WorldWideScience

Sample records for technologies manned mars

  1. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    would be reduced because of intermediate tankings plus opening up the possibility of making the craft reusable for several back and forth trips. The manned spacecraft can be tanked first time at Earth C3, second time in Mars orbit for the return trip, and again in Earth C3 for the next trip if the spacecraft is reusable. When propellant is cheap in Mars orbit, it may also make sense to perform an all-propulsive landing which would make thermal shielding unnecessary. In this case the manned spacecraft would be tanked in Mars orbit two times plus once on the surface per each bidirectional mission. We estimate that the dry mass of cryogenic propellant factories and their associated temporary storage tanks that can process 50 tonnes of water per year is 20 tonnes. By developing the E-sail as enabling technology and by employing asteroid water mining, we think that sustained bidirectional Earth-Mars manned transportation could be created which would asymptotically require no more resources than what running the International Space Station requires today. References [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Janhunen, P., A. Quarta and G. Mengali G., Electric solar wind sail mass budget model, Geosci. Instrum. Method. Data Syst., 2, 85-95, 2013.

  2. Manned systems technology discipline

    Science.gov (United States)

    Bretoi, Remus

    1990-01-01

    Viewgraphs on manned systems technology discipline for Space Station Freedom are presented. Topics covered include: crew-systems interfaces and interactions; crew training; on-board systems maintenance and support; habitability and environment; and computational human factors.

  3. Man--Society--Technology.

    Science.gov (United States)

    Taxis, Linda A., Ed.

    The 32nd annual American Industrial Arts Association (AIAA) Convention was held in Louisville in 1970. Topics for the AIAA general session addresses were: (1) "Industrial Arts--The Blender Between Social Form and Technical Function," (2) "Technology and Society: Present and Future Challenges," (3) "A Student-Oriented Industrial Arts," (4) "Man:…

  4. EMMI-Electric solar wind sail facilitated Manned Mars Initiative

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Paton, Mark

    2015-08-01

    The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.

  5. EMMI - Electric Solar Wind Sail Facilitated Manned Mars Initiative

    CERN Document Server

    Janhunen, Pekka; Paton, Mark

    2014-01-01

    The novel propellantless electric solar wind sail (E-sail) concept promises efficient low thrust transportation in the solar system outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water eliminate the exponential nature of the rocket equation and also enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in Mars orbit provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the Interna...

  6. Optimal parking orbits for manned Mars missions

    Science.gov (United States)

    Cupples, Michael L.; Nordwall, Jill A.

    This paper summarizes a Mars parking orbit optimization effort. This parking orbit study includes the selection of optimal elliptic Mars parking orbits that meet mission constraints and that include pertinent apsidal misalignment losses. Mars missions examined are for the opportunity years of 2014, 2016, and 2018. For these mission opportunities, it is shown that the optimal parking orbits depend on the year that the mission occurs and are coupled with the outbound, Mars stay, and return phases of the mission. Constraints included in the parking orbit optimization process are periapsis lighting angle (related to a daylight landing requirement), periapsis latitude (related to a landing latitude range requirement) and the vehicle Trans-Earth-Injection stage mass. Also, effects of mission abort requirements on optimal parking orbits are investigated. Off-periapsis maneuvers for Mars orbit capture were found to be cost effective in reducing the mission delta-V for the 2016 abort from Mars capture scenario. The total capture and departure delta-V was `split' between the capture maneuver and the departure maneuver to reduce the 2016 Mars departure delta-V to below the level of the corresponding stage of the 2014 baseline mission. Landing results are provided that show Mars landing site access from the optimal elliptic parking orbits for Mars excursion vehicles with low (0.2) and high (1.3 and 1.6) lift to drag ratio.

  7. New trade tree for manned mars missions

    Science.gov (United States)

    Salotti, Jean-Marc

    2014-11-01

    Recent studies on human missions to Mars suggest revisiting the parameters that have the most important impact on the complexity, the initial mass in low Earth orbit, the risks and the development costs for the first journey to the red planet. In the last NASA reference mission, a trade tree is proposed. At first level, the parameter is the class of mission, e.g., conjunction (long surface stay) or opposition (short surface stay). This parameter is important but there is an agreement on the best option (conjunction). It is therefore not a relevant parameter of the decision tree. For the other levels, the parameters are as follows: Mars orbit insertion: aerocapture or propulsive. Exploitation of local resources: yes/no. Propulsion for interplanetary flight: chemical/nuclear thermal/electric. The relevance of these parameters is questionable. It is proposed to reexamine all parameters of the mission and to study their interdependency and the complexity and the costs of possible options. The first important parameter should be the size of the crew. It should be assigned to the top node of the tree, because its impact on the initial mass in low Earth orbit, costs and risks is probably higher than any other parameter. Another parameter is the strategy for Mars orbit insertion. It is suggested here that aerocapture is very important and that it brings acceptable constraints for the architecture of the mission. The third parameter should be the strategy for entry, descent and landing. The mass of the landing vehicle is very important, because it is tightly linked to the complexity of the entry, descent and landing phase. With a low mass, a capsule shape and a rigid heat shield can be chosen for this maneuver (lowest risk, highest technology readiness level). With a heavy vehicle, an inflatable heat shield might help but the qualification of the systems would be very difficult and the entry, descent and landing phase would be more complex. This parameter is clearly a

  8. [Physiological problems of manned mission to Mars].

    Science.gov (United States)

    Grigor'ev, A I

    2007-05-01

    Harsh environment and extreme factors related to the supposed exploration missions to Mars are considered as well as concomitant human organism reactions. Further investigations are required to get insight into the effects of gravity ranging from microgravity to hypogravity to hypergravity the crew will be exposed to during this voyage. A special emphasis should be placed on the studies of artificial gravity as an alternative to the existing in-flight countermeasures. Other issues to be attended include transitory states of human organism as a response to changes in gravity, effects of ionizing radiation and synergy of the variety of flight factors, and mechanisms of the hypomagnetic effects.

  9. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  10. Manned Mars mission Earth-To-Orbit (ETO) delivery and orbit assembly of the manned Mars vehicle

    Science.gov (United States)

    Barisa, B.; Solmon, G.

    1986-01-01

    The initial concepts developed for the in-orbit assembly of a Manned Mars Vehicle and for the Earth-to-Orbit (ETO) delivery of the required hardware and propellant are presented. Two (2) Mars vehicle concepts (all-propulsive and all-aerobrake) and two (2) ETO Vehicle concepts were investigated. Both Mars Vehicle concepts are described in Reference 1, and both ETO Vehicle concepts are described in Reference 2. The all-aerobrake configuration reduces the number of launches and time required to deliver the necessary hardware/propellent to orbit. Use of the larger of the 2 ETO Vehicles (HLLV) further reduces the number of launches and delivery time; however, this option requires a completely new vehicle and supporting facilities.

  11. Comparison of Space Propulsion Methods for a Manned Mission to Mars

    CERN Document Server

    Guerra, A G C; Gil, P J S

    2015-01-01

    We undertake a comparison of the latest developments in propulsion technologies, for a manned mission to Mars. The main objective is to assess the possibility of reducing travel time keeping the mass at departure within bounds. For the sake of comparison we used representative systems of different state of the art or proposed technologies, from the chemical engine to the "Pure Electro-Magnetic Thrust" (PEMT) concept, using a nuclear engine proposed by Rubbia. A mission architecture is suggested, based on existing mission proposals to Mars, to estimate the mass budget that influences the performance of the propulsion system. The trajectory of the spacecraft is determined by a numerical integration of the equations of motion and a partial optimization procedure, for the interplanetary phase with continuous thrust, and by conics and instant manoeuvres in the regions of influence of the departure and arrival planets. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn....

  12. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    The presentation discusses so far unexplored biophysical problem of manned flight to the Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut-6" Soviet cosmonaut crews under the command of one of the co-authors (cosmonaut V.V. Kovalenok) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects were coinciding with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that, during all these periods, the geomagnetic pulsation's were completely absent. Previously a new but very important for long interplanetary expeditions problem of psychophysical state of the crew in the absence of alternating electromagnetic fields and radiation, including the ionosphere one, was first raised for evolutionarily adapted humanity. However, up to date, this subject, particularly during the long simulation experiments such as "Mars 500", which eliminates much of their value and contribution to the Mars mission, has almost no attention. Indeed, the obtained results have clearly shown that the cosmonaut crews in orbital flight, even deep one within geomagnetic sphere, might experience severe psychological discomfort, the nature of which is fully defined. This is the appearance of such rather unusual geophysical periods of different durations (from minutes to days) those are in the form of an almost complete lack of geomagnetic pulsations on the Earth. The aim is to confirm the need of considering possible pathological effects of the complete lack of rhythm forming, inherent for terrestrial environment geomagnetic pulsation's on psychological and physical state of the cosmonaut crew. This is important for the preparation and conducting the manned flights beyond the Earth's magnetosphere, particularly to the Mars. The influence of the presence of different types of geomagnetic pulsation's recorded by

  13. Breakthrough in Mars balloon technology

    Science.gov (United States)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  14. Solar Warning Architecture for Manned Missions to Mars

    Science.gov (United States)

    2011-06-01

    always encouraging when dealing with STK neophytes; Jennifer Jahn, Kristen Jones, and Lynn Curtis who have provided outstanding support throughout...organizations (Wilson and Clarke 2006), (Mars Society 1999), ( Ashworth 2007), and industries (Zubrin, Baker and Gwynne 1991) have produced studies of...epoch. 117 Bibliography Ashworth , Stephen. Three Ways to Mars. London: British Interplanetary Society, 2007. Bostrom, C. O., C. L. Fischer

  15. Nuclear Power Systems for Manned Mission to Mars

    Science.gov (United States)

    2004-12-01

    5 Figure 4. Generic Nuclear Thermal Rocket ......................................................................7 Figure 5. Generic...Thermoelectronics, 2002,1. 7 Figure 4. Generic Nuclear Thermal Rocket NTP is currently the design of choice for the NASA Mars Design Reference Mission

  16. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  17. Manned Mars mission solar physics: Solar energetic particle prediction and warning

    Science.gov (United States)

    Suess, S. T.

    1986-01-01

    There are specific risks to the crew of the manned Mars mission from energetic particles generated by solar activity. Therefore, mission planning must provide for solar monitoring and solar activity forecasts. The main need is to be able to anticipate the energetic particle events associated with some solar flares and, occasionally, with erupting filaments. A second need may be for forecasts of solar interference with radio communication between the manned Mars mission (during any of its three phases) and Earth. These two tasks are compatible with a small solar observatory that would be used during the transit and orbital phases of the mission. Images of the Sun would be made several times per hour and, together with a solar X-ray detector, used to monitor for the occurrence of solar activity. The data would also provide a basis for research studies of the interplanetary medium utilizing observations covering more of the surface of the Sun than just the portion facing Earth.

  18. Manned mars mission enhancements using Pratt & Whitney escort combined propulsion and power system

    Science.gov (United States)

    Joyner, Russell; Feller, Gerald J.

    1999-01-01

    The purpose of this paper is to describe the cost implications to manned Mars missions when a nuclear thermal combined propulsion and power unit is used for main propulsion and mission power. The paper uses a series of mission opportunities during the NASA DRM focus period and looks at how a NTR (Nuclear Thermal Rocket) can be used to increase the Mars mission payload delivery capability and mission flexibility across the entire mission spectrum. In propulsive mode, a nuclear reactor is used to heat hot hydrogen, which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. A Mars transportation system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the Mars conjunction class mission requirements. Propellant tanks, propulsion system mass, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation. This paper examines how the design characteristics of the ESCORT derivative propulsion and power system affect the mission payload capability and the earth launch vehicle design requirements. The same reactor design is also used for Mars surface power reactor, delivered as payload by the ESCORT derivative powered Mars transfer stage. Trade curves of mission mass and payload are presented.

  19. The analysis of manned Mars mission with duration of 1000 days

    Science.gov (United States)

    Konstantinov, Mikhail S.; Petukhov, Viacheslav G.

    2012-04-01

    Results of the analysis of manned mission to Mars are presented. The project of Mars's manned complex with nuclear electric propulsion is analyzed. The paper focuses on trajectory optimization as well as on the analysis of a required level of characteristics of the main systems of the manned complex (electric power of nuclear electric power supply system, specific impulse of electric propulsion, specific mass of electric power and propulsion system). The essential characteristic of the considered project (its feature) is extremely small (200 metric tons) initial mass of spacecraft at LEO. Time of the manned mission is equal to 1000 days. The maximal specific mass of electric power and propulsion system at which it is possible to carry out the considered mission is estimated. The range of specific impulse of electric propulsion 4500-7500 s is investigated. It is shown that at considered characteristics of space transport system the optimal magnitude of a specific impulse is equal to 7000 s. At efficiency of electric propulsion 0.6 the specific mass of electric power and propulsion systems should not exceed 14.6 kg/kW. If efficiency of electric propulsion is equal to 0.7, the specific mass of electric power and propulsion systems should not exceed 17.0 kg/kW.

  20. Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzella

    2011-01-01

    Full Text Available The paper deals with the aerodynamic analysis of a manned braking system entering the Mars atmosphere with the aim to support planetary entry system design studies. The exploration vehicle is an axisymmetric blunt body close to the Apollo capsule. Several fully three-dimensional computational fluid dynamics analyses have been performed to address the capsule aerodynamic performance. To this end, a wide range of flow conditions including reacting and nonreacting flow, different angles of attack, and Mach numbers have been investigated and compared. Moreover, nonequilibrium effects on the flow field around the entry vehicle have also been investigated. Results show that real-gas effects, for all the angles of attack considered, increase both the aerodynamic drag and pitching moment whereas the lift is only slighted affected. Finally, results comparisons highlight that experimental and CFD aerodynamic findings available for the Apollo capsule in air adequately represent the static coefficients of the capsule in the Mars atmosphere.

  1. Man and His Technology: Problems and Issues.

    Science.gov (United States)

    Piel, E. J.; Truxal, John G.

    This book looks at a sampling of notable socio-technical problems within a rational context. It seeks to determine if problems exist with recent decisions in the application of technology; how threatening any problems may be; the source of problems; and examines alternatives available to the nation. The broad goal of this rational consideration is…

  2. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Science.gov (United States)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  3. Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning

    Science.gov (United States)

    Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.

    2003-01-01

    The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.

  4. Academic Training: Surviving in space: the challenges of a manned mission to Mars

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 26, 27, 28 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Surviving in space: the challenges of a manned mission to Mars by L. S. Pinsky / Univ. Houston, USA Program : Lecture I: Understanding the Space Radiation Environment Lecture II: Dosimetry and the Effects of the Exposure of Human Tissue to Heavily Ionizing Radiation Lecture III: Modelling the Interaction of the Space Radiation in Spacecraft & Humans, and Assessing the Risks on a Mission to Mars... ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Departmental Secretariat or from your DTO (Departmental Training Officer). Applications will be accepted in the order ...

  5. Mission Assurance and Flight Safety of Manned Space Flight: Implications for Future Exploration of the Moon and Mars

    Science.gov (United States)

    Kezirian, M. T.

    2007-01-01

    As NASA implements the nation's Vision for Space Exploration to return to the moon and travel to Mars, new considerations will be be given to the processes governing design and operations of manned spaceflight. New objectives bring new technical challenges; Safety will drive many of these decisions.

  6. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  7. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  8. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    Science.gov (United States)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  9. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    Science.gov (United States)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  10. Analysis and testing of key technologies of PTN on MAN

    Science.gov (United States)

    Feng, Xiancheng; Chen, Ying; Cui, Wanlong

    2009-08-01

    Broadband connectivity to Internet has quickly become one of the most successful telecom service offerings ever. The meeting and marketplace of the future requires Full-Service Broadband. Full Service Broadband encompasses a unique combination of products and experience that will enable operators and network providers to meet this emerging demand for anywhere access to broadband services, quickly, cost-effectively and with minimal risk. Firstly, the standard of PTN (Packet Transmission Network) are analyzed. Then ,by deep analysis the key technology of PTN on MAN. The key technologies of PTN on MAN can be divided into two group: PBT, PBBREP, RRPP, ERP technology, and Carrier Ethernet with MPLS technology. At the same time, communication each other of MSTP and PTN,T-MPLS and IP/MPLS ,PBT and IP/MPLS are carried out by figures. At last, testing of PTN are analyzed, testing contents mainly include: TDM service function of PTN equipment, long time BER capability of STM-1service, time delay capability of PTN equipment, protection and provisioned backup path function of T-MPLS, Wrapping protection a function of T-MPLS loop network,and OAM functions.

  11. Advanced Technology-Based Low Cost Mars Sample Return Missions

    Science.gov (United States)

    Wallace, R. A.; Gamber, R. T.; Clark, B. C.

    1995-01-01

    Mars Sample Return (MSR) has for many years been considered one of the most ambitious as well as most scientifically interesting of the suite of desired future planetary missions. This paper defines low- cost MSR mission concepts based on several exciting new technologies planned for space missions launching over the next 10 years. Key to reducing cost is use of advanced spacecraft & electronics technology.

  12. Study on Nuclear Thermal Rocket for Manned Mars Exploration%载人核热火箭登陆火星方案研究

    Institute of Scientific and Technical Information of China (English)

    洪刚; 娄振; 郑孟伟; 王建明

    2015-01-01

    With the high-speed development of space technology in the 21st century, the main space faring counties have proposed manned Mars exploration initiatives in 2030 s.In this article , the ad-vantages and disadvantages of chemical , electrical and nuclear rocket were compared at first .It was found that nuclear thermal rocket ( NTR) technology was the best choice for future manned Mars ex-ploration .Then , the development history of nuclear thermal rocket in US and Russia was reviewed , and the nuclear thermal/electrical bimodal technological trend was presented .Finally, Chinese prime human mars exploration architecture , crew/cargo separation and 5-times LEO docking , were proposed .Based on this architecture , a 15 t single-thrust and 940 s impulse nuclear thermal engine was designed and Chinese NTR development-research plan between 2016 and 2035 was presented .%针对未来载人登陆火星任务,比较了化学推进、电推进及核推进的优缺点,指出核热推进是未来载人登陆火星的首选. 简述了美国和俄罗斯在核热推进的研究进展,指出核热/发电双模式是未来载人登火的发展趋势. 提出我国近地轨道5次对接、人货分离载人登陆火星构想.在此基础上,设计了单台推力15 t,比冲940 s载人核热发动机并提出我国核热火箭2016—2035年发展研究规划.

  13. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  14. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    Science.gov (United States)

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  15. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  16. ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions

    Science.gov (United States)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements

  17. Exploring PV on the Red Planet: Mars Array Technology Experiment and Dust Accumulation and Removal Technology

    Science.gov (United States)

    Landis, Geoffrey A.; Baraona, Cosmo; Brinker, David; Schelman, David

    2004-01-01

    The environment on the surface of Mars is different in several critical ways from the orbital environment in which space solar arrays normally operate. Some important differences are: 1) Low intensity, low temperature operation; 2) Spectrum modified by atmospheric dust, varies with time; 3) Indirect sunlight; 4) Possibility of dust atoms at some times of year; 5) Deposited dust; 6) Wind; 7) Peroxide-rich reactive soil. We are developing two experiments to test operation of solar arrays on the surface of Mars, to be flown on the 2001 Surveyor Lander mission. The Mars Array Technology Experiment (MATE) will test the operation of several types of solar cells under Mars conditions, and determine the direct and scattered solar spectrum at the surface. The Dust Accumulation and Removal Technology (DART) experiment will monitor the amount of dust deposition on a target solar cell, measure the characteristics of the dust, and test the feasibility of dust removal.

  18. Principles for Integrating Mars Analog Science, Operations, and Technology Research

    Science.gov (United States)

    Clancey, William J.

    2003-01-01

    During the Apollo program, the scientific community and NASA used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. Human factors studies (Harrison, Clearwater, & McKay 1991; Stuster 1996) have focused on the effects of isolation in extreme environments. More recently, with the advent of wireless computing, we have prototyped advanced EVA technologies for navigation, scheduling, and science data logging (Clancey 2002b; Clancey et al., in press). Combining these interests in a single expedition enables tremendous synergy and authenticity, as pioneered by Pascal Lee's Haughton-Mars Project (Lee 2001; Clancey 2000a) and the Mars Society s research stations on a crater rim on Devon Island in the High Canadian Arctic (Clancey 2000b; 2001b) and the Morrison Formation of southeast Utah (Clancey 2002a). Based on this experience, the following principles are proposed for conducting an integrated science, operations, and technology research program at analog sites: 1) Authentic work; 2) PI-based projects; 3) Unencumbered baseline studies; 4) Closed simulations; and 5) Observation and documentation. Following these principles, we have been integrating field science, operations research, and technology development at analog sites on Devon Island and in Utah over the past five years. Analytic methods include work practice simulation (Clancey 2002c; Sierhuis et a]., 2000a;b), by which the interaction of human behavior, facilities, geography, tools, and procedures are formalized in computer models. These models are then converted into the runtime EVA system we call mobile agents (Clancey 2002b; Clancey et al., in press). Furthermore, we have found that the Apollo Lunar Surface Journal (Jones, 1999) provides a vast repository or understanding astronaut and CapCom interactions, serving as a baseline for Mars operations and quickly highlighting opportunities for computer automation (Clancey, in press).

  19. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    Science.gov (United States)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  20. Nuclear propulsion: A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1988-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  1. Nuclear propulsion - A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1989-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the only other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class spaceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  2. Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.

    Science.gov (United States)

    Hellweg, Christine E; Baumstark-Khan, Christa

    2007-07-01

    Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.

  3. Mars

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Mars exploration has never been more active, and our understanding of the planet is advancing rapidly. New discoveries reveal gullies carved by recent groundwater flow, thick ice deposits protected by rocks and soil even at the equator, and new evidence for lakes and seas in Mars' past. The Martian surface has some of the oldest planetary crust in the solar system, containing clues to conditions in early planets that cannot be obtained elsewhere.Beginning with a discussion of Mars as a planet in orbit, Mars, Revised Edition covers fundamental facts about this planet, including its mass and siz

  4. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  5. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  6. Impact of digital systems technology on man-vehicle systems research

    Science.gov (United States)

    Bretoi, R. N.

    1983-01-01

    The present study, based on a NASA technology assessment, examines the effect of new technologies on trends in crew-systems design and their implications from the vantage point of man-vehicle systems research. Those technologies that are most relevant to future trends in crew-systems design are considered along with problems associated with the introduction of rapidly changing technologies and systems concepts from a human-factors point of view. The technologies discussed include information processing, displays and controls, flight and propulsion control, flight and systems management, air traffic control, training and simulation, and flight and resource management. The historical evolution of cockpit systems design is used to illustrate past and possible future trends in man-vehicle systems research.

  7. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  8. Technology and Education: Non-prioritized Technology in an Adaptive Society: A Socio-political View. An Occasional Paper on Man/Society/Technology.

    Science.gov (United States)

    Monahan, William G.

    This seminar paper explores the relationship between technology and society, based on the position that man has not developed a social system that gives adequate guidance to technology. The hypothesis is that if technology has no priority, then it has no purpose. Talcott Parsons' concepts of functional imperatives and pattern variables are…

  9. Technology and Education: Non-prioritized Technology in an Adaptive Society: A Socio-political View. An Occasional Paper on Man/Society/Technology.

    Science.gov (United States)

    Monahan, William G.

    This seminar paper explores the relationship between technology and society, based on the position that man has not developed a social system that gives adequate guidance to technology. The hypothesis is that if technology has no priority, then it has no purpose. Talcott Parsons' concepts of functional imperatives and pattern variables are…

  10. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  11. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  12. Space nuclear power: technology, policy, and risk considerations in human missions to Mars.

    Science.gov (United States)

    Friedensen, V P

    1998-01-01

    There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public.

  13. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    Science.gov (United States)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  14. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    Science.gov (United States)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  15. Feasibility of Single and Dual Satellite Systems to Enable Continuous Communication Capability to a Manned Mars Mission

    Science.gov (United States)

    2014-09-01

    the layer or envelope of gases surrounding a planet (Merriam Webster, 2014). It is critical and largely causal to the morphology of a planet...Mars lasercom terminal. Retrieved IEEE Photonic Society from http://photonicssociety.org/ newsletters /oct05/lasercom.html Seahen. (n.d.). Conic

  16. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  17. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    Science.gov (United States)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  18. Development of Information Technology and Communication in Mexico: Reflections on Technology, Social and Organizational Man

    Directory of Open Access Journals (Sweden)

    Anahí Gallardo Velázquez

    2012-11-01

    Full Text Available Technology is a tool for everyday application,  which  allows men to accomplish the tasks for which it was designed as an efficient being, but if someone decides to discard it, that would be impossible, since we live in a society that punishes the technological illiterate. Mexico and Latin America participate with people and its organizations in the network, in the liquid life of the knowledge and information society. Mexico in particular, advances to important steps in the development of digital infrastructure, but it is not as important as the developed countries in this subject, in spite of its intention to be part of this global world of information and communication technologies. This survey is a reflection on the importance of Information and Communication Technology (ICT, in our country, from an organizational perspective, understanding by this,  a deeper search of the impact of technological development, specifically ICT, in the human being.

