spray coatings; Technik und Potenziale des Verschleissschutzes mittels thermisch gespritzter Beschichtungen

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Moehwald, K.; Droessler, B.; Engl, L. [FORTIS (Forschungszentrum fuer Oberflaechentechnologie und Innovations-service), Stockumer Strasse 28, 58453 Witten (Germany)

    2005-08-01

    Thermal spray technologies are used for coating of component parts with a large variety of materials, e. g. for protection against wear and corrosion. During the last 20 years, the comparatively novel processes in thermal spraying have been established in surface technologies and will increasingly develop their market. Continuous equipment developments as well as new technologies for thermal spraying guarantee increasing importance of this technology, and will have a sustainable effect on industries with typical wear and corrosion-caused problems. Therefore, thermal spray coated components possess an outstanding suitability and a high application potential for the construction of stone machining machines / plants and the mining industry (as well as associated vehicle and equipment technology), which still has hardly been developed in the area of mining industry and stone machining. A short introduction of thermal spray technology and processes and an overview is given for typical applications and already established coating solutions besides some recent examples from the area of stone machining and mining. This article shows the potential of thermally sprayed coatings as solutions for the stone machining and mining industry. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Die thermische Spritztechnik umfasst Verfahren zum Beschichten von Bauteilen mit verschiedensten Werkstoffen, u.a. zum Schutz gegen Verschleiss und Korrosion. Die Verfahren der relativ jungen thermischen Spritztechnik haben in den letzten 20 Jahren in der Oberflaechentechnik einen festen Platz eingenommen und werden ihre Marktanteile zunehmend ausbauen. Die aktuelle, kontinuierliche Weiterentwicklung der Anlagentechnik sowie das Erschliessen neuer Technologien fuer das thermische Spritzen sind Garanten fuer den stetigen Bedeutungsgewinn dieser Technik und werden eine nachhaltige Auswirkung auf Branchen mit typischen verschleiss- und korrosionsbedingten Problemstellungen haben. Auch

  6. Use of organosilicate precursors for transparent coatings on organic substrates by plasma CVD

    International Nuclear Information System (INIS)

    Lasorsa, C; Versaci, R; Perillo, P

    2006-01-01

    This work discusses the production of transparent coatings of SiOxCy on substrates polycarbonated by PECVD at temperatures below 80 o C, with a gaseous mixture using different precursors with which, in similar processes produced the same results with respect to the coating obtained, with the same excellent quality and in accordance with international standards for optic coatings. Chlorinated precursors were excluded because they are highly corrosive as well as those with operating risks (toxic or explosive). The precursors used were tetraethyl orthosilicate (TEOS), tetramethylsilanete (TMS,) tetramethoxy silane (TMOS), hexamethyldisilizane (HMDS), and methyltrimethoxysilane (Z6070), with the contribution of O 2 and methane as reactive gases. Fourier transform infrared spectroscopy (FTIR) was used as well as X-ray generated photoelectron spectroscopy (XPS/ESCA). The functional groups were studied together with the film elements and its mechanical properties, transparency and refraction index. Irregardless of the precursor used, by properly modifying the process variables (pressure of the gaseous mixture, radio frequency power, relationship of processing gases and their flow), similar coatings can be chemically obtained, having the same morphology and, therefore, with identical adherence, structural and optic properties. None of the works consulted refer to the possibility of the indistinct use of different precursors for obtaining the same coating. These results are relevant when considering the difference in costs and their market availability. The influence of the addition of methane was studied in two processing variants, a) with oxygen and methane and b) with oxygen alone. For all the precursors used and with identical processing conditions, the carbon contributed by the addition of methane increased the concentration of carbon compounds, considerably reducing the presence of silanol, which being absorbent produces structural instability and cracking of the

  7. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    Science.gov (United States)

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC.

  8. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology.

    Science.gov (United States)

    Lee, Seung Hwan; Sung, Jong Hwan

    2018-01-01

    In the drug development process, the accurate prediction of drug efficacy and toxicity is important in order to reduce the cost, labor, and effort involved. For this purpose, conventional 2D cell culture models are used in the early phase of drug development. However, the differences between the in vitro and the in vivo systems have caused the failure of drugs in the later phase of the drug-development process. Therefore, there is a need for a novel in vitro model system that can provide accurate information for evaluating the drug efficacy and toxicity through a closer recapitulation of the in vivo system. Recently, the idea of using microtechnology for mimicking the microscale tissue environment has become widespread, leading to the development of "organ-on-a-chip." Furthermore, the system is further developed for realizing a multiorgan model for mimicking interactions between multiple organs. These advancements are still ongoing and are aimed at ultimately developing "body-on-a-chip" or "human-on-a-chip" devices for predicting the response of the whole body. This review summarizes recently developed organ-on-a-chip technologies, and their applications for reproducing multiorgan functions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PROPERTIES OF ORGANIC COATINGS CONTAINING PIGMENTS WITH SURFACE MODIFIED WITH A LAYER OF ZnFe2O4

    Directory of Open Access Journals (Sweden)

    Kateřina Nechvílová

    2015-11-01

    Full Text Available This work is focussed on the properties of organic coatings containing pigments whose surface was chemically coated with zinc ferrite (ZnFe2O4 layer. Four silicate types with different particle shapes were selected as the cores: diatomite, talc, kaolin and wollastonite. The untreated particles exhibit a barrier effect. The aim of this project was to apply the surface treatment approach with a view to enhancing not only the model paint films’ anticorrosion properties but also their resistance to physico- mechanical tests pursuant to ISO standards (cupping, bending, impact, adhesion. Other parameters examined included: particle size and morphology, density of the modified pigment, oil consumption, pH, conductivity, and electrochemical properties of the paint film. A solvent-based epoxy-ester resin was used as the binder and also served as the reference material. The pigment volume concentration (PVC was 1% and 10%. During the last stage of the experiment, the paint films were exposed to a corrosive environment stimulating seaside conditions or conditions roads treated with rock salt. The accelerated cyclic corrosion test in a neutral salt mist atmosphere was conducted for 864 hours. The results served to ascertain a suitable environment for organic coatings.

  10. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  11. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  12. Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    2017-01-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence...... system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime....... of such protective layers on plasmonic interactions in organic–plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface...

  13. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  14. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    International Nuclear Information System (INIS)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho

    2015-01-01

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances

  15. UV-curable nanocasting technique to prepare bioinspired superhydrophobic organic-inorganic composite anticorrosion coatings

    Directory of Open Access Journals (Sweden)

    K. C. Chang

    2015-02-01

    Full Text Available A UV-curing technique was used to develop advanced anticorrosive coatings made of a poly(methyl methacrylate (PMMA/silica composite (PSC with bioinspired Xanthosoma sagittifolium leaf-like superhydrophobic surfaces. First of all, a transparent soft template with negative patterns of xanthosoma sagittifolium leaf can be fabricated by thermally curing the polydimethylsiloxane (PDMS pre-polymer in molds at 60°C for 4 h, followed by detaching PDMS template from the surface of natural leaf. PSC coatings with biomimetic structures can be prepared by performing the UV-radiation process upon casting UV-curable precursor with photo-initiator onto cold-rolled steel (CRS electrode under PDMS template. Subsequently, UV-radiation process was carried out by using light source with light intensity of 100 mW/cm2 with exposing wavelength of 365 nm. Surface morphologies of the as-synthesized hydrophobic PMMA (HP and superhydrophobic PSC (SPSC coatings showed a large number of micro-scaled mastoids, each decorated with many nano-scaled wrinkles that were systematically investigated by using scanning electron microscopy (SEM. The contact angles of water droplets on the sample surfaces can be increased from ~81 and 103° on PMMA and PSC surfaces to ~148 and 163° on HP and SPSC surfaces, respectively. The SPSC coating was found to provide an advanced corrosion protection effect on CRS electrodes compared to that of neat PMMA, PSC, and HP coatings based on a series of electrochemical corrosion measurements in 3.5 wt% NaCl electrolyte. Enhanced corrosion protection of SPSC coatings on CRS electrodes can be illustrated by that the silica nanoparticles on the small papillary hills of the bioinspired structure of the surface further increased the surface roughness, making the surface exhibit superior superhydrophobic, and thus leading to much better anticorrosion performance.

  16. Investigation of the influence on residual stresses of porosity in high temperature ZrO2 coatings on Ag tape for magnet technologies

    International Nuclear Information System (INIS)

    Arman, Yusuf; Aktas, Mehmet; Celik, Erdal; Mutlu, Ibrahim H.; Sayman, Onur

    2007-01-01

    The present paper reports on the effect on residual stresses of porosity in high temperature ZrO 2 coatings on Ag tape for magnet technologies. ZrO 2 coatings were fabricated on Ag tape substrate using a reel-to-reel sol-gel system. The microstructural evolution of high temperature ZrO 2 coatings was investigated by a scanning electron microscope (SEM). SEM observations revealed that ZrO 2 coatings with crack had some porosity and mosaic structure. Stress analysis was carried out on ZrO 2 coatings with porosity on Ag tape substrates under cryogenic conditions by using classical lamination theory (CLT) for elastic solution and finite element method (FEM) for elasto-plastic solution in the temperature range of 0 o C to -223 o C in liquid helium media. Because of the static equilibrium, tensile force is applied to the Ag substrate, by ZrO 2 coating. The stress component (σ x ) values change rapidly at coating-substrate interface owing to the different moduli of elasticity and thermal expansion coefficient. In spite of the thickness of Ag substrate, the stress components vary from tensile to compressive. In addition, along the thickness of ZrO 2 coating and Ag substrate system, the stress distribution changes linearly. FEM results demonstrate that the failure does not occur in ZrO 2 coating for all porosities due to its high yield strength

  17. [White organic light-emitting diodes applied for lighting technology].

    Science.gov (United States)

    Huang, Qing-Yu; Zhao, Su-Ling; Xu, Zheng; Fan, Xing; Wang, Jian; Yang, Qian-Qian

    2014-01-01

    Lighting accounts for approximately 22 percent of the electricity consumed in buildings in the United States, with 40 percent of that amount consumed by inefficient incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices (WOLEDS) as the next generation solid-state lighting source, owing to their potential for significantly improved efficiency over incandescent sources, combined with low-cost, high-throughput manufacturability. The research and application of the devices have witnessed great progress. WOLEDS have incomparable advantages for its special characteristics. This progress report sketched the principle of WOLEDS and provided some common structures, and further investigation of the mechanism of different structures was made. Meanwhile, the key technologies of WOLEDS were summarized. Finally, the latest research progress of WOLEDS was reviewed.

  18. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  19. Effect of Atmospherically-Relevant Organic Coatings, Humidity, and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols

    Science.gov (United States)

    Zelenyuk, A.; Riva, M.; Bell, D.; Hansen, A. M. K.; Drozd, G.; Zhang, Z.; Gold, A.; Imre, D. G.; Surratt, J. D.; Glasius, M.; Shrivastava, M. B.

    2016-12-01

    Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake compared to pure ABS particles. We will present the results of a study, in which we investigated, for the first time, the effect of atmospherically-relevant organic coatings of α-pinene SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We demonstrate that IEPOX uptake by pure ABS and deliquesced ammonium sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. We find that the weight fraction of IEPOX-derived SOA for ABS particles is 41% as compared to 31% for ammonium sulfate particles. The presence of water has a weaker impact on IEPOX-derived SOA yield for ABS particles, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, we show that presence of α-pinene SOA coatings greatly impact IEPOX heterogeneous chemistry. IEPOX uptake by ABS particles coated with α-pinene SOA is lower compared to that of pure ABS particles, and strongly dependent on particle composition, and therefore on particle size. For example, in the experiment with thinly ( 18 nm) coated ABS particles, the weight fraction of IEPOX-derived SOA increases rapidly from 0 to 30% with respect to ABS seed, as the seed aerosol diameter increases from 60 to 100 nm, and then remains nearly constant at 30% for diameters > 100 nm. In

  20. Colloidal stability of CeO2 nanoparticles coated with either natural organic matter or organic polymers under various hydrochemical conditions

    Science.gov (United States)

    Dippon, Urs; Pabst, Silke; Klitzke, Sondra

    2016-04-01

    The worldwide marked for engineered nanoparticles (ENPs) is growing and concerns on the environmental fate- and toxicity of ENPs are rising. Understanding the transport of ENPs within and between environmental compartments such as surface water and groundwater is crucial for exposition modeling, risk assessment and ultimately the protection of drinking water resources. The transport of ENPs is strongly influenced by the surface properties and aggregation behavior of the particles, which is strongly controlled by synthetic and natural organic coatings. Both, surface properties and aggregation characteristics are also key properties for the industrial application of ENPs, which leads to the development and commercialization of an increasing number of surface-functionalized ENPs. These include metals and oxides such as Cerium dioxide (CeO2) with various organic coatings. Therefore, we investigate CeO2 ENPs with different surface coatings such as weakly anionic polyvinyl alcohol (PVA) or strongly anionic poly acrylic acid (PAA) with respect to their colloidal stability in aqueous matrix under various hydrochemical conditions (pH, ionic strength) and their transport behavior in sand filter columns. Furthermore, we investigate the interaction of naturally occurring organic matter (NOM) with CeO2 ENPs and its effect on surface charge (zeta potential), colloidal stability and transport. While uncoated CeO2 ENPs aggregate at pH > 4 in aqueous matrix, our results show that PAA and PVA surface coatings as well as NOM sorbed to CeO2-NP surfaces can stabilize CeO2 ENPs under neutral and alkaline pH conditions in 1 mM KCl solution. Under slightly acidic conditions, differences between the three particle types were observed. PVA can stabilize particle suspensions in presence of 1 mM KCl at pH > 4.3, PAA at pH >4.0 and NOM at >3.2. While the presence of KCl did not influence particle size of NOM-CeO2 ENPs, CaCl2 at >2 mM lead to aggregation. Further results on the influence of KCl

  1. Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating.

    Science.gov (United States)

    Bulgarevich, Kirill; Sakamoto, Kenji; Minari, Takeo; Yasuda, Takeshi; Miki, Kazushi

    2017-02-22

    Surface hydrophobization by self-assembled monolayer formation is a powerful technique for improving the performance of organic field-effect transistors (OFETs). However, organic thin-film formation on such a surface by solution processing often fails due to the repellent property of the surface against common organic solvents. Here, a scalable unidirectional coating technique that can solve this problem, named self-assisted flow-coating, is reported. Producing a specially designed lyophobic-lyophilic pattern on the lyophobic surface enables organic thin-film formation in the lyophobic surface areas by flow-coating. To demonstrate the usefulness of this technique, OFET arrays with an active layer of poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) are fabricated. The ideal transfer curves without hysteresis behavior are obtained for all OFETs. The average field-effect hole mobility in the saturation regime is 0.273 and 0.221 cm 2 ·V -1 ·s -1 for the OFETs with the channels parallel and perpendicular to the flow-coating direction, respectively, and the device-to-device variation is less than 3% for each OFET set. Very small device-to-device variation is also obtained for the on-state current, threshold voltage, and subthreshold swing. These results indicate that the self-assisted flow-coating is a promising coating technique to form spatially uniform thin films of polymeric organic semiconductors on lyophobic gate insulator surfaces.