  19. Expanding venue and persistence of planetary mobile robotic exploration: new technology concepts for Mars and beyond

    Science.gov (United States)

    Schenker, Paul S.; Elfes, Albert; Hall, Jeffrey L.; Huntsberger, Terrance L.; Jones, Jack A.; Wilcox, Brian H.; Zimmerman, Wayne F.

    2003-10-01

    The domain and technology of mobile robotic space exploration are fast moving from brief visits to benign Mars surface regions to more challenging terrain and sustained exploration. Further, the overall venue and concept of space robotic exploration are expanding—"from flatland to 3D"—from the surface, to sub-surface and aerial theatres on disparate large and small planetary bodies, including Mars, Venus, Titan, Europa, and small asteroids. These new space robotic system developments are being facilitated by concurrent, synergistic advances in software and hardware technologies for robotic mobility, particularly as regard on-board system autonomy and novel thermo-mechanical design. We outline these directions of emerging mobile science mission interest and technology enablement, including illustrative work at JPL on terrain-adaptive and multi-robot cooperative rover systems, aerobotic mobility, and subsurface ice explorers.

  20. A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission

    Science.gov (United States)

    Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam

    2003-11-01

    We present a proposed robotic mission to Mars - Vanguard - for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of "water mining" capabilities for in-situ resource utilisation in conjunction with high-value astrobiological investigation within a low mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of in-situ resource utilisation will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the reuse of the already built Mars Express bus, making it a very low cost option.

  1. The potential impact of new power system technology on the design of a manned Space Station

    Science.gov (United States)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  2. INSPIRE and MarCO - Technology Development for the First Deep Space CubeSats

    Science.gov (United States)

    Klesh, Andrew

    2016-07-01

    INSPIRE (Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment) and MarCO (Mars Cube One) will open the door for tiny spacecraft to explore the solar system. INSPIRE serves as a trailblazer, designed to demonstrate new technology needed for deep space. MarCO will open the door for NanoSpacecraft to serve in support roles for much larger primary missions - in this case, providing a real-time relay of for the InSight project and will likely be the first CubeSats to reach deep space. Together, these four spacecraft (two for each mission) enable fundamental science objectives to be met with tiny vehicles. Originally designed for a March, 2016 launch with the InSight mission to Mars, the MarCO spacecraft are now complete and in storage. When launched with the InSight lander from Vandenberg Air Force Base, the spacecraft will begin a 6.5 month cruise to Mars. Soon after InSight itself separates from the upper stage of the launch vehicle, the two MarCO CubeSats will deploy and independently fly to Mars to support telecommunications relay for InSight's entry, descent, and landing sequence. These spacecraft will have onboard capability for deep space trajectory correction maneuvers; high-speed direct-to-Earth & DSN-compatible communications; an advanced navigation transponder; a large deployable reflect-array high gain antenna; and a robust software suite. This talk will present an overview of the INSPIRE and MarCO projects, including a concept of operations, details of the spacecraft and subsystem design, and lessons learned from integration and test. Finally, the talk will outline how lessons from these spacecraft are already being utilized in the next generation of interplanetary CubeSats, as well as a brief vision of their applicability for solar system exploration. The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration (NASA).

  3. Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations

    Science.gov (United States)

    Lillard, Randolph; Olejniczak, Joe; Polsgrove, Tara; Cianciolo, Alice Dwyer; Munk, Michelle; Whetsel, Charles; Drake, Bret

    2017-01-01

    This paper presents the results of a NASA initiated Agency-wide assessment to better characterize the risks and potential mitigation approaches associated with landing human class Entry, Descent, and Landing (EDL) systems on Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. A key focus of this study was to understand the key EDL risks and with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies along with the key near term technology development efforts required and in what environment those technology demonstrations were best suited. The study identified key risks along with advantages to each entry technology. In addition, it was identified that provided the EDL concept of operations (con ops) minimized large scale transition events, there was no technology requirement for a Mars pre-cursor demonstration. Instead, NASA should take a direct path to a human-scale lander.

  4. Detection of EGFR Mutations by TaqMan Mutation Detection Assays Powered by Competitive Allele-Specific TaqMan PCR Technology

    Directory of Open Access Journals (Sweden)

    Cristin Roma

    2013-01-01

    Full Text Available Epidermal growth factor receptor (EGFR mutations in non-small-cell lung cancer (NSCLC are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2; the maximum cycle threshold (Ct=37; and the cut-off ΔCt value (7 for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.

  5. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Shiro, B.; Palaia, J.; Ferrone, K.

    2009-12-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already starting to take advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priority for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a six-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS) on Devon Island in the Canadian Arctic. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with “Earth,” the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted regular blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of their field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Maps or Google Earth. Although the crew observed a strict 20-minute communication delay with “Earth” to simulate a real Mars mission, they broke this rule to conduct four very successful live webcasts with student groups using Skype since education and public outreach were important objectives of the endeavor. This presentation will highlight the use of Web 2.0 technologies for public outreach during the simulated Mars expedition and the implications for other remote scientific journeys. The author embarks on a "rover" to carry out an EVA near the FMARS Habitat. The satellite dish to the right of the structure was used for all communications with the remote

  6. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars.

    Science.gov (United States)

    Gemignani, Angelo; Piarulli, Andrea; Menicucci, Danilo; Laurino, Marco; Rota, Giuseppina; Mastorci, Francesca; Gushin, Vadim; Shevchenko, Olga; Garbella, Erika; Pingitore, Alessandro; Sebastiani, Laura; Bergamasco, Massimo; L'Abbate, Antonio; Allegrini, Paolo; Bedini, Remo

    2014-08-01

    Spaceflights "environment" negatively affects sleep and its functions. Among the different causes promoting sleep alterations, such as circadian rhythms disruption and microgravity, stress is of great interest also for earth-based sleep medicine. This study aims to evaluate the relationships between stress related to social/environmental confinement and sleep in six healthy volunteers involved in the simulation of human flight to Mars (MARS500). Volunteers were sealed in a spaceship simulator for 105 days and studied at 5 specific time-points of the simulation period. Sleep EEG, urinary cortisol (24 h preceding sleep EEG recording) and subjectively perceived stress levels were collected. Cognitive abilities and emotional state were evaluated before and after the simulation. Sleep EEG parameters in the time (latency, duration) and frequency (power and hemispheric lateralization) domains were evaluated. Neither cognitive and emotional functions alterations nor abnormal stress levels were found. Higher cortisol levels were associated to: (i) decrease of sleep duration, increase of arousals, and shortening of REM latency; (ii) reduction of delta power and enhancement of sigma and beta in NREM N3; and (iii) left lateralization of delta activity (NREM and REM) and right lateralization of beta activity (NREM). Stressful conditions, even with cortisol fluctuations in the normal range, alter sleep structure and sleep EEG spectral content, mirroring pathological conditions such as primary insomnia or insomnia associated to depression. Correlations between cortisol fluctuations and sleep changes suggest a covert risk for developing allostatic load, and thus the need to develop ad-hoc countermeasures for preventing sleep alterations in long lasting manned space missions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. How can Human Intelligence Enhance Collection in an Era of Un-manned Technology and Reduced Personnel?

    Science.gov (United States)

    2014-12-12

    CHAPTER 4 ANALYSIS “ Intelligence can provide a competitive advantage only if its various pieces are matched with operational experience and...HOW CAN HUMAN INTELLIGENCE ENHANCE COLLECTION IN AN ERA OF UN-MANNED TECHNOLOGY AND REDUCED PERSONNEL? A thesis presented to...

  8. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    Science.gov (United States)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  9. SNP genotyping using TaqMan technology: the CYP2D6*17 assay conundrum.

    Science.gov (United States)

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K; Irwin, David; Bishop, Jeffrey R; Stein, Mark A; Newcorn, Jeffrey H; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J Steven

    2015-03-19

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6.

  10. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  11. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  12. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    Science.gov (United States)

    Lindstrom, D. J.; Allen, C. C.

    2002-05-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  13. Analysis on the Application of GPS-RTK Technology using in Yangkou man-made Island in Nantong City

    Directory of Open Access Journals (Sweden)

    Yufeng Zhu

    2011-10-01

    Full Text Available The marine surveying is one of the branches of geomatics, and the sea navigational affairs project construction belongs to the marine surveying application category. The advent of GPS technology creates a new high-tech avenue for marine surveying. This paper mainly discussed the application of GPS-RTK technologies in marine surveying. Taking the project of Yangkou man-made island in Nantong city as an example, it was introduced that the main job and work procedure of GPS technologies in under-water survey and steel sheet pile implementing the localization. Problems need to be cared during the procedure and how to solve them also were being discussed. And also some beneficial experiences of GPS technology applying in marine surveying were summarized.

  14. Detection of hepatitis B virus DNA by real-time PCR using TaqMan-MGB probe technology

    Institute of Scientific and Technical Information of China (English)

    Jin-Rong Zhao; Yu-Jie Bai; Qing-Hua Zhang; Yan Wan; Ding Li; Xiao-Jun Yan

    2005-01-01

    AIM: To develop a real-time PCR for detecting hepatitis B virus-(HBV) DNA based on TaqMan technology using a new MGB probe.METHODS: Plasmid containing the sequence of X gene (1414-1744 nt) was constructed as HBV-DNA standard for quantitative analysis. A TaqMan-MGB probe between primers for amplification was designed to detect PCR products. The interested sequence contained in the plasmid and in clinical specimens was quantitatively measured.RESULTS: The detection limit of the assay for HBV DNA was 1 genome equivalent per reaction. A linear standard curve was obtained between 100 and 109 DNA copies/reaction (r>0.990). None of the negative control samples showed false-positive reactions in duplicate. HBV DNA was detected in 100% (50/50) of HBV patients with HbeAg, and in 72.0% (36/50) with HBsAg, HBeAb and HBcAb. The coefficient of variation for both intra- and inter-experimental variability demonstrated high reproducibility and accuracy.CONCLUSION: Real-time PCR based on TaqMan-MGB probe technology is an excellent method for detection of HBV DNA.

  15. Information Technology and the Autonomous Control of a Mars In-Situ Propellant Production System

    Science.gov (United States)

    Gross, Anthony R.; Sridhar, K. R.; Larson, William E.; Clancy, Daniel J.; Peschur, Charles; Briggs, Geoffrey A.; Zornetzer, Steven F. (Technical Monitor)

    1999-01-01

    With the rapidly increasing performance of information technology, i.e., computer hardware and software systems, as well as networks and communication systems, a new capability is being developed that holds the clear promise of greatly increased exploration capability, along with dramatically reduced design, development, and operating costs. These new intelligent systems technologies, utilizing knowledge-based software and very high performance computer systems, will provide new design and development tools, scheduling mechanisms, and vehicle and system health monitoring capabilities. In addition, specific technologies such as neural nets will provide a degree of machine intelligence and associated autonomy which has previously been unavailable to the mission and spacecraft designer and to the system operator. One of the most promising applications of these new information technologies is to the area of in situ resource utilization. Useful resources such as oxygen, compressed carbon dioxide, water, methane, and buffer gases can be extracted and/or generated from planetary atmospheres, such as the Martian atmosphere. These products, when used for propulsion and life-support needs can provide significant savings in the launch mass and costs for both robotic and crewed missions. In the longer term the utilization of indigenous resources is an enabling technology that is vital to sustaining long duration human presence on Mars. This paper will present the concepts that are currently under investigation and development for mining the Martian atmosphere, such as temperature-swing adsorption, zirconia electrolysis etc., to create propellants and life-support materials. This description will be followed by an analysis of the information technology and control needs for the reliable and autonomous operation of such processing plants in a fault tolerant manner, as well as the approach being taken for the development of the controlling software. Finally, there will be a brief

  16. An aeronomy mission to investigate the entry and orbiter environment of Mars

    Science.gov (United States)

    Brace, Larry H.

    1989-01-01

    The need for an aeronomy mission to Mars as a precursor to a manned Mars mission is discussed. The upper atmosphere and radiation environment of Mars are reviewed, focusing on the implications of the Martian atmosphere for a manned mission. Plans for an aeronomy mission to Mars are described, including the Mars Aeronomy Observer and the Earth/Mars Aeronomy Orbiter.

  17. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  18. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  19. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  20. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.

  1. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Ferrone, Kristine; Shiro, Brian; Palaia, Joseph E., IV

    2009-01-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already taking advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priotity for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a 6-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS). The Mars Society built the mock Mars habitat in 2000-01 to help develop key knowledge and inspire the public for human Mars exploration. It is located on Devon island about 1600 km from the North Pole within the Arctic Circle. The structure is situated on the rim of Haughton Crater in an environment geologically and biologically analogous to Mars. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with "Earth,"the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted daily blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of thier field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Earth.

  2. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    Science.gov (United States)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  3. Steam Man and Airships: Technology of the Future in the Past

    Science.gov (United States)

    Sheffield, Caroline C.; Carano, Kenneth T.; Berson, Michael J.

    2008-01-01

    This article describes the Frank Reade dime novels, published in 1882, that are now recognized as the beginnings of the modern science fiction novel in the United States. They illustrate the hope that Americans of the time held for the future that newly invented technology could offer. Although the Frank Reade stories highlighted the promise of…

  4. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  5. Entry, Descent, and Landing technological barriers and crewed MARS vehicle performance analysis

    Science.gov (United States)

    Subrahmanyam, Prabhakar; Rasky, Daniel

    2017-05-01

    Mars has been explored historically only by robotic crafts, but a crewed mission encompasses several new engineering challenges - high ballistic coefficient entry, hypersonic decelerators, guided entry for reaching intended destinations within acceptable margins for error in the landing ellipse, and payload mass are all critical factors for evaluation. A comprehensive EDL parametric analysis has been conducted in support of a high mass landing architecture by evaluating three types of vehicles -70° Sphere Cone, Ellipsled and SpaceX hybrid architecture called Red Dragon as potential candidate options for crewed entry vehicles. Aerocapture at the Martian orbit of about 400 km and subsequent Entry-from-orbit scenarios were investigated at velocities of 6.75 km/s and 4 km/s respectively. A study on aerocapture corridor over a range of entry velocities (6-9 km/s) suggests that a hypersonic L/D of 0.3 is sufficient for a Martian aerocapture. Parametric studies conducted by varying aeroshell diameters from 10 m to 15 m for several entry masses up to 150 mt are summarized and results reveal that vehicles with entry masses in the range of about 40-80 mt are capable of delivering cargo with a mass on the order of 5-20 mt. For vehicles with an entry mass of 20 mt to 80 mt, probabilistic Monte Carlo analysis of 5000 cases for each vehicle were run to determine the final landing ellipse and to quantify the statistical uncertainties associated with the trajectory and attitude conditions during atmospheric entry. Strategies and current technological challenges for a human rated Entry, Descent, and Landing to the Martian surface are presented in this study.

  6. G. Marconi: A Data Relay Satellite for Mars Communications

    Science.gov (United States)

    Dionisio, C.; Marcozzi, M.; Landriani, C.

    2002-01-01

    Mars has always been a source of intrigue and fascination. Recent scientific discoveries have stimulated this longstanding interest, leading to a renaissance in Mars exploration. Future missions to Mars will be capable of long-distance surface mobility, hyperspectral imaging, subsurface exploration, and even life-detection. Manned missions and, eventually, colonies may follow. No mission to the Red Planet stands alone. New scientific and technological knowledge is passed on from one mission to the next, not only improving the journey into space, but also providing benefits here on Earth. The Mars Relay Network, an international constellation of Mars orbiters with relay radios, directly supports other Mars missions by relaying communications between robotic vehicles at Mars and ground stations on Earth. The ability of robotic visitors from Earth to explore Mars will take a gigantic leap forward in 2007 with the launch of the Guglielmo Marconi Orbiter (GMO), the first spacecraft primarily dedicated to providing communication relay, navigation and timing services at Mars. GMO will be the preeminent node of the Mars Relay Network. GMO will relay communications between Earth and robotic vehicles near Mars. GMO will also provide navigation services to spacecraft approaching Mars. GMO will receive transmissions from ground stations on Earth at X-band and will transmit to ground stations on Earth at X- and Ka-bands. GMO will transmit to robotic vehicles at Mars at UHF and receive from these vehicles at UHF and X-band. GMO's baseline 4450 km circular orbit provides complete coverage of the planet for telecommunication and navigation support. GMO will arrive at Mars in mid-2008, just before the NetLander and Mars Scout missions that will be its first users. GMO is designed for a nominal operating lifetime of 10 years and will support nominal commanding and data acquisition, as well as mission critical events such as Mars Orbit Insertion, Entry, Descent and Landing, and Mars

  7. Robotic Precursor Missions for Mars Habitats

    Science.gov (United States)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-07-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  8. SNP genotyping using TaqMan® technology: the CYP2D6*17 assay conundrum

    Science.gov (United States)

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K.; Irwin, David; Bishop, Jeffrey R.; Stein, Mark A.; Newcorn, Jeffrey H.; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J. Steven

    2015-01-01

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan® technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6. PMID:25788121

  9. Technology insight: artificial extracorporeal liver support--how does Prometheus compare with MARS?

    Science.gov (United States)

    Krisper, Peter; Stauber, Rudolf E

    2007-05-01

    Artificial extracorporeal liver support or 'liver dialysis' has been used in patients with severe liver failure with increasing frequency since the Molecular Adsorbents Recirculating System (MARS), a variant of albumin dialysis, was introduced in 1999. Nevertheless, liver dialysis must still be thought of as experimental because its contribution to improved patient survival has not been proven in large randomized trials. Prometheus is a novel device for fractionated plasma separation via an albumin-permeable filter that was developed to improve removal of albumin-bound toxins. Initial studies have proven clinical use of Prometheus to be feasible and safe. Head-to-head comparisons of Prometheus and MARS have shown treatment with the former to be more efficient with respect to removal of most albumin-bound and water-solved markers. As controlled studies with clinical end points are lacking, it is not known whether the observed greater detoxification capacity of Prometheus will translate into clinical benefit; two small studies indicate that there might be a beneficial effect in hepatic encephalopathy and pruritus. In a recent randomized comparison of MARS and Prometheus, however, hemodynamic improvement was observed in response to MARS, but not Prometheus, treatment. A large randomized controlled trial investigating the effect of Prometheus on survival--the HELIOS study--has been initiated. First results are expected in 2008 and will be crucial to establishing a role for Prometheus in the field of extracorporeal liver support.

  10. Progress in Life Marker Chip Technology for Detection of Life on Mars

    Science.gov (United States)

    Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.

    2007-12-01

    Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.

  11. Impact of rocket propulsion technology on the radiation risk in missions to Mars

    Science.gov (United States)

    Durante, M.; Bruno, C.

    2010-10-01

    Exposure to cosmic radiation is today acknowledged as a major obstacle to human missions to Mars. In fact, in addition to the poor knowledge on the late effects of heavy ions in the cosmic rays, simple countermeasures are apparently not available. Shielding is indeed very problematic in space, because of mass problems and the high-energy of the cosmic rays, and radio-protective drugs or dietary supplements are not effective. However, the simplest countermeasure for reducing radiation risk is to shorten the duration time, particularly the transit time to Mars, where the dose rate is higher than on the planet surface. Here we show that using nuclear electric propulsion (NEP) rockets, the transit time could be substantially reduced to a point where radiation risk could be considered acceptable even with the current uncertainty on late effects.

  12. The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology

    Science.gov (United States)

    2015-09-30

    the recorder firmware to provide a more stable sample rate. 7. Changes to the recorder firmware to keep recording segment start times on a rigid and...acoustic recorders on the market today are suitable for marine mammal detection and classification purposes only, but do not offer a localization capability...the basis for Advanced microMARS. http://desertstar.com/product/micromars/ • The TLP series acoustic pingers, developed as part of the RangeNav

  13. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    Science.gov (United States)

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance.

  14. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  15. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  16. Approach to Mars Field Geology

    Science.gov (United States)

    Muehlberger, William; Rice, James W.; Parker, Timothy; Lipps, Jere H.; Hoffman, Paul; Burchfiel, Clark; Brasier, Martin

    1998-01-01

    The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.

  17. Advanced engineering software for in-space assembly and manned planetary spacecraft

    Science.gov (United States)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  18. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  19. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth)

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. PMID:27528764

  20. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    Science.gov (United States)

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  1. Russian Nuclear Rocket Engine Design for Mars Exploration

    Institute of Scientific and Technical Information of China (English)

    Vadim Zakirov; Vladimir Pavshook

    2007-01-01

    This paper is to promote investigation into the nuclear rocket engine (NRE) propulsion option that is considered as a key technology for manned Mars exploration. Russian NRE developed since the 1950 s in the former Soviet Union to a full-scale prototype by the 1990 s is viewed as advantageous and the most suitable starting point concept for manned Mars mission application study. The main features of Russian heterogeneous core NRE design are described and the most valuable experimental performance results are summarized. These results have demonstrated the significant specific impulse performance advantage of the NRE over conventional liquid rocket engine (LRE) propulsion technologies. Based on past experience,the recent developments in the field of high-temperature nuclear fuels, and the latest conceptual studies, the developed NRE concept is suggested to be upgraded to the nuclear power and propulsion system (NPPS),more suitable for future manned Mars missions. Although the NRE still needs development for space application, the problems are solvable with additional effort and funding.

  2. Proposals for management and participatory activities with earth technology in housing of poor urban sectors. Buenos Aires-Mar Del Plata, Argentina

    OpenAIRE

    Rotondaro, Rodolfo; CONICET; Cacopardo, Fernando; CONICET

    2014-01-01

    This article shows partial results concerning a scientific and technological research focused in the generation andmanagement of processes and participatory practices of construction technologies for housing in poor urban sectors.The main objective is to develop alternatives for new building materials, elements and building systems in thecontext of self-made houses and surroundings in the periphery neighborhoods of Buenos Aires and Mar del Plata.Local self-builders and families, neighborhood ...

  3. man enough

    Institute of Scientific and Technical Information of China (English)

    徐若炫

    2011-01-01

    Are you man enough? Are you brave enough? Can you pick me up when I fall down? 当这首《man enough》再一次在耳畔回鸣时,你想到些什么? 伊斯坦布尔奇迹、伯纳乌之夜、梅西的记录……亦或是一幕幕经典的画面——男人的画面.

  4. Joe Zhang, Party Man, Company Man

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik

    2014-01-01

    Book review of: Joe Zhang: Party Man, Company Man. Honolulu: Enrich Professional Publishing, 2014. 234 pp.......Book review of: Joe Zhang: Party Man, Company Man. Honolulu: Enrich Professional Publishing, 2014. 234 pp....

  5. 火星探测器热环境模拟与试验技术探讨%The thermal environment simulation and test technology for Mars probe

    Institute of Scientific and Technical Information of China (English)

    张磊; 刘波涛; 许杰

    2014-01-01

    为保证火星探测器的可靠运行,需要对其进行真空热试验和火星表面热环境模拟试验。文章通过对国外火星探测器热试验的调研,梳理出热试验所涉及的关键技术。并通过对行星际空间热环境和火星表面热环境特点的分析,结合国外相关热环境模拟设备的研制使用情况,探讨不同热环境的地面模拟方法,可为我国火星探测器热环境试验设备的研制及开展相关热试验提供技术参考。%For a Mars probe, the thermal tests in vacuum and Mars surface environment are required. This paper reviews the thermal tests for Mars probes in various countries and the key technologies which would provide a reference for the probe development in our country. The thermal environment characteristics of deep space and Mars surface are analyzed, and the simulation methods of different thermal environments are discussed. A technical guidance is provided for the manufacture of the ground thermal environment test equipment for Mars probe.

  6. Hunting the Wild Man

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Scientists and volunteers plan a new Shennongjia exploration for Bigfoot After being shelved for many years, a plan to search for the wild man in the Shennongjia forestry district is once again under way. This time, scientists want to raise as much as 10 million yuan ($1.6 million) to employ advanced technology and recruit staff worldwide for the project.

  7. The automation of remote vehicle control. [in Mars roving vehicles

    Science.gov (United States)

    Paine, G.

    1977-01-01

    The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.

  8. Mission to Mars: A Collaborative Project Infusing Technology and Telecommunications into the Curriculum.

    Science.gov (United States)

    Craig, Dorothy Valcarcel; Stewart, Jaci

    1997-01-01

    Describes a collaborative project involving third and fifth graders that focused on integrating computer technology into the earth science curriculum. Electronic research, telecommunications, science software, and an interdisciplinary approach are discussed; and a list of classroom resources and three worksheets are included. (LRW)

  9. Sustainable life support on Mars - the potential roles of cyanobacteria

    Science.gov (United States)

    Verseux, Cyprien; Baqué, Mickael; Lehto, Kirsi; de Vera, Jean-Pierre P.; Rothschild, Lynn J.; Billi, Daniela

    2016-01-01

    Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  10. Research on the Key Technology of Cooperative Attack for Manned Vehicle/Unmanned Aerial Vehicle%有人/无人机协同作战关键技术

    Institute of Scientific and Technical Information of China (English)

    马向玲; 雷宇曜

    2012-01-01

    After the analysis of unmanned combat aerial vehicle about its research and use in many countries, this paper gives a cooperative attack command and control system structure of manned/ unmanned aerial vehicles. According to the position and main mission, the system divided into two parts, the manned platform and unmanned platform, then the structure and function of each platform are discussed. It is analyzed that some key technologies of cooperative attack. The technologies are cooperative control technology, situation awareness, cooperative target allocation, path planning, cooperative damage assessment and intelligent decision making technology. A combat flow and information processing flow are given for a representative combat mission. Finally, the research area is proposed to address development tendency of unmanned combat aerial vehicle.%分析了无人作战飞机在各国的研究及使用情况,给出了有人/无人机协同作战指挥控制系统的结构,按照空间位置和主要完成任务的不同,将系统分为有人机、无人机两个平台,介绍了各平台的组成部分及相应的功能,归纳出协同作战所需要解决的关键技术:交互控制技术、协同态势感知、协同目标分配、协同航路规划技术、毁伤效能评估技术及智能决策技术,并且给出了一个在典型作战任务想定下的作战及信息处理流程.最后对无人作战飞机未来的发展方向进行了展望.

  11. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  12. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    Science.gov (United States)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  13. Mars Museum Visualization Alliance

    Science.gov (United States)

    Sohus, A. M.; Viotti, M. A.; de Jong, E. M.

    2004-11-01

    The Mars Museum Visualization Alliance is a collaborative effort funded by the Mars Public Engagement Office and supported by JPL's Informal Education staff and the Solar System Visualization Project to share the adventure of exploration and make Mars a real place. The effort started in 2002 with a small working group of museum professionals to learn how best to serve museum audiences through informal science educators. By the time the Mars Exploration Rovers landed on Mars in January 2004, over 100 organizations were partners in the Alliance, which has become a focused community of Mars educators. The Alliance provides guaranteed access to images, information, news, and resources for use by the informal science educators with their students, educators, and public audiences. Thousands of people have shared the adventure of exploring Mars and now see it as a real place through the efforts of the Mars Museum Visualization Alliance partners. The Alliance has been lauded for "providing just the right inside track for museums to do what they do best," be that webcasts, live presentations with the latest images and information, high-definition productions, planetarium shows, or hands-on educational activities. The Alliance is extending its mission component with Cassini, Genesis, Deep Impact, and Stardust. The Mars Exploration and Cassini Programs, as well as the Genesis, Deep Impact, and Stardust Projects, are managed for NASA by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

  14. The case for Mars III: Strategies for exploration - Technical

    Science.gov (United States)

    Stoker, Carol R. (Editor)

    1989-01-01

    Papers on issues related to Mars exploration are presented, covering topics such as the social implications of manned missions to Mars, mission strategies, mission designs, the economics of a Mars mission, Space Station support for a Mars mission, a Diagnostic and Environmental Monitoring System, and a zero-g CELSS/recreation facility for an earth/Mars crew shuttle. Other topics include biomedical concerns and fitness in spaceflight, spaceflight environment habitability, the Mars Rover/Sample Return Mission, a rooitic Mars surface sampler, a Mars Orbiter, and scientific goals of Mars exploration. Additional topics include Space Station evolution, mission options, modeling advanced space systems, computer support for Mars missions, launch system options, advanced propulsion techniques, the utilization of resources on Mars, the development of a Martian base, and options for mobility on Mars.

  15. Symbolism in prehistoric man.

    Science.gov (United States)

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  16. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  17. Nowhere Man

    Institute of Scientific and Technical Information of China (English)

    冯曼曼

    2008-01-01

    <正>He’s a real nowhere man,sitting in his nowhere land,making all his nowhere plans for nobody.时间晃晃悠悠地停留在我的十七岁,如同岁月里的河流,曲折轮回。我抬头看看那个让我感到苍白无力的天,回想着所有的故事。

  18. Manufacturing the Technology of Xenon-Containing Drinking Water and its Influence on Some Psychophysiological Characteristics of Man

    Directory of Open Access Journals (Sweden)

    Verkhovskaya Irina

    2016-01-01

    Full Text Available This study is aimed to describe the technology of making xenoncontaining drinking water and its impact on health and psychophysiological characteristics of 26 volunteers after regular admission. Testing conducted after 2 months of daily use such water showed significant improvement of emotional state and health of volunteers. This technology allows obtaining a large amount of drinking water saturated with xenon, which can be used in therapeutic and prophylactic purposes.

  19. Mars @ ASDC

    Science.gov (United States)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  20. A systems analysis of the impact of navigation instrumentation on-board a Mars rover, based on a covariance analysis of navigation performance. M.S. Thesis, Massachusetts Inst. of Technology

    Science.gov (United States)

    Leber, Douglas Eric

    1992-01-01

    As part of the Space Exploration Initiative, the exploration of Mars will undoubtedly require the use of rovers, both manned and unmanned. Many mission scenarios have been developed, incorporating rovers which range in size from a few centimeters to ones large enough to carry a manned crew. Whatever the mission, accurate navigation of the rover on the Martian surface will be necessary. This thesis considers the initial rover missions, where minimal in-situ navigation aids will be available on Mars. A covariance analysis of the rover's navigation performance is conducted, assuming minimal on-board instrumentation (gyro compass and speedometer), a single orbiting satellite, and a surface beacon at the landing site. Models of the on-board instruments are varied to correspond to the accuracy of various levels of these instruments currently available. A comparison is made with performance of an on-board IMU. Landing location and satellite orbits are also varied.

  1. Is it Really a Man's World? Black Men in Science, Technology, Engineering, and Mathematics at Historically Black Colleges and Universities

    Science.gov (United States)

    Lundy-Wagner, Valerie C.

    2013-01-01

    Efforts to improve the Black science, technology, engineering and mathematics (STEM) pipeline have focused on historically Black colleges and universities (HBCUs); however, this work generally fails to acknowledge men. This article characterized Black male receipts of bachelor's degrees from HBCUs in STEM fields between 1981 and 2009 using a…

  2. Remeasuring man.

    Science.gov (United States)

    Weisberg, Michael

    2014-05-01

    Samuel George Morton (1799-1851) was the most highly regarded American scientist of the early and middle 19th century. Thanks largely to Stephen Jay Gould's book The Mismeasure of Man, Morton's cranial capacity measurements of different races is now held up as a prime example of and cautionary tale against scientific racism. A team of anthropologists recently reevaluated Morton's work and argued that it was Gould, not Morton, who was biased in his analysis. This article is a reexamination of the Morton and Gould controversy. It argues that most of Gould's arguments against Morton are sound. Although Gould made some errors and overstated his case in a number of places, he provided prima facia evidence, as yet unrefuted, that Morton did indeed mismeasure his skulls in ways that conformed to 19th century racial biases. Gould's critique of Morton ought to remain as an illustration of implicit bias in science.

  3. Mandate a Man to Fish?: Technological advance in cooling systems at U.S. thermal electric plants

    Science.gov (United States)

    Peredo-Alvarez, Victor M.; Bellas, Allen S.; Trainor-Guitton, Whitney J.; Lange, Ian

    2016-02-01

    Steam-based electrical generating plants use large quantities of water for cooling. The potential environmental impacts of water cooling systems have resulted in their inclusion in the Clean Water Act's (CWA) Sections 316(a), related to thermal discharges and 316(b), related to cooling water intake. The CWA mandates a technological standard for water cooling systems. This analysis examines how the performance-adjusted rates of thermal emissions and water withdrawals for cooling units have changed over their vintage and how these rates of change were impacted by imposition of the CWA. Results show that the rate of progress increased for cooling systems installed after the CWA whilethere was no progress previous to it.

  4. The Electrostatic Environments of Mars and the Moon

    Science.gov (United States)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  5. Syndrome Differentiation Analysis on Mars500 Data of Traditional Chinese Medicine

    National Research Council Canada - National Science Library

    Li, Yong-Zhi; Li, Guo-Zheng; Gao, Jian-Yi; Zhang, Zhi-Feng; Fan, Quan-Chun; Xu, Jia-Tuo; Bai, Gui-E; Chen, Kai-Xian; Shi, Hong-Zhi; Sun, Sheng; Liu, Yu; Shao, Feng-Feng; Mi, Tao; Jia, Xin-Hong; Zhao, Shuang; Chen, Jia-Chang; Liu, Jun-Lian; Guo, Yu-Meng; Tu, Li Ping

    2015-01-01

    Mars500 study was a psychological and physiological isolation experiment conducted by Russia, the European Space Agency, and China, in preparation for an unspecified future manned spaceflight to the planet Mars...

  6. Syndrome Differentiation Analysis on Mars500 Data of Traditional Chinese Medicine

    National Research Council Canada - National Science Library

    Li, Yong-Zhi; Li, Guo-Zheng; Gao, Jian-Yi; Zhang, Zhi-Feng; Fan, Quan-Chun; Xu, Jia-Tuo; Bai, Gui-E; Chen, Kai-Xian; Shi, Hong-Zhi; Sun, Sheng; Liu, Yu; Shao, Feng-Feng; Mi, Tao; Jia, Xin-Hong; Zhao, Shuang; Chen, Jia-Chang; Liu, Jun-Lian; Guo, Yu-Meng; Tu, Li Ping

    2015-01-01

      Mars500 study was a psychological and physiological isolation experiment conducted by Russia, the European Space Agency, and China, in preparation for an unspecified future manned spaceflight to the planet Mars...

  7. Technology Development for Human Exploration Beyond LEO in the New Millennium IAA-13-3 Strategies and Plans for Human Mars Missions

    Science.gov (United States)

    Larson, William E.; Lueck, Dale E.; Parrish, Clyde F.; Sanders, Gerald B.; Trevathan, Joseph R.; Baird, R. Scott; Simon, Tom; Peters, T.; Delgado, H. (Technical Monitor)

    2001-01-01

    As we look forward into the new millennium, the extension of human presence beyond Low-Earth Orbit (LEO) looms large in the plans of NASA. The Agency's Strategic Plan specifically calls out the need to identify and develop technologies for 100 and 1000-day class missions beyond LEO. To meet the challenge of these extended duration missions, it is important that we learn how to utilize the indigenous resources available to us on extraterrestrial bodies. This concept, known as In-Situ Resource Utilization (ISRU) can greatly reduce the launch mass & cost of human missions while reducing the risk. These technologies may also pave the way for the commercial development of space. While no specific target beyond LEO is identified in NASA's Strategic Plan, mission architecture studies have been on-going for the Moon, Mars, Near-Earth Asteroids and Earth/Moon & Earth/Sun Libration Points. As a result of these studies, the NASA Office of Space Flight (Code M) through the Johnson and Kennedy Space Centers, is leading the effort to develop ISRU technologies and systems to meet the current and future needs of human missions beyond LEO and on to Mars. This effort also receives support from the NASA Office of Biological and Physical Research (Code U), the Office of Space Science (Code S), and the Office of Aerospace Technology (Code R). This paper will present unique developments in the area of fuel and oxidizer production, breathing air production, water production, C02 collection, separation of atmospheric gases, and gas liquefaction and storage. A technology overview will be provided for each topic along with the results achieved to date, future development plans, and the mission architectures that these technologies support.

  8. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-11-27

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.

  9. Big Man

    Institute of Scientific and Technical Information of China (English)

    郑秀文

    2012-01-01

    <正>梁炳"Edmond"说他演唱会后会跟太太去旅行。无论飞机降落在地球的哪角,有伴在旁就是幸福。他的concert名字是big man,初时我看错是big mac演唱会:心想干吗是大汉堡演唱会?嘻!后来才知看错。但其实细想,在成长路上,谁不曾是活得像个傻傻的面包,一团面粉暴露在这大千世界,时间和各式人生经历就是酵母,多少年月日,你我都会发酵成长。友情也是激发彼此成长的酵母,看到对方早已经从男仔成了男人,我都原来一早已不再能够以"女仔"称呼自己。在我眼中,他的改变是大的,爱玩外向的个性收窄了,现在的我们,

  10. The energetics of cycling on Earth, Moon and Mars.

    Science.gov (United States)

    Lazzer, Stefano; Plaino, Luca; Antonutto, Guglielmo

    2011-03-01

    From 1885, technological improvements, such as the use of special metal alloys and the application of aerodynamics principles, have transformed the bicycle from a human powered heavy transport system to an efficient, often expensive, object used to move not only in our crowded cities, but also in leisure activities and in sports. In this paper, the concepts of mechanical work and efficiency of cycling together with the corresponding metabolic expenditure are discussed. The effects of altitude and aerodynamic improvements on sports performances are also analysed. A section is dedicated to the analysis of the maximal cycling performances. Finally, since during the next decades the return of Man on the Moon and, why not, a mission to Mars can be realistically hypothesised, a section is dedicated to cycling-based facilities, such as man powered short radius centrifuges, to be used to prevent cardiovascular and skeletal muscle deconditioning otherwise occurring during long-term exposure to microgravity.

  11. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    Science.gov (United States)

    2014-10-01

    guidance on current MRL and MRA processes. In addition, Gene Wiggs of GE and Paul Hauwiller of General Dynamics Information Technology (GDIT...or Deployment) Team IPQA™ In-process quality assurance (trademark of Beyond Six Sigma) JDMTP Joint Defense Manufacturing Technology Panel KPC Key

  12. Development and Choice of Carbon Dioxide Reduction Technology in Manned Spaceflight%载人航天CO2还原技术的发展与选择

    Institute of Scientific and Technical Information of China (English)

    史乔升; 杨春信

    2014-01-01

    CO2还原是目前国际空间站CO2处理的一个重要环节.CO2还原技术不仅可以实现对人体代谢产生的CO2进行处理,还可以与电解水技术结合起来实现氧气的再生.空间站所采用的CO2还原技术包括Sabatier、Bosch、CO2电解、CO2热解等还原方法.经过三十多年的理论与实验研究,最终Sabatier还原法被确定为国际空间站的CO2还原方案.然而,Sabatier方法的循环闭合度较低,难以应用在宇宙深空探测等更长期的载人航天任务中.其他可实现完全闭合的还原法仍有可能在技术充分发展后,取代Sabatier成为性能更优的还原技术.%CO2 reduction is an important part of the international space station CO2 treatment.CO2 reduction technology can not only remove the CO2 generated by human metabolism process,but also be combined with electrolyzed water technology together to achieve oxygen regeneration.CO2 reduction technology used in space station includes Sabatier,Bosch,CO2 electrolysis and CO2 pyrolysis.After thirty years of theoretical and experimental research,Sabatier reduction was ultimately identified as the CO2 reduction method in the International Space Station.However,because of its low closure,Sabatier method is difficult to be applied in even longer manned space missions such as the deep space exploration.Other methods that can accomplish complete close reduction may take the place of Sabatier method after their maturity and become superior reduction technologies.

  13. Mars McLOX Rocket Propulsion System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Methane and Carbon Monoxide/LOX rocket (MCLOX) is a technology for accomplishing ascent from Mars. Current Mars in-situ propellant production (ISPP) technologies...

  14. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    Science.gov (United States)

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  15. Clouds over Mars!

    Science.gov (United States)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Mars Ice Age, Simulated

    Science.gov (United States)

    2003-01-01

    December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  17. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-10-01

    Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.

  18. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  19. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  20. "MAN AdBlue"环保技术引领上海车展绿色风向标%Environmental Technology of "MAN AdBlue" Leads Green Wind Vane in Shanghai Auto Show

    Institute of Scientific and Technical Information of China (English)

    胡志梅

    2011-01-01

    @@ 4月19日,全球领先的曼商用车公司携旗下旗舰产品TGX/TGS牵引车、消防车以及发动机等产品,倾情亮相上海车展.其中两款运用曼商用车领先的"MAN AdBlue"环保技术达到国Ⅳ排放标准的牵引车首次亮相中国市场,无疑将成为业界的新视点.

  1. Man...An Endangered Species?

    Science.gov (United States)

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  2. Man...An Endangered Species?

    Science.gov (United States)

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  3. Rubbia proposes a speedier voyage to Mars and back

    CERN Multimedia

    Abbott, A

    1999-01-01

    Carlo Rubbia has designed a propulsion engine that uses fission fragments of americium to directly heat a propulsion gas. He estimates it would allow a manned trip to Mars and back in around a year (8 paragraphs).

  4. VR for Mars Pathfinder

    Science.gov (United States)

    Blackmon, Theodore

    1998-01-01

    Virtual reality (VR) technology has played an integral role for Mars Pathfinder mission, operations Using an automated machine vision algorithm, the 3d topography of the Martian surface was rapidly recovered fro -a the stereo images captured. by the Tender camera to produce photo-realistic 3d models, An advanced, interface was developed for visualization and interaction with. the virtual environment of the Pathfinder landing site for mission scientists at the Space Flight Operations Facility of the Jet Propulsion Laboratory. The VR aspect of the display allowed mission scientists to navigate on Mars in Bud while remaining here on Earth, thus improving their spatial awareness of the rock field that surrounds the lenders Measurements of positions, distances and angles could be easily extracted from the topographic models, providing valuable information for science analysis and mission. planning. Moreover, the VR map of Mars has also been used to assist with the archiving and planning of activities for the Sojourner rover.

  5. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    Science.gov (United States)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such

  6. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  7. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  8. Evaluating predictions of ICME arrival at Earth and Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Taktakishvili, A.; Pulkkinen, A.

    2011-01-01

    We present a study of interplanetary coronal mass ejection (ICME) propagation to Earth and Mars. Because of the significant space weather hazard posed by ICMEs, understanding and predicting their arrival and impact at Mars is important for current and future robotic and manned missions...

  9. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  10. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  11. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions

    Science.gov (United States)

    Greenspon, J.

    Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365

  12. ADIS-type Charged Particle Spectrometer for Manned Space Radiation Dosimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As manned missions to the moon and eventually Mars gain momentum, astronaut crews will be sent back to the deepest parts of space humans have ever traveled, and will...

  13. Space suits and life support systems for the exploration of Mars

    Science.gov (United States)

    Kuznetz, Lawrence H.; Gwynne, Owen

    1992-01-01

    The requirements and technologies needed for space suits to be used for the manned exploration of Mars are examined. Alternative concepts are proposed for both the space suit and the portable life support system (collectively called the Extravehicular Mobility Unit, or EMU) needed for Mars exploration. EMU system requirements are outlined. It is pointed out that the most fundamental difference between a Mars EMU and those that preceded it is that the design of a Mars EMU must be driven by science and permanent habitability requirements, while all prior EMU designs have been driven by engineering requirements. The EMU weight issues are discussed, and the system mass and mobility concerns are addressed, along with the backpack-to-body-weight ratio. The challenges of thermal and cosmic radiation protection, micrometeorite protection, and EMU system and crew heat rejection are dealt with briefly, as well as the physiological issues of pressure regulation and bacterial or contaminant isolation. A mathematical model is then presented for evaluation of candidate EMU designs and for concept optimization and selection. Lead technology issues are also discussed.

  14. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  15. Mar Capeans

    CERN Multimedia

    2017-01-01

    Mar Capeans, CERN researcher, answers the question to "What can we do in the world of sciences and innovation to make visible the invisible?". This piece belongs to a series of videos made by the Spanish Aquae Foundation, a supporter of the CERN & Society Foundation.

  16. Mar adentro

    OpenAIRE

    Florián Guerrero, Mayra

    2014-01-01

    La bravura del mar destruyó primero las canchas de fútbol, luego se tragó casas y finalmente las playas. El otrora balneario exclusivo de Buenos Aires, donde se fundó el famoso restaurant Morillas en los años 40, es ahora un tímido recuerdo en medio del chocar incesante de las olas.

  17. Developing Planetary Protection Technology: Microbial Diversity of the Mars Orbiter "Odyssey" and the Spacecraft Assembly and Encapsulation Facility II

    Science.gov (United States)

    La Duc, M. T.; Chen, F.; Baker, A.; Koukol, R. C.; Kern, R. G.; Venkateswaran, K. J.

    2001-12-01

    Sampling the surfaces of both spacecraft and their clean-room assembly facilities is crucial in monitoring the microbial burden associated with these pseudo-sterile, oligotrophic environments. Here, we present the results of a study in which several surface samples, retrieved from both the Mars Odyssey Spacecraft and the Kennedy Space Center (KSC) Spacecraft Assembly and Encapsulation Facility II (SAEF-II), were processed and evaluated by both molecular and traditional culture-based methods for microbial diversity. The findings of this study improve our current understanding of the microbial community structure, diversity, and dispersal in a spacecraft assembly facility, as well as physically associated with co-located spacecraft. Surfaces of 25 cm2 (spacecraft) or 0.4 m2 (SAEF-II) were swabbed or wiped, respectively, and were examined for total heterotrophic aerobes and spore-formers. Samples were further subjected to nucleic acid extraction, and 16S rDNA fragments were PCR amplified with eubacterial biased universal primers and cloned. Approximately 30 isolates grown by traditional culture-based techniques were included for 16S rDNA sequencing. For the most part, the population dynamics remained consistent when compared between the spacecraft and assembly facility libraries. Predominant microbes, as indicated by molecular methods, included members of the genera Variovorax and Aquaspirillum. Members of the Mesorhizobium, Bradyrhizobium, Enterococcus, Ralstonia, and Bacillus genera were also found to span the various libraries but in less abundance. Traditional culture-based techniques validated the presence of Bacillus and Ralstonia, while illuminating a larger diversity in revealing the presence of Staphylococcus, Comamonas, Microbacterium, and Actinomycetales. The bulk of these findings make sense, since species of Ralstonia, Rhizobium, Variovorax, and Bacillus are known to frequently inhabit rhizospheric environments, like that surrounding the KSC facility, and

  18. Strategies, methods, and technologies adopted on the R.V. G.O. Sars MAR-ECO expedition to the Mid-Atlantic Ridge in 2004

    Science.gov (United States)

    de L. Wenneck, T.; Falkenhaug, T.; Bergstad, O. A.

    2008-01-01

    The MAR-ECO project aimed to gather information on mid-ocean ridge macro- and megafaunal assemblages and their distribution patterns in relation to the abiotic environment, and the target area extended from Iceland to the Azores, comprising waters associated with the Mid-Atlantic Ridge. Strategies and methods adopted on the 2004 international expedition on the R.V. G.O. Sars and M.S. Loran were selected in order to maximise data and sample collection in all pelagic and benthic habitats to a maximum depth of 3500 m, spanning the organism size range from mm to metres. The approach selected was to combine (1) Continuous sampling along the ship's track; (2) Point observations using a pre-defined set of samplers at pre-determined sites; and (3) Opportunistic sampling to study particular phenomena or carry out exceptional tasks. A wide range of nets and mid-water and bottom trawls were mobilised in order to collect biological samples. Hull-mounted, lowered and towed optical and acoustical instruments collected data and images. Two remotely operated vehicles (ROVs) were used for pelagic and demersal studies, and moored echosounders and cameras on benthic landers collected vessel-independent information. Observation of whales and seabirds were made from a custom-built observation area on top of the wheelhouse. Using a range of technologies from the same platform efficiently provided comprehensive results and enhanced the potential for new discoveries at the organism, community, and ecosystem levels.

  19. The oldest man ever?

    DEFF Research Database (Denmark)

    Wilmoth, J; Skytthe, A; Friou, D

    1996-01-01

    This article summarizes recent findings in a case study of exceptional longevity. CM, a resident of San Rafael, California, was 114 years old in August 1996. He is the first properly verified case of a 114-year-old man in human history (although a few women have been known to live longer). Our...... is accurate. Based on the available information, it also seems a reasonable conjecture that he may be the oldest man alive today and perhaps the oldest man who has ever lived. This study documents an extreme example of human longevity and records characteristics of the man's life that may provide clues about...

  20. Nuclear rockets: High-performance propulsion for Mars

    Science.gov (United States)

    Watson, C. W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  1. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    Science.gov (United States)

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  2. I parchi eolici: la complessa interazione tra natura, uomo e tecnologia - The wind farms: the complex interaction among nature, man and technology

    Directory of Open Access Journals (Sweden)

    Massimiliano Masullo

    2015-10-01

    Full Text Available Sin dai tempi antichi l’uomo ha costruito macchine che, sfruttando l’energia del vento, lo hanno aiutato a nutrire se stesso, la terra e a svolgere lavorazioni complesse. Con la scoperta dell’elettricità la funzione di queste macchine è cambiata radicalmente. Negli ultimi venti anni, politiche d'incentivazione hanno portato allo sviluppo di impianti eolici ed alla loro diffusione sul territorio, determinando una interazione sempre più intensa fra turbine eoliche, ambiente circostante ed uomo. Questo articolo presentata una rassegna dei principali fattori che determinano o modificano la percezione dell’impatto che queste macchine hanno sull’uomo e sull’ambiente circostante. ------ Since ancient times the man has built machines which exploiting the energy of the wind have helped to feed himself, the land and carry out complex operations. With the discovery of electricity the function of these machines is changed radically. In the last twenty years, incentive policies have led to the development of wind farms and their diffusion over the territory, resulting in a more intense interaction between wind turbines, environment and man. This article presents a review of the main factors that determine or affect the perception of the impact that these machines have on humans and the surrounding environment.

  3. [Man and animal from the ethical view

    Science.gov (United States)

    Teutsch, Gotthard M.

    1997-01-01

    This review over the books, articles in Journals and newspapers in 1996 and 1997 reports about the development in the field of man-animal- and man-nature-relations. The review considers the following themes: development, trends and perspectives, philosophy, theology, eco-ethics, legal questions, animal experimentation, freedom of research, teaching and conscience, farm animals, hunting and fishing, zoo and circus, bio-technology, violence, killing, vegetarism and dignity of creatures. The review includes a bibliography with about 300 quatoations.