  2. Corrosion inhibition efficiency of organic coatings with content of polyaniline phosphate

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Stejskal, Jaroslav; Němec, P.

    2009-01-01

    Roč. 13, č. 3 (2009), s. 295-297 ISSN 1432-8917 Institutional research plan: CEZ:AV0Z40500505 Keywords : pigment * coating * corrosion inhibitor * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2009

  3. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  4. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability.

    Science.gov (United States)

    Zhang, Ying; Newton, Brandon; Lewis, Eybriunna; Fu, Peter P; Kafoury, Ramzi; Ray, Paresh C; Yu, Hongtao

    2015-06-01

    Impact on health by nanomaterials has become a public concern with the great advances of nanomaterials for various applications. Surface coating agents are an integral part of nanoparticles, but not enough attention has been paid during toxicity tests of nanoparticles. As a result, there are inconsistent toxicity results for certain nanomaterials. In this study, we explored the cytotoxicity of eleven commonly used surface coating agents in two cell lines, human epidermal keratinocyte (HaCaT) and lung fibroblast (CRL-1490) cells, at surface coating agent concentrations of 3, 10, 30, and 100 μM. Two exposure time points, 2 h and 24 h, were employed for the study. Six of the eleven surface coating agents are cytotoxic, especially those surfactants with long aliphatic chains, both cationic (cetyltrimethylammonium bromide, oleylamine, tetraoctylammonium bromide, and hexadecylamine) and anionic (sodium dodecylsulfate). In addition, exposure time and the use of different cell lines also affect the cytotoxicity results. Therefore, factors such as cell lines used and exposure times must be considered when conducting toxicity tests or comparing cytotoxicity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    Science.gov (United States)

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.

  6. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    Directory of Open Access Journals (Sweden)

    Yu-Wen Cheng

    2015-10-01

    Full Text Available A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol (PVP. In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl (P3HT as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  7. Magnetic materials based on manganese–zinc ferrite with surface organized polyaniline coating

    Czech Academy of Sciences Publication Activity Database

    Kazantseva, N. E.; Bespyatykh, Y.; Sapurina, I.; Stejskal, Jaroslav; Vilčáková, J.; Sáha, P.

    2006-01-01

    Roč. 301, č. 1 (2006), s. 155-165 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313 Keywords : ferrite * coated particles * conducting polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  8. Advanced Coating Technology for Enhanced Performance of Microchannel Plates for UV Detectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase I proposal we propose to apply a highly conformal coating of ZnO and AlN or a double layer of GaN to the surface and internal pore walls of...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HVLP COATING EQUIPMENT, SHARPE MANUFACTURING COMPANY PLATINUM 2012 HVLP SPRAY GUN

    Science.gov (United States)

    This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...

  10. Information technology strategy and alignment issues in health care organizations.

    Science.gov (United States)

    Iveroth, Einar; Fryk, Pontus; Rapp, Birger

    2013-01-01

    Information technology (IT) plays a key role in public health care management because it could improve quality, efficiency, and patient care. Researchers and practitioners repeatedly contend that a health care organization's information systems strategy should be aligned with its objectives and strategies, a notion commonly known as IT alignment. Actor-related IT alignment issues in health care institutions were explored in this study. More specifically, it explores the possibility of moving beyond the current IT alignment perspective and, in so doing, explores whether IT alignment-as currently conceptualized in the dominant body of research-is sufficient for attaining improved quality, efficiency, and patient care in health care organizations. The findings are based on a qualitative and longitudinal study of six health care organizations in the Stockholm metropolitan area. The empirical data were gathered over the 2005-2011 period from interviews, a focus group, observations, and archival material. The data suggest recurrent misalignments between IT strategy and organizational strategy and operations due to the failure to deconstruct the IT artifact and to the existence of various levels of IT maturity. A more complex picture of IT alignment in health care that goes beyond the current perspective is being offered by this study. It argues that the previously common way of handling IT as a single artifact and applying one IT strategy to the entire organizational system is obsolete. MANAGERIAL IMPLICATIONS: The article suggests that considerable benefits can be gained by assessing IT maturity and its impact on IT alignment. The article also shows that there are different kinds of IT in medical care that requires diverse decisions, investments, prioritizations, and implementation approaches.

  11. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  12. Collective Influence on Information Technology in Virtual Organizations-Emancipatory Management of Technology?

    DEFF Research Database (Denmark)

    Koch, Christian

    2000-01-01

    This contribution addresses the question of how to create an agency for emancipatory management of technology. Unions are suggested as a collective actor, since steps towards democratization and micro emancipation have few chances if they rely on management practitioners alone. Instead, unions......, shop stewards and employees should acquire and demand elements of emancipatory management of technology on the basis of collective power rather than waiting for managers to change their praxis. The article looks at union activities related to virtual organizations in manufacturing companies....... It is argued that although virtualization is modest, it still challenges traditional union strategies. Based on case material stemming from action-oriented research, a number of levels of possible influence and politicization are discussed ranging from the workplace to the national level, which unions can...

  13. Collective Influence on Information Technology in Virtual Organizations-Emancipatory Management of Technology?

    DEFF Research Database (Denmark)

    Koch, Christian

    2000-01-01

    , shop stewards and employees should acquire and demand elements of emancipatory management of technology on the basis of collective power rather than waiting for managers to change their praxis. The article looks at union activities related to virtual organizations in manufacturing companies......This contribution addresses the question of how to create an agency for emancipatory management of technology. Unions are suggested as a collective actor, since steps towards democratization and micro emancipation have few chances if they rely on management practitioners alone. Instead, unions....... It is argued that although virtualization is modest, it still challenges traditional union strategies. Based on case material stemming from action-oriented research, a number of levels of possible influence and politicization are discussed ranging from the workplace to the national level, which unions can...

  14. Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber.

    Science.gov (United States)

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Liu, Hong; Zhu, Fang; Zeng, Feng; Su, Chengyong; Ouyang, Gangfeng

    2015-01-01

    Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32-1.7 ng L(-1) and 0.12-2.1 ng L(-1) for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography-mass spectrometry (GC-MS). The analytes at low concentrations (1.7 and 10 ng L(-1)) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0-113% and 84.8-106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Madsen, Morten Vesterager; Dam, Henrik Friis

    2013-01-01

    This work attempts to reveal the comparability issues related to outdoor testing procedures of organic photovoltaic (OPV) modules via studies of inter-laboratory long-term outdoor measurements of roll-to-roll coated flexible OPV modules (P3HT:PCBM, inverted architecture) in different geographic...... and measurement setups on the comparability of test results are analyzed. A strong link between the device temperature and performance is revealed, which is ascribed to the reaction of PEDOT:PSS layer with water. The estimation of the true performance of the modules by accommodation of variations in testing...

  16. Effect of pre-drying treatments on solution-coated organic thin films for active-matrix organic light-emitting diodes

    Science.gov (United States)

    Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon

    2017-12-01

    Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.

  17. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  18. Are Key Principles for improved health technology assessment supported and used by health technology assessment organizations?

    Science.gov (United States)

    Neumann, Peter J; Drummond, Michael F; Jönsson, Bengt; Luce, Bryan R; Schwartz, J Sanford; Siebert, Uwe; Sullivan, Sean D

    2010-01-01

    Previously, our group-the International Working Group for HTA Advancement-proposed a set of fifteen Key Principles that could be applied to health technology assessment (HTA) programs in different jurisdictions and across a range of organizations and perspectives. In this commentary, we investigate the extent to which these principles are supported and used by fourteen selected HTA organizations worldwide. We find that some principles are broadly supported: examples include being explicit about HTA goals and scope; considering a wide range of evidence and outcomes; and being unbiased and transparent. Other principles receive less widespread support: examples are addressing issues of generalizability and transferability; being transparent on the link between HTA findings and decision-making processes; considering a full societal perspective; and monitoring the implementation of HTA findings. The analysis also suggests a lack of consensus in the field about some principles--for example, considering a societal perspective. Our study highlights differences in the uptake of key principles for HTA and indicates considerable room for improvement for HTA organizations to adopt principles identified to reflect good HTA practices. Most HTA organizations espouse certain general concepts of good practice--for example, assessments should be unbiased and transparent. However, principles that require more intensive follow-up--for example, monitoring the implementation of HTA findings--have received little support and execution.

  19. Development of water-repellent organic-inorganic hybrid sol-gel coatings on aluminum using short chain perfluoro polymer emulsion

    Science.gov (United States)

    Wankhede, Ruchi Grover; Morey, Shantaram; Khanna, A. S.; Birbilis, N.

    2013-10-01

    The development of an organic-inorganic sol-gel coating system (thickness ∼ 2 μm) on aluminum is reported. The coating uses glycidoxytrimethoxysilane (GPTMS) and methyltrimethoxysilane (MTMS) as silane precursors, crosslinked with hexamethylmethoxymelamine (HMMM) and followed by hydrophobic modification using a water base short chain per-fluoro emulsion (FE). Such coating resulted in enhanced hydrophobicity with a contact angle of about 120° and sliding angle of 25° for a 20 μL water droplet. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements showed reduced corrosion upon coated substrates than the bare; correlated with both a higher degree of water repellency and formation of low permeable crosslinked sol-gel network. The structure of the coatings deposited was analyzed using Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, revealing replacement of hydrophillic surface hydroxyls groups with low energy per-fluoro groups.

  20. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  1. Fabrication method of low f-number microlens arrays by using surface coating and epoxy dispensing technology

    Science.gov (United States)

    Li, Pei; Pei, Jing; Pan, Long-fa; Zappe, Hans

    2014-04-01

    We describe a fabrication method for arrays of microlenses of low f-number by using a surface coating and dispensing technology. We demonstrate how to achieve a low f-number by selectively changing the surface wettability, as well as how to precisely control the f-number through control of the dispensing time. This advance enables the fabrication of arrays of microlenses with diameters varying from 400 to 1400 μm, f-number as low as 0.95. In addition, the optical performance tests indicate that this method is suitable for high performance microlens array fabrication. This dispensing technology may be low cost and allow fast fabrication of high-speed microlens arrays, and may thus be particularly useful for biologically inspired advanced optical systems.

  2. Inorganic-Organic Thiol-ene Coated Mesh for Oil/Water Separation.

    Science.gov (United States)

    Chen, Qiyi; de Leon, Al; Advincula, Rigoberto C

    2015-08-26

    A highly efficient mesh for oil/water separation was fabricated by using a superhydrophobic and superoleophilic coating of thiol-ene hybrid, consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles, via a simple two-step fabrication process. Spray deposition and UV curing photopolymerization were sequentially performed, during which solvent evaporation provides microscale roughness while nanoparticle aggregation forms nanoscale roughness. The hierarchical morphologies were stabilized after UV curing photopolymerization. High contact angle (>150°) and low roll-off angle (<5°) were achieved due to the multiscale roughness structure of the hierarchical morphologies. These coatings also have excellent chemical resistance, as well as temperature and pH stability, after curing.

  3. Infrared Reflectance Imaging for Environmentally Friendly Corrosion Inspection Through Organic Coatings

    Science.gov (United States)

    2008-05-15

    primer and gloss urethane color insignia white. The corrosion can not be seen under the coating, except when observed with IR as illustrated in Figure 2...IRRIT operator missed the corrosion location(s) due to MWIR camera auto -gain issue (refer to Appendix E.8 Investigation to Correct Auto -Gain Image...Figure E-31: Heat Flux Effect on IRRIT E-32 E.8 Investigation to Correct Auto -Gain

  4. Qualification of Coatings for Launch Facilities and Ground Support Equipment Through the NASA Corrosion Technology Laboratory

    Science.gov (United States)

    Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

    2014-01-01

    Corrosion protection at NASA's Kennedy Space Center is a high priority item. The launch facilities at the Kennedy Space Center are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs.

  5. The characterization of microcapsules printed by screen printing and coating technology

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2017-06-01

    Full Text Available Depending on the microcapsules functionality, i.e. encapsulated core material, nowadays microcapsules are used in various fields of application, such as in medicine, pharmacy, agriculture, construction industry, chemical industry, food industry, biotechnology, electronics, as well as in printing and textile industry. In order to fulfil their basic purpose, microcapsules have to be transferred onto the target areas of the substrate material without damage, using different deposition techniques, mostly coating and printing techniques. The aim of this research is to firstly investigate the physical characteristics of the two selected fragranced microcapsules, applied by screen printing and coating technique, and secondly to determine how their addition in the selected three varnishes affected the basic characteristics of the prints. Fragranced microcapsules were before printing and coating adequately premixed with the selected varnish. The research revealed that the characteristics of the fragranced microcapsules and the varnishes as well as the used application techniques significantly affected the behaviour of the fragranced microcapsules and their deposition in the printed varnish layer as well as on the characteristics of the prints.

  6. EVALUATION OF SUPERCRITICAL CARBON DIOXIDE TECHNOLOGY TO REDUCE SOLVENT IN SPRAY COATING APPLICATIONS

    Science.gov (United States)

    This evaluation, part of the Pollution Prevention Clean Technology Demonstration (CTD) Program, addresses the product quality, waste reduction, and economic issues of spray paint application using supercritical carbon dioxide (CO2). Anion Carbide has developed this technology and...

  7. Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording)

    Science.gov (United States)

    Stryckers, Jeroen; D'Olieslaeger, Lien; Manca, Jean; Ethirajan, Anitha; Deferme, Wim

    2015-09-01

    Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.

  8. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  9. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  10. Editarticles: 1. "You've Got to Know the Territory." [and] 2. Beyond the Horizon with Joe Coates.

    Science.gov (United States)

    Streichler, Jerry

    1994-01-01

    Explores five areas about which technology leaders must be aware: balkanization, globalization, information technology, parallel preparation, and new organizations. Prognostications of Joseph Coates about the world in 2025 are presented. (SK)

  11. Theory and Practice: Implications for the Implementation of Communication Technology in Organizations.

    Science.gov (United States)

    Herndon, Sandra L.

    1997-01-01

    Argues that scientific management principles result in an implementation of technology which fails to take full advantage of organization members and of the technology itself, while in a sociotechnical systems approach, technology is designed and implemented in ways enhancing the potential of both individuals and the technology itself, in…

  12. A study on the basic CVD process technology for TRISO coated particle fuel

    International Nuclear Information System (INIS)

    Choi, D. J.; Cheon, J. H.; Keum, I. S.; Lee, H. S.; Kim, J. G.

    2006-03-01

    Hydrogen energy has many advantages and is suitable as alternative energy of fossil fuel. The study of nuclear hydrogen production has performed at present. For nuclear hydrogen production, it is needed the study of VHTR(Very High Temperature Reactor) and TRISO(TRI-iSOtropic) coated fuel. TRISO coated fuel particle deposited by FBCVD(Fludized Bed CVD) method is composed of three isotropic layers: Inner Pyrolytic Carbon (IPyC), Silicon Carbide (SiC), Outer Pyrolytic Carbon (OPyC) layers. Silicon carbide was chemically vapor deposed on graphite substrate using methyltrichlorosilane (CH 3 SiCl 3 ) as a source in hydrogen atmosphere. The effect of deposition temperature and input gas ratios ( α=Q H2 /Q MTS =P H2 /P MTS ) was investigated in order to find out characteristics of silicon carbide layer. From results of those, SiC-TRISO coating deposition was conducted and achieved. Zirconium carbide layer as an advanced material of silicon carbide layer has studied. In order to find out basic properties and characteristics, studies have conducted using various methods. Zirconium carbide is chemically vapor deposed subliming zirconium tetrachloride(ZrCl 4 ) and using methan(CH 4 ) as a source in hydrogen atmosphere. Many experiments were conducted on graphite substrate about many deposition conditions such as ZrCl 4 heating temperatures and variables of H2 and CH 4 flow rate. but carbon graphite was deposited. For deposition of zirconium carbide, several different methods were approached. so zirconium carbide deposed on ZrO 2 substrate. In this experiments. source subliming type and equipment are no problems. But deposition of zirconium carbide will be continuously studied on graphite substrate approaching views of experimental way and equipment structure

  13. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Haji, Aminoddin, E-mail: Ahaji@iaubir.ac.ir [Department of Textile Engineering, Birjand Branch, Islamic Azad University, Birjand (Iran, Islamic Republic of); Semnani Rahbar, Ruhollah [Department of Textile and Leather, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute, Karaj (Iran, Islamic Republic of); Mousavi Shoushtari, Ahmad [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-30

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH{sub 2}-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH{sub 2}-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2–12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH{sub 2}-MWCNT. The SEM images showed that the NH{sub 2}-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH{sub 2}-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH{sub 2}-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼−18.2 dB about 11 GHz. Proper attachments of NH{sub 2}-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  14. Technology Experience of Solid Organ Transplant Patients and Their Overall Willingness to Use Interactive Health Technology.

    Science.gov (United States)

    Vanhoof, Jasper M M; Vandenberghe, Bert; Geerts, David; Philippaerts, Pieter; De Mazière, Patrick; DeVito Dabbs, Annette; De Geest, Sabina; Dobbels, Fabienne

    2018-03-01

    The use of interactive health technology (IHT) is a promising pathway to tackle self-management problems experienced by many chronically ill patients, including solid organ transplant (Tx) patients. Yet, to ensure that the IHT is accepted and used, a human-centered design process is needed, actively involving end users in all steps of the development process. A first critical, predevelopment step involves understanding end users' characteristics. This study therefore aims to (a) select an IHT platform to deliver a self-management support intervention most closely related to Tx patients' current use of information and communication technologies (ICTs), (b) understand Tx patients' overall willingness to use IHT for self-management support, and investigate associations with relevant technology acceptance variables, and (c) explore Tx patients' views on potential IHT features. We performed a cross-sectional, descriptive study between October and December 2013, enrolling a convenience sample of adult heart, lung, liver, and kidney Tx patients from the University Hospitals Leuven, Belgium. Broad inclusion criteria were applied to ensure a representative patient sample. We used a 35-item newly designed interview questionnaire to measure Tx patients' use of ICTs, their overall willingness to use IHT, and their views on potential IHT features, as well as relevant technology acceptance variables derived from the Unified Theory of Acceptance and Use of Technology and a literature review. Descriptive statistics were used as appropriate, and an ordinal logistic regression model was built to determine the association between Tx patients' overall willingness to use IHT, the selected technology acceptance variables, and patient characteristics. Out of 139 patients, 122 agreed to participate (32 heart, 30 lung, 30 liver, and 30 kidney Tx patients; participation rate: 88%). Most patients were male (57.4%), married or living together (68%), and had a mean age of 55.9 ± 13.4 years

  15. NMR spectroscopy and atomic force microscopy characterization of hybrid organic – inorganic coatings

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Špírková, Milena

    2005-01-01

    Roč. 220, č. 1 (2005), s. 155-164 ISSN 1022-1360. [Discussion Conference Spectroscopy of Partially Ordered Macromolecular Systems /22./. Prague, 21.07.2003-24.07.2003] R&D Projects: GA ČR GA203/01/0735; GA AV ČR IAA4050008 Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * coatings and films * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.913, year: 2005

  16. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhuomin [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang Qingtang [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002 (China); Li Gongke, E-mail: cesgkl@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. Black-Right-Pointing-Pointer NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. Black-Right-Pointing-Pointer NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7-4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography-mass spectrometry (GC-MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient

  17. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    International Nuclear Information System (INIS)

    Zhang Zhuomin; Wang Qingtang; Li Gongke

    2012-01-01

    Highlights: ► Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. ► NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. ► NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7–4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography–mass spectrometry (GC–MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient analytical method for the potential study of trace and small molecular

  18. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    Science.gov (United States)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  19. Novel conformal organic antireflective coatings for advanced I-line lithography

    Science.gov (United States)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  20. Improving Mechanical Properties of Thermoset Biocomposites by Fiber Coating or Organic Oil Addition

    Directory of Open Access Journals (Sweden)

    Truc T. Ngo

    2015-01-01

    Full Text Available Two different thermoset biocomposite systems are experimented in this study with the hope to improve their mechanical properties. Fiberglass and hemp, in form of fabrics, are used to reinforce the thermoset polymer matrix, which includes a traditional epoxy resin and a linseed oil-based bioresin (UVL. The fiber/polymer matrix interface is modified using two different approaches: adding a plant-based oil (pine or linseed to the polymer matrix or coating the fibers with 3-(aminopropyltriethoxysilane (APTES prior to integrating them into the polymer matrix. Epoxy resin is cured using an amine-based initiator, whereas UVL resin is cured under ultraviolet light. Results show that hemp fibers with APTES prime coat used in either epoxy or UVL matrix exhibit some potential improvements in the composite’s mechanical properties including tensile strength, modulus of elasticity, and ductility. It is also found that adding oil to the epoxy matrix reinforced with fiberglass mostly improves the material’s modulus of elasticity while maintaining its tensile strength and ductility. However, adding oil to the epoxy matrix reinforced with hemp doubles the material’s ductility while slightly reducing its tensile strength and modulus of elasticity.

  1. Laboratory Measurements of the Effect of Sulfuric and Organic Acid Coatings on the Optical Properties of Carbon Soot Aerosols

    Science.gov (United States)

    Xue, H.; Khalizov, A.; Zhang, R.

    2008-12-01

    Aerosol particles perturb the Earth-atmosphere radiative balance through scattering and absorption of the solar energy. Soot or black carbon, produced during combustion of fossil fuels and biofuels, is the major component responsible for light absorption by aerosol particles. The variation in the reported mass-specific absorption cross-sections (MAC) of fresh soot and increased light absorption by aged soot aerosols internally mixed with non-absorbing materials are the major factors leading to large uncertainties in the evaluation of the aerosol optical effects. We have investigated the optical properties of submicron carbon soot aerosols during simulated atmospheric processing with sulfuric acid and dicarboxylic organic acids. Internally mixed soot particles with known size, morphology, and the mixing state were produced by exposing the size-classified, flame-generated soot to sulfuric acid and organic acid vapor. Light extinction and scattering by fresh and internally mixed soot were measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively; light absorption was derived as the difference between extinction and scattering. Mass-specific absorption cross-sections for fresh and internally mixed soot aggregates were calculated using the measured effective densities of soot cores. The optical properties of fresh soot were independent of the relative humidity (RH). Internally mixed soot exhibited significant enhancement in light absorption and scattering, increasing with the mass fraction of the coating material and RH. Sulfuric acid was found to cause greater enhancement in soot optical properties than organic acids. The higher absorption and scattering resulted in the increased single scattering albedo of coated soot aerosol. The measurements indicate that the irreversible restructuring of soot aggregates to more compact globules is a major contributor to the enhanced optical properties of internally mixed soot.

  2. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  3. Concise Review: Organ Engineering: Design, Technology, and Integration

    NARCIS (Netherlands)

    Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling

  4. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.

    Science.gov (United States)

    Moghaddasi, Sahar; Fotovat, Amir; Khoshgoftarmanesh, Amir Hossein; Karimzadeh, F; Khazaei, Hamid Reza; Khorassani, Reza

    2017-10-01

    There is a gap of knowledge for the fate, effects and bioavailability of coated and uncoated ZnO nanoparticles (NPs) in soil. Moreover, little is known about the effects of soil properties on effects of NPs on plants. In this study, the availability ZnO NPs in two soils with different organic matter content (one treated with cow manure (CM) and the other as untreated) was compared with their bulk particles. Results showed that coated and uncoated ZnO NPs can be more bioaccessible than their bulk counterpart and despite their more positive effects at low concentration (soil untreated with CM. The concentration of 1000mgkg -1 of ZnO NPs, decreased shoot dry biomass (52%) in the soil untreated with CM but increased shoot dry biomass (35%) in CM-treated soil compared to their bulk counterpart. In general, plants in the CM-treated soil showed higher Zn concentration in their tissues compared with those in untreated soil. The difference in shoot Zn concentration between CM-treated and untreated soil for NPs treatments was more than bulk particles treatment. This different percentage at 100mgkg -1 of bulk particles was 20.6% and for coated and uncoated NPs were 37% and 32%, respectively. Generally, the distribution of ZnO among Zn fractions in soil (exchangeable, the metal bound to carbonates, Fe-Mn oxides, organic matter and silicate minerals and the residual fraction) changed based on applied Zn concentration, Zn source and soil organic matter content. The root tip deformation under high concentration of NPs (1000mgkg -1 treatment ) was observed by light microscopy in plants at the soil untreated with CM. It seems that root tip deformation is one of the specific effects of NPs which in turn inhibits plant growth and nutrients uptake by root. The transmission electron microcopy image showed the aggregation of NPs inside the plant cytoplasm and their accumulation adjacent to the cell membrane. Copyright © 2017. Published by Elsevier Inc.

  5. Inactivation of Salmonella in grape tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike O; Jin, Tony; Fan, Xuetong; Olanya, Modesto; Juneja, Vijay

    2018-02-02

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on grape tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21days storage at 10°C was also determined. A bacterial cocktail containing three serotypes of Salmonella enterica was used for this study based on their association with produce-related outbreaks. Tomatoes were spot inoculated on stem scars and then immersed in an organic acid solution (700ml) containing 0.5% (v/v) each of acetic (AA) and formic acid (FA) to wash under mild agitation for 1min at ambient temperature (22°C) followed by 1min dipping in a coating solution containing 6mlAIT/g CT. AW in 0.5% organic acid (AA+FA) for 1min reduced Salmonella population by 2.7logCFU/g from an initial load of 7.8logCFU/g, while additional coating treatment of AW tomatoes reduced the pathogens on stem scars to undetectable levels (7logCFU/g reduction for the pathogen. Although the populations of Salmonella in the controls (approx. 7.8logCFU/g stem scar) did not change significantly during 21days of storage at 10°C, the populations were reduced to undetectable level in the integrated (AW plus CT-AIT) treated stem scars on day 1 and no regrowth was observed during storage. The treatment significantly (p<0.05) reduced background bacterial loads to approx. 1.3logCFU/g and the population remained unchanged through day 21 at 10°C. The treatment also completely inactivated mold and yeast on day 1 with no growth reoccurrence. These results indicate that the integrated treatment can provide a safe and effective intervention strategy for grape tomatoes. Published by Elsevier B.V.

  6. New technologies stuck in old hierarchies. An analysis of diffusion of geo-information technologies in Dutch public organizations

    NARCIS (Netherlands)

    Vonk, G.; Geertman, S.; Schot, P.P.

    2007-01-01

    Some 25 years after the introduction of the first geo-information technologies in public organizations, strategies to manage their diffusion are still inadequate. This is problematic in light of the new generation of geo-information technologies that has become available and aims to invest in these

  7. Rapid and Facile Formation of P3HT Organogels via Spin Coating: Tuning Functional Properties of Organic Electronic Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cameron S. [Univ. of Tennessee, Knoxville, TN (United States); Yin, Wen [Univ. of Tennessee, Knoxville, TN (United States); Holt, Adam P. [Univ. of Tennessee, Knoxville, TN (United States); Sangoro, Joshua R. [Univ. of Tennessee, Knoxville, TN (United States); Sokolov, Alexei P. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dadmun, Mark D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-18

    Poly(3-hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self-assemble via stacking of its backbone, leading to an assembly and growth of P3HT fi brils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin-coating process from various solvents. The development of organogel formation is detected by in situ static light scattering, which measures both the thinning rate by refl ectance and structural development in the fi lm via off-specular scattering during fi lm formation. Optical microscopy and thermal annealing experiments provide ex situ confi rmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel-onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density-of-states measured by impedance spectroscopy.

  8. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jae-Sung Lee

    2014-07-01

    Full Text Available We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone. To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt’s dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylaminocinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  9. Roll coated large area ITO- and vacuum-free all organic solar cells from diketopyrrolopyrrole based non-fullerene acceptors with molecular geometry effects

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbaek; Zhang, Fei; Andersen, Thomas Rieks

    2016-01-01

    morphology, and photovoltaic performance of both spin-coated ITO based and roll coated large area, ITO- and vacuum-free organic solar cells (OSCs). For spin-coated devices based on P3HT as the donor polymer the solar cells gave power conversion efficiencies (PCEs) in the following order for (P3HT:PhDMe(DPP)2......, 0.65%) > (P3HT:Ph(DPP)2, 0.48%) > (P3HT:Ph(DPP)3, 0.31%). All devices present an open circuit voltage (Voc) higher than 1.0 V. For the roll-coated devices, the PCEs were found to fall in another order and with lower values (P3HT:Ph(DPP)3, 0.54%) > (P3HT:Ph(DPP)2, 0.43%) > (P3HT:PhDMe(DPP)2, 0...

  10. Contribution for study on curing of organic coatings in papers, by electron beam

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.