  4. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  5. The Alienation of Technology---The Thought Come from One Dimensional Man%浅谈技术异化的新趋势--由《单向度的人》引发的思考

    Institute of Scientific and Technical Information of China (English)

    谢俊

    2013-01-01

    Marcuse mentioned in One Dimensional Man that with the development of technology ,the usage of Ideology will be highlighted and used as the tool of rulers .The paper absorbing something from the book and pursue the technology again .The writer hold that as the further of the alienation of technolo-gy ,human being will lose subjectivity ,the alienation of technology will be the tool of human being ruined themselves ,this is the newest performance of alienation .It has far -reaching meaning to research the Al-ienation of Technology for the development of China .%马尔库塞在《单向度的人》中提到,随着科学技术的发展,其意识形态的功能日益凸显,科学技术异化为统治者进行统治的工具。在这一文本的基础上,本文对技术异化的当代发展进行追问。随着技术异化程度的加深,人的主体性逐渐被消解,这成为当今技术异化的一种重要趋势。研究技术异化对中国的现代化建设具有重要作用。

  6. "Det man siger er man selv..."

    DEFF Research Database (Denmark)

    Næsby, Torben; Nørgaard, Britta; Uddholm, Mats

    forhold, der er hermeneutisk, strukturelt og relationelt bestemt. Praksisviden kan ikke være objektiv i gængs forstand, men det behøver ikke at diskvalificere denne viden. Forståelse er altid knyttet til den sag og bundet til den situation man står overfor og i som professionel og som menneske....

  7. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  8. Man of Fire.

    Science.gov (United States)

    Phipps, Helene Juarez

    1993-01-01

    The themes of Jose Clemente Orozco's murals, several of which are found on U.S. college campuses, are as relevant today as they were during the Mexican Revolution. Orozco (1883-1949) painted the world as he saw it, portraying corruption, violence, and man's inhumanity to man. (LP)

  9. Man's Role in Nature

    Science.gov (United States)

    Peterson, Roger Tory

    1975-01-01

    Presents a viewpoint that the civilized man, the humane man, accepts not only the humane ethic but also the conservationist's philosophy and the environmentalist's point of view because all these views are overlapping, interlocking and essential to a better and more civilized world. (BR)

  10. THE MAN NATIONALITY WOMEN

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The Man nationality,with a population of 9,821,180,live in northeast China,mainly in Liaoning Province.They have their own language,but now most of the Man nationality people use Mandarin Chinese except for a few elderly people in the remote villages of Heilongjiang Province.

  11. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  12. The cross-border project between France and Italy MARS+. Sub-project - Innovative technologies for the mechanization of the areas hard to reach

    Directory of Open Access Journals (Sweden)

    G. Tirrò

    2013-09-01

    Full Text Available The care and protection of the mountain areas and their traditional crops were some of the reasons that led regional governments of Liguria and Tuscany to participate in the strategic project “Sea, Countryside and Land: potentiate the strategic unitarily” (MARS +. This project has also involved the participation of the four cross-border regions: Tuscany (leader, Sardinia, Liguria and Corsica. The aim was to promote the development of the innovations and entrepreneurship in the rural areas in order to increase competitiveness. In particular, the subproject SC has provided the transfer of innovations to facilitate the processes of mechanization in vineyards and olive orchards in contexts defined as “heroic”, areas of high landscape and environmental value in which the typical cultures has been always carried out, generally, on terraces or slopes. These conditions require a great effort by the farmers and result in high production costs. The transfer of the innovations has provided the organization of demonstration days in which the technological solutions for the management of the farming operations in vineyards and olive orchards were proposed and tested. During these events, the participative process was fundamentally reconfirmed, not only as a means to expand the knowledge of innovative products, but also as an opportunity for farmers, retailers, manufacturers, researchers, and local administrators to interact and facilitate the development of other technologies. The parameters that led to the innovative solutions included: the small size, user-friendliness, agility, and the ability of operating on systems not easily accessible. These products must also ensure the ergonomics and safety of workers performing all the growing operations. A thorough research of the available technologies and prototypes, still under development, affirms the presence of many innovations. These innovations not only allow the execution of all the field

  13. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    Science.gov (United States)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  14. 技术作为人的自我实现及“大众”反叛的基础——浅议奥尔特加的技术思想%Technology as Autofabrication of Man and the Cause of the Masses Revolt——Technology Ideas of José Ortega y Gasset

    Institute of Scientific and Technical Information of China (English)

    张小龙

    2013-01-01

    Jose Ortega y Gasset is the famous phenomenologist and existential philosopher of Spanish. With necessity of man for key, he analyzes the essence of technology, points out that the technology is autofabrication of man. And the best principle of delimiting periods in technical evolution is furnished by the relation between man and technology. He described the particularity of the modern technology and its consequences. He believed the aim and significance of technology are outside in technology. Modern technology to bring is the European crisis that is the revolt of the masses.%西班牙著名哲学家奥尔特加以人的需求为理解技术的关键,指出技术是人实现自身的筹划;并以技术与人的关系为标准,通过历史性描述技术演变的三个阶段,深刻揭示了现代技术的特殊性.在他看来,技术的目的、意义均在技术之外,现代技术带来的是超出人们意愿之外的欧洲危机即大众的反叛.奥尔特加的技术思想不仅认识到了技术的本质,还抓住了社会发展的基本动力,引发了人们关于对科学阶层依赖关系的思考.

  15. Less Contact Ballistogram Recording during Sleep as a Perspective Technology for the Medical Monitoring System in a Mission to Mars

    Science.gov (United States)

    Baevsky, R. M.; Bogomolov, V. V.; Funtova, I. I.

    strong argument for success of a future Martian mission is absence of pathologies developed in cosmonauts following one-year or longer space flights that might forbid further gradual extension of piloted missions. However, functional shifts in the neurohormonal regulation revealed during the long-term Mir missions suggest that homeostasis of the vital important body systems is maintained owing to active functioning of the regulatory mechanisms (Grigoriev A.I. et al., 1998). Since overstrain of these mechanisms constitutes one of the main factors of risk of diseases, it is important to provide unfailing and systematic monitoring of the body regulation functional reserves. night ballistocardiography, made it possible to obtain data on super-slow heart rhythm fluctuations reflective of activation of the neurohormonal regulation (Baevsky R.M. et al., 1999). Analysis of the data showed that on a background of extended exposure of the human organism to various stressful factors the cardiovascular homeostasis is maintained through consecutive recruitment in adaptation of higher levels of regulation of the physiological systems (Grigoriev A.I., Baevsky R.M., 2001). This validates the hypothesis concerning the role of the higher autonomous centers in long-term adaptation to the spaceflight factors and opens up the new way to diagnosis and prediction of the human body functional reserves. It was first demonstrated in space during the Mir primary mission 9 in 1991. Sensor-accelerometer secured to cosmonaut's sleeping bag registered micromovements conditioned by the heart, respiratory and motor activities of a sleeping cosmonaut. The joint Russian-Austrian space investigations in 1992-1995 resulted in technology refinement and enhancement. Advantages of medical monitoring during sleep are obvious not only because of the time saving and opportunity to receive systematically information pertaining to the crew health. Records allow, to begin with, evaluate the functional state in

  16. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  17. Structural technology challenges for evolutionary growth of Space Station Freedom

    Science.gov (United States)

    Doiron, Harold H.

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  18. Theory-Based Design and Development of a Socially Connected, Gamified Mobile App for Men About Breastfeeding (Milk Man)

    Science.gov (United States)

    White, Becky K; Martin, Annegret; White, James A; Burns, Sharyn K; Maycock, Bruce R; Giglia, Roslyn C

    2016-01-01

    Background Despite evidence of the benefits of breastfeeding, babies are exclusively breastfed to the recommended 6 months. The support of the father is one of the most important factors in breastfeeding success, and targeting breastfeeding interventions to the father has been a successful strategy in previous research. Mobile technology offers unique opportunities to engage and reach populations to enhance health literacy and healthy behavior. Objective The objective of our study was to use previous research, formative evaluation, and behavior change theory to develop the first evidence-based breastfeeding app targeted at men. We designed the app to provide men with social support and information aiming to increase the support men can offer their breastfeeding partners. Methods We used social cognitive theory to design and develop the Milk Man app through stages of formative research, testing, and iteration. We held focus groups with new and expectant fathers (n=18), as well as health professionals (n=16), and used qualitative data to inform the design and development of the app. We tested a prototype with fathers (n=4) via a think-aloud study and the completion of the Mobile Application Rating Scale (MARS). Results Fathers and health professionals provided input through the focus groups that informed the app development. The think-aloud walkthroughs identified 6 areas of functionality and usability to be addressed, including the addition of a tutorial, increased size of text and icons, and greater personalization. Testers rated the app highly, and the average MARS score for the app was 4.3 out of 5. Conclusions To our knowledge, Milk Man is the first breastfeeding app targeted specifically at men. The development of Milk Man followed a best practice approach, including the involvement of a multidisciplinary team and grounding in behavior change theory. It tested well with end users during development. Milk Man is currently being trialed as part of the Parent

  19. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  20. Rekordhind Man Ray eest

    Index Scriptorium Estoniae

    1998-01-01

    Ameerika sürrealistliku fotograafi Man Ray 1926. a. Pariisis pildistatud foto 'Must ja valge, Pariis (positiiv ja negatiiv)', mis kujutab Ray armukese Kiki de Montparnasse'i portreed, maksis New Yorgi fotooksjonil 7, 3 miljonit Eesti krooni

  1. Rekordhind Man Ray eest

    Index Scriptorium Estoniae

    1998-01-01

    Ameerika sürrealistliku fotograafi Man Ray 1926. a. Pariisis pildistatud foto 'Must ja valge, Pariis (positiiv ja negatiiv)', mis kujutab Ray armukese Kiki de Montparnasse'i portreed, maksis New Yorgi fotooksjonil 7, 3 miljonit Eesti krooni

  2. Man & Sound Environment 2010.

    OpenAIRE

    2010-01-01

    Proceedings to the conference "Man and Sound Environment 2010" arranged by The sound Envirnment Center at Lund university. Ulf Landström, Swedish Noise Research Network & Frans Mossberg The Sound Environment Centre at Lund university. CONTENTS: Preface – Symposium “Man and Sound Environment 2010” The prevalence of noise problems. Gunn Marit Aasvang, Norwegian Institute of Public Health, Department of Environmental Medicine, Nydalen, Oslo, Norway Effects of ...

  3. A Comprehensive Analysis of the World Manned Spaceflight Development in 2011%2011年世界载人航天发展综合分析

    Institute of Scientific and Technical Information of China (English)

    孙龙; 刘映国

    2012-01-01

    受国际金融危机持续影响,主要国家载人航天长远发展步伐放缓。载人天地往返运输能力出现缺失,国际空间站开发利用与近地轨道载人航天活动面临新的挑战。航天大国围绕载人深空探索,积极开发创新概念与技术,无人火星与小行星探测出现热潮。载人登月仍将是主要国家争夺的焦点,大国主导联合开发月球的趋势不容忽视。%With the continuing impact of the international financial crisis, the pace of major countries' long-term manned spaceflight development has slowed down. There came a shortage in manned space transporting capacity, and the International Space Station application and near-earth orbit manned spaceflight activities are facing new challenges. Meanwhile, the space powers are actively developing innovative concepts and technologies for the future manned deep space exploration, and there is an upsurge in unmanned exploration of Mars and the asteroids. Manned lunar landing will remain the focal point of competition for major countries, while the trend that space powers conduct a joint exploitation of the moon can't be ignored.

  4. Feasibility of Biomass-based Fuel Cells for Manned Space Exploration

    Science.gov (United States)

    Pipoli, Tiziana

    2005-05-01

    The increasing quantity of greenhouse gases in the atmosphere and the decrease in fossil fuels availability are driving massive investigation of alternative, sustainable energy sources for Earth applications. Among others, different processes for the conversion of biomass into useful fuels are under development or have been already implemented in various Countries. The transfer of this technology to space is promising in view of the ambitious plans for future manned planetary exploration missions, where power generation represents a critical aspect. Recycling organic waste increases the availability of fuel and at the same time reduces the issues of waste disposal and planetary protection. This work presents a preliminary assessment of the feasibility of a biomass-based fuel cell system during a human mission to Mars.

  5. Mars Surface Simulations

    Science.gov (United States)

    Nørnberg, Per; Merrison, Jonathan P.; Gunnlaugsson, Haraldur P.

    2010-05-01

    Laboratory simulations of the Martian surface are of importance to broaden scientific understanding of the physical processes, but also in order to develop the technology necessary for exploration of the planet. The Mars Simulation Laboratory at Aarhus University [1] has been involved in such simulations for around ten years and has developed several experimental facilities for carrying out science or instrument testing under conditions similar to those at the Martian surface, specifically low pressure, low temperature and importantly recreating the wind flow environment and dust suspension (reproducing the Martian dusty aerosol) using Mars analogue material [2]. The science involved in this simulation work has covered a broad spectrum including, erosion induced mineralogy/chemistry, particulate electrification, magnetic properties of Martian dust, biological survival, UV induced chemistry/mineralogy (using a solar simulator), adhesion/cohesion processes and the wind driven transport of dust and sand [3,4]. With regard to technology the wind tunnel facilities have been used in the development of the latest wind and dust sensing instrumentation [5,6]. With support from the European Space Agency (ESA) and Danish national funding an advanced Mars simulation facility has recently been constructed (2009). This wind tunnel facility has a cross section of 2 x 1 m and a length of 8 m, a temperature range down to below -120C, wind speeds in excess of 20m/s, and automated dust control. With a range of (specialised) sensing instrumentation it provides the opportunity to perform a new generation of scientific experiments and allow testing and technology development in the most realistic and rigorous environment. As well as being available for the space agencies, this facility will be open to all potential scientific collaborators. Also European planetary scientists may benefit from support through the EU Europlanet FP7 networking programme. For more information on access

  6. Combat Automation for Airborne Weapon Systems: Man/Machine Interface Trends and Technologies (L’Automatisation du Combat Aerien: Tendances et Technologies pour l’Interface Homme/Machine)

    Science.gov (United States)

    1993-04-01

    d’action alternatives. Un Systeme bien integre doit concilier dc multiples sources de donnees, potentiellement contradictoires, relatives aux situations...comments constitute my persona ! evaluations of and observations on the content of each presentation. In no sen»; at they intended to summarize the...Aircraft Combat. Evaluation Aid, Expert Sys- tem, Man Machine Interface. 24-2 1-INTRODUCTION Dans les missions atSriennes aussi bien reelles que

  7. Mars Public Engagement Overview

    Science.gov (United States)

    Johnson, Christine

    2009-01-01

    This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.

  8. THE PREGNANT MAN

    Directory of Open Access Journals (Sweden)

    M.Arulmani

    2014-09-01

    Full Text Available This scientific research article focus that the “Human Ancestor” lived in “Mars Planet‟ in the early universe shall be considered having distinguished genetic characteristics compared to “Modern Human” living in earth Planet especially in reproduction of population. This research further focus that MALE PARENT shall be considered as “become pregnant” and responsible for child birth. During the course of “Space” and “Time” of expanding universe the mars populations consider have descended to Earth planet due to varied climatic condition and FEMALE PARENT become pregnant and responsible for child birth at later stage of “Nuclear age”

  9. Det man hører, er man selv

    DEFF Research Database (Denmark)

    Svømmekjær, Heidi Frank

    2012-01-01

    Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013.......Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013....

  10. Robust, affordable, semi-direct Mars mission

    Science.gov (United States)

    Salotti, Jean-Marc

    2016-10-01

    A new architecture is proposed for the first manned Mars mission, based on current NASA developments (SLS and Orion), chemical propulsion for interplanetary transit, aerocapture for all vehicles, a split strategy, and a long stay on the surface. Two important choices make this architecture affordable and appropriate for the first mission. The first is splitting the Earth return vehicle into two parts that are launched separately and dock in Mars orbit. This is necessary to make aerocapture feasible and efficient, which considerably reduces mass. The second is reducing the crew to 3 astronauts. This simplifies the mission and reduces the SLS payload mass under the 45-metric ton limit for a direct TMI (trans-Mars injection) burn without LEO assembly. Only 4 SLS launches are required. The first takes the Mars ascent vehicle and in situ resource utilization systems to the planet's surface. The second takes the first part of the Earth return vehicle, the habitat, into Mars orbit. Two years later, two further SLS launches take a dual-use habitat (outbound trip and surface), Orion, and an enhanced service module to LEO, and then into Mars orbit, followed by the landing of the habitat on the surface. Transit time is demonstrated to be easily reduced to less than 6 months, with relatively low impact on propellant mass and none at all on the architecture.

  11. From LEO, to the Moon and then Mars: Developing a Global Strategy for Exploration Risk Reduction

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernard

    2009-01-01

    Most nations currently involved in human spaceflight, or with such ambitions, believe that space exploration will capture the imagination of our youth resulting in future engineers and scientists, advance technologies which will improve life on earth, increase the knowledge of our solar system, and strengthen bonds and relationships across the globe. The Global Exploration Strategy, published in 2007 by 14 space agencies, eloquently makes this case and presents a vision for space exploration. It argues that in order for space exploration to be sustainable, nations must work together to address the challenges and share the burden of costs. This paper will examine Mars mission scenarios developed by NASA, ESA and other agencies and show resulting conclusions regarding key challenges, needed technologies and associated mission risks. It will discuss the importance of using the International Space Station as a platform for exploration risk reduction and how the global exploration community will develop lunar exploration elements and architectures that enable the long term goal of human missions to Mars. The International Space Station (ISS) is a critical first step both from a technology and capability demonstration point of view, but also from a partnership point of view. There is much work that can be done in low earth orbit for exploration risk reduction. As the current "outpost at the edge of the frontier", the ISS is a place where we can demonstrate certain technologies and capabilities that will substantially reduce the risk of deploying an outpost on the lunar surface and Mars mission scenarios. The ISS partnership is strong and has fulfilled mission needs. Likewise, the partnerships we build on the moon will provide a strong foundation for establishing partnerships for the human Mars missions. On the moon, we build a permanently manned outpost and deploy technologies and capabilities to allow humans to stay for long periods of time. The moon is interesting from

  12. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  13. The Socio-Technical Man

    Science.gov (United States)

    Moreno, Yamir

    In the last 20 years or so, the field of complexity science has entered a new age. The combination of new theoretical insights and the data revolution has prepared the ground for a number of conceptual milestones in many disciplines as diverse as biology, physics, engineering, and economic and social sciences. At the same time, we have been able to identify new challenges whose solutions will confer the science of complex systems an unprecedented applied dimension. Here I would like to focus on one of these challenges: the socio-technical man. With the ever-increasing growth of both the world population and new technologies, it is fundamental for the well-being of humanity and our society to understand how humans interact among them and with the new technological environment...

  14. Space radiation protection: Destination Mars

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  15. JPL Advanced Thermal Control Technology Roadmap - 2008

    Science.gov (United States)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  16. Why Man Explores.

    Science.gov (United States)

    California Inst. of Tech., Pasadena.

    This document presents a transcript of a National Aeronautics and Space Administration panel discussion held on July 2, 1976, in conjunction with the Viking Mission to Mars. The panel consisted of Norman Cousins, Ray Bradbury, Jacques Cousteau, James Michener, and Philip Morrison, and the principal topic was a philosophical discussion of the…

  17. Man - Machine Communication

    CERN Document Server

    Petersen, Peter; Nielsen, Henning

    1984-01-01

    This report describes a Man-to-Machine Communication module which together with a STAC can take care of all operator inputs from the touch-screen, tracker balls and mechanical buttons. The MMC module can also contain a G64 card which could be a GPIB driver but many other G64 cards could be used. The soft-ware services the input devices and makes the results accessible from the CAMAC bus. NODAL functions for the Man Machine Communication is implemented in the STAC and in the ICC.

  18. Bulletproof Black Man

    DEFF Research Database (Denmark)

    Højer, Henrik

    2016-01-01

    Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst.......Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst....

  19. A Mars Riometer

    Science.gov (United States)

    Fry, C. D.; Rosenberg, T. J.; Lutz, L.; Detrick, D. L.; Weatherwax, A. T.; Knouse, E.; Breden, H.; Giganti, J.

    1998-09-01

    The Planetary Surface Instruments Workshop (Meyer et al., LPI Tech. Rpt. 95-05, 1995) identified surface-based radio science instruments as key tools for observing Mars' middle atmosphere, its ionosphere and solar-wind interaction. For example, Mars has a substantial daytime ionosphere, and some important features of the Martian ionosphere can only be observed from below. One instrument, the Relative Ionospheric Opacity Meter (Riometer), is expected to work well on Mars (Detrick et al., PSS, 45, p. 289, 1997). In the past, the size, power requirements and complexity of these instruments have argued against including them on a lander or rover mission, in spite of the potentially rich science return. We describe the development of a miniature radio receiver designed to operate as a Riometer. The development of this receiver was funded by NASA as an enabling technology for future planetary radio science missions. Our receiver includes features that are desirable for extended autonomous operation: low power consumption, wide dynamic range and linearity, computer command and data interface, and the ability to be remotely reconfigured. The receiver design provides significant improvements over previous implementations used in terrestrial riometry. The high degree of system linearity, combined with a digital feedback loop (including a low-duty calibration cycle), allows a longer measurement time. We were able to significantly miniaturize the receiver by using modern, low-power electronic components that have come on the market. We also implemented several of the subsystems in a field-programmable gate array, including the receiver detector, the control logic, and the data acquisition and processing blocks. Considerable efforts were made to eliminate or minimize RF noise and spurious emissions generated by the receiver's digital circuitry. Results of laboratory and field tests are presented and discussed.

  20. Connecting Robots and Humans in Mars Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  1. A method to evaluate utility for architectural comparisons for a campaign to explore the surface of Mars

    Science.gov (United States)

    Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.

    2016-11-01

    There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.

  2. The story of 520 days on a simulated flight to Mars

    Science.gov (United States)

    Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, Iva; Mazehóová, Yvona

    2016-09-01

    The project Mars-500 was the first long-term simulation of a manned flight to Mars. We examined the ways crew members described their experiences and their life during simulation, what they saw as key episodes and key topics in simulation, as well as key problems and key benefits. The aim of this paper is to present the Mars-500 simulation in its complexity, from beginning to end, as a one narrative story.

  3. Play the Man!

    DEFF Research Database (Denmark)

    Edelberg, Peter

    as opposites towards a heterosexual matrimonial ideal wherein men could try to establish a masculine identity. This tendency created new frontiers where homosexuals, 'perverts', 'misfits' and 'freaks' were seen as opposites of the 'real man' in the symbolic world of the early twentieth century....

  4. Ethology and Man

    Science.gov (United States)

    Biology and Human Affairs, 1971

    1971-01-01

    Reviews four texts and compilations of papers in an effort to assess the relevance of animal behavior studies to anthropology and sociology. Concludes that where a basic element of behavior occurs widely throughout the animal kingdom, especially in the higher mammals and primates, we may expect to find a manifestation in man." Limitations of the…

  5. AUTO PARTS MAN, WORKBOOK.

    Science.gov (United States)

    DOVER, BUEL H.

    THE INFORMATION IN THIS STUDY GUIDE WAS DEVELOPED FOR USE IN THE RELATED TECHNICAL CLASSROOM INSTRUCTION PHASE OF THE AUTO PARTS MAN APPRENTICE TRAINING PROGRAM. THE MATERIAL WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE AUTOMOTIVE TRADE. THE UNITS ARE (1) SCOPE AND OPPORTUNITY, (2) AREAS OF RESPONSIBILITY,…

  6. Reference Man anatomical model

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  7. Constructing EuroMan

    DEFF Research Database (Denmark)

    Sandberg, Marie; Andersen, Dorte

    2008-01-01

    Regionalism. In the first two parts of the article, this connection is analysed in detail. In the last part, we will illustrate how EuroMan is enacted in the Spanish region Catalonia and in the border town Görlitz-Zgorzelec in the Polish-German borderland. These two examples have been made possible...

  8. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    for future exploration. ESA is now able to afford Mars Express because it will be built more quickly and cheaply than any other comparable mission. It will be the first of the Agency's new flexible missions, based on maximum reuse of technology off-the-shelf and from other missions (the Rosetta cometary mission in this case). Mars Express will explore the extent to which innovative working practices, now made possible by the maturity of Europe's space industry, can cut mission costs and the time from concept to launch : a new kind of relationship with industrial partners is starting. "We are adopting a new approach to management by delegating to Matra Marconi Space (the prime contractor) responsibility for the whole project. This means we can reduce the ESA's management costs" says Bonnet. Despite the knock-down price, however, the future of Mars Express has hung in the balance because of the steady erosion of ESA's space science budget since 1995. Last November, the SPC said the mission could go ahead only if it could be afforded without affecting missions already approved, especially the FIRST infra-red observatory and the Planck mission to measure the cosmic microwave background. On 19/20 May, the SPC, which has the ultimate decision over the Agency's science missions, agreed that the level of resources allowed was just sufficient to allow Mars Express to go ahead. "To do such an ambitious mission for so little money is a challenge and we have decided to meet", says Balsiger.

  9. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  10. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  11. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  12. Turning dust to gold building a future on the Moon and Mars

    CERN Document Server

    Benaroya, Haym

    2010-01-01

    Our continued prosperity and survival as species will in part depend upon space exploration and manned settlement. This will provide resources for our industrial societies and create new opportunities and markets. This book is a journey into our potential future, as several nations today begin seriously to plan and build up their capabilites for manned space flight and settlement on the Moon and Mars.