    1986-01-01

    The behaviour of national raw material is studied: paper, resins vamishes used on the surface finishing furniture, when subnitted to electron beam curing in an inert atmosphere. The dosimetric control of the irradiation system was made by using CTA films. The minimum cure dose obtained for the EBC 1650/3009 varnish(national polyester) was 2.4 Mrad and of 2.0 Mrad for the EBC 1650/3010 (imported polyester from Germany). The optimun cure dose for both was 3.0 Mrad. The papers impregnated with EBC varnish of with conventional varnish were measured mechanically for resistance in traction and an evaluation of resistance of the finished surfaces with the ebc varnishes was made. The coatings obtained with the EBC varnishes manufactured nationally were compared with the conventional vamishes of thermal cure and with paper samples impregnated and cured in Germany. (author) [pt

  11. Synthesis of PVDF/SBT composite thin films by spin coating technology and their ferroelectric properties

    Directory of Open Access Journals (Sweden)

    Chen Changchun

    2016-09-01

    Full Text Available Ferroelectric composite thin films of x-SBT/PVDF with different SBT content (weight ratios of SBT to PVDF, x = 0 %, 5 %, 10 %, 15 %, 20 % were prepared by spin-coating method. The crystal structures of x-SBT/PVDF films were analyzed by X-ray diffraction (XRD measurements and Fourier transform-infrared spectroscopy (FT-IR, respectively. Experimental results demonstrated that both α, β-phases PVDF and the layered perovskite SBT co-existed in the x-SBT/PVDF samples. With an increase of SBT content in the x-SBT/PVDF thin films, both the dielectric constant and the saturated polarization were also increased, compared with those of pure PVDF thin film. More importantly, when the SBT content in the x-SBT/PVDF thin films was larger than 15 %, the coercive field of x-SBT/PVDF thin films was also decreased.

  12. Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge

    Science.gov (United States)

    Fudouzi, Hiroshi; Tsuchiya, Koichi; Todoroki, Shin-ichi; Hyakutake, Tsuyoshi; Nitta, Hiroyuki; Nishizaki, Itaru; Tanaka, Yoshikazu; Ohya, Takao

    2017-04-01

    Here we will propose the conceptual new idea of the inspection of concrete bridge using smart materials and mobile IoT system. We apply opal photonic crystal film to detect cracks on concrete infrastructures. High quality opal photonic crystal films were coated on black color PET sheet over 1000 cm2 area. The opal film sheet was cut and adhered to concrete or mortar test pieces by epoxy resin. In the tensile test, the structural color of the opal sheet was changed when the crack was formed. As a demonstration, we have installated the opal film sheet on the wall of the concrete bridge. Our final purpose is the color change will be recorded by portable CCD devices, and send to expert via IoT network.

  13. Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests

    DEFF Research Database (Denmark)

    Gevorgyan, Suren A.; Corazza, Michael; Madsen, Morten Vesterager

    2014-01-01

    The inter-comparability of ageing of organic photovoltaic (OPV) technologies in dark is addressed. Four primary factors that affect the reproducibility of the ageing rate determination and inter-comparison are discussed: production/encapsulation of the samples, current–voltage (IV) characterizati...

  14. KAJIAN TEKNOLOFI EDIBLE COATING DARI PATI DAN APLIKASINYA UNTUK PENGEMAS PRIMER LEMPOK DURIAN [Technological Assessment of Starch Edible Coating and Its Application on Primary Packaging of Durian Sweets

    Directory of Open Access Journals (Sweden)

    Budi Santoso1

    2004-12-01

    Full Text Available The study objective was to determine the shelf life of edible coating packaged of durian lempok. The experimental method used in this study was Factorial Randomized Block Design consisting of three factors. These factors were tapioca starch, stearate acid, and CMC. The edible coating solution was applied in to durian lempok by using dip method. The result showed that edible coating packaged of durian lempok could increase the durian lempok shelf life by 67 percent than durian lempok without edible coating. The edible coating was capable of decreasing the durian lempok weight loss by magnitude of 36.38% during storage, decreasing the peroxide number by magnitude of 33.33%, decreasing the water content by magnitude of 7.54%, and suppressing the microbial growth by the amount of 31.20%, respectively. Visual change of non-coating lempok had occurred on the day of 19th, which was indicated by greyish-white colour change due to certain type of mold on lempok surface, while the similar change happened at day of 31th (T2A3C3 treatment.

  15. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  16. Predicting Cloud Computing Technology Adoption by Organizations: An Empirical Integration of Technology Acceptance Model and Theory of Planned Behavior

    Science.gov (United States)

    Ekufu, ThankGod K.

    2012-01-01

    Organizations are finding it difficult in today's economy to implement the vast information technology infrastructure required to effectively conduct their business operations. Despite the fact that some of these organizations are leveraging on the computational powers and the cost-saving benefits of computing on the Internet cloud, others…

  17. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION: ALLIED PHOTOCHEMICAL KROHNZONE 7014 UV-CURABLE COATING

    Science.gov (United States)

    This Environmental Technology Verification report reports on reasearch done on a UV-curable automotive paint. The paint was tested for thickness, appearance, gloss, salt spray resistance, humidity resistance, adhesion, impact, mandrel bend, MEK rub, and abrasion resistance.

  19. Modern technologies of adaptation young specialists in the organization

    OpenAIRE

    Кузьминых, Николай Юрьевич

    2016-01-01

    In this article the main directions and technologies of adaptation of young specialists are considered. The author has revealed new technology of adaptation of young specialists which will allow new employees to feel more comfortably on a new workplace, to join collective, and also will lead to reduction of a dissatisfaction and turnover of staff at an initial stage of adaptation.

  20. Supporting Self-Organized Learning with Personal Webpublishing Technologies and Practices

    Science.gov (United States)

    Sharma, Priya; Fiedler, Sebastian

    2007-01-01

    In this paper, we suggest that self-organized learning can be supported through emergent and informal Web technologies and propose that these technologies can be used to encourage similar practices in higher education. Self-organized learning aims at increasing individual control over instructional functions through a process that involves…

  1. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein.

    Science.gov (United States)

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst B

    2010-12-01

    Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb™ and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

  2. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  3. Chemical nature and structure of organic coating of quantum dots is crucial for their application in imaging diagnostics

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo

    2011-01-01

    Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant enhancement of their

  4. Health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    At the Lawrence Livermore Laboratory, a unique safety technology organization has been established that is especially geared to respond to interdisciplinary health and safety questions in response to rapidly growing energy technology problems. This concept can be adopted by smaller organizations at a more modest cost, and still maintains the efficiency, flexibility, and technical rigor that are needed more and more in support of any industry health and safety problem. The separation of the technology development role from the operation safety organization allows the operational safety specialists to spend more time upgrading the occupational health and safety program but yet provides the opportunity for interchange with health and safety technology development specialists. In fact, a personnel assignment flow between an operational health and safety organization and a special technology development organization provides a mechanism for upgrading the overall safety capability and program provided by a given industrial or major laboratory

  5. Experimental Equipment and Basic Technological Methods of Obtaining Cavitation Protective Coatings on Working Surfaces of Steam Turbine Blades Made of Titanium Alloy VT6 in Order to Replace Imports of Similar Products

    Directory of Open Access Journals (Sweden)

    Bilous, V.A.

    2016-07-01

    Full Text Available The experimental equipment and basic technological methods of obtaining сavitation protective coatings on the working surfaces of blades of steam turbines from titanium alloy VT6 have been created. The selection and the basis of the composition and conditions of synthesis of optimal coating for hardening blades have been justified. The parameters of deposition process of coatings on the blade model have been worked, the experimental technological deposition process of hardening coatings has been created. The tests of titanium alloy VT6 samples with the preferred coatings in simulation conditions close to operational have been conducted. The coatings on the blade model of length up to 130 cm and weight up to 30 kg have been deposited. The velocity of the TiN coating depositing was 10 mkm/h.

  6. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  7. Evaluating Outsourcing Information Technology and Assurance Expertise by Small Non-Profit Organizations

    Science.gov (United States)

    Guinn, Fillmore

    2013-01-01

    Small non-profit organizations outsource at least one information technology or information assurance process. Outsourcing information technology and information assurance processes has increased every year. The study was to determine the key reasons behind the choice to outsource information technology and information assurance processes. Using…

  8. The Influence of Social Networking Technology in an Engineering Organization

    Science.gov (United States)

    Tepaske, Derrick Marcus

    2013-01-01

    Computer facilitated Social Networking (SN) is becoming more prevalent in our society, both in our personal and professional lives. As its use grows, there is a desire to determine how it will impact an organization. If it can positively impact an organization then it is an initiative that could be embraced and leveraged for any number of business…

  9. Principles and application of transgenic technology in marine organisms

    Science.gov (United States)

    Marine organisms into which a foreign gene or noncoding DNA fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjec...

  10. Defining death: organ transplants, tradition and technology in Japan.

    Science.gov (United States)

    Feldman, E A

    1988-01-01

    This article explores Japanese attitudes about brain death and organ transplantation. First, ancient burial customs and death-related rituals associated with Shinto and Buddhism are examined. Next, contemporary attitudes towards the dead are discussed in the context of current controversies surrounding brain death and organ transplantation. Finally, an attempt is made to link the traditional Japanese views of death with modern medical dilemmas.

  11. Hierarchical Organizations and Information Age Technologies: A Strategic Mismatch

    National Research Council Canada - National Science Library

    Roman, Charlette

    1999-01-01

    ... if this model remains a viable and relevant organizational framework for the future. It proposes that there is a critical strategic link between organizational structure and information technology enablers...

  12. MODERN TECHNOLOGIES IN THE AIRCRAFT MAINTENANCE ORGANIZATIONS OPERATION

    Directory of Open Access Journals (Sweden)

    L. O. Marasanov

    2014-01-01

    Full Text Available Work is devoted to the development of information management system for maintenance and repair, using telecommunication technologies to ensure the completeness, accuracy, continuity and timeliness required in the maintenance and repair information.

  13. Managing quality inside a high-technology project organization

    OpenAIRE

    Jokinen, T. (Tauno)

    2004-01-01

    Abstract This action research addresses the deployment of Total Quality Management (TQM) principles in a high-technology new product development organisation. During the period of study, the organisation grew fast. High-technology product development and hypergrowth provided a unique combination of extreme conditions for the study. The existing concepts of TQM are presented as an organised map enabling strategic analysis for an implementation plan. The history of TQM dates back to the ...

  14. An ultrasonic technology for production of antibacterial nanomaterials and their coating on textiles

    Directory of Open Access Journals (Sweden)

    Anna V. Abramova

    2014-04-01

    Full Text Available A method for the production of antibacterial ZnO nanoparticles has been developed. The technique combines passing an electric current with simultaneous application of ultrasonic waves. By using high-power ultrasound a cavitation zone is created between two zinc electrodes. This leads to the possibility to create a spatial electrical discharge in water. Creation of such discharge leads to the depletion of the electrodes and the formation of ZnO nanoparticles, which demonstrate antibacterial properties. At the end of this reaction the suspension of ZnO nanoparticles is transported to a specially developed ultrasonic reactor, in which the nanoparticles are deposited on the textile. The nanoparticles are embedded into the fibres by the cavitation jets, which are formed by asymmetrically collapsing bubbles in the presence of a solid surface and are directed towards the surface of textile at very high velocities. Fabrics coated with ZnO nanoparticles by using the developed method showed good antibacterial activity against E. coli.

  15. An ultrasonic technology for production of antibacterial nanomaterials and their coating on textiles.

    Science.gov (United States)

    Abramova, Anna V; Abramov, Vladimir O; Gedanken, Aharon; Perelshtein, Ilana; Bayazitov, Vadim M

    2014-01-01

    A method for the production of antibacterial ZnO nanoparticles has been developed. The technique combines passing an electric current with simultaneous application of ultrasonic waves. By using high-power ultrasound a cavitation zone is created between two zinc electrodes. This leads to the possibility to create a spatial electrical discharge in water. Creation of such discharge leads to the depletion of the electrodes and the formation of ZnO nanoparticles, which demonstrate antibacterial properties. At the end of this reaction the suspension of ZnO nanoparticles is transported to a specially developed ultrasonic reactor, in which the nanoparticles are deposited on the textile. The nanoparticles are embedded into the fibres by the cavitation jets, which are formed by asymmetrically collapsing bubbles in the presence of a solid surface and are directed towards the surface of textile at very high velocities. Fabrics coated with ZnO nanoparticles by using the developed method showed good antibacterial activity against E. coli.

  16. The Uneven Diffusion of Collaborative Technology in a Large Organization

    Science.gov (United States)

    Jarulaitis, Gasparas

    This paper investigates the large-scale diffusion of a collaborative technology in a range of different business contexts. The empirical data used in the article were obtained from a longitudinal (2007-2009) case study of a global oil and gas company (OGC). Our study reports on ongoing efforts to deploy an inte grated collaborative system that uses Microsoft SharePoint (MSP) technology. We assess MSP as a configurational technology and analyze the diffusion of a metadata standard developed in-house, which forms an embedded component of MSP. We focus on two different organizational contexts, namely research and development (R&D) and oil and gas production (OGP), and illustrate the key differences between the ways in which configurational technology is managed and used in these contexts, which results in an uneven diffusion. In contrast with previous studies, we unravel the organizational and technological complexity involved, and thus empirically illustrate the flexibility of large-scale technology and show how the trajectories of the various components are influenced by multiple modes of ordering.

  17. Aqueous Polymer Dispersion Coating Used for Osmotic Pump Tablets: Membrane Property Investigation and IVIVC Evaluation.

    Science.gov (United States)

    Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang

    2018-01-01

    The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.

  18. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    B. L. Bourov

    2011-01-01

    Full Text Available With due account for the coming new (VI-th world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technological environment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th technological structure level basic technologies are shown for industrial and household waste processing techniques as an example.

  19. Do Accounting Students Have Realistic Expectations of Information Technology Usage in Nonprofit Organizations?

    Science.gov (United States)

    Foust, Karen M.; Kleen, Betty A.; Shell, L. Wayne

    Not-for-profit organizations employ 11% of all U.S. workers; these organizations are often the recipients of hand-me-down hardware and software. This study investigates accounting students expectations of the information technology available to and used by not-for-profit organizations. In this descriptive study, based on two different surveys,…

  20. The effect of polyaniline phosphate on mechanical and corrosive properties of protective organic coatings containing high amounts of zinc metal particles

    Czech Academy of Sciences Publication Activity Database

    Kohl, M.; Kalendová, A.; Stejskal, Jaroslav

    2014-01-01

    Roč. 77, č. 2 (2014), s. 512-517 ISSN 0300-9440 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conductive polymers * zinc metal * organic coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.358, year: 2014

  1. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Bober, Patrycja; Kotek, Jiří; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1020-1027 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626; GA AV ČR(CZ) IAAX08240901 Institutional support: RVO:61389013 Keywords : polyaniline * montmorillonite * organic-inorganic composite Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  2. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  3. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules.

    Science.gov (United States)

    Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry

    2016-05-01

    The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.

  4. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  5. Materials and Coatings for Extreme Performances: Investigations, Applications, Ecologically Safe Technologies for Their Production and Utilization

    Science.gov (United States)

    2004-11-16

    V., Frolova E.G. В346 PHASE EQUILIBRIA IN THE TERNARY SYSTEM ZrO2-HfO2- CeO2 AT 1500 °C Andrievskaya Elena R., Gerasimyk Galina I., Lopato Lidiya M...technology of reclamation of grinding slurries of bearing production is one of such urgent directions. Scientific schools of academic institutes and...recycling of grinding slurries are offered. Powders obtained with application of these technical solutions are used for friction and antifriction

  6. The Economics of New Health Technologies Incentives, Organization, and Financing

    CERN Document Server

    Costa-Font, Joan; McGuire, Alistair

    2009-01-01

    Technological change in healthcare has led to huge improvements in health services and the health status of populations. It is also pinpointed as the main driver of healthcare expenditure. Although offering remarkable benefits, changes in technology are not free and often entail significant financial, as well as physical or social risks. These need to be balanced out in the setting of government regulations, insurance contracts, and individuals' decisions to use and consume certaintechnologies. With this in mind, this book addresses the following important objectives: to provide a detailed ana

  7. In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO{sub 2}-coated Ag nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Zhi Yong [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Liu, Xin [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, and College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan (China); Dai, Jiyan [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen (China); Wu, Yucheng [College of Material Science and Engineering, Hefei University of Technology, Hefei (China); Tsang, Yuen Hong, E-mail: yuen.tsang@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Lei, Dang Yuan, E-mail: dylei@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen (China)

    2014-05-01

    Highlights: • TiO{sub 2}-coated Ag nanowire arrays (SNA) were synthesized through hydrolysis of butyl titanate on the surface of SNA. • The TiO{sub 2}-coated SNA exhibits much higher photocatalytic activity than bare TiO{sub 2} films, as demonstrated by the enhanced photodegradation rate of R6G and methyl blue molecules. • The prepared substrates serve as a high-sensitivity surface-enhanced Raman scattering (SERS) substrate for in situ monitoring of the photocatalytic decomposition reaction detecting 2,4-D molecules. • Full-wave numerical calculations reveal that the improved photocatalysis and SERS efficiencies are attributed to the largely enhanced electromagnetic near-field in the nanocomposites. - Abstract: Recently, semiconductor and noble metal complex nanomaterials have attracted ever-increasing attention because of the realization of multiple functionalities in a single entity. In this study, Ag–TiO{sub 2} core–shell nanocomposites were synthesized by hydrolysis of butyl titanate on the surface of Ag nanowires. Due to efficient electron transfer at the Ag–TiO{sub 2} interface, the as-prepared nanocomposites exhibit much higher photocatalytic activity than bare TiO{sub 2} films, as demonstrated by the enhanced photodegradation rate of R6G and methyl blue molecules. In the meanwhile, such nanocomposites serve as a high-sensitivity surface-enhanced Raman scattering (SERS) substrate for in situ monitoring of the photocatalytic decomposition reaction, and the substrate is recyclable due to its self-cleaning function. Full-wave numerical calculations reveal that the improved photocatalysis and SERS efficiencies are attributed to the largely enhanced electromagnetic near-field in the nanocomposites. Our results point out that bifunctional semiconductor-metal hybrids hold great promise for simultaneously detecting and decomposing organic pollutants in the environment.

  8. Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles

    Science.gov (United States)

    Pham, Hong Nam; Giang Pham, Thi Ha; Nguyen, Dac Tu; Thong Phan, Quoc; Thu Huong Le, Thi; Thu Ha, Phuong; Do, Hung Manh; Nhung Hoang, Thi My; Phuc Nguyen, Xuan

    2017-06-01

    Biodistribution studies provide basic information to design and perform various applications of superparamagnetic iron oxide magnetic nanoparticles (SPIOs) in biomedicine such as drug delivery, MRI as well as hyperthermia. Recently, several quantitative measurements as well as new imaging methods have been used to characterize the SPIOs distribution in organs and in tissues of animal model. In this report we used the fabricated iron oxide nanoparticles coated with two block copolymers of polystyrene-co-polyacrylic acid (St-co-PAA) and polylactic acid-co-polyethylene glycol (PLA-PEG). The biodistributions were investigated ex-vivo for several organs of both healthy and Sarcoma transplanted Swiss mice. The SPIOs concentrations were verified mainly by magnetic inductive heating (MIH) measurement with a combination with atomic absorption spectroscopy (AAS). The results indicated the density detected highest in liver and lowest in kidney. The SPIOs concentration increased significantly up to 24 h after the injection. The observations by our two methods not only are in agreement with each other but also consistent with the tendency reported by other techniques. Discussion will also concern injection strategy for various aspects of hyperthermia applications. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (Ha Long City, Vietnam, 8-12 November 2016).

  9. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. LABS, cells and organs on chip : Technologies and biomedical applications

    NARCIS (Netherlands)

    Van Den Berg, Albert

    2017-01-01

    Over the past few decades both micro/ nanofabrication and microfluidics technologies have been crucial for the rapid development of Lab on a Chip systems. Here we present a few examples of this. Firstly, a capillary electrophoresis system on chip for blood analysis will be presented. Secondly, we

  11. Information Technology and Value Creation in the Public Sector Organizations

    Science.gov (United States)

    Pang, Min-Seok

    2011-01-01

    In this dissertation, I study the performance impact of information technology (IT) investments in the public sector. IT has been one of the key assets in public administration since the early MIS era. Even though the information systems (IS) discipline has witnessed a considerable amount of research efforts on the subject of IT business value for…

  12. Successful Implementation of Technological Innovations in Health Care Organizations

    NARCIS (Netherlands)

    T.C.M. Weijers; T.L. Finch; MD E.J.M. Wouters

    2015-01-01

    In order to accept and implement technology in a successful manner, not only determinants (acceptance barriers or facilitators) related to individual persons, for instance, health care providers as well as health care recipients, are important. Also interpersonal relationships on the work floor as

  13. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    B. L. Bourov

    2012-01-01

    Full Text Available With due account for the coming new (VI-th world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technologicalenvironment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th technological structure level basic technologies are shown for industrial and household waste processing techniques as an example.

  14. Automated installation for organic coatings deposition by vacuum thermal evaporation method

    Science.gov (United States)

    Gryaznov, A. O.; Lee, E. V.; Ishchenko, A. V.; Vokhmintsev, A. S.; Weinstein, I. A.; Kazin, N. A.; Irgashev, R. A.

    2017-09-01

    An automated installation based on National Instruments' control and measurement equipment, vacuum chamber with resistive heater and "ThermoVac" virtual instrument was designed and tested for deposition of thin organic films by vacuum thermal evaporation method. A 5,11-dimethyl-5,11-dihydroindolo[3,2-b]carbazole layer with thickness of 200 ± 50 nm was applied on the surface of fused silica glass, titanium and titanium nitride substrates. Current-voltage characteristics of Ti/IC/Au and TiN/IC/Au/Ti films were studied. It was determined that deposited organic layer had p-type conductivity and charge carriers mobility of 4.9.10-7 cm2/(V.s).

  15. Hybrid organic-inorganic coatings and films containing conducting polyaniline nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Stejskal, Jaroslav; Prokeš, J.

    2004-01-01

    Roč. 212, č. 1 (2004), s. 343-348 ISSN 1022-1360. [Electrical and Related Properties of Polymers and Other Organic Solids /9./. Prague, 14.07.2002-18.07.2002] R&D Projects: GA AV ČR KSK4050111; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913 Keywords : atomic force microscopy * films * hybrid networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.691, year: 2004

  16. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  17. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  18. The Impact of Information Technology on Organizations: Implications for Organizational Integration and the Management of Information Technology.

    Science.gov (United States)

    1998-03-01

    United States by the year 2000." (Set in 1979) "To become the first truly great biopharmaceutical company." (Set in 1990) The common enemy is...technology is defined in the following way, The specific technology of the organization is, then, the collection of plant , machines, tools and recipes...continuous process production firms use mechanized systems for the entire process. Examples include chemical and nuclear plants . From these groups

  19. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  20. Business Agility and Information Technology in Service Organizations

    NARCIS (Netherlands)

    M.P.A. van Oosterhout (Marcel)

    2010-01-01

    textabstractService organizations have to deal with highly uncertain events, both in the internal and external environment. In the academic literature and in practice there is not much knowledge about how to deal with this uncertainty. This PhD dissertation investigates the role and impact of

  1. Information Technology and the Organization Chart of Public Administration

    NARCIS (Netherlands)

    Zouridis, S.; Snellen, I.Th.M.; van de Donk, W.B.H.J.

    1998-01-01

    To a certain extent the organization chart of public administration is inspired by the doctrines which are offered by public administration science. Some of these doctrines relate to policy implementation and the design of implementing agencies. In this chapter three of these main doctrines are

  2. North American Technology and Industrial Base Organization. 2009 Annual Report

    Science.gov (United States)

    2009-01-01

    Bionic Power, a company that has developed the Bionic Energy Harvester, a wearable technology that unobtrusively generates electricity from the...ultraminiaturize the teclmology for incorporation into a small arm weapon sight in combination with electronic ignition for small arms . Canada has been...reduced to near zero. This work is complementary (and not duplicated) to U.S . work on small arms , therefore there should be ample "ammunition" to

  3. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    Science.gov (United States)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

  4. Analytical high resolution microscopic investigation of organic coating on co-composted biochar

    Science.gov (United States)

    Albu, Mihaela; Mayrhofer, Claudia; Hagemann, Nikolas; Joseph, Stephen; Hofer, Ferdinand; Kothleitner, Gerald

    2017-04-01

    Aged and/or co-composted biochar amendment improves soil fertility by changing certain proprieties like the porosity and sorption capacity, the redox properties, water holding capacity and nutrient transformations in soil. The beneficial properties have been correlated with surface functional groups resulting from the interactions between black carbon particles, inorganic and organic matter in the soil and soil biota, manure or other compost feedstock. As a result, porous organic layer and organo-mineral phases on the biochar surfaces are formed. This paper presents a detailed analysis of the porous layer and organo-mineral phases formed on co-composted biochar by using high resolution scanning transmission electron microscopy (STEM) and electron energy loss (EELS) as well as energy dispersive X-ray spectroscopy (EDX). The fine structure fingerprints of carbon and nitrogen edges have been used to identify the functional groups, while EDX was used to identify the mineral phases. However, in order to achieve undoubtable results a novel preparation technic of the sample has been developed. The preparation involved 3D gold sputtering on the black carbon particles in order to preserve the surface intact, embedding in resin and, ultrathin microtome cutting. The investigation was carried out using a probe corrected Titan 3G, at a voltage of 60 kV and in cryo-condition, with an EELS energy resolution of 0.15 eV and a spatial resolution down to atomic layers. We proved the presence of both C and N functional groups in the porous, heterogeneous and hydrophilic organic layer and organo-mineral agglomerates. The organic layer fully covered the outer surface of the black carbon piece, but also the surface of internal pores. Its thickness varied from 500-1000 nm on the outer surface down to a couple of nanometres on internal pores. The observed C functional groups have been identified to correspond to: aromatic, aromatic with side chain, ketone, aliphatic, carboxyl/amine carbon

  5. Analysis of the Science and Technology Narrative within Organ Donation and Transplantation Coverage in Canadian Newspapers

    Directory of Open Access Journals (Sweden)

    Jennifer Cheung

    2015-04-01

    Full Text Available Organ failure is one cause of death. Advancements in scientific research and technological development made organ transplantation possible and continue to find better ways to substitute failed organs with other organs of biological origin or artificial organs. Media, including newspapers, are one source of information for the public. The purpose of this study was to examine to what extent and how science and technology research and development are covered in the organ transplantation and organ donation (ODOT coverage of n = 300 Canadian newspapers, including the two Canadian newspapers with national reach (The Globe and Mail, National Post. The study generated qualitative and quantitative data addressing the following issues: (1 which scientific and technological developments are mentioned in the ODOT coverage; and (2 what issues are mentioned in the coverage of scientific and technological advancements linked to ODOT. We found little to no coverage of many technological and scientific advancements evident in academic and grey literature covering ODOT, and we found little engagement with social and ethical issues already raised about these advancements in the literature. The only area we found to be covered to a broader extent was xenotransplantation, although the coverage stopped after 2002. We argue that the newspaper coverage of ODOT under reports scientific and technological advancements related to ODOT and the issues these advancements might raise.

  6. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    OpenAIRE

    B. L. Bourov; E. S. Dashut; N. I. Komkov

    2011-01-01

    With due account for the coming new (VI-th) world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technologicalenvironment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th ...

  7. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  8. Development of organic non-flammable spacecraft potting, encapsulating and conformal coating compounds

    Science.gov (United States)

    Lieberman, S. L.

    1971-01-01

    The overall program objective was to develop a flexible compound which not only functioned in a manned aerospace environment as an effective electrical insulation, but whose flammability characteristics in 16.5 psia, 60% oxygen/40% nitrogen were evidenced by rapid self-extinguishment and minimal thermal (pyrolysis) degradation. The following polymeric matrices were examined in depth: fluoroelastomers, modified fluoroelastomers, silicone RTV's, and modified silicone and fluorosilicone RTV's. Almost none of these systems burned in air, but all burned in 6.2 psia oxygen. Inorganic, organic, and inorganic/organic additives were evaluated in conjunction with these polymers in order to achieve the required survival in the 16.5 psia 60/40 environment. Depending upon formulations, it was possible to achieve nonflammable products when tested in the 1/4 in. x 1/4 in. x 1 in. configuration, even up to and including 16.5 psia oxygen. However, in order to assure this level of flame resistance, it was found necessary to heavily load the matrix with the additives. This resulted in a significant reduction in mechanical properties and large increases in viscosities. Optimization of formulations to obtain a suitable balance between these properties and flammability resistance led to the final selection of Formulation 387 as the primary system.

  9. Decontamination of paint-coated concrete in nuclear plants using laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton; Lippmann, Wolfgang; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Technology

    2013-07-01

    A review of the state of the art shows the technical novelty of the combined project. The development of an all-in-one process for treatment hazard chemical contamination on concrete structures with online monitoring method reduces the laborious mechanic decontamination and post-treatment. For safe experimental investigations, a three-barrier-system was constructed and can be used for tests with - first - epoxy paint in order to analyze and optimize the process. Simulation models help to formulate a mathematic scheme of the decontamination process by laser technology. The goal is a decontamination system with an online analyzing system of the flue gas for a mobile and extensive component in nuclear and conventional decommission. (orig.)