  13. EU PVSEC: New products: Cells and modules, production technology, monitoring and communication, measuring technology, inverters, tracking systems etc.; EU PVSEC: Produktneuheiten. Zellen und Module, Produktionstechnik, Monitoring und Kommunikation, Messtechnik, Wechselrichter, Nachfuehrsysteme, Was man sonst noch braucht

    Energy Technology Data Exchange (ETDEWEB)

    Ossenbrink, Ralf; Augsten, Eva; Gesthuizen, Jan; Maeuler, Desiree; Buddensiek, Volker; Garus, Katharina

    2010-09-01

    The contribution takes a look back at the EU PVSEC trade fair and presents some of the innovations that were shown. There was news in many areas, e.g. cells and modules, production technology, monitoring and communication, measuring technology, inverters, tracking systems etc. (orig./AKB)

  14. Rotorcrafts for Mars Exploration

    Science.gov (United States)

    Balaram, J.; Tokumaru, P. T.

    2014-06-01

    Rotorcraft mobility provides a number of useful capabilities to potential Mars missions. We present some recent results relating to the design and test of Mars rotorcraft mobility elements, and aspects of rotorcraft system and mission design.

  15. Mars Gashopper Airplane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  16. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    Science.gov (United States)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  17. Tesla man out of time

    CERN Document Server

    Cheney, Margaret

    1981-01-01

    Called a madman by some, a genius by others, and an enigma by nearly everyone, Nikola Tesla created astonishing, world-transforming devises that were virtually without theoretical precedent. Tesla not only discovered the rotating magnetic field, the basis of most alternating current machinery, but also introduced the fundamentals of robotry, computers, and missile science and helped pave the way for such technologies as satellites, microwaves, beam weapons, and nuclear fusion. Almost supernaturally gifted, Tesla was also unusually erratic, flamboyant, and neurotic. He was J. P. Morgan's client, counted Mark Twain as a friend, and considered Thomas Edison an enemy. But above all, he was the hero and mentor to many of the last century's most famous scientists. In a meticulously researched, engagingly written biography, Margaret Cheney presents the many different dimensions of this extraordinary man, capturing his human qualities and quirks as she chronicles a lifetime of discoveries that continue to alter our ...

  18. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  19. Manned Space Flight Project Ready to Start the Second Stage

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China Aerospace Science and Technology Corporation (CASC) made four launches from October 15 to November 15 in 2003, The successful launches made in such short time have proved the ability of the Chinese engineers, technology level and management skills. Especially China's first manned mission achieved a complete success, which indicates that the first step of China's manned space flight project has already been completed and the conditions for the second step is mature.

  20. Major Breakthroughs In Shenzhou 7 Manned Space Mission

    Institute of Scientific and Technical Information of China (English)

    Bian Ji

    2008-01-01

    @@ The complete success of the Shenzhou 7 manned space mission has realized significant progress in the development of China's space technology, making China the third country capable of carrying out extravehicular activities (EVA),independently, following the forhaer Soviet Union and the United States.Recently Aerospace China interviewed Mr. Ma Xingrui, Vice Chief Commander of China's Manned Space Program and President of China Aerospace Science and Technology Corporation (CASC).

  1. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    Science.gov (United States)

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Technological Status of Man-Made Fiber Laboratory and Pilot Plant%化学纤维实验室与中间试验设备的技术现状

    Institute of Scientific and Technical Information of China (English)

    芦长椿

    2011-01-01

    The commonly-used lab scale spintester, i.e., laboratory and pilot plant suitable for dry spinning,wet spinning and melt spinning are specifically introduced. The spintester includes testing units such as small-scale drawing twister, false-twist drawing texturing machine and industrial yarn unit which are applied for enhancing process, developing new products and reducing the energy consumption. Recently,new pilot plants are emerging in the research of high-performance fiber material which, to some extent,accelerates the renewal speed in man-made fiber technologies.%重点介绍了常用的试验规模的纺丝设备,即采用干法、湿法和熔融法的实验室和中间试验纺丝装置,包括企业为优化生产工艺、开发新产品、降低能耗所配备的诸如小型拉伸机、拉伸变形机、工业丝试验单元等.

  3. Cryogenics and the Human Exploration of Mars

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  4. The So-Called 'Face on Mars'

    Science.gov (United States)

    2002-01-01

    -facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. Alternatively, these unique features could be the result of the slow downslope motion of the surface layer, possibly enhanced by the presence of ground ice. One argument against downslope motion is the observation that the uppermost rounded boundary of these layers typically occurs at approximately the same distance below the ridge crest. This would suggest the (seemingly) unlikely possibility that all of these layers had moved downslope the same amount regardless of where they are located. In either case, ground ice likely plays an important role in the formation and preservation of these deposits because they only occur on the cold slopes facing away from the Sun where ground ice is more stable and may still be present today. The Story Nature is an imaginative artist, creating all kinds of wonderful landforms, cloud shapes, and other patterned features that remind people of familiar things in our lives. We see a 'man in the moon' when it is full in the night sky, and dream of a dromedary-dotted desert when coming upon Arizona's Camelback Mountain or Colorado's 'Kissing Camels' in the 'Garden of the Gods.' Near Ludlow, California, a lonely prospector once noticed that the appealing outline of the mountains resembled a reclining woman, and named the place Sleeping Beauty. And this naming delight isn't limited to Earth. The Mars Pathfinder mission team couldn't help but name the rocks at the landing site, including a bear-headed-looking one named Yogi. Part of the fun of exploration is not just visiting a strange world, but relating to it in human terms. On Mars, we've already seen a valentine heart-shaped crater, a happy-faced crater, and even a murky and mysterious 'face' on Mars. This face (seen here about halfway down the image and to the right) is really just a hill with slopes and ridges that are shadowed in a way that can

  5. Man Is a Paradox

    Institute of Scientific and Technical Information of China (English)

    王茂娟

    2009-01-01

    In the poem "Always", the author Pablo Neruda employs the first person narration to incisively reveal the paradoxical traits in human nature by exploring man in relation to love. "I" play a role shifting from a calm narrator to a furious one, and the last recovering to a mild one, which offers a multiple visual angle to observe humanity. In sum, by means of continuous changes of my inner feelings in the poem, Pablo Neruda reveals the paradoxical humanity .

  6. First dose in man

    DEFF Research Database (Denmark)

    2011-01-01

    Du er blevet ansat som læge i et lægemiddelfirma med ansvar for planlægning og sikkerhed i fase 1 forsøg. Firmaet har udviklet tre dopamin D2-receptor antagonister til behandling af skizofreni. Lægemidlerne har undergået et omfattende farmakologisk, toksikologisk og farmaceutisk afprøvningsprogra...... fase 1 forsøg alias »First dose in man«....

  7. Biological Individuality of Man

    Science.gov (United States)

    1974-12-01

    RECIPIENT’S CAT * LOO NUMBER Biological Individuality of Man 5 TlrPE OF REPORT a PERIOD COVERED Technical « PERFORMING ORO REPORT...Variability 13 A. Background , 13 B. Slatistictl Approaches to Biological Variability 13 C. Genetic Aspects of Biological Variability . 14 III...ioiological determinants of individuality. Only recently, have genetic infaienccs been investigated and the potentialities for future control of bio

  8. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  9. How Thick is the North Polar Ice Cap on Mars?

    Science.gov (United States)

    2008-01-01

    This map shows the thickness of the north polar layered deposits on Mars as measured by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter. The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington

  10. How Thick is the North Polar Ice Cap on Mars?

    Science.gov (United States)

    2008-01-01

    This map shows the thickness of the north polar layered deposits on Mars as measured by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter. The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington

  11. The broad view of nuclear technology for aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D. (Center for Nuclear Engineering and Technology, Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2516 (US)); Angelo, J.A. Jr. (Science Applications International Corp., 700 South Babcock Street, Suite 300, Melbourne, Florida 32901 (US))

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  12. Proposal MaMBA - Moon and Mars Base Analog

    Science.gov (United States)

    Heinicke, Christiane; Foing, Bernard

    2017-04-01

    Despite impressive progress in robotic exploration of celestial bodies, robots are believed to never reach the effectiveness and efficiency of a trained human. Consequently, ESA proposes to build an international Moon Village in roughly 15 years and NASA plans for the first manned mission to Mars shortly after. One of the challenges still remaining is the need for a shelter, a habitat which allows human spacefarers to safely live and work on the surface of a celestial body. Although various prototype habitats have been built and inhabited during the last decade, they typically share two fundamental flaws: First, they usually consist of a single space, which may become uninhabitable after depressurization due to just one single catastrophic event. Second, none of the habitats provides shielding against radiation, one of the major health concerns for spacefaring crews. Project MaMBA will address these two problems at the root and build an underground habitat comprised of five connected, but independent modules. The habitat will serve for testing technologies like life support, power systems, and interplanetary communication. Special attention will be given to the development of the geoscience laboratory module. In addition to the technological aspects, the envisioned habitat will serve as a unique test ground for studies on the effects of underground habitation on a crew.

  13. Mars One the ultimate reality TV show?

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book dissects the hype and hubris of the Mars One venture. Every aspect of the mission design is scrutinized, from the haphazard selection process to the unproven mission architecture. A controversial project, many professional astronauts consider Mars One a reckless attempt, yet it gained popular attention. This go-to reference guide provides the reader with insights into the myriad issues arising from the project's loss of funding, loss of sponsorship, loss of TV rights. It explains what contributed to an overly optimistic assessment of Mars One's mission-specific technology, and what captivated the public and the many willing candidates despite these flaws. From the author of Survival and Sacrifice in Mars Exploration (2015) among many more books on spacefaring, this is yet another up-to-the-minute account of an emerging player in the private space market from an expert on the subject.

  14. Constructing an Educational Mars Simulation

    Science.gov (United States)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the

  15. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  16. Innovative MAN Euro V engines without exhaust aftertreatment; Innovative MAN Euro V Motorisierung ohne Abgasnachbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Held, W.; Raab, G.; Schaller, K.V.; Gotre, W.; Lehmann, H.; Moeller, H.; Schroeppel, W. [MAN Nutzfahrzeuge AG, Muenchen (Germany); MAN Nutzfahrzeuge AG, Nuernberg (Germany); MAN Nutzfahrzeuge AG, Steyr (Austria)

    2009-07-01

    MAN Nutzfahrzeuge AG (Munich, Federal Republic of Germany) always is eager to offer products for the respective markets whereby the products are interesting for the customer under economic criteria. Additionally, the products shall not lack in the travelling comfort under consideration of the legal emission borders. Thus, a AdBlue {sup registered} free technology for all MAN series was already offered before the legal introduction of EURO IV. This technology is based on an internal-motor solution with external, cooled AGR and a PM-Cat {sup registered} -filter. This solution is esteemed highly by our customers because apart from the well-known advantages in relation to a SCR technology there were no losses with the operating cost. With EURO V which is inserted in some countries MAN Nutzfahrzeuge AG returns to a long-term experience with SCR technology. The motivation for the development of a AdBlue {sup registered} free solution was the positive feedback of our customers on the basis of MAN EURO IV AGR/PM Cat technology. With the developed EURO V AGR solution, other EURO IV solutions in line with market conditions for the 'Emerging markets' can be derived with which a technology without exhaust post-treatment can be offered worldwide for our customers. This technology presents the basis for a platform concept EURO IV/V and EURO VI. In this concept, EURO IV can be presented without subsequent treatment of exhaust gases, EURO V in connection with an Oxicat and EURO VI with a SCRT system. Here, the vehicle/engine concept presents the most important components for the individual series in particular. By means of these components, the goal EURO V was achieved internal-motor without losses of operating cost and life span in relation to SCR technologies.

  17. The Cities for No Man

    Directory of Open Access Journals (Sweden)

    Marat Nevlyutov

    2016-10-01

    Full Text Available Contemporary urban concept asserts the need to create spaces for man. However, the idea of a "man" transformed radically from the moment of its appearance. The book by the famous Danish architect and consultant in urban design Jan Gehl, "Cities for people", is a key example to demonstrate the ambiguity of this position. The book focuses on the concept of "man", which was abandoned in modernism. And modernism is criticized by the author. But in reality, it is not about the return to the "man", but about designing "new man". Gehl describes a new urban ideology, in which his understanding of "man" coincides with the postmodernist understanding of its absence. The "man" is multiple functions, actors of the city, and it refers to the bodies that are indistinguishable in their anonymity.

  18. Time and man

    CERN Document Server

    Elton, LRB

    2014-01-01

    Time and Man focuses on the endeavors of humans to probe the mysteries of time and to elucidate its properties. The discussions are both philosophical and factual in nature and encompass science as well as the physical sciences, biology and related disciplines (for example, evolution), and the humanities (for example, religion). Factual information is presented to help the reader gain a better understanding of the concepts associated with time.Comprised of nine chapters, this volume first considers the passage of time and the experiences which humans associate with the concept of time before r

  19. Spider-man

    Institute of Scientific and Technical Information of China (English)

    路遇

    2002-01-01

    Spider-Man was first introduced in the comic(连环画) Amazing Fantasy #15(August 1962).Peter Parker,a Senior at Midtown High School,receives his powers when bitten by a exhibition(转基因) spider in a science demonstration(展览).This bite endowed(赋予) him with the proportional(相应的) strength and agility(敏捷) of a spider along with a keen “spider sense”.

  20. Time and man

    CERN Document Server

    Elton, L. R. B

    1978-01-01

    Time and Man focuses on the endeavors of humans to probe the mysteries of time and to elucidate its properties. The discussions are both philosophical and factual in nature and encompass science as well as the physical sciences, biology and related disciplines (for example, evolution), and the humanities (for example, religion). Factual information is presented to help the reader gain a better understanding of the concepts associated with time.Comprised of nine chapters, this volume first considers the passage of time and the experiences which humans associate with the concept of time before r

  1. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station

    Science.gov (United States)

    Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)

    2001-01-01

    Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.

  2. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  3. The combined ground simulation test technology of thermal vacuum for man-extravehicular space suits-spacecraft%人-船-服热真空联合试验技术

    Institute of Scientific and Technical Information of China (English)

    庞贺伟; 陈金明; 李春扬

    2007-01-01

    The combined thermal vacuum test of man-extravehicular space suits-spacecraft is necessary to guarantee the safety of astronaut and the success of flight operation. During the tests, the astronauts may get themselves familiarizing with the space environment;their psychological endurance may be increased; and the defects of design, manufacture and operation procedure of the manned spacecraft may be discovered. A successful test must be based on perfect and complete ground test facilities, correct test technologies, a well considered test plan, reasonable technology specifications and simulation procedures. In this paper, the principal objectives and the major components of the combined thermal vacuum test of men-extravehicular space suits-spacecraft conducted in KM6 are presented.Three schemes of test are described. The potential problems of safety are analyzed and the relevant countermeasures and security systems are put forward. The main technical specifications of the facility are given and ten key subsystems, namely, vacuum chamber, liquid uitrogen, gas nitrogen, re-pressurization, environment control, thermal flux simulation, telecommunication control and fire fighting, are discussed.%人-船-服热真空联合试验对于保证航天员的安全和飞行任务的成功非常重要.航天员可通过试验熟悉空间环境、增强心理承受力,通过试验还可暴露出载人飞船在设计、研制和制造过程中的缺陷.而试验的成功则与完善的地面试验设施、正确的试验技术、详细的试验大纲、合理的技术规范和试验程序密切相关.文章主要介绍了在KM6大型空间环境模拟设备中进行的人-船-服热真空联合试验,包括3个试验方案、潜在的安全问题的分析及相关对策、安全系统的介绍,详细介绍了设备的主要技术规范和10个主要的分系统:真空容器、液氮分系统、气氮分系统、复压分系统、环境控制分系统、热流模拟分系统、通

  4. Autonomous On-orbit Health Management Architecture and Key Technologies for Manned Spacecrafts%载人航天器在轨自主健康管理系统体系结构及关键技术探讨

    Institute of Scientific and Technical Information of China (English)

    梁克; 邓凯文; 丁锐; 张森

    2014-01-01

    The design complexity , mission diversity and the mission duration of the manned space-craft have increased over the years , so there is an urgent need for the autonomous on-orbit health management .A hierarchical architecture where Observe-Orient-Decide-Act ( OODA ) loop was used to model the interaction was proposed so as to realize the precise and efficient health management . Then space station was taken as an example to study the key technologies including service deploy -ment, fault diagnosis, fault mode configuration and the implementation method based on software component .%针对载人航天器复杂化、任务多样化、在轨运行长期化的发展趋势,及由此对航天器在轨自主健康管理的能力提出的更迫切的需求,提出了一种在轨自主健康管理系统分层体系结构,并采用Observe-Orient-Decide-Act循环描述健康管理子行为之间的交互模型,可实现准确、高效的自主健康管理。并以空间站系统为例,研究了分层分级的服务部署、分类故障诊断、故障模型配置、基于构件的软件实现等关键技术。

  5. Analysis of IP MAN Group Customers Design and Evolution of Multi-service Bearer Technology:Taking Jinan MAN Design as an Example%IP城域网对集团客户多业务承载的设计和演进技术浅析——以济南城域网设计为例

    Institute of Scientific and Technical Information of China (English)

    韩子岩

    2013-01-01

    本文将就集团客户多业务在IP化的城域网这一运营商最为倚重的业务传送平台的承载以及管理为切入点进行分析和论述,研究一种在运营商转型期的IP城域网重点客户综合业务运营的新方式.通过对当前城域网的客户群进行宏观分析,提出了城域网客户群定位思路;同时,在对当前城域网市场业务需求进行宏观分析后,提出了比较清晰的业务定位,对转型期电信运营商宽带城域网规划建设具有较强的策略指导意义.%This article presents a Group customers multiservice in IP MAN which the operators most rely on the business transfer platform for carrying as well as management, and studies a new way of IP MAN key customers in operators transition. By macroscopic analysis of the current MAN customer groups, the positioning ideas of MAN customer groups were presented, meanwhile, business positioning was proposed after analyzing macroscopic analysis of MAN market business needs, which has a stronger strategic significance for telecom operators broadband MAN planning and construction of transitional period.

  6. Display Technology Research of Gun Loading System in 3D and Real-time Man-machine Interface%火炮装填系统实时三维人机界面显示技术研究

    Institute of Scientific and Technical Information of China (English)

    张瑞霞; 魏宁波; 郑海鹏; 潘江峰

    2014-01-01

    A kind of man-machine interface that can display the gun loading system in 3D real-time was de-signed to form a mode of 3D model &data drive by use of combining the traditional virtual prototype tech-nology with bus communication technology.Field sensor data were collected by means of CAN bus,and data process was performed according to communication protocols.Corresponding variable quantity of the component model with processed data were decided and thus to display the real-time running state of the current component model,and the virtual prototype can realize the accuracy and consistent virtual scene a-greed with the actual loading system at the operation terminal.This method can obtain the real-time dis-play effect of visualization,enhance the reality sense of operation staff as well as the authenticity and in-teractivity of combat command personnel,and greatly improve the practicability of the command automa-tion system.%实现了一种火炮装填系统三维实时显示的人机界面,将传统虚拟现实与总线通信技术结合起来,形成一种三维模型+数据驱动的模式。通过CAN总线采集现场传感器数据并根据通信协议进行数据处理,再将运算后的数据赋予部件模型对应的变量,使界面显示出当前部件模型的实时运行状态,从而在操作终端实现与实际装填系统状态准确一致的虚拟视景。此方法达到了可视化的实时显示效果,增强了操作手的真实感,以及作战指挥人员的真实性和交互性,提高了指挥自动化系统的实用性。

  7. The application of the atmosphere control technology for the manned submersible Jiaolong%大气环境控制技术在“蛟龙”号载人潜水器上的应用

    Institute of Scientific and Technical Information of China (English)

    姜磊; 金凤来; 侯德永; 刘帅

    2014-01-01

    介绍各种类型水下运载器如潜艇、载人深潜器等对载人密闭舱室内大气环境控制的共性要求。针对“蛟龙”号的客观条件,从动力、空间大小、浓度要求等方面分析其对大气环境控制的特殊要求。分析常见的几种密闭环境供氧及二氧化碳吸收技术如物理供氧、电解水、氧烛、超氧化物、一乙醇胺、固态胺、分子筛、碱石灰、氢氧化锂等技术各自的优缺点。在此基础上研制出一套环境控制样机,并将样机随“蛟龙”号载人潜水器进行1000,3000,5000及7000米级海试。海试的圆满成功进一步证实了样机的有效性。%Inthispapersamerequirementsoftheatmospherecontroltechnologyintheclosedspace at various underwater vehicles, such as submarine and manned submersible, are introduced. Based on the objective conditions of Jiaolong, this paper analyzed the particular demand for the atmosphere control technology from the aspects of power, space size and gases concentration. Several O2 supplying methods and CO2 absorption methods in closed space such as peroxide, physical oxygen supply, water electroanalysis, the potassium chlorate pyrogenation, mono ethanol amine( MEA) , molecular sieve, solid amine, soda lime and lithium hydroxide are compared. Based on these methods, a suitable atmosphere control technology and a prototype is developed, and the prototype is set up in the cabin of“Jiaolong” . A series of experiments has been achieved in both the South China Sea and the North-East Pacific. The validity of the prototype is approved by these experiments.

  8. Optical medical imaging: from glass to man

    Science.gov (United States)

    Bradley, Mark

    2016-11-01

    A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.

  9. Phoenix Deepens Trenches on Mars (3D)

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this anaglyph on Oct. 21, 2008, during the 145th Martian day, or sol. Phoenix landed on Mars' northern plains on May 25, 2008. The trench on the upper left, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the middle,called 'Ice Man,' is about 30 centimeters (12 inches) long and 3 centimeters (1 inch) deep. The trench on the right, called 'La Mancha,' is about 31 centimeters (12 inches) and 5 centimeters (2 inches) deep. The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  11. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  12. Mars Science Laboratory Entry, Descent, and Landing System Overview

    Science.gov (United States)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  13. Erosionsrinnen auf dem Mars

    OpenAIRE

    Reiß, Dennis Emil

    2010-01-01

    The work presented here analyses gullies on Mars using high resolution images (Mars Orbiter Camera – MOC) of the Mars Global Surveyor Mission (MGS). Gullies on Earth are formed by debris flows, a mass movement in which water is involved. It is assumed that gully features on Mars are young and therefore they could indicate the presence of liquid water in the recent past. The main focus of this work lies in a morphological analysis, a global mapping of their distribution and a determination of ...

  14. Digital cartography of Mars

    Science.gov (United States)

    Batson, R. M.

    1987-01-01

    A medium-resolution Digital Image Model (DIM) of Mars is being compiled. A DIM is a mosaic of radiometrically corrected, photometrically modelled spacecraft images displaying accurate reflectance properties at uniform resolution, and geometrically tied to the best available control. The Mars medium-resolution DIM contains approximately 4700 Viking Orbiter image frames that were used to compile the recently completed 1:2,000,000-scale controlled photomosaic series of Mars. This DIM provides a planimetric control base to which all other Mars maps will be registered. A similar control base of topographic elevations (Digital Terrain Model, or DTM) is also being compiled. These products are scheduled for completion in 1989.

  15. Flyover Animation of Becquerel Crater on Mars

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] View the Movie Click on image to view the movie This simulated flyover shows rhythmic layers of sedimentary rock inside Becquerel crater on Mars. The animation uses three-dimensional modeling based on a stereo pair of images from the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  16. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  17. Paraquat poisoning in man.

    Science.gov (United States)

    Douze, J M; van Heyst, A N; van Dijk, A; Maes, R A; Drost, R H

    1975-10-20

    In three cases of intoxication by Gramoxone¿, the concentration of paraquat dichloride in blood, dialysate, feces, and urine was determined spectrophotometrically after a clean-up of the biological material by means of ion exchange chromatography (with Dowex 50W-X12 or Zeo-Karb 225). Although good results were obtained after clean-up with Dowex 50W-X12, Zeo-Karb was preferred as ion exchange resin, especially when large sample volumes were needed for the determination. The reported findings indicate that: only 5 to 10% of an ingested dose of paraquat dichloride is absorbed in man, Fullers' earth is very useful, and that primary, e.g. immediate, hemodialysis is necessary.

  18. Caribou and Man

    Directory of Open Access Journals (Sweden)

    Serge Couturier

    2003-04-01

    Full Text Available From April 23 to 27, 2001, more than 230 caribou experts migrated to the 9th North American Caribou Workshop, held at the tree-line in the Inuit town of Kuujjuaq, Nunavik, Québec. This community of about 1800 people near Ungava Bay was chosen over larger cities in southern Québec following a survey of potential workshop participants. Holding the conference in such a particularly appropriate location was made possible by the sustained efforts of the Organizing and Scientific Committees, by the help of the sponsors, and, above all, by the tremendous support of the people of Kuujjuaq. Keeping in mind the importance of caribou to the local people and the fact that development and other fast-growing human activities have today reached the North—for many southerners, the last frontier—the theme chosen for the 9th North American Caribou Workshop was also particularly appropriate: Caribou and Man.

  19. Outreach and education from EuroGeoMoonMars2009 Field Campaign in Utah

    Science.gov (United States)

    Foing, Bernard H.