  10. Technology and Properties of Layered Composites as Coatings for Heat Transfer Enhancement

    Science.gov (United States)

    Chatys, R.; Orman, Ł. J.

    2017-07-01

    The mechanical properties of porous structures consisting of copper wires reinforced with carbon and glass fibers for assessment of the adhesion strength of the porous structure produced and cohesion between components of the structures investigated, which are used for heat exchangers, are considered. The internal structure of bonds between their elements was analyzed by metallographic techniques. The statistical relationships for bonds between layers are given. The auxiliary characteristics of technology connected with the "hydrogen disease" of copper are discussed. Specimens were tested for characteristics of their tensile strength. The thermal performance of sintered heat exchangers was also investigated on brass-copper, bronze-copper, and copper-copper samples. The nucleate boiling mode of heat transfer was selected for experiments with distilled water and ethyl alcohol as working fluids.

  11. Personalized Development of Human Organs using 3D Printing Technology

    OpenAIRE

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2015-01-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of o...

  12. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics.

    Science.gov (United States)

    Selzer, Franz; Weiss, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-02-14

    We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □(-1) at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode.

  13. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  14. Technology for safe treatment of radioisotope organic wastes

    International Nuclear Information System (INIS)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C.

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na + substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH 2 PO 4 . From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  15. Organization-and-technological model of medical care delivered to patients with coronary heart disease

    Directory of Open Access Journals (Sweden)

    Popova Y.V.

    2014-09-01

    Full Text Available Organization-and-technological model of medical care delivered to patients with coronary heart disease based on IDEF0 methodology and corresponded with clinical guidelines is presented.

  16. Organization-and-technological model of medical care delivered to patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    Kiselev A.R.

    2014-09-01

    Full Text Available Organization-and-technological model of medical care delivered to patients with arterial hypertension based on IDEF0 methodology and corresponded with clinical guidelines is presented.

  17. Organization-and-technological model of medical care delivered to patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Kiselev A.R.

    2014-09-01

    Full Text Available Organization-and-technological model of medical care delivered to patients with chronic heart failure based on IDEF0 methodology and corresponded with clinical guidelines is presented.

  18. Social Media Mashups: The Ordering and Disordering Role of Social Media Technologies in Organizations

    DEFF Research Database (Denmark)

    Albu, Oana Brindusa; Etter, Michael

    This study explores how mashups (disconnected and mutable interactions from multiple locales to merge into communicative events) and social media (SM) exhibit interdependent agency across technologies, spaces and times. This study draws on communication constitutes organization (CCO), affordances...

  19. Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation.

    Science.gov (United States)

    Chang, Na; Yan, Xiu-Ping

    2012-09-28

    Metal-organic frameworks (MOFs) which offer a variety of topologies, porous networks and high surface areas are promising and have potential for the applications of specific adsorption, isomerization, catalysis and separation. UIO-66 is the first MOF that has been observed to have reverse shape selectivity. However, such reverse shape selectivity of MOFs has never been explored for capillary gas chromatographic separation. Here we report the fabrication of MOF UIO-66 coated capillary column and exploration of the reverse shape selectivity and molecular sieving effect of such column for capillary gas chromatographic separation of alkane isomers and benzene homologues with excellent selectivity and precision. The adsorption enthalpies and entropies on the interaction between hydrocarbons and UIO-66 were measured to illustrate the energy effect on the separation of alkane isomers and benzene homologues on the UIO-66 coated capillary column. UIO-66 coated capillary column gave preferential retention of branched alkane isomers over their linear isomer, showing reverse shape selectivity, making UIO-66 coated capillary column attractive for capillary gas chromatographic separation of alkane isomers. iso-Propylbenzene (branched) eluted after n-propylbenzene on the UIO-66 coated capillary column again shows reverse shape selectivity. However, much bulkier 1,3,5-trimethylbenzene eluted earlier than n-propylbenzene and iso-propylbenzene on the UIO-66 coated capillary column, exhibiting molecular sieving effect. The combination of reverse shape selectivity with molecular sieving effect makes the UIO-66 coated capillary column promising for the separation of structural isomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  1. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks

    KAUST Repository

    Cao, Anping

    2018-03-09

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  2. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  3. Chronic TiO{sub 2} nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, Lindsay K. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Diamond, Stephen A. [Nanosafe Inc., Blacksburg, VA, 24060 (United States); Ma, Hongbo [University of Wisconsin-Milwaukee, Zilber School of Public Health, Milwaukee, WI, 53211 (United States); Hoff, Dale J. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); Li, Shibin, E-mail: lishibinepa@gmail.com [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States)

    2014-11-15

    There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH){sub 3} coated nano-TiO{sub 2} used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO{sub 2} exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH){sub 3} coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings. - Highlights: • Chronic toxicity of nano-TiO{sub 2} to a benthic organism (Hyalella azteca) was examined. • Phototoxicity was investigated through exposure of solar simulated radiation (SSR). • The degradation of a surface coating resulted in an increase in photoactivity. • In this testing scenario, UV had a larger impact than chemical exposure in toxicity.

  4. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  5. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Nayereh, E-mail: nayereh.soltani@gmail.com [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rezaee, Kadijeh [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2014-01-30

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  6. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    International Nuclear Information System (INIS)

    Soltani, Nayereh; Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh; Rezaee, Kadijeh

    2014-01-01

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  7. Technology for defectivity improvement in resist coating and developing process in EUV lithography process

    Science.gov (United States)

    Kamei, Yuya; Shiozawa, Takahiro; Kawakami, Shinichiro; Ichinomiya, Hiroshi; Enomoto, Masashi; Nafus, Kathleen; Foubert, Philippe

    2017-10-01

    Extreme ultraviolet lithography (EUVL) technology is getting closer to high volume manufacturing phase every year. In order to enhance the yield of EUV lithography processing, further improvement of defectivity and CD uniformity is required at the moment. In our previous report in 2017, we have exhibited the defectivity reduction by applying our new rinse and dispense system to a 24nm contact hole (CH) pattern. On the basis of the knowledge received through that evaluation, further study for improvement of the defectivity has been investigated in this paper. As a result of further optimization of the rinse process, 83 % further reduction of residue defect from the result reported previously is achieved. Also, CD uniformity control is a very crucial factor towards EUVL manufacturing phase. We have exposed 15 wafer batches continuously for both line/space and contact hole patterns in order to confirm the current status of wafer to wafer (WTW) as well as field to field (FTF), die to die (DTD), and local uniformity. Now further work for improving CD stability is ongoing based on the results from this first trial.

  8. Improvement of Quality of Carica papaya L. with Clove Oil as Preservative in Edible Coating Technology

    Directory of Open Access Journals (Sweden)

    Eny Kusrini

    2015-12-01

    Full Text Available We have studied utilization of essential clove oil, extracted from clove buds by hydrodistillation, as preservative in edible packaging technology. Preservative of essential clove oil was applied on chopped papaya fruits by using two methods, namely spray and brush. The effects of concentration of clove oil from 0.05 to 0.20% on the preservation of papaya fruits (Carica papaya L. at room temperature (25 °C were also evaluated. Physicochemical and in vitro microbiological activities on the papaya fruits that were stored at 25 oC and 85-90% relative humidity were investigated in details. The results indicate that the clove oil at concentration ≥0.10% suppressed the decay time, 10% weight loss, 0.03 g citric acid/100 g in acidity titration test, and 20% pH value from those of control sample of papaya fruits kept in a storage. The population of fungi and bacteria were efficiently reduced by 90% when the clove oil at concentration ≥0.10% was applied as preservative on papaya fruits. This finding suggested that the extracted essential clove oil acted as effective antifungal and antibacterial agents. Preservative by essential clove oil improved the quality of fruits to extend the product shelf life and to reduce the risk of microbial growth on fruits surface.

  9. Silica scale prevention technology using organic additive, Geogard SX

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Almario; Garcia, Serafin; Solis, Ramonito; Fragata, Jimmy; Ellseworth, Lucero; Llenarizas, Leonardo; Tabuena, Joseph Erwin (PNOC Energy Development Corporation, Makati City (Philippines))

    1998-09-15

    A field trial on the application of an organic additive, phosphino carboxylic acid copolymer, was conducted in a geothermal system to evaluate its effectiveness in preventing silica deposition from brine containing ultra high silica concentration (1000-1300 ppm). Low polymer concentration was applied for about five months, and treatment efficiency based on silica concentrations in various sampling points ranged from 64 to 98%. Treatment efficiency improved as a function of time. Massive silica scaling in the fluid collection and disposal system was minimized.

  10. Noise-margin analysis for organic thin-film complementary technology

    NARCIS (Netherlands)

    Bode, D.; Rolin, C.; Schols, S.; Debucquoy, M.; Steudel, S.; Gelinck, G.H.; Genoe, J.; Heremans, P.

    2010-01-01

    Parameter variation in organic thin-film transistor (OTFT) technology is known to limit the yield of digital circuits. It is expected that complementary OTFT technology (C-TFT) will reduce the sensitivity to parameter variations. In this paper, we quantify the dependence of yield on transistor

  11. Impact of Enterprise Resource Planning on Organizational Productivity in an Information Technology Organization

    Science.gov (United States)

    Garg, Manoj

    2010-01-01

    Negative consequences follow when an expensive technological implementation fails to accomplish expected benefits and results instead in interrupted business, lost revenues, and dissatisfied and demoralized users. The problem researched in this study was how an organization should introduce advanced technology to system users to optimize…

  12. University-Industry Entrepreneurship: The Organization and Management of American University Technology Transfer Units.

    Science.gov (United States)

    Dill, David D.

    1995-01-01

    A survey of 289 university technology transfer units investigated their organization, management, and perceived performance effectiveness. Unit types studied included licensing and patent offices, small business development centers, research and technology centers, business facility incubators, and entrepreneurial investment/endowment offices.…

  13. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  14. Sensible organizations: technology and methodology for automatically measuring organizational behavior.

    Science.gov (United States)

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

    2009-02-01

    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  15. Sunlight technologies for photochemical deactivation of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Acher, A.; Fischer, E.; Tornheim, R. [The Volcani Center, Inst. of Soils and Water, Bet Dagan (Israel); Manor, Y. [Sheba Medical Center, Central Virology Lab., Ramat Gan (Israel)

    1997-12-31

    Sensitized-photochemical oxidation methods aimed at use in water treatment technologies for deactivation of biotic (microorganisms) and/or of xenobiotic (pesticides) pollutants in water were developed using global solar radiation or concentrated sunlight (up to 250 suns). The solar global radiation was used either for detoxification of industrial waste water from a pesticide factory to allow their discharge into the urban sewer, or for disinfection of domestric effluents to be used in crop irrigation. The disinfection process was eventually carried out in an experimental pilot-scale plant, capable of disinfection up to 50 m{sup 3}/h of effluent supplied by an activated sludge sewage treatment plant located in Tel-Aviv area. The treated effluents did not show any regrowth of the microorganisms during 7 days. The solar concentrated radiation experiments performed using facilities of the Sun Tower of The Weizman Institute of Science, Rehovot. The concentrated sunlight was provided by different combination of several computer controlled heliostates, up to 8, that track the sun and focus the received sunlight onto the target situated on the roof of the sun-tower. The sunlight intensities measured on the target reached up to 200 kW/m{sup 2}. The experiments were performed either batch- or continuous-wise. The water-samples exposed to disinfection were the above effluent, filtered and supplemented with vaccine strain poliovirus or with different concentrations of an industrial potential pollutant (bromacil), MB 2 mg/L and two concentrations of dissolved oxygen (8.0 or 40.0 mg O{sub 2}/L). An exposure time of 2-3 seconds at 150 kW/m{sup 2} was decreased the microorganisms alive (counts) by five orders of magnitude. A comparison between the two above water treatment technologies is presented. (orig./SR)

  16. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    Science.gov (United States)

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Laser coating of zirconium + ZrO2 composites on Ti6Al4V for biomedical applications

    CSIR Research Space (South Africa)

    Baloyi, N

    2012-11-01

    Full Text Available Laser coating is an advanced coating technology for improving the surface properties of various components. These coatings are extremely dense, crack-free and have non-porous microstructures. Coatings archived by laser based coating technology have...

  18. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  19. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  20. INCREASING EFFICIENCY OF REPAIRING, MANUFACTURING AND OPERATION OF THE TPP FACILITIES BY TECHNOLOGY OF GAS-THERMAL COATING AND LASER SURFACE MELTING

    Directory of Open Access Journals (Sweden)

    O. E. Grachev

    2015-01-01

    Full Text Available The article considers effectiveness increase of the TPP heat-mechanical equipment repair, manufacturing and maintenance as exemplified by gas-thermal technique for hardening laststages rotor blades of the steam turbines. The rotor blades work under conditions of intense power loading, their airfoil being erosion-corrosion destructed by the action of the moist-steam flow. Repairing companies employ quite a number of technologies to restore some of erosion-worn rotor blades. Inter alia, argon-arc, plasma and gas-powder weld deposition of the original material with subsequent machining, stellite protection recovery, electrical spark alloying the entry edge mat surface, spraying ion-plasma coating on the blade airfoil surface. In domestic turbine building, rotor blades of the steam turbines last stages are manufactured of martensitic class stainless steel. The key condition for successful blade restoration is thermal effect minimizing on the base material for excluding the slag areas possible forming. The laser surface coating technology provides these conditions. They coat the surface of an item being processed by way of melting the base and the adding material. In as much the base melts smallest, the coating characteristics depend mainly on the properties of adding material. The procedure of laser coating passes through several stages including physical contact creation, chemical interaction (laser radiation absorption, volumetrical processes resulting in formation of stable bonds in volume of the materials that have reacted. For the low-pressure cylinder rotor blades supplementary protection against erosion destruction, LLC ‘Technological Systems of Protective Coating’ developed technology of the blade airfoil protective finish by method of high-speed gas-flame sputter. The company realized this technology in 2012 during K-200-12,8 turbine (of the Leningrad Metallurgical Works – LMZ repairing in Zainsk SDPP by JSC ‘Tatenergo’. The

  1. Understanding the role of patient organizations in health technology assessment.

    Science.gov (United States)

    Moreira, Tiago

    2015-12-01

    The involvement of patient representatives in health technology assessment is increasingly seen by policy makers and researchers as key for the deployment of patient-centred health care, but there is uncertainty and a lack of theoretical understanding regarding the knowledge and expertise brought by patient representatives and organisations to HTA processes. To propose a conceptually-robust typological model of the knowledge and expertise held by patient organisations. The study followed a case-study design. Data were collected within an international research project on patient organisations' engagement with knowledge, and included archival and documentary data, in-depth interviews with key members of the organisation and participant observation. Data analysis followed standard procedure of qualitative analysis anchored in an analytic induction approach. Analysis identified three stages in the history of the patient organisation under analysis - Alzheimer's Society. In a first period, the focus is on 'caring knowledge' and an emphasis on its volunteer membership. In a transition stage, a combination of experiential, clinical and scientific knowledge is proposed in an attempt to expand its field of activism into HTA. In the most recent phase, there is a deepening of its network of associations to secure its role in the production of evidence. Analysis identified an important relationship between the forms of knowledge deployed by patient organisations and the networks of expertise and policy they mobilise to pursue their activities. A model of this relationship is outlined, for the use of further research and practice on patient involvement. © 2014 John Wiley & Sons Ltd.