    The goal of the EuroGeoMoonMars mission at Utah Desert Research station(from 24 January to 28 February 2009) was to demonstrate instruments from ExoGeoLab pilot project, to support the interpretation of ongoing lunar and planetary missions, to validate a procedure for surface in-situ and return science, to study human performance aspects, and perform outreach and education projects. The EuroGeoMoonMars campaign included four sets of objectives: 1) Technology demonstration aspects: a set of instruments were deployed, tested, assessed, and training was provided to scientists using them in subsequent rotations 2) Research aspects: a series of field science and exploration investigations were conducted in geology, geochemistry, biology, astronomy, with synergies with space missions and research from planetary surfaces and Earth extreme environments. 3) Human crew related aspects, i.e. (a) evaluation of the different functions and interfaces of a planetary habitat, (b) crew time organization in this habitat, (c) evaluation of man-machine interfaces of science and technical equipment; 4) Education, outreach, communications, multi-cultural public relations Outreach, education and inspiration: We produced written, pictures, and video materials that can be used for education, outreach and public relations. Daily reports were posted on the MDRS website. We had during the Technical crew preparation, the visit of film producer Mark Arabella and film crew for a Moon related National Geographics documentary "Earth without the Moon". Two media crew visitors stayed also in the Hab to film our activities documenting the operational, research, human, simulation, imaginative and fantasy aspects of Moon-Mars-extreme Earth exploration. They contributed a journalist report, and even performed an EVA outreach filming a sortie to Hanksville village on Earth. Other film and journalists visited the EuroGeoMars crew for interviews and exchange. Specific crew reports were also prepared for

  20. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  1. Queer encounters between Iron Man and Chinese boys' love fandom

    Directory of Open Access Journals (Sweden)

    John Wei

    2014-09-01

    Full Text Available Superhero fan fiction is increasingly popular in the Chinese boys' love (BL community. An exploration of the fan fic Gangtiexia: Zhongdu Yilai (Iron Man: Overly attached investigates how the Hollywood cultural icon Iron Man/Tony Stark is reimagined in Chinese BL culture and to what degree this kind of rendition both echoes and extends as well as challenges and deviates from our current insights into BL fandoms. Through the lenses of queerness and technological human transformation, I explore the fresh contribution of Iron Man fan fiction to both local BL cultures and global superhero fandoms.

  2. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  3. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  4. Manned-Unmanned Teaming of Aircraft - Literature Search

    Science.gov (United States)

    2013-12-01

    restricted to 2003 2013. Literature searches were conducted in eight databases Aerospace and High Technology, Scopus , NTIS, Inspec, Compendex, DTIC, Jane’si...Buddy Unmanned wingman Manned-Unmanned Teaming Dec 2013 Page 35 of 37 7.1.2 Sources Online databases • Scopus • Aerospace and High Technology

  5. Curation of Samples from Mars

    Science.gov (United States)

    Lindstrom, D.; Allen, C.

    One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. We have been conducting feasibility studies and developing designs for a facility that would be at least as capable as current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels exceeding those of the cleanest electronics manufacturing labs. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samp les require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation

  6. Man in space: A new dimension in Health Care

    Directory of Open Access Journals (Sweden)

    L. Medlen

    1983-09-01

    Full Text Available Unprecedented advances in technology and science in the 20th Century have enabled man to take himself and his inventions on voyages of space exploration. It has been man's dream for centuries, not only to fly, but also to explore the vast outer reaches of space. Modern space exploration, the new frontier, is a triumph for the new sciences of space biology and space medicine.

  7. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A sustained human presence on the Moon, Mars, or other celestial bodies, will require numerous disciplines to create technologies, solve current known...

  8. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  9. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  10. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  11. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  12. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  13. Light in man's environment.

    Science.gov (United States)

    Marshall, J

    2016-02-01

    Light in the form of solar radiation influenced early civilisations and resulted in the independent development of a number of sun-worshipping dieties. These were of particular importance as hunter gatherers transformed into settled agricultural societies. All artificial light sources were synonymous with fire, and early civilisations began to expand their visual day by burning brands, oil, and candles. Fire-based light sources extended for thousands of years and were still present in the era of gas lighting. Light meant fire risk. The advent of incandescent bulbs and the era of electric lighting really only expanded in the early part of the twentieth century. Fluorescent lighting became available in the 1940s, and today the drive for low energy has resulted in a plethora of novel light sources-in particular, light-emitting diodes (LEDs). Evolution governed the development of the eye in relation to roughly 12 h of light gradually changing to 12 h of darkness. Today almost daylight levels can be achieved abruptly at the flick of a switch. Many studies have demonstrated the spectral dependence of eye health, with the retinal hazard zone associated with wavelengths in the blue, peaking at 441 nm- many of today's low-energy sources peak in this region. Given the increased longevity and artificial light sources emitting at biologically unfriendly wavelengths, attention has to be directed towards light in man's environment as a risk factor in age-related ocular diseases.

  14. Of Man and Matter

    CERN Multimedia

    Brookhaven National Laboratory

    1962-01-01

    Filmed at Brookhaven. AGS and 20 inch bubble chamber. After a rather standard introduction, there is a 3 minute lecture by a man in a bow tie who is sitting in front of a chart with the names of particles. Presentation of Brookhaven and AGS. Explanation of how AGS works. Lecture continues for another 4 minutes. Explanation of separated beam transport system, to give particular particles to the experiments. 20 inch bubble chamber. Anti Psi minus particle discovered. Start of a "typical experiment". Nice verbal play between people in different control rooms to get the beam and images of the beam on oscilloscopes. Conversation among physicists at lunch about the anti-psi minus particle discovery at Brookhaven and at CERN "I guess someone really aught to write to them to compare notes." Discussion about the analysis. Explanation of how the analysis is done, for an event to go from a candidate to established fact. Scanning room. If a photo is of significant interest a pencil tracing is done. Measuring the interest...

  15. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  16. Writing the pregnant man

    Directory of Open Access Journals (Sweden)

    Mary Ingram-Waters

    2015-09-01

    Full Text Available This article explores how an online community of female fans of Harry Potter creates and maintains scientific and medical knowledge of a novel reproductive technology, male pregnancy. In an effort to illuminate the mechanisms of fandom, I show how fandom participants collectively work to ensure the maintenance of standards for fan products and in doing so also selectively reinforce particular tropes about how male pregnancy is portrayed. Fans' validation of some male pregnancy variations over others results in a fascinating yet recognizable set of fictional reproductive technologies that both queer and accommodate normative gender and sexuality roles.

  17. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  18. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  19. Multimedia Discovery of the Leonardo’s Vitruvian Man

    Directory of Open Access Journals (Sweden)

    Eva Savina Maliverni

    2015-07-01

    Full Text Available The dissemination and exploitation of cultural heritage milestones by using multimedia and interactive technologies continuously and quickly grows capturing the attention of academia and companies. It is necessary to adopt the state of the art technologies to present and make bi-directional the interaction of users with cultural heritage objects. In this work, we present two different applications of novel technologies applied to the Vitruvian man of Leonardo. The first application is the mirror that exploits a 3D depth sensor to compare the proportions of a user with the perfect ones of the Vitruvian man. The second application is a complex interaction between a complete novel 3D model of the Leonardo’s Vitruvian Man, sounds and image effects inside a 360-degrees hologram. These two systems are the results of interaction between academia and the 3D EVE spin-off company.

  20. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    Science.gov (United States)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the

  1. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  2. ExoMars 2016 arrives at Mars

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  3. MARS: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, R.E.; Gagliardi, C.A.; Liu, W. (Cyclotron Inst., Texas A and M Univ., College Station (USA))

    1991-05-01

    We are building a momentum achromat recoil spectrometer (MARS) for use with the new K500 superconducting cyclotron at Texas A and M University. MARS uses a unique optical design utilizing two dispersive planes to combine a momemtum achromat with a recoil mass spectrometer. This configuration makes MARS applicable to a broad range of nuclear reaction studies utilizing inverse kinematics. It also leads to a system that is well matched to the range of secondary particle energies that will be produced in reactions with K500 beam. MARS will have a typical mass resolution of {delta}M/M{approx equal}1/300, with an energy acceptance of {+-}9% {Delta}E/E and a geometric solid angle of up to 9 msr. A beam swinger system will alow reaction products in the angular range 0deg to 30deg to be studied. MARS will be used to study both the excited states and decay properties of very proton- and neutron-rich nuclei. MARS will also be used to provide a reaction mechanism filter to assist investigations of the dynamics of heavy ion collisions and to produce secondary radioactive beams for reaction and spectroscopic studies of particular interest for nuclear astrophysics. We briefly describe the design of MARS, give a status report on its construction and an overview of the scientific program planned for it. (orig.).

  4. MANNED OR UNMANNED – DOES THIS REALLY MATTER?

    Directory of Open Access Journals (Sweden)

    B. Neininger

    2012-09-01

    Full Text Available This paper is an attempt to compare, and possibly combine, the capabilities and technologies available for using either small UAS or small manned aircraft, or both, for environmental research applications including geomatics. The paper is emphasising the view that instead of making one or the other platform technology (manned or unmanned the deciding factor for specific applications in an a priori sense, it would be a better approach to evaluate each technology's suitability and merits in terms of ease of use (instrumentation integration, operational aspects, potential restrictions, safety, etc. and also cost-efficiency. As will be shown, in some cases, this might even mean that a combination of manned and unmanned aerial platforms could be the optimum choice for a specific set of tasks. The paper introduces a number of manned and unmanned small aerial platforms and looks at their specific proven and envisaged capabilities for specific tasks. It also introduces the concept of using manned and unmanned aerial platform in tandem, maximising the usefulness of both technologies together for specific tasks. The authors' intent is to encourage a close look at all technologies available today, or in the near future, and to make that the basis for decisions about which ones are the most suitable ones for specific applications or projects. Two field campaigns in which METAIR and ARA have operated their small manned aerial platforms are re-analysed to give an example of the considerations that should be evaluated to decide which platform technology might be the most suitable one for a specific project. One of the projects ("TIPPEX" was flown in 2008 in Northern Australia, while the other one ("MAIOLICA" had flight campaigns in 2009 and 2011 in Switzerland.

  5. Defining the Mars Ascent Problem for Sample Return

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J

    2008-07-31

    Lifting geology samples off of Mars is both a daunting technical problem for propulsion experts and a cultural challenge for the entire community that plans and implements planetary science missions. The vast majority of science spacecraft require propulsive maneuvers that are similar to what is done routinely with communication satellites, so most needs have been met by adapting hardware and methods from the satellite industry. While it is even possible to reach Earth from the surface of the moon using such traditional technology, ascending from the surface of Mars is beyond proven capability for either solid or liquid propellant rocket technology. Miniature rocket stages for a Mars ascent vehicle would need to be over 80 percent propellant by mass. It is argued that the planetary community faces a steep learning curve toward nontraditional propulsion expertise, in order to successfully accomplish a Mars sample return mission. A cultural shift may be needed to accommodate more technical risk acceptance during the technology development phase.

  6. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    Science.gov (United States)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  7. Mars Observer's costly solitude

    Science.gov (United States)

    Travis, John

    1993-09-01

    An evaluation is presented of the ramifications of the loss of contact with the Mars Observer spacecraft in August, 1993; the Observer constituted the first NASA mission to Mars in 17 years. It is noted that most, if not all of the scientists involved with the mission will have to find alternative employment within 6 months. The loss of the Observer will leave major questions concerning the geologic history of Mars, and its turbulent atmospheric circulation, unanswered. A detailed account of the discovery of the loss of communications, the unsuccessful steps taken to rectify the problem, and the financial losses incurred through the failure of the mission, are also given.

  8. "Det man hører, er man selv"

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    ”Det man hører, er man selv” er Danmarks Radios P3s yderst velkendte slogan. Det dukkede op i begyndelsen af (20)00erne som opfindsom og populær afspejling af en moderne forståelse af den rolle musik og medieforbrug spiller for den voksne dansker. Denne artikel handler ikke om P3 som musikkanal...

  9. "Det man hører, er man selv"

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    ”Det man hører, er man selv” er Danmarks Radios P3s yderst velkendte slogan. Det dukkede op i begyndelsen af (20)00erne som opfindsom og populær afspejling af en moderne forståelse af den rolle musik og medieforbrug spiller for den voksne dansker. Denne artikel handler ikke om P3 som musikkanal...

  10. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  11. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  12. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  13. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  14. Mars Cameras Make Panoramic Photography a Snap

    Science.gov (United States)

    2008-01-01

    If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape. The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels. Gigapixel images are more than 200 times the size captured by today s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.

  15. Mars' core and magnetism.

    Science.gov (United States)

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  16. Mars Rover Photos API

    Data.gov (United States)

    National Aeronautics and Space Administration — This API is designed to collect image data gathered by NASA's Curiosity, Opportunity, and Spirit rovers on Mars and make it more easily available to other...

  17. Internal constitution of Mars.

    Science.gov (United States)

    Anderson, D. L.

    1972-01-01

    Models of the internal structure of Mars consistent with the mass, radius and moment of inertia of the planet are constructed. The models assume that the radius of the core is between 0.36 and 0.60 of the radius of the planet, that the zero-pressure density of the mantle is between 3.54 and 3.49 g/cu cm, and that the planet contains 25 to 28% iron. Meteorite models of Mars containing 25 wt % iron and 12 wt % core are also proposed. It is maintained that Mars in contrast to the earth is an incompletely differentiated planet with a core substantially richer in sulfur than the core of the earth. The absence of a magnetic field on Mars is possibly linked with lack of lunar precessional torque and the small size and high resistivity of the Martian core.

  18. Vancomycin induced Red Man Syndrome

    Directory of Open Access Journals (Sweden)

    Drisyamol K.A

    2016-04-01

    Full Text Available Vancomycin is a glycoprotein antibiotic that has been associated with an anaphylactoid reaction termed the Red-man syndrome. It usually consists of erythema, flushing and pruritis of the face and upper torso and occasionally progresses to include dyspnoea, chest pain and hypotension. Red man syndrome (RMS is also known as “red neck syndrome. Discontinuation of the vancomycin infusion and administration of diphenhydramine can abort most of the reactions. Slow intravenous administration of vancomycin should minimize the risk of infusion-related adverse effects. Antibiotics such as ciprofloxacin, amphotericin B, rifampcin and teicoplanin can potentially cause red man syndrome. The effects of red man syndrome can be relieved by antihistamines.

  19. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  20. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  1. Why exobiology on Mars?

    Science.gov (United States)

    Brack, A.

    1996-11-01

    Processing of organic molecules by liquid water was probably an essential requirement towards the emergence of terrestrial primitive life. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Geochemists favour now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere very few building blocks are formed. Import of extra-terrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, meteorites and micrometeorites. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well. Liquid water disappeared from the surface of Mars very early, about 3.8 Ga ago. The Viking missions did not find, at the surface of the Martian soil, any organic molecules or clear-cut evidence for microbial activities such as photo-synthesis, respiration or nutrition. The results can be explained referring to an active photochemistry of Martian soil driven by the high influx of solar UV. These experiments do not exclude the existence of organic molecules and fossils of micro-organisms which developed on early Mars until liquid water disappeared. Mars may store below its surface some well preserved clues of a still hypothetical primitive life.

  2. Acetylene fuel from atmospheric CO2 on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  3. JPRS Report, Science & Technology, Manned Spaceflight Technology Symposium.

    Science.gov (United States)

    2007-11-02

    employ: 1) heat and electric discharge; 2) lasers; and 3) microwaves or 4) the acceleration and neutralization of oxygen ions. In addition, there are...to the rod-shaped layer of the retina and injuries to the corneas and crystal lenses.9󈧎 If corn seeds are germinated after being irradiated by 7

  4. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods.

    Science.gov (United States)

    Fox, C J; Taylor, M I; Pereyra, R; Villasana, M I; Rico, C

    2005-03-01

    Recent substantial declines in northeastern Atlantic cod stocks necessitate improved biological knowledge and the development of techniques to complement standard stock assessment methods (which largely depend on accurate commercial catch data). In 2003, an ichthyoplankton survey was undertaken in the Irish Sea and subsamples of 'cod-like' eggs were analysed using a TaqMan multiplex, PCR (polymerase chain reaction) assay (with specific probes for cod, haddock and whiting). The TaqMan method was readily applied to the large number of samples (n = 2770) generated during the survey and when combined with a manual DNA extraction protocol had a low failure rate of 6%. Of the early stage 'cod-like' eggs (1.2-1.75 mm diameter) positively identified: 34% were cod, 8% haddock and 58% whiting. As previous stock estimates based on egg surveys for Irish Sea cod assumed that the majority of 'cod-like' eggs were from cod, the TaqMan results confirm that there was probably substantial contamination by eggs of whiting and haddock that would have inflated estimates of the stock biomass.

  5. Research on the Key Technology of the Cooperative Combat System of Manned Vehicle and Unmanned Aerial Vehicle%有人机/无人机协同作战系统关键技术研究

    Institute of Scientific and Technical Information of China (English)

    刘纪文; 袁胜智; 漆云海; 叶文

    2012-01-01

    无人机将是我国下一步要重点发展的武器装备,而无人机和有人机实施联合编队进行协同作战将是其典型作战方式之一。文章在深入阐述有人机/无人机协同作战基本概念的基础上,通过设定典型有人机/无人机协同作战想定,分析了有人机/无人机协同作战的系统基本组成和体系结构,研究了有人机/无人机协同作战的关键技术。文章的研究对有人机/无人机协同作战的发展具有一定的指导意义。%The Unmanned Aerial Vehicle (UAV) is one of the most important armaments being focused on currently in China. The typical combat mode of UAV is to cooperate with Manned Vehicle. The concept of Manned Vehicle/UAV cooperative combat is put forward, and the basic composition and construction of the cooperative combat system are analyzed. This research will be certain significance for the development of cooperative air combat of manned vehicle and unmanned vehicle.

  6. Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo

    2000-01-01

    The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.

  7. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  8. Entry, Descent, and Landing for Human Mars Missions

    Science.gov (United States)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  9. Mars at Ls 357o

    Science.gov (United States)

    2006-01-01

    31 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurred in mid-January 2006. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  10. Mars at Ls 324o

    Science.gov (United States)

    2005-01-01

    29 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurred in mid-November 2005. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  11. Guidelines for 2008 MARS exercise

    CERN Multimedia

    HR Department

    2008-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://cern.ch/hr-dept/ https://cern.ch/hr-eguide/mars/mars.asp You will find on these pages: MARS procedures including the MARS timetable for proposals and decisions; Regulations with links to the scheme’s statutory basis; Frequently Asked Questions; Useful documents with links to relevant documentation; e.g. mandate of the Senior Staff Advisory Committee (SSAC); Related links and contacts. HR Department Tel. 73566

  12. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  13. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  14. Pump Fed Propulsion for Mars Ascent and Other Challenging Maneuvers

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2007-05-09

    Returning Mars geology samples to Earth within science mission budgets requires a miniature launch vehicle (100-200 kg) for ascending from Mars to an orbital rendezvous. A Mars Ascent Vehicle must deliver a velocity change exceeding 4 km/s within minutes, entirely outside the capabilities of satellite propulsion. A possible solution is to scale down liquid launch vehicle principles to achieve stage propellant mass fractions near 90 percent. Feeding a high-pressure engine from thin-walled low pressure tanks permits stage hardware to be sufficiently lightweight and compact, if very high performance pumps can be made available. NASA's Mars Technology Program has funded refinement and testing of a miniature piston pump, powered by reacted propellant. A pump-fed bipropellant rocket stage remains to be developed. The technology could also benefit other future lunar and planetary science programs.

  15. Implications of Outside-the-Box Technologies on Future Space Exploration and Colonization

    Science.gov (United States)

    Loder, Theodore C.

    2003-01-01

    In general, planning for future manned space exploration either to the moon, Mars, or an asteroid has depended on a somewhat linear extrapolation of our present technologies. Two major prohibitive cost issues regarding such planning are payload lift and in-flight energy generation. The costs of these in both engineering and actual flight costs, coupled with the planning necessary to carry out such exploration have prevented us from actively moving forward. Although, it will be worthwhile to continue to plan for such exploration using ``present'' technologies, I recommend that planning be concerned mainly with mission strategies and goals utilizing both present technology and totally new energy breakthroughs. There are presently in research and development an entire suite of relevant outside-the-box technologies which will include both zero point energy generation and antigravity technologies that will replace our present solar/nuclear/fuel cell energy technologies and liquid/solid fuel rockets. This paper describes some of these technologies, the physics behind them and their potential use for manned space exploration. The companies and countries that first incorporate these technologies into their space programs will lead the way in exploring and colonizing space.

  16. Wheels and Suspension on Mars Science Laboratory Rover

    Science.gov (United States)

    2008-01-01

    This image from August 2008 shows NASA's Mars Science Laboratory rover in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment. The six wheels are half a meter (20 inches) in diameter. The deck is 1.1 meter (3.6 feet) above the ground. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011. This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  17. Robust catastrophe-free space agriculture on Mars

    Science.gov (United States)

    Yamashita, Masamichi

    During the early stage of CELSS research, economy was a selling point of the bio-regenerative life support concept. Until system integration was exercised in detail at mission planing for the International Space Station, the turning point from open system to CELSS was estimated 10 years of operation for 10 crew member as a consensus. Initial investment and operational cost for the 10-10 regenerative system was believed to be cheaper than the integrated amount of consumables for running open system. Any drop-out from recycling loop of materials is counted as “penalty”. Under this context, degree of closure was raised as an index to measure “maturity” of CELSS technology. Once it was found quite difficult to achieve 100 % closure perfect, science merit of CELSS study was redefined as a small scaled model of terrestrial biosphere. Natural ecosystem has huge sink and backyard in its materials loop. They provide a basis for keeping member in the ecology without falling into catastrophe. Low productivity at high biological diversity is a common key feature at the climax phase of ecosystem. Artificial ecosystem on ground relies on “unpaid” backyard function of surrounding biosphere together with strong control for realizing high productivity at less degree of bio-diversity. It should be noted that top criteria in engineering manned space system is robustness and survivability of crew. All other item is secondary, and just better to have. Without verification of catastrophe free, space agriculture will never be implemented for space and stay as a fantasy on ground forever. There is a great gap between ecology and this requirement for manned space system. In order to fill this gap, we should remind how gatherer and hunter was civilized after the agricultural revolution about ten thousand years ago. Planting cereal crop was a great second step in agricultural innovation. Cereal grain can be stored more than one year after its harvest. Food processing and

  18. A Mars Exploration Discovery Program

    Science.gov (United States)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  19. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  20. The Mars Plasma Environment

    CERN Document Server

    Russell, C. T

    2007-01-01

    Mars sits very exposed to the solar wind and, because it is a small planet, has but a weak hold on its atmosphere. The solar wind therefore plays an important role in the evolution of the martian atmosphere. Over the last four decades a series of European missions, first from the Soviet Union and more recently from the European Space Agency, together with a single investigation from the U.S., the Mars Global Surveyor spacecraft, have added immeasurably to our understanding of the interplay between the solar wind and Mars atmosphere. Most recently the measurements of the plasma and fast neutral populations, conducted on the Mars Express spacecraft by the ASPERA-3 instrument have been acquired and analyzed. Their presentation to the public, most notably at the workshop "The Solar Wind Interaction and Atmosphere Evolution of Mars" held in Kiruna in early 2006, was the inspiration for this series of articles. However participation in the Kiruna conference was not a selection criterion for this volume. The papers ...

  1. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Science.gov (United States)

    Moses, Robert W.; Bushnell, Dennis M.

    2016-01-01

    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.

  2. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris

    2017-04-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  3. Mars Spark Source Prototype

    Science.gov (United States)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  4. Magnetic storms on Mars

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2011-01-01

    Based on data from the Mars Global Surveyor magnetometer we examine periods of significantly enhanced magnetic disturbances in the martian space environment. Using almost seven years of observations during the maximum and early declining phase of the previous solar cycle the occurrence pattern...... and typical time profile of such periods is investigated and compared to solar wind measurements at Earth. Typical durations of the events are 20–40h, and there is a tendency for large events to last longer, but a large spread in duration and intensity are found. The large and medium intensity events at Mars...... field disturbance at Mars is solar wind dynamic pressure variations associated with the eccentricity of the martian orbit around the Sun....

  5. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  6. Spiders from Mars?

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  7. Economic man as model man: Ideal types, idealization and caricatures

    NARCIS (Netherlands)

    Morgan, M.S.

    2006-01-01

    Economics revolves around a central character: "economic man." As historians, we are all familiar with various episodes in the history of this character, and we appreciate his ever-changing aspect even while many of our colleagues in economics think the rational economic agent of neoclassical econom

  8. Rich man, poor man: developmental differences in attributions and perceptions.

    Science.gov (United States)

    Sigelman, Carol K

    2012-11-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N=88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like older children, perceived the rich man as more competent than the poor man. However, they had difficulty in explaining wealth and poverty, especially poverty, and their trait perceptions were associated primarily with their attributions of wealth to job status, education, and luck. Fifth and ninth graders more clearly attributed wealth and poverty to the equity factors of ability and effort and based their trait perceptions on these attributions. Although the use of structured attribution questions revealed more understanding among young children than previous studies have suggested, the findings suggest a shift with age in the underlying bases for differential evaluation of rich and poor people from a focus on good outcomes associated with wealth (a good education and job) to a focus on personal qualities responsible for wealth (ability and effort).