  2. Information Technology Strategies for Honor Society and Organization Membership Retention in Online Nursing Programs.

    Science.gov (United States)

    Hopkins, Emily E; Wasco, Jennifer J

    Membership retention in an honor society or organization is of utmost importance for sustainability. However, retaining members in organizations that serve online education nursing students can be a challenging task. Understanding the importance of creating a sense of community to promote retention within an honor society chapter, nursing faculty at a small private university implemented different online approaches. This article highlights successful information technology strategies to promote membership retention in organizations for online nursing students.

  3. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  4. Emulsion Liquid Membrane Technology in Organic Acid Purification

    International Nuclear Information System (INIS)

    Norela Jusoh; Norasikin Othman; Nur Alina Nasruddin

    2016-01-01

    Emulsion Liquid Membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. This system promote many advantages including simple operation, high selectivity, low energy requirement, and single stage extraction and stripping process. One potential application of ELM is in the purification of succinic acid from fermentation broth. This study outline steps for developing emulsion liquid membrane process in purification of succinic acid. The steps include liquid membrane formulation, ELM stability and ELM extraction of succinic acid. Several carrier, diluent and stripping agent was screened to find appropriate membrane formulation. After that, ELM stability was investigated to enhance the recovery of succinic acid. Finally, the performance of ELM was evaluated in the extraction process. Results show that formulated liquid membrane using Amberlite LA2 as carrier, palm oil as diluent and sodium carbonate, Na 2 CO 3 as stripping agent provide good performance in purification. On the other hand, the prepared emulsion was observed to be stable up to 1 hour and sufficient for extraction process. In conclusion, ELM has high potential to purify succinic acid from fermentation broth. (author)

  5. Development of Ion-Plasma Technology of Deposition of the Nanostructure Bactericidal Coatings on Orthopaedic Implantats and Fixative Devices. Production of Pilot Samples for Verification of their Use in Clinic

    Directory of Open Access Journals (Sweden)

    V.A. Belous

    2013-11-01

    Full Text Available Technology for creating coatings based on titanium oxide, which have pronounced antibacterial properties manifested upon X-ray and UV irradiation has been developed. Biological research showed that the obtained coatings are biocompatible and do not exert cytotoxic effect on cultured fibroblasts, cellular composition of subcutaneous fat and restructure of bone tissue. It is found that nanostructured coatings with anatase structure and thickness of ≥9 microns, implanted with molybdenum ions, have an optimum combination of properties. The department for the deposition of antibacterial coatings on orthopedic implants is created.

  6. Catalytic dehydration of carbohydrates suspended in organic solvents promoted by AlCl3 /SiO2 coated with choline chloride.

    Science.gov (United States)

    Yang, Jie; De Oliveira Vigier, Karine; Gu, Yanlong; Jérôme, François

    2015-01-01

    We show that the coating of choline chloride on silica-supported AlCl3 allows the dehydration of carbohydrates to successfully proceed in low boiling point organic solvents. The concept is based on the in situ formation of a deep eutectic liquid phase on the catalyst surface, thus facilitating the interaction between the solid catalyst and insoluble carbohydrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Elaboration of technology organizational models of constructing high-rise buildings in plans of construction organization

    Science.gov (United States)

    Osipenkova, Irina; Simankina, Tatyana; Syrygina, Taisiia; Lukinov, Vitaliy

    2018-03-01

    This article represents features of the elaboration of technology organizational models of high-rise building construction in technology organizational documentation on the example of the plan of construction organization. Some examples of enhancing the effectiveness of high-rise building construction based on developments of several options of the organizational and technological plan are examined. Qualitative technology organizational documentation allows to increase the competitiveness of construction companies and provides prime cost of construction and assembly works reductions. Emphasis is placed on the necessity to comply with the principle of comprehensiveness of engineering, scientific and research works, development activities and scientific and technical support.

  8. Evaluation of HVOF coatings

    Directory of Open Access Journals (Sweden)

    Mariana Landová

    2016-07-01

    Full Text Available Attention in this paper is devoted to the evaluation of wear coatings deposited using HVOF technology (high velocity oxy-fuel. There were evaluated three types of coatings based on WC-Co (next only 1343, WC-Co-Cr (next only 1350 and Cr3C2-25NiCr (next only 1375. There was assessed adherence of coatings, micro hardness, porosity and the tribological properties of erosive, abrasive, adhesive and wear resistance of coatings in terms of cyclic thermal load. Thanks to wide variety of suitable materials and their combinations, the area of utilization thermally sprayed coatings is very broad. It is possible to deposit coatings of various materials from pure metals to special alloys. The best results in the evaluated properties were achieved at the coating with the label 1375.

  9. Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

    CERN Document Server

    2015-01-01

    Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

  10. 20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

  11. Surface-processing technology of a microgrooving and water-repellent coating improves the fusion potential of an ultrasonic energy device.

    Science.gov (United States)

    Okada, Satoru; Shimada, Junichi; Ito, Kazuhiro; Ishii, Tatsuo; Oshiumi, Koichiro

    2017-02-01

    Ultrasonic energy devices are essential for effective hemostasis during endoscopic surgery. Ultrasonic tissue transection occurs as a result of mechanical friction between the oscillating blade and the tissue. We hypothesized that blade surface structures and characteristics would affect tissue transection and sealing. The aim of this study was to clarify the efficacy of blade surface structures and characteristics in vessel sealing with an ultrasonic vibration. We developed an ultrasonic energy device with 50-kHz vibration frequency and 50 μm amplitude. We manufactured four types of blade surface of the ultrasonic device using microprocessing technology: (1) a non-coated blade without microgrooves, (2) a non-coated blade with microgrooves, (3) a water-repellent-coated blade without microgrooves, and (4) a water-repellent-coated blade with microgrooves. We compared the performance of the four devices and a commercially available ultrasonic device with a non-coated blade without microgrooves in an ex vivo vessel-sealing experiment. We sealed porcine carotid arteries (3-5 mm diameter) using each device 20 times. The cutting time of the water-repellent-coated blade with microgrooves was the shortest (11.0 ± 3.4 s); however, it did not differ significantly from that of the commercial ultrasonic device (12.9 ± 2.9 s, p = 0.73). The burst pressure of the water-repellent-coated blade without microgrooves (1456 ± 425 mmHg) was significantly higher than that of the commercial ultrasonic device (966 ± 559 mmHg, p = 0.04). The sealing failure rate of the water-repellent blade with microgrooves was the lowest of all devices (0 %). Instrumental sticking of tissue decreased in the water-repellent devices. The sealing width was not significantly different. The surface-processing of microgrooves and water-repellent coatings will improve the potential of ultrasonic devices with a fast transection and a high sealing reliability.

  12. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  13. Effectiveness of Information Technology Infrastructure Library Process Implementations by Information Technology Departments within United States Organizations

    Science.gov (United States)

    Persinger, Jon F.

    2010-01-01

    This research study examined whether the overall effectiveness of the Information Technology Infrastructure Library (ITIL) could be predicted by measuring multiple independent variables. The primary variables studied included the number of ITIL process modules adopted and the overall ITIL "maturity level." An online survey was used to…

  14. Management of Emerging Technologies and the Learning Organization : Lessons from the Cloud and Serious Games Technology

    NARCIS (Netherlands)

    A. Alexiou (Andreas)

    2016-01-01

    markdownabstractThis thesis takes learning as a starting point to investigate its associations with successful emerging technologies adoption as well as the act of adaptation to discontinuous change as captured by the phenomenon of organizational resilience. The first part of the thesis explores

  15. White coat effect and masked uncontrolled hypertension in treated hypertensive-diabetic patients: Prevalence and target organ damage.

    Science.gov (United States)

    Leiria, Liana F; Severo, Mateus D; Ledur, Priscila S; Becker, Alexandre D; Aguiar, Fernanda M; Massierer, Daniela; Freitas, Valéria C; Schaan, Beatriz D; Gus, Miguel

    2015-09-01

    The association between hypertensive phenotypes of controlled hypertension (CH), white-coat effect (WCE), masked uncontrolled hypertension (MUH) and sustained hypertension (SH) with target organ damage have not been clearly established in diabetic hypertensive treated patients. The present study aims to evaluate the prevalence of the four phenotypes considering the current cut-off points for office and 24 h-ambulatory blood pressure monitoring (ABPM) and the association with left ventricle hypertrophy (LVH), diastolic function and nephropathy. Cross-sectional study with 304 patients on anti-hypertensive treatment aged 57.6 ± 6.1 years, who were submitted to ABPM and echocardiography. They were classified into CH (normal office BP and ABPM), WCE (high office BP and normal ABPM), MUH (normal office BP and high ABPM), and SH (high office BP and ABPM). Median HbA1c and diabetes duration were 7.9% (6.8-9.2), and 10 years (5-16), respectively. Prevalences of CH, WCE, MUH and SH were 27.3%, 17.1%, 18.8%, and 36.8%. MUH prevalence was higher than previously described. There was a significant increasing trend across the four groups in variables related to LVH (P ABPM beyond the traditional cardiovascular risk stratification tools has limitations, but is still useful in high-risk patients. Longitudinal studies could better evaluate the role of the use of ABPM in this scenario. Cut-off points for normality of office and ABPM influence the prevalences of WCH and MUH. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  16. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  17. Reduction of harmful emissions from a diesel engine fueled by kapok methyl ester using combined coating and SNCR technology

    International Nuclear Information System (INIS)

    Vedharaj, S.; Vallinayagam, R.; Yang, W.M.; Saravanan, C.G.; Chou, S.K.; Chua, K.J.E.; Lee, P.S.

    2014-01-01

    Highlights: • Thermal barrier coating was accomplished by coating the engine components with PSZ. • Under-utilized kapok oil biodiesel was used as renewable fuel in a coated engine. • The BTE of the engine was improved by 9% with reduced BSFC. • CO, HC and smoke were reduced by 40%, 35.3% and 21.4%, respectively. • After implementing SCR assembly, the NO X emission was decreased by 13.4%. - Abstract: This research work has been formulated to reduce the stinging effect of NO X emission on atmospheric environment from a coated diesel engine fueled by biodiesel. As such, in the current study, we attempted to harness the renewable source of energy from in-edible kapok oil, which is normally under-utilized despite being a viable feedstock for biodiesel synthesis. Notably, steam treatment process followed by crushing of the kapok seeds in a mechanical expeller was done to extract large quantities of kapok oil for the application of diesel engine, which is quite distinct of a method adopted herein. The conventional trans-esterification process was availed to synthesize KME (kapok methyl ester) and the physical and thermal properties of it were estimated by ASTM standard methods. Subsequently, two blends of KME with diesel such as B25 (KME – 25% and diesel – 75%) and B50 (KME – 50% and diesel – 50%) were prepared and tested in a single cylinder diesel engine with thermal barrier coating. To help realize the coating process, PSZ (partially stabilized zirconia), a pertinent coating material in respect of its poor thermal conductivity and better durability, has been chosen as the coating material to be applied on engine components by plasma spray coating technique. As an outcome of the coating study, B50 was found to show improved BTE (brake thermal efficiency) than that in an uncoated engine, with notable decrease in major emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke. However, due to reduction in heat losses and increase in in

  18. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-mu m-thick active material that is doped in situ during operation. It is notable...... that the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air....

  19. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  20. A Technology-Organization-Environment Perspective on Eco-effectiveness: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Josephine LL Chong

    2017-03-01

    Full Text Available In this research, we perform a meta-analysis to explain how organizations are deploying technologies to enforce organizational sustainability by meeting the goal of eco-effectiveness. Prior studies have studied the influences on the adoption of technologies using the Technology-Organisation-Environment (TOE model that incorporate some aspects of technological, organizational or environmental factors. We collected prior research to test the factors of the TOE model to ascertain their relative impact and strength. Our meta-analysis found eight additional technological and organizational factors. We found strong support for IT infrastructure, perceived direct benefits, top management support, and competitive pressure. Moderate support for compatibility, technological readiness, perceived indirect benefits, knowledge (human resources, organizational size, attitudes towards innovation, learning culture, pressure from trade partners (industry characteristics and regulatory support. Lastly, weak support was found for relative advantage, complexity, perceived risks and information learning culture. Only two dimensions, financial resources and environmental uncertainty failed to reach statistical significance.

  1. Inquiring the Most Critical Teacher's Technology Education Competences in the Highest Efficient Technology Education Learning Organization

    Science.gov (United States)

    Yung-Kuan, Chan; Hsieh, Ming-Yuan; Lee, Chin-Feng; Huang, Chih-Cheng; Ho, Li-Chih

    2017-01-01

    Under the hyper-dynamic education situation, this research, in order to comprehensively explore the interplays between Teacher Competence Demands (TCD) and Learning Organization Requests (LOR), cross-employs the data refined method of Descriptive Statistics (DS) method and Analysis of Variance (ANOVA) and Principal Components Analysis (PCA)…

  2. Applications analysis report: Silicate technology corporation's solidification/stabilization technology for organic and inorganic contaminants in soils. Final report

    International Nuclear Information System (INIS)

    Bates, E.