  9. 失败的Man

    Institute of Scientific and Technical Information of China (English)

    小兵

    2000-01-01

    搞不清楚你要赚多少钱才会满足为什么还觉得孤独 Oh oh oh失败的 Man 越弄越糊涂Peggy Sue Mary Sherry Ronda 跟 Lulu每个女孩你都想照顾 Oh oh oh失败的 MAN 走了很多路不太舒服又不想哭想种一棵大树有了种子没有泥土迷迷糊糊突然看到上帝跟耶酥笑说你再得不到保证 Oh oh oh

  10. Trees Are Useful to Man

    Institute of Scientific and Technical Information of China (English)

    赵明

    2005-01-01

    Trees are useful to man in three impor-tant ways. They provide him with wood and other products;they give him shade;they help prevent drought(干旱)and floods. Unfortunately,in many parts of the world, man has not realized that the third one is the most important. Two thousand years ago a rich and pow-erful country cut down its trees to build war-ships, with which to gain itself an empire. It gained the empire,however,without its trees, its soil became hard and poor. When the em-pire fell to pieces, the home c...

  11. Future trends in coal mining technology at Ikeshima Colliery. Mainly, setup and actual results of high-speed man riding train; Ikeshima Tanko ni okeru tanko gijutsu no doko. Toku ni kosoku jinsha no donyu to jisseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, K.; Irie, T.; Murakami, M. [Matsushima Coal Mining Co. Ltd., Fukuoka (Japan); Takahashi, K. [The Coal Mining Research Center, Japan, Tokyo (Japan)

    1997-10-25

    This paper describes the introduction of high-speed man riding train at Ikeshima Coal Mine. The production area is below the sea bottom in the southern offshore of the Ikeshima Island. With increasing the depth of production faces, it is significant for the insurance of operation time to enhance the intensive and highly efficient transportation system and to reduce the transportation and movement time. A high-speed man riding train has been introduced as a transportation system for workers. It is operated in the base gallery at the -650 m level from No. 1 train stop to southern train stop with a distance of 5477 m. It is operated at the maximum speed of 50 km/h, and the single transportation time can be reduced from 18 to 12 minutes. Construction was started in 1995, and practical operation was started in November 1996. Various technical problems were solved concerning the high-speed operation, advanced management of tracks, and monitor and control of operation conditions and a signal system. This system was named as `Goddess-Jikai` which has been operated 19 times a day in the running interval with a return way of 11 km. It has been safely and comfortably operated in a total distance of 33700 km by the end of May 1997. Oscillation is measured by the continuous oscillation monitoring system, and track management is enhanced using a track inspection train. Future high-speed safe operation is expected. 6 figs., 6 tabs.

  12. Flying To Mars

    Institute of Scientific and Technical Information of China (English)

    周铭杨

    2015-01-01

    <正>Do you know"Mars migration programme"by SpaceX?It’s an immigrant plan to a planet—Mars,Sounds incredible,isn’t it?After two-round tests,Li Dapeng,graduating from Handan NO.1 high school in 2001,was selected.There entered four Chinese in final test.To be more precise,Li is the only one who comes from the mainland of China.Last weekend,Li came to our school for a speech.Driven by

  13. EquiMar

    DEFF Research Database (Denmark)

    Johnstone, C. M.; McCombes, T.; Bahaj, A. S.

    2011-01-01

    / financiers etc when attempting to quantify the performance of a device since it makes it very difficult to reference and benchmark the performance of a marine energy converter. The EC Framework Programme VII EquiMar project has set out to develop a suite of Best Practices to be adopted when undertaking...... the performance evaluation of such systems in order to address this deficiency. This paper reports the development of a set of ‘Best Practices’ within the ECFPVII EquiMar project to be adopted for the performance quantification of wave and tidal energy converters as they evolve from an engineering concept...

  14. Mars Obliquity Cycle Illustration

    Science.gov (United States)

    2008-01-01

    The tilt of Mars' spin axis (obliquity) varies cyclically over hundreds of thousands of years, and affects the sunlight falling on the poles. Because the landing site of NASA's Phoenix Mars Lander is so near the north pole, higher sun and warmer temperatures during high obliquity lead to warmer, more humid surface environments, and perhaps thicker, more liquid-like films of water in soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  16. Cognitive engineering for long duration missions: Human-machine collaboration on the moon and mars

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.; Grant, T.; Bos, A.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2006-01-01

    For manned long-duration missions to the Moon and Mars, there is a need for a Mission Execution Crew Assistant (MECA) that empowers the cognitive capacities of human-machine teams during planetary exploration missions in order to cope autonomously with unexpected, complex and potentially hazardous s

  17. The main goals of experiments with the higher plants in the project MARS - 500.

    Science.gov (United States)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Gushin, Vadim; Bingham, Gail; Bates, Scott

    At the present step of development of manned flight to Mars there is a current opinion that including a greenhouse in the composition of Life Support Systems (LSS) of Martian expedition would essentially improve a spacecraft habitat conditions and also would have impact to preventing of a number of possible consequences of continuous presence of human in artificial environment. Development of design objectives of future space greenhouses applicable for conditions of Martian expedition should be based, in our opinion, not only on the results of real space experiments, conducted onboard of orbital stations, but also on the results of ground-based experiments. In connection with above considerations there is a number of technological, biological and psychological experiments is planned to be conducted in the frame of MARS-500 project to resolve questions related to incorporation of higher plants in LSS of inter-planetary flights. The questions include: testing of developed elements of the greenhouse construction and methods for cultivation of vegetables under conditions of imitation of the flight of Martian expedition; selection of breeds and species of vegetables, characterized by high speed of biomass accumulation, attractive taste and appearance; investigation of growth, development and metabolism of plants under long-term continuous cultivation in manned pressurized object; comparison of the productivity of the plants as a function of utilization of different light source; determination of maximum amount of planted biomass of the plants and number of possible vegetation under conditions of long-term utilization of vegetation chamber of the greenhouse without substrate replacement; investigation of crops dietetic preferences of crew members; estimation of quality of plant biomass using seeding of the plants by microorganisms and nitrates and vitamins content as markers; development and approbation of methodical approaches to estimation of psychological factors of

  18. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een

  19. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een be

  20. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een be

  1. Next stop Mars the why, how, and when of human missions

    CERN Document Server

    Genta, Giancarlo

    2017-01-01

    This book covers the possible manned mission to Mars first discussed in the 1950s and still a topic of much debate, addressing historic and future plans to visit the Red Planet. Considering the environmental dangers and the engineering and design needed for a successful trip, it covers every aspect of a possible mission and outpost. The chapters explain the motivations behind the plan to go to Mars, as well as the physical factors that astronauts on manned missions will face on Mars and in transit. The author provides a comprehensive exposure to the infrastructure needs on Mars itself, covering an array of facilities including power sources, as well as addressing earth-based communication networks that will be necessary. Mechanisms for return to Earth are also addressed. As the reality of a manned Mars voyage becomes more concrete, the details are still largely up in the air. This book presents an overview of proposed approaches past, present, and future, both from NASA and, increasingly, from other space age...

  2. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  3. East Man,Global Winner

    Institute of Scientific and Technical Information of China (English)

    Wind Blew; Bai Yifeng

    2007-01-01

    @@ "The Global Human Settlement Environment Green Building Materials Award is a special award with a special significance.My staff and I feel so excited with this award.It is a special honor that means our independent brand,East Man Heath Paint,has received recognition in the international community.

  4. Man, Controller of the Universe

    Science.gov (United States)

    Olowin, R. P.

    2011-06-01

    The Man, Controller of the Universe painted by the renowned Mexican artist Diego Rivera in the gigantic mural of the Palace of Fine Arts in Mexico City is overlooked by a telescope. We acknowledge this instrument as the Plaskett Telescope at the Dominion Astrophysical Observatory in Victoria, Canada.

  5. Man and Machines: Three Criticisms.

    Science.gov (United States)

    Schneider, Edward F.

    As machines have become a more common part of daily life through the passage of time, the idea that the line separating man and machine is slowly fading has become more popular as well. This paper examines three critics of change through their most famous works. One of the most popular views of Mary Shelley's "Frankenstein" is that it is a…

  6. New Manning System Field Evaluation

    Science.gov (United States)

    1986-03-01

    our Analytic hodel (see Chapter 5, New Manning Svestem Field Evaluacion . Technical Revore No. I, RAJL-, November c t, e number or soldiers retaking...and meaningful performance measures are not only crucial to the WRAIR N Field Evaluacion but also to the Army. To know which unit does betzer than

  7. The Research on Full-lifecycle Testing, Monitoring and Integrity Evaluation Technology of Manned Rides in Amusement Parks and Scenic Spots%游乐园和景区载人设备全生命周期检测监测与完整性评价技术研究

    Institute of Scientific and Technical Information of China (English)

    沈功田; 张勇; 刘然

    2016-01-01

    At present, “The Research on full-lifecycle testing, monitoring and integrity evaluation technology of manned rides in amusement parks and scenic spots” project subsidized by National Key R & D Programs "Investigation and application on generic technology of national quality infrastructure " of China has been approved successfully by Ministry of Industry and Information Technology. This project will study the damage, fault and failure models of manned rides, overcome the general key technique in design, construction, condition monitoring, fault diagnosis and risk assessment, and ifnally establish the full-lifecycle integrity assessment technical system and dynamic quality monitoring management platform for manned rides in China. It is estimated that the research results of this project will promote the sustainable and healthy development of recreation and tourism, and the safety science and technology progress. In this paper, the background, the objective and scheme design, the main contents in each topic, expected results, desired economic and social beneifts were introduced.%目前,“国家质量基础的共性技术研究与应用(NQI)”重点专项项目“游乐园和景区载人设备全生命周期检测监测与完整性评价技术研究”已在科技部成功立项。该项目从载人设备损伤、故障、失效模式等基础研究出发,攻克其设计、建造、状态监测、故障诊断、风险评价中的共性关键技术,将在国内外率先建立全生命周期的完整性评价技术体系与动态质量监测管理平台。项目完成后,必将推动休闲娱乐和旅游观光业的持续健康发展和安全科学技术进步。本文重点介绍了该项目的背景、目标及总体研究方案、各课题主要研究内容、预期主要研究成果、预期的经济社会效益等相关内容。

  8. Carbon sequestration on Mars

    OpenAIRE

    Edwards, Christopher S.; Ehlmann, Bethany L.

    2015-01-01

    On Earth, carbon sequestration in geologic units plays an important role in the carbon cycle, scrubbing CO_2 from the atmosphere for long-term storage. While carbonate is identified in low abundances within the dust and soils of Mars, at

  9. The Phoenix Mars Mission

    Science.gov (United States)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  10. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    Science.gov (United States)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  11. Protection of man: the exposed individual

    Energy Technology Data Exchange (ETDEWEB)

    Bohnstedt, A.; Knebel, J.U. [Programme Nuclear Safety Research, Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Breustedt, B. [Institute for Radiation Research, Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-07-01

    Present methods for quantifying radiation exposure rely on a standardized reference man (75 kg) with defined average anatomical and physiological data. But individual person actually exposed differs from this idealized standard man. Therefore the focus of investigations at the Institute for Radiation Research (Institut fuer Strahlenforschung, ISF) which was founded at Karlsruhe Institute of Technology (Karlsruher Institut fuer Technologie, KIT) in 2009 is based on the vision to place the exposed individual with its anatomical and physiological particularities, under consideration of age, gender, body height, body shape and environment, in the centre of an individual-related quantification of the external and internal radiation exposure. Research work at the ISF is aiming at quantifying radiation exposure by improved determination of doses essentially caused by external radiation fields and the intake of radionuclides into the body. The three main topics of the institute are - external dosimetry (e.g. using a (voxel) model of the hand to simulate skin dose distribution); - internal dosimetry (e.g. body size related efficiency calibration of in-vivo counting equipment); - numerical methods/modeling (e.g. development of a mathematical/voxel-hybrid model of the human body). (authors)

  12. Clay Minerals in Mawrth Vallis Region of Mars

    Science.gov (United States)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold. The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green. The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars. CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  13. Mars: On the Path Or In The Way?

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    Explore Mars may not be the highest and best use of government-? funded human space flight. However, Explore Mars is pervasively accepted as the ultimate goal for human space flight. This meme has become refractory within the human space flight community despite dramatic contextual changes since Apollo: human space flight is no longer central to commonly-?held national priorities, NASA's fraction of the federal budget has diminished 8 fold, over 60 enabling technology challenges have been identified, and the stunning achievements of robotic Mars exploration have accelerated. The Explore Mars vision has not kept pace with these changes.An unprecedented budgetary commitment would have to be sustained for an unprecedented number of decades to achieve the Explore Mars goal. Further, the goal's justification as uniquely able to definitively determine Mars habitability is brittle, and not driving current planning in any case; yet NASA owns the choice of this goal and has authority to change it. Three alternative goals for government investment in human space flight meet NASA's own expressed rationale at least as well as Explore Mars, some with far greater capacity to regain the cultural centrality of human space flight and to grow by attracting private capital. At a minimum the human space flight advocacy community should address the pragmatics of choosing such a vulnerable goal.

  14. LANTR-based Mars missions: Go to phobos for propellant?

    Science.gov (United States)

    Stancati, Michael L.; Jacobs, Mark K.; Rauwolf, Gerald A.

    1999-01-01

    Two of the high-leverage propulsion technologies that have been proposed for human Mars missions-the Nuclear Thermal Rocket (NTR) engine and In Situ Propellant Production (ISPP)-show even greater potential when combined. Many previous studies have demonstrated the efficacy of manufacturing return propellant in situ to reduce the delivered mass requirement for the Earth launch and outbound transportation elements for any round trip mission. For human Mars exploration, this advantage may well be enabling, given current launch vehicle capability projections and reasonable expectations for a constrained program budget. NASA has proposed that the same LOX-Augmented NTR (LANTR) engine concept designed for use on lunar stages could also be used for Mars vehicle configurations, and that the tanks could be filled with propellants from Phobos for the return trip. This approach preserves the strategy of using a few common design elements for both lunar and Mars missions, while also making a significant mass performance improvement for the Mars return stage. We characterize the likely impact on performance of ``steady-state'' Earth-Mars transportation, as compared to Mars-only ISPP alternatives, and offer a preview of potential cost savings (work still in progress) for steady-state operation with Phobos propellants.

  15. Mars: On the Path Or In The Way?

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    Explore Mars may not be the highest and best use of government-? funded human space flight. However, Explore Mars is pervasively accepted as the ultimate goal for human space flight. This meme has become refractory within the human space flight community despite dramatic contextual changes since Apollo: human space flight is no longer central to commonly-?held national priorities, NASA's fraction of the federal budget has diminished 8 fold, over 60 enabling technology challenges have been identified, and the stunning achievements of robotic Mars exploration have accelerated. The Explore Mars vision has not kept pace with these changes.An unprecedented budgetary commitment would have to be sustained for an unprecedented number of decades to achieve the Explore Mars goal. Further, the goal's justification as uniquely able to definitively determine Mars habitability is brittle, and not driving current planning in any case; yet NASA owns the choice of this goal and has authority to change it. Three alternative goals for government investment in human space flight meet NASA's own expressed rationale at least as well as Explore Mars, some with far greater capacity to regain the cultural centrality of human space flight and to grow by attracting private capital. At a minimum the human space flight advocacy community should address the pragmatics of choosing such a vulnerable goal.

  16. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    BURKE CA; LANDON MR; HANSON CE

    2012-01-30

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

  17. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    BURKE CA; LANDON MR; HANSON CE

    2011-11-08

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

  18. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Christopher A.; Landon, Matthew R. [Washington River Protection Solutions, Richland, Washington 99352 (United States); Hanson, Carl E. [AREVA Federal Services, Richland, Washington 99352 (United States)

    2012-07-01

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)

  19. [MaRS Project

    Science.gov (United States)

    Aruljothi, Arunvenkatesh

    2016-01-01

    The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.

  20. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  1. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on...

  2. Manned underwater intervention during deep-water operations

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Mikal Sjur

    2010-07-01

    The focus for deep and remote areas operations are Remote Operated systems. Manned intervention is generally first choice when looking for intervention methods in most areas of the world. As an industry we need to focus on the most cost effective and safe method for construction, Maintenance and Repair. The focus is on advances in diving methods related to surface oriented and saturation diving, such as shallow water tie-ins of risers and umbilicals, inspection and evaluations of FPSOs including thruster change-out and wet docking. Also, the options for efficient repair scenarios utilizing man's ability to work in low visibility areas by feel etc. Finally the presentation will show new technology in Saturation Diving based on the 24 man saturation systems onboard the 3rd generation Divex systems used by Technip and Subsea 7. (Author)

  3. The Mars Oxygen ISRU Experiment (MOXIE) on the yet-to-be-named Mars 2020 Lander

    Science.gov (United States)

    Hecht, M. H.; Hoffman, J.; Rapp, D.; Voecks, G.; Lackner, K. S.; Hartvigsen, J.; Yildiz, B.; Smith, P. H.; Pike, W. T.; Graves, C.; De La Torre Juarez, M.; Schreiner, S.; Madsen, M. B.

    2014-12-01

    A major challenge to sample return is the transport to Mars of an adequate supply of fuel and oxidizer (the heavier component) for the return trip. A possible novel architecture would be for the Mars Ascent Vehicle (MAV) to share a platform with a device that would manufacture the oxidizer in situ. Far from fanciful, that hypothetical platform would look very much like the Mars 2020 rover. The Mars Oxygen In Situ Resource Utilization (ISRU) Experiment, MOXIE, will produce 22 g/hr oxygen from atmospheric carbon dioxide using solid oxide electrolysis (SOXE). With proper refrigeration, it could readily fill a MAV tank with high Isp LOx while waiting for rendezvous with a sample acquisition rover. The immediate motivation for MOXIE, however, is as a prototype for a 100:1 scale unit that would serve the same function on an eventual human expedition. If optimistic plans for a crewed mission are realized, it may well carry the second, and far more bountiful, Mars sample return. To make 22 g/hr oxygen from the CO2 in the martian atmosphere, MOXIE must first collect and compress that CO2, while purging other atmospheric components (4-5 vol%) that would otherwise build up and choke the process. Two distinct technologies are under consideration for that function; a batch-process based on condensation by conventional cryocoolers, and an Advanced Technology Option mechanical compressor that would allow more efficient, continuous operation. The SOXE itself derives from solid oxide fuel cell (SOFC) technology, essentially running the fuel cell process in reverse by feeding in electricity and CO2 to produce O2and CO. MOXIE development is supported by the NASA HEOMD and STMD offices. We are particularly grateful to support from JPL and MIT, as well as our partners Ceramatec and Creare, in the preparation of the MOXIE proposal.

  4. Earth orbital operations supporting manned interplanetary missions

    Science.gov (United States)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  5. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  6. Radiobiological modeling with MarCell software

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, J.S.; Jones, T.D. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1999-01-01

    A nonlinear system of differential equations that models the bone marrow cellular kinetics associated with radiation injury, molecular repair, and compensatory cell proliferation has been extensively documented. Recently, that model has been implemented as MarCell, a user-friendly MS-DOS computer program that allows users with little knowledge of the original model to evaluate complex radiation exposure scenarios. The software allows modeling with the following radiations: tritium beta, 100 kVp X, 250 kVp X, 22 MV X, {sup 60}Co, {sup 137}Cs, 2 MeV electrons, triga neutrons, D-T neutrons, and 3 blends of mixed-field fission radiations. The possible cell lineages are stem, stroma, and leukemia/lymphoma, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive mathematical feature is that any protracted protocol can be expressed as an equivalent prompt dose for either the source used or for a reference, such as 250 kVp X rays or {sup 60}Co. Output from MarCell includes: risk of 30-day mortality; risk of cancer and leukemia based either on cytopenia or compensatory cell proliferation; cell survival plots as a function of time or dose; and 4-week recovery kinetics following treatment. In this article, the program`s applicability and ease of use are demonstrated by evaluating a medical total body irradiation protocol and a nuclear fallout scenario.

  7. Mars Design Reference Architecture 5.0 Study: Executive Summary

    Science.gov (United States)

    Drake, Bret G.

    2008-01-01

    The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.

  8. Supporting Increased Autonomy for a Mars Rover

    Science.gov (United States)

    Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa

    2008-01-01

    This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.

  9. Small reactor power systems for manned planetary surface bases

    Science.gov (United States)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  10. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  11. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  12. Icebergs on early Mars

    Science.gov (United States)

    Uceda, E.; Fairen, A.; Woodworth-Lynas, C.; Palmero Rodriguez, A.

    2015-12-01

    The smooth topography of the Martian northern lowlands has been classically equated to an ancient ocean basin. The High-Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter (MRO) is providing unprecedented images of the Martian surface at scales of 25 to 32 cm per pixel. The analysis of this high-resolution imaging reveals the presence of three differentiated geomorphologies throughout the northern lowlands of Mars and the Hellas basin, which are informative of the presence of icebergs floating in ancient oceans and/or seas. These morphologies are: (i) scattered scour marks, including curvilinear furrows several km long and some meters deep; (ii) boulders ranging in size from 0.5 m to ~2 m in diameter, distributed forming clusters with sizes from several hundred meters to 1-2 km; and (iii) flat-topped and conical circular fractured mounds. The association of plough marks, clusters of boulders and mounds on the northern plains of Mars can be related to the dual processes of ice keel scouring and ice rafting of both glacial and non-glacial detritus by a floating ice canopy and icebergs. These processes are well documented on Earth and result in distinct morphologies on the ocean floor, which are analogous to features observed in the Martian basins. Importantly, the features are located in elevated areas of the northern plains and Hellas, near the dichotomy boundary and on local topographic highs. Such distribution is expected, as these relatively shoal areas are where the iceberg-related features should occur on Mars: these areas had shallow water depths, less than the iceberg's keel depth, and therefore keels reached through the full depth of the water column to impinge on the sediments below. The presence of icebergs floating in cold oceans early in Mars' history imply the occurrence of continental glaciers forming in the highlands and streaming northward towards the lowlands, and towards the Hellas and Argyre Basins. Glacier

  13. Obesity in the ageing man.

    Science.gov (United States)

    Michalakis, K; Goulis, D G; Vazaiou, A; Mintziori, G; Polymeris, A; Abrahamian-Michalakis, A

    2013-10-01

    As the population is ageing globally, both ageing and obesity are recognized as major public health challenges. The aim of this narrative review is to present and discuss the current evidence on the changes in body composition, energy balance and endocrine environment that occur in the ageing man. Obesity in the ageing man is related to changes in both body weight and composition due to alterations in energy intake and total energy expenditure. In addition, somatopenia (decreased GH secretion), late-onset hypogonadism (LOH), changes in thyroid and adrenal function, as well as changes in appetite-related peptides (leptin, ghrelin) and, most importantly, insulin action are related to obesity, abnormal energy balance, redistribution of the adipose tissue and sarcopenia (decreased muscle mass). A better understanding of the complex relationship of ageing-related endocrine changes and obesity could lead to more effective interventions for elderly men. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. RenderMan design principles

    Science.gov (United States)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  15. DS-2 Mars Microprobe Battery

    Science.gov (United States)

    Frank, H.; Kindler, A.; Deligiannis, F.; Davies, E.; Blankevoort, J.; Ratnakumar, B. V.; Surampudi, S.

    1999-01-01

    In January of 1999 the NM DS-2 Mars microprobe will be launched to impact on Mars in December. The technical objectives of the missions are to demonstrate: key technologies, a passive atmospheric entry, highly integrated microelectronics which can withstand both low temperatures and high decelerations, and the capability to conduct in-situ, surface and subsurface science data acquisition. The scientific objectives are to determine if ice is present below the Martian surface, measure the local atmospheric pressure, characterize the thermal properties of the martian subsurface soil, and to estimate the vertical temperature gradient of the Martian soil. The battery requirements are 2-4 cell batteries, with voltage of 6-14 volts, capacity of 550 mAh at 80C, and 2Ah at 25C, shelf life of 2.5 years, an operating temperature of 60C and below, and the ability to withstand shock impact of 80,000 g's. The technical challenges and the approach is reviewed. The Li-SOCL2 system is reviewed, and graphs showing the current and voltage is displayed, along with the voltage over discharge time. The problems encountered during the testing were: (1) impact sensitivity, (2) cracking of the seals, and (3) delay in voltage. A new design resulted in no problems in the impact testing phase. The corrective actions for the seal problems involved: (1) pre weld fill tube, (2) an improved heat sink during case to cover weld and (3) change the seal dimensions to reduce stress. To correct the voltage delay problem the solutions involved: (1) drying the electrodes to reduce contamination by water, (2) assemblage of the cells within a week of electrode manufacture, (3) ensure electrolyte purity, and (4) provide second depassivation pulse after landing. The conclusions on further testing were that the battery can: (1) withstand anticipated shock of up to 80,000 g, (2) meet the discharge profile post shock at Mars temperatures, (3) meet the required self discharge rate and (4) meet environmental

  16. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  17. Teleoperators: Man's Machine Partners

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1972-01-01

    This booklet is about teleoperators, a class of machines that augment man rather than replace him. Teleoperators have the ability to add to man's strength, his reach, and his ability to work in hostile environments.