    1992-12-01

    The STC demonstration was conducted under EPA's Superfund Innovative Technology Evaluation (SITE) Program in November, 1990, at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated with both organics, predominantly pentachlorophenol (PCP), inorganics, mainly arsenic, chromium, and copper. Extensive sampling and analyses were performed on the waste both before and after treatment to compare physical, chemical, and leaching characteristics of raw and treated wastes. STC's contaminated soil treatment process was evaluated based on contaminant mobility measured by numerous leaching tests, structural integrity of the solidified material, measured by physical and engineering tests and morphological examinations; and economic analysis, using cost information supplied by STC and the results of the SITE demonstration, the vendor's design and test data, and other laboratory and field applications of the technology. It discusses the advantages, disadvantages, and limitations, as well as estimated costs of the technology

  3. THE DUALITY OF CREATIVITY AND TECHNOLOGY IN IS AND ISD ORGANIZATIONS

    DEFF Research Database (Denmark)

    Mengiste, Shegaw Anagaw; Ulrich, Frank

    2014-01-01

    Information Systems (IS) has become an increasing necessity in most organizations to achieve competitive advantages. In this article, we address the use of IS in creative sensemaking processes by presenting the notion of ergodic connections in the sensemaking process and a framework...... new and novel technology ideas to be either rejected, multiplied, or reach an equilibrium state, where the duality of technology plays a major role in ideas reaching the equilibrium state. Furthermore, we investigated the implications of Creativity Support Systems (CSS) in the context of IS and ISD...... organizations and the sensemaking process. To conduct the research of CSS, we deployed Orlikowski's (1992) duality of technology to demonstrate how CSS can support the creative sensemaking process. In addition, we conducted a survey of 31 IS mangers and business developers in 27 IS and ISD organizations...

  4. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics

    Science.gov (United States)

    Selzer, Franz; Weiß, Nelli; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Gaponik, Nikolai; Eychmüller, Alexander; Leo, Karl; Müller-Meskamp, Lars

    2015-01-01

    We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □-1 at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode.We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □-1 at 87

  5. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.

    Science.gov (United States)

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Jönsson, Leif J; Hong, Feng F

    2016-07-08

    Bacterial nanocellulose (BNC) is a microbial nanofibrillar hydrogel with many potential applications. Its use is largely restricted by insufficient strength when in a highly swollen state and by inefficient production using static cultivation. In this study, an in situ nanocellulose-coating technology created a fabric-frame reinforced nanocomposite of BNC hydrogel with superior strength but retained BNC native attributes. By using the proposed technology, production time could be reduced from 10 to 3 days to obtain a desirable hydrogel sheet with approximately the same thickness. This novel technology is easier to scale up and is more suitable for industrial-scale manufacture. The mechanical properties (tensile strength, suture retention strength) and gel characteristics (water holding, absorption and wicking ability) of the fabric-reinforced BNC hydrogel were investigated and compared with those of ordinary BNC hydrogel sheets. The results reveal that the fabric-reinforced BNC hydrogel was equivalent with regard to gel characteristics, and exhibited a qualitative improvement with regard to its mechanical properties. For more advanced applications, coating technology via dynamic bacterial cultures could be used to upgrade conventional biomedical fabrics, i.e. medical cotton gauze or other mesh materials, with nanocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1077-1084, 2016. © 2016 American Institute of Chemical Engineers.

  6. A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase

    OpenAIRE

    Lizin, Sebastien; Van Passel, Steven; De Schepper, Ellen; Delvenne, Cathérine; Dijk, Marc; Leroy, Julie

    2013-01-01

    Organic photovoltaics (OPV) have developed into a vast research area. Progress in various directions has made it difficult to monitor the technology's precise development state. We offer a patent landscape analysis over all OPV devices, their substrates and encapsulation materials to provide an overview of patenting activity from a historical, organizational, geographical and technological point of view. Such an exercise is instrumental for private companies and research institutes aiming ...

  7. Technology-facilitated Organized Abuse: An Examination of Law Enforcement Arrest Cases

    Directory of Open Access Journals (Sweden)

    Janis Wolak

    2015-07-01

    Full Text Available This paper looks at cases of organized abuse (that is, two or more offenders working in concert and having two or more victims, not solely familial reported by law enforcement respondents during the three waves of the National Juvenile Online Victimization (NJOV Study (n=29. The NJOV Study collected data from a national US sample of law enforcement agencies about technology-facilitated crimes ending in arrest at three time points: mid-2000 to mid-2001, 2005 and 2009. The paper reports on the prevalence of technology-facilitated organized abuse ending in arrest, contexts of cases and characteristics of offenders and victims. 

  8. Challenges and opportunities for knowledge organization at the intersection with information technologies

    OpenAIRE

    Martinez-Avila, Daniel [UNESP; San Segundo, Rosa; Zurian, Francisco A.

    2014-01-01

    In this paper we study the intersection of Knowledge Organization with Information Technologies and the challenges and opportunities for Knowledge Organization experts that, in our view, are important to be studied and for them to be aware of. We start by giving some definitions necessary for providing the context for our work. Then we review the history of the Web, beginning with the Internet and continuing with the World Wide Web, the Semantic Web, problems of Artificial Intelligence, Web 2...

  9. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    OpenAIRE

    Anna V. Ivanchenko

    2015-01-01

    Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentatio...

  10. A Study of Tacit Knowledge Transfer Based on Complex Networks Technology in Hierarchical Organizations

    Science.gov (United States)

    Cheng, Tingting; Wang, Hengshan; Wang, Lubang

    In reality, most economic entities are hierarchical organizations. But in the hierarchical organizations tacit knowledge can be transferred across different hierarchies even across different departments. By use of complex networks technology, a hierarchical organization’s framework is modeled in this paper. Through quantifying a number of technical datas we analyze and have a research on the transfer distance and the optimum tacit knowledge transfer path in hierarchy networks.

  11. Cadmium(II)-based metal-organic nanotubes as solid-phase microextraction coating for ultratrace-level analysis of polychlorinated biphenyls in seawater samples.

    Science.gov (United States)

    Sheng, Wan-Ru; Chen, Yue; Wang, Shan-Shan; Wang, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song

    2016-11-01

    In this study, stable cadmium(II)-based metal-organic nanotubes (Cd-MONTs) were prepared and used as a coating material for solid-phase microextraction (SPME) of polychlorinated biphenyls (PCBs) from environmental water samples. The as-prepared Cd-MONT SPME coating material was characterized by thermal gravimetric analysis, scanning electron microscopy, and X-ray diffraction. The synthesized Cd-MONTs exhibited high thermal stability (385 °C) and excellent extraction performance toward PCBs. The important conditions were optimized systematically by the response surface method. Under the optimal conditions, the new fiber achieved high enrichment factors (938-3417), low limits of detection (1.80-8.73 pg L -1 ), and wide linearity (10-5000 pg L -1 ). The method developed was used in ultratrace-level analysis of PCBs in seawater samples, with satisfactory results for each sample.

  12. Dramatically improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Gary [Miltec UV International, LLC, Stevensville, MD (United States); Arnold, John [Miltec UV International, LLC, Stevensville, MD (United States)

    2017-06-30

    The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential of fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the

  13. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.

    1997-04-01

    The US Department of Energy's Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX SM , Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis

  14. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  15. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

    1997-04-01

    The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

  16. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  17. Trajectories towards clean technology. Example of volatile organic compound emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Belis-Bergouignan, Marie-Claude; Oltra, Vanessa; Saint Jean, Maider [IFREDE-E3i, University Montesquieu-Bordeaux IV, Avenue Leon Duguit, Pessac 33608 (France)

    2004-02-20

    This article is based on the observation that, up until now, corporate investment has been limited in clean technologies despite the will of governmental authorities to stimulate them in order to cope with the demands of sustainable development. The paper deals with the issue of the development of clean technologies and the role of regulations as clean technology promoters. It tries to apprehend the characteristics and specificity of clean technology from both an empirical and a theoretical point of view, so as to understand which are the most favourable (or inversely, the most detrimental) conditions for their development. We use case studies concerning the reduction of volatile organic compound (VOC) emissions in the chemical and metallurgical industries. These two examples highlight the problems created by the shift from a 'with-solvent paradigm' to a 'solvent-free paradigm' and the way clean technology trajectories may spread within such paradigms. We show that the problem of clean technology development primarily resides in some factors that impede technological adoption, although a strong and mixed incentives framework prevails. Such impediments are sector-specific, leading to different clean technology trajectories among sectors and indicating areas of sectoral intervention that could become the cornerstones of complementary technology policy.

  18. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Science.gov (United States)

    Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges; Lipsky, Eric M.; Donahue, Neil M.; Sullivan, Ryan C.

    2016-12-01

    Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  19. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  20. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay. © 2013 Wiley Periodicals, Inc.

  1. Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes

    DEFF Research Database (Denmark)

    Jensen, Jacob; Dam, Henrik Friis; Reynolds, John R.

    2012-01-01

    times of lithium-polymer battery) to power the devices between the colored and bleached state, illustrating a self-powered ECD. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B......Electrochromic devices (ECDs) were prepared on flexible substrates using spray coating and slot-die coating methods. The electrochromic materials were the conjugated electroactive polymers, poly((2,2-bis(2-ethylhexyloxymethyl)-propylene-1,3-dioxy)-3,4-thiophene-2,5-diyl) as a vibrantly colored......: Polym Phys, 2012...

  2. Extending Deacon’s Notion of Teleodynamics to Culture, Language, Organization, Science, Economics and Technology (CLOSET

    Directory of Open Access Journals (Sweden)

    Robert K. Logan

    2015-10-01

    Full Text Available Terrence Deacon’s (2012 notion developed in his book Incomplete Nature (IN that living organisms are teleodynamic systems that are self-maintaining, self-correcting and self-reproducing is extended to human social systems. The hypothesis is developed that culture, language, organization, science, economics and technology (CLOSET can be construed as living organisms that evolve, maintain and reproduce themselves and are self-correcting, and hence are teleodynamic systems. The elements of CLOSET are to a certain degree autonomous, even though they are obligate symbionts dependent on their human hosts for the energy that sustains them.

  3. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  4. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  5. Transcending Technological Innovation: The Impact of Acquisitions on Entrepreneurial Technical Organizations

    Science.gov (United States)

    Crochetiere, Bruce

    2011-01-01

    Technology firms with substantial cash reserves acquire smaller entrepreneurial firms for diversification. In 2006, 3 large firms acquired 28 organizations, with the combined deals exceeding $4.7 billion. The problem addressed in this study is that new start-up companies with innovative ideas may not mature when they are acquired by larger…

  6. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    Science.gov (United States)

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  7. A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase

    NARCIS (Netherlands)

    Lizin, Sebastien; Leroy, Julie; Delvenne, Catherine; Dijk, Marc; De Schepper, Ellen; Van Passel, Steven

    2013-01-01

    Organic photovoltaics (OPV) have developed into a vast research area. Progress in various directions has made it difficult to monitor the technology's precise development state. We offer a patent landscape analysis over all OPV devices, their substrates and encapsulation materials to provide an

  8. Effects of organic and conventional production systems and cultivars on the technological properties of winter wheat.

    Science.gov (United States)

    Ceseviciene, Jurgita; Slepetiene, Alvyra; Leistrumaite, Alge; Ruzgas, Vytautas; Slepetys, Jonas

    2012-11-01

    The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems. All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined. Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos. Copyright © 2012 Society of Chemical Industry.

  9. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-01-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and…

  10. Australian Nuclear Science and Technology Organization (Transitional Provisions) Act 1987 - No 4 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act implements certain transitional provisions consequent to the enactment of the ANSTO Act 1987. The legislation provides for the continuation of the body corporate from its present form as the Australian Atomic Energy Commission to the new body corporate, the Australian Nuclear Science and Technology Organization. (NEA) [fr

  11. Proceedings of the 1st Workshop on Technology Support for Self-Organized Learners

    NARCIS (Netherlands)

    Kalz, Marco; Koper, Rob; Hornung-Prähauser, Veronika; Luckmann, Michaela

    2008-01-01

    Kalz, M., Koper, R., Hornung-Prähauser, V., & Luckmann, M. (Eds.) (2008). Proceedings of the 1st Workshop on Technology Support for Self-Organized Learners. June, 2-3, 2008, Salzburg, Austria: CEUR Workshop Proceedings, ISSN 1613-0073. Available at http://ceur-ws.org/Vol-349.

  12. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  13. HOW THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE DEVELOPED A NEW WASTE PACKAGE USING A POLYUREA COATING THAT IS SAFELY AND ECONOMICALLY ELIMINATING SIZE REDUCTION OF LARGE ITEMS

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Hogue, Richard S.; Kimokeo, Margaret K.

    2003-01-01

    One of the major challenges involved in closing the Rocky Flats Environmental Technology Site (RFETS) is the disposal of extremely large pieces of contaminated production equipment and building debris. Past practice has been to size reduce the equipment into pieces small enough to fit into approved, standard waste containers. Size reducing this equipment is extremely expensive, and exposes workers to high-risk tasks, including significant industrial, chemical, and radiological hazards. RFETS has developed a waste package using a Polyurea coating for shipping large contaminated objects. The cost and schedule savings have been significant

  14. Applications of Organic and Printed Electronics A Technology-Enabled Revolution

    CERN Document Server

    2013-01-01

    Organic and printed electronics can enable a revolution in the applications of electronics and this book offers readers an overview of the state-of-the-art in this rapidly evolving domain.  The potentially low cost, compatibility with flexible substrates and the wealth of devices that characterize organic and printed electronics will make possible applications that go far beyond the well-known displays made with large-area silicon electronics. Since organic electronics are still in their early stage, undergoing transition from lab-scale and prototype activities to production, this book serves as a valuable snapshot of the current landscape of the different devices enabled by this technology, reviewing all applications that are developing and those can be foreseen.   Provides a complete roadmap for organic and printed electronics research and development for the next several years; Includes an overview of the printing processes for organic electronics, along with state of the art applications, such as solar ...

  15. The role of organic modification of layered nanosilicates on mechanical and surface properties of organic–inorganic coatings

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Duchek, P.; Strachota, Adam; Poreba, Rafal; Kotek, Jiří; Baldrian, Josef; Šlouf, Miroslav

    2011-01-01

    Roč. 8, č. 3 (2011), s. 311-328 ISSN 1547-0091 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic–inorganic nanocomposite * coating * sol–gel process Subject RIV: JI - Composite Materials Impact factor: 1.121, year: 2011

  16. The influence of nanoadditives on surface, permeability and mechanical properties of self-organized organic–inorganic nanocomposite coatings

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Strachota, Adam; Brožová, Libuše; Brus, Jiří; Urbanová, Martina; Baldrian, Josef; Šlouf, Miroslav; Bláhová, O.; Duchek, P.

    2010-01-01

    Roč. 7, č. 2 (2010), s. 219-228 ISSN 1547-0091 R&D Projects: GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coatings * nanoadditives * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.056, year: 2010

  17. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: HVLP COATING EQUIPMENT, ITW AUTOMOTIVE REFINISHING, DEVILBISS FLG-631-318 HVLP SPRAY GUN

    Science.gov (United States)

    This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: HVLP COATING EQUIPMENT, ITW AUTOMOTIVE REFINISHING, DEVILBISS GTI-600G, HVLP SPRAY GUN

    Science.gov (United States)

    This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...

  20. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control