  18. Design of the ARES Mars Airplane and Mission Architecture

    Science.gov (United States)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  19. Task 8.6 -- Advanced man machine interface (MMI)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Solar/DOE ATS engine program seeks to improve the utilization of turbomachinery resources through the development of an Advanced Man Machine Interface (MMI). The program goals include timely and succinct feedback to the operations personnel to enhance their decision making process. As part of the Solar ATS Phase 2 technology development program, enabling technologies, including graphics environments, communications technology, and operating systems were explored to determine their viability to support the overall MMI requirements. This report discusses the research and prototyping effort, as well as the conclusions reached.

  20. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  1. Proprietary Manned Space Flight Proposals, 1973 to 2013, plus

    Science.gov (United States)

    Fisher, Philip

    2016-03-01

    In 1973 a concept for a manned space flight experiment was submitted to NASA as an unsolicited proprietary proposal,*. In 1998*, 2004*, and 2013* proposals successively more details were provided. An abbreviation of the 1998 proposal was published. By 2013 the five technical variables of 1998 had increased to over ten. Some technical and management details of the proposals will be presented and updated. The first flight of two could use some hardware now being developed. The experiment seems superior to any mission publicly advocated by NASA, so this talk's purpose is to encourage NASA to delay landing humans on Mars until the first spacecraft can be developed and activated. *Complete proposals are in the Philip C. Fisher papers, Niels Bohr Library and Archives, American Institute of Physics (available one year after author's death). Work after 1982 supported by successive forms of Ruffner Associates.

  2. Polygonal terrains on Mars

    Directory of Open Access Journals (Sweden)

    Pedro Pina

    2009-06-01

    Full Text Available The presence of water ice on Mars is well established. Some featureson the planet point to the occurrence of processes similar to those that take place in periglacial areas of Earth. One of the clues for this is the existence of small-scale polygonal terrains. In this paper, we present a methodology that aims at the automated identification of polygonal patterns on high-spatial resolution images of the surface of Mars. In the context of the research project TERPOLI, this step will be complemented with a full characterization, in both geometric and topological terms, of thenetworks detected. In this manner, we hope to collect data that will lead to a better understanding of the conditions of formation of the polygons, and of their temporal evolution; namely, we intend to identify different groups of polygons and to compare them with terrestrial examples.

  3. Geophysics of Mars

    Science.gov (United States)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  4. Science results from a Mars drilling simulation (Río Tinto, Spain) and ground truth for remote science observations.

    Science.gov (United States)

    Bonaccorsi, Rosalba; Stoker, Carol R

    2008-10-01

    Science results from a field-simulated lander payload and post-mission laboratory investigations provided "ground truth" to interpret remote science observations made as part of the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling mission simulation. The experiment was successful in detecting evidence for life, habitability, and preservation potential of organics in a relevant astrobiological analogue of Mars. SCIENCE RESULTS: Borehole 7 was drilled near the Río Tinto headwaters at Peña de Hierro (Spain) in the upper oxidized remnant of an acid rock drainage system. Analysis of 29 cores (215 cm of core was recovered from 606 cm penetrated depth) revealed a matrix of goethite- (42-94%) and hematite-rich (47-87%) rocks with pockets of phyllosilicates (47-74%) and fine- to coarse-grained loose material. Post-mission X-ray diffraction (XRD) analysis confirmed the range of hematite:goethite mixtures that were visually recognizable (approximately 1:1, approximately 1:2, and approximately 1:3 mixtures displayed a yellowish-red color whereas 3:1 mixtures displayed a dark reddish-brown color). Organic carbon was poorly preserved in hematite/goethite-rich materials (C(org) TRUTH VS. REMOTE SCIENCE ANALYSIS: Laboratory-based analytical results were compared to the analyses obtained by a Remote Science Team (RST) using a blind protocol. Ferric iron phases, lithostratigraphy, and inferred geologic history were correctly identified by the RST with the exception of phyllosilicate-rich materials that were misinterpreted as weathered igneous rock. Adenosine 5'-triphosphate (ATP) luminometry, a tool available to the RST, revealed ATP amounts above background noise, i.e., 278-876 Relative Luminosity Units (RLUs) in only 6 cores, whereas organic carbon was detected in all cores. Our manned vs. remote observations based on automated acquisitions during the project provide insights for the preparation of future astrobiology-driven Mars missions.

  5. Natural and man-made terrestrial electromagnetic noise: an outlook

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  6. Mars ISPP Precursor (MIP): The First Flight Demonstration of In-Situ Propellant Production

    Science.gov (United States)

    Kaplan, David

    1997-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. The Mars reference mission concept predeploys a robotic propellant production plant to the planet two years before the planned departure of the crew from Earth. The successful operation of this plant is necessary for the human journey to begin.

  7. Organics on Mars?

    Science.gov (United States)

    ten Kate, Inge L

    2010-01-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry--as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  8. Meteorites from Mars

    Science.gov (United States)

    Grady, M.; Murdin, P.

    2002-01-01

    The SNC METEORITES, named after the initials of the first discovered members (Shergotty, Nakhla and Chassigny), are a group of stony meteorites that are thought to come from Mars, rather than the asteroid belt. They are all igneous rocks (i.e. formed by crystallizing from molten material) and are distinguished from other meteorites by their ages, which are as low as 165 million years old. A young...

  9. Chemical Thermodynamics on Mars

    Science.gov (United States)

    Selco, Jodye I.

    1995-07-01

    This seven question take-home exam guides the students through a marathon problem to arrive at a single answer to the overall question: "How sensitive a probe do you need in order to detect signs of "life" (methane produced by bacteria instead of by chemical equilibrium) on Mars". This exam was originally written to correspond to chapters four through seven in Ira Levine's Physical Chemistry, 3rd edition, McGraw Hill, New York, 1988.

  10. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.

  11. Hygroscopic Salts on Mars

    Science.gov (United States)

    Melchiorri, R.; Davila, A. F.; Chittenden, J.; Haberle, R. M.

    2008-12-01

    We present preliminary results on the influence of a salt-rich regolith in the water cycle of Mars. Global climate modeling shows that the relative humidity on the Martian surface often reaches values above the deliquescence point of salts that are common components of the regolith. At the deliquescence point, these salts will absorb atmospheric water vapor and form a saturated, transient liquid solution that is stable under a range of temperatures. If atmospheric temperatures fall below the eutectic point of the solution, the later will freeze in the pore space of the regolith, thereby resulting in a net transport of water from the vapor phase in the atmosphere, to the solid state in the regolith. This simple model partially accounts for some the distribution of water on the Martian surface as revealed by Mars Odyssey, in particular, we find that: even though the Cl and surface water distributions detected by HEND/ODYSSEY are highly correlated, salt deliquescence under the the present atmospheric conditions does not explain the overall distribution of water in the near surface regolith. However deliquescence of salt-rich soils could be an important contributor to the distribution of water in the regolith at high obliquity. In that scenario the water in the near-surface regolith would be the remnant of high obliquity conditions salt deliquescence is still active in different regions on Mars today, and it should be introduced as a parameter in the modern GCMs as a new ground/atmosphere interaction

  12. Exobiological exploration of Mars

    Science.gov (United States)

    Klein, H. P.; Devincenzi, D. L.

    1995-01-01

    Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting 'critical' experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft.

  13. Propulsion engineering study for small-scale Mars missions

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  14. In-Space Transportation for NASA's Evolvable Mars Campaign

    Science.gov (United States)

    Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars

  15. Guidelines for 2007 MARS exercise

    CERN Multimedia

    HR Department

    2007-01-01

    Following the introduction of the new Merit Appraisal and Recognition Scheme (MARS), full details of the scheme are now available via the HR Department's homepage or directly on the Department's MARS web page: in English: http://humanresources.web.cern.ch/HumanResources/internal/personnel/pmd/cr/MARS.asp or French: http://humanresources.web.cern.ch/humanresources/internal/personnel/pmd/cr/mars_fr.asp You will find on this page: 'Introduction to MARS' with detailed information presented in Frequently Asked Questions; these include the MARS timetable for proposals and decisions; 'Regulations' with links to the scheme's statutory documents; 'Procedures and Forms' and 'Useful Information' with links to all the relevant documentation; these include the mandates of the Senior Staff Advisory Committee (SSAC) and the Technical Engineers and Administrative Careers Committee (TEACC). HR Department Tel. 73566

  16. 77 FR 23806 - Manning Rail, Inc.-Acquisition and Operation Exemption-Manning Grain Company

    Science.gov (United States)

    2012-04-20

    ... Surface Transportation Board Manning Rail, Inc.--Acquisition and Operation Exemption--Manning Grain... 1150.31 to acquire from Manning Grain Company (MGC) and operate a 7.1-mile rail line between its point... acquire the Line in Manning Grain Company--Acquisition and Operation Exemption--Fillmore Western Railway...

  17. Reducing the risk to Mars: The gas core nuclear rocket

    Science.gov (United States)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  18. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  19. A Sunphotometer for Mars Atmosphere Studies

    Science.gov (United States)

    Strawa, A. W.; Velante, M.; Colaprete, A.; Papadopoulos, P.

    2005-12-01

    The interaction between the sun's energy and Martian dust is recognized as one of the biggest driving forces for climate on Mars, yet not enough is known about the physical and optical properties of this dust or its spatial and temporal variation. A better understanding of the interaction between Mars dust and its weather and climate is required for manned exploration. Recognizing this, we are developing an instrument concept that would enable dedicated measurements to characterize Mars' atmosphere and dust than has been possible in the past. The instrument is based on the sunphotometer concept, integrating concepts that produce an instrument with no moving parts. Consequently, it would be small, light weight, and consume little electrical power. Sunphotometer's are commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by gases and aerosol particles in the atmosphere. Typically, these instruments track the sun to measure the direct solar attenuation. Our concept uses a combination of unique optics and a detector array to eliminate the moving parts and make the instrument much smaller, compact, and reliable. Data products would include downwelling flux, gas and aerosol optical depth at multiple-wavelengths, gas phase constituent column density, and aerosol size distribution. One of the desirable features of this concept is that the techniques exist that would enable the instrument to be self-calibrating throughout the year. This means that as dust begins to deposit on the instrument window, or the electronics or sensor array degrade, the instrument could be periodically recalibrated in situ. Thus it would provide invaluable data for long-term modeling efforts. This system would also be able to compensate for deployment on non-level surfaces. This instrument would have applicability to the Discovery and Mars Exploration class Missions. The instrument would be a valuable component in the exploration of any planetary

  20. Experimental quantum secret sharing and third-man quantum cryptography.

    Science.gov (United States)

    Chen, Yu-Ao; Zhang, An-Ning; Zhao, Zhi; Zhou, Xiao-Qi; Lu, Chao-Yang; Peng, Cheng-Zhi; Yang, Tao; Pan, Jian-Wei

    2005-11-11

    Quantum secret sharing (QSS) and third-man quantum cryptography (TQC) are essential for advanced quantum communication; however, the low intensity and fragility of the multiphoton entanglement source in previous experiments have made their realization an extreme experimental challenge. Here, we develop and exploit an ultrastable high intensity source of four-photon entanglement to report an experimental realization of QSS and TQC. The technology developed in our experiment will be important for future multiparty quantum communication.

  1. HEAT OF MARS IS LOVE OF LIFE?! TWO WAYS TO LOOK AT MARS

    Directory of Open Access Journals (Sweden)

    S. K. Alavipanah

    2013-09-01

    Full Text Available Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a the amount of energy they receive from the sun and, (b the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.

  2. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  3. System/Design Trade Study Report for the Navigation of the Airborne, Ground Vehicular and Man-Portable Platforms in Support of the Buried Ordnance Detection, Identification, and Remediation Technology.

    Science.gov (United States)

    1995-03-01

    AND ADDRESS(ES) Naval Explosive Ordnance Disposal Technology Division Project Manager: Gerard Snyder 301/743-6855 2008 Stump Neck Road Indian Head ...NUMBER 10. SPONSORING / MONITORING AGENCY REPORT NUMBER SFIM-AEC-ET-CR-95043 Supporting Contractor: PRC, Inc. 801 North Strauss Avenue Indian Head ...available on the market today for detection, mapping and remediation of hazardous materials have not been developed to the level that could be

  4. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    The probe, weighing in at 1 120 kg, was built on ESA’s behalf by a European team led by Astrium. It set out on its journey to Mars aboard a Soyuz-Fregat launcher, under Starsem operational management. The launcher lifted off from Baïkonur in Kazakhstan on 2 June at 23.45 local time (17:45 GMT). An interim orbit around the Earth was reached following a first firing of the Fregat upper stage. One hour and thirty-two minutes after lift off the probe was injected into its interplanetary orbit. "Europe is on its way to Mars to stake its claim in the most detailed and complete exploration ever done of the Red Planet. We can be very proud of this and of the speed with which have achieved this goal", said David Southwood, ESA's Director of Science witnessing the launch from Baikonur. Contact with Mars Express has been established by ESOC, ESA’s satellite control centre, located in Darmstadt, Germany. The probe is pointing correctly towards the Sun and has deployed its solar panels. All on-board systems are operating faultlessly. Two days from now, the probe will perform a corrective manœuvre that will place it in a Mars-bound trajectory, while the Fregat stage, trailing behind, will vanish into space - there will be no risk of it crashing into and contaminating the Red Planet. Mars Express will then travel away from Earth at a speed exceeding 30 km/s (3 km/s in relation to the Earth), on a six-month and 400 million kilometre journey through the solar system. Once all payload operations have been checked out, the probe will be largely deactivated. During this period, the spacecraft will contact Earth only once a day. Mid-journey correction of its trajectory is scheduled for September. There in time for Christmas Following reactivation of its systems at the end of November, Mars Express will get ready to release Beagle 2. The 60 kg capsule containing the tiny lander does not incorporate its own propulsion and steering system and will be released into a collision

  5. First MARS Outpost: Development Considerations and Concepts

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research and design study that is exploring near and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. This presentation highlights planning considerations and design concepts for establishing a first settlement on Mars. The outpost would support surface missions lasting up to about 500 days and would serve as the initial stage of a larger and continuously operational development which would utilize Mars resources to be less reliant on materials from Earth. Key elements of this first stage mission development sequence include a new heavy-lift Earth-to-orbit launch vehicle; a plasma- drive Mars transit vehicle; habitat modules for crews in transit to and from Mars; "hard" and "inflatable" surface habitats and laboratories; a mobile power unit; a spacecraft to assist orbital assembly; and vehicles to lift crews off the Mars surface and land them safely back on Earth from LEO. SICSA's space development approach differs in fundamental ways from conventional NASA-sponsored initiatives. First, virtually all baseline planning assumptions are influenced by the private sector-driven nature of an approach that aims to avoid all possible reliance upon government financing, agendas and schedules. In this regard, any involvements with NASA or the space agencies of other countries would be premised upon mutual public-corporate partnership benefits rather than upon federal contract awards, management and control. Another potential difference relates to program philosophy. Unlike Apollo Program "sprint" missions which culminated with footprints and flagpoles on the Moon, the aim is to realize sustainable and continuing planetary exploration and development progress. This goal can be advanced through approaches that

  6. [The man on the portrait].

    Science.gov (United States)

    Bergstrand, A

    1996-01-01

    Marie Curie was awarded the Nobel Prize in chemistry 1911. During the preceding year a rumour had circulated in Stockholm that she had had an affaire with one of her assistants. She received a letter, in which she was told that there had been strong opposition to her election not on scientific but moral grounds, and that she should not go to Stockholm, because nobody could forsee what reactions her appearance at the prize ceremony could evoke. Emil Kleen, a man of violent temper and radical opinions, reacted strongly to these rumours. He wrote a paper, with a violent attack on Gustaf Retzius, previous professor of Histology at Karolinska Institutet. Rightly or wrongly he suspected him to be the author of the infamous letter. Retzius is described as a dilletant in scientific matters, as a "sexual hyena" and a garroulus old man. This portrait of Retzius is of course most unfair, but the portrait of Emil Kleen by the famous swedish artist Bruno Liljefors is a masterpiece and one of the most valuable of the Swedish Medical Association.

  7. Un mar compartido

    OpenAIRE

    2008-01-01

    Existen pocos ámbitos más reveladores que el mar para entender las virtudes de la cooperación internacional en materia científica. En las ciencias marinas esta cooperación es más que deseable: es imprescindible para poder contestar preguntas relacionadas con el movimiento de las corrientes, el aporte de los ríos, los ciclos migratorios de las especies, las pesquerías, etc. Se analiza la importancia de los proyectos conjuntos donde participaron países latinoamericanos, algunos con éxitos, y so...

  8. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-08-25

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of SpecialApplications, in suppport of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. The report is a rearranged, updated, and significantly expanded amalgam of three interrelated papers presented at the 24th Intersocity Energy Conversion Engineering Conference (IECEC) at Arlington, Virginia, on August 10, 1989.

  9. The salts of Mars

    Science.gov (United States)

    Clark, B. C.; Van Hart, D. C.

    1981-01-01

    Salt compounds are apparently an important component of the fine-grained regolith on Mars. Salt enrichment may be explained either as a secondary concentration of chemical weathering products or as direct incorporation of planetary released volatiles. Geochemical measurements and chemical relationships constrain the salt species and resultant physicochemical consequences. A likely assemblage is dominated by (Mg,Na)SO4, NaCl, and (Mg,Ca)CO3. Formation of brine in equilibrium with such a salt mixture is unlikely under the temperature and water-vapor restrictions prevalent over most, if not all, of the Martian surface. Acidic conditions, accompanying salt formation, favor the preferential destruction of susceptible igneous minerals.

  10. MARS15 overview

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2007-01-01

    MARS15 is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion, and low-energy neutron transport in accelerator, detector, spacecraft, and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Main features of the code are described in this paper with a focus on recent developments and benchmarking. Newest developments concern inclusive and exclusive nuclear event generators, extended particle list in both modes, heavy-ion capability, electromagnetic interactions, enhanced geometry, tracking, histogramming and residual dose modules, improved graphical-user interface, and other external interfaces.

  11. CODE STEM - Moon, Mars, and Beyond; DLESE-Powered On-Line Classroom Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "CODE (COrps DEvelopment) STEM (Science, Technology, Engineering, and Math) ? Moon Mars and Beyond; DLESE-Powered On-Line Classroom" shares the excitement of...

  12. A Miniature Compressor for In Situ Resource Utilization on Mars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key objective for NASA's next rover mission to Mars is the demonstration of oxygen production from atmospheric carbon dioxide. Such a technology demonstration may...

  13. The rights of man and animal experimentation.

    Science.gov (United States)

    Martin, J

    1990-09-01

    Since emotions give contradictory signals about animal experimentation in medical science, man's relationship to animals must be based upon reason. Thomas Aquinas argues that man is essentially different from animals because man's intellectual processes show evidence of an abstract mechanism not possessed by animals. Man's rights arise in association with this essential difference. The consequence is that only man possesses true rights by Aquinas's definition; animals have them only by analogy. However, cruelty to animals is illicit and they should be protected, principally not because they have rights, but because he who is cruel to animals is more likely to be cruel to his fellowman. If there is a need for animal experimentation in science for the good of man, this approach gives philosophical justification for experimentation, since man's well-being must come before that of animals because of his unique possession of rights. However, those experiments should be carried out in the kindest way possible, to promote kindness towards man. To see man as solely part of a biological continuum in competition for rights with those beings close to him biologically, detracts from man's dignity.

  14. The rights of man and animal experimentation.

    Science.gov (United States)

    Martin, J

    1990-01-01

    Since emotions give contradictory signals about animal experimentation in medical science, man's relationship to animals must be based upon reason. Thomas Aquinas argues that man is essentially different from animals because man's intellectual processes show evidence of an abstract mechanism not possessed by animals. Man's rights arise in association with this essential difference. The consequence is that only man possesses true rights by Aquinas's definition; animals have them only by analogy. However, cruelty to animals is illicit and they should be protected, principally not because they have rights, but because he who is cruel to animals is more likely to be cruel to his fellowman. If there is a need for animal experimentation in science for the good of man, this approach gives philosophical justification for experimentation, since man's well-being must come before that of animals because of his unique possession of rights. However, those experiments should be carried out in the kindest way possible, to promote kindness towards man. To see man as solely part of a biological continuum in competition for rights with those beings close to him biologically, detracts from man's dignity. PMID:2135948

  15. The Mars Surveyor '01 Rover and Robotic Arm

    Science.gov (United States)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  16. A One-Stop Web Application for the Mars Team

    Science.gov (United States)

    Laufenberg, Lawrence

    2004-01-01

    THe Mars Exploration Rover Collaborative Information Portal (MERCIP) provides a window to all mission events. It supports mission updates, data sharing, and collaboration. The report also discusses: Technology spotlight. Integrating data multiple sources. Securing access for multiple clients. A new information infrastructure.

  17. MetNet Precursor - Network Mission to Mars

    Science.gov (United States)

    Harri, Arri-Matti

    2010-05-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The first MetNet vehicle, MetNet Precursor, slated for launch in 2011. The MetNet development work started already in 2001. The actual practical Precursor Mission development work started in January 2009 with participation from various space research institutes and agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Time-resolved in situ Martian meteorological measurements acquired by the Viking, Mars Pathfinder and Phoenix landers and remote sensing observations by the Mariner 9, Viking, Mars Global Surveyor, Mars Odyssey and the Mars Express orbiters have provided the basis for our current understanding of the behavior of weather and climate on Mars. However, the available amount of data is still scarce and a wealth of additional in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes to address microscale and mesoscale atmospheric phenomena. Detailed characterization of the Martian atmospheric circulation patterns and climatological cycles requires simultaneous in situ atmospheric observations. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe

  18. The Bionic Man: Future Super Human

    Directory of Open Access Journals (Sweden)

    M. S. Sachin

    2014-01-01

    , bionics can make possible completely new kinds of prostheses. Functional artificial eyes and ears simply wouldn’t be possible by any other means. The discussion will continue to the future of prosthetics and what can be expected, or what needs to be feared, as technology continues to develop. In this feature, we’ll take a look at what this entails. In other words, the technology has given us the first Bionic Man

  19. BUILDING ON THE MARS PLANET

    Directory of Open Access Journals (Sweden)

    Valeriy Pershakov

    2012-09-01

    Full Text Available  The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources. The solution is in the colonizing and building on the Mars planet.

  20. Monitoring Mars for Electrostatic Disturbances

    Science.gov (United States)

    Compton, D.

    2011-01-01

    The DSN radio telescope DSS-13 was used to monitor Mars for electrostatic discharges from 17 February to 11 April, 2010, and from 19 April to 4 May, 2011, over a total of 72 sessions. Of these sessions, few showed noteworthy results and no outstanding electrostatic disturbances were observed on Mars from analyzing the kurtosis of radio emission from Mars. Electrostatic discharges on mars were originally detected in June of 2006 by Ruf et al. using DSS-13. he kurtosis (normalized fourth moment of the electrical field strength) is sensitive to non-thermal radiation. Two frequencies bands, either 2.4 and 8.4 GHz or 8.4 and 32 GHz were used. The non-thermal radiation spectrum should have peaks at the lowest three modes of the theoretical Schumann Resonances of Mars. The telescope was pointed away from Mars every 5 minutes for 45 seconds to confirm if Mars was indeed the sources of any events. It was shown that by including a down-link signal in one channel and by observing when the kurtosis changed as the telescope was pointed away from the source that the procedure can monitor Mars without the need of extra equipment monitoring a control source.

  1. Astrobiological aspects of Mars and human presence: pros and cons.

    Science.gov (United States)

    Horneck, G

    2008-08-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  2. A review of warship man-machine-environment system engineering

    Directory of Open Access Journals (Sweden)

    ZHANG Yumei

    2017-03-01

    Full Text Available Warship Man-Machine-Environment System Engineering (MMESE is an integral part of the overall design, and its design principles were proposed according to safety, efficiency, comfort and pleasure. The typical characteristics of MMESE are summarized. The operating environment is extremely terrible on long voyages. High level collaboration is required due to the complex task system and large manpower demand. Owing to the dense computer interface information, the mental cognitive burden on the crew is heavy. The MMESE technology system is divided into four parts:man-machine coordinated, man-environment coordinated, the evaluation of man-machine-environment characteristics and the ergonomic simulation. Based on the MMESE development venation in this paper, the overseas and domestic research statuses are expounded. Interactive optimization can be realized according to the following aspects:researching the basic human characteristics of the crew, applying this to the warship's overall design, and formulating relevant ergonomic standards and norms. Next, Human System Integration (HSI professional engineering was introduced comprehensively into the marines in order to achieve an optimal system. On this basis, we completed the future development trend analysis. All these studies and results have some reference meaning for guiding the integrated optimization of warships as a whole, downsizing the manpower and improving efficiency.

  3. Propulsive Descent Technologies (PDT): Original Content Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to Mars require landed mass that exceeds the capability of current entry, descent, and landing technology.  New technology and techniques are...

  4. The 2009 Mars Telecommunications Orbiter

    Science.gov (United States)

    Wilson, G. R.; Depaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Gibbs, R. G.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even great networking capabilities in the future. During its nearly 10-year mission in orbit, Mars Telecommunications Orbiter would aid navigation of arriving spacecraft to their martian landing sites and monitor critical events during landings and orbit insertions. In addition, it would enable data-transmission volumes great enough to bring a virtual Mars presence to the public through a range of Internet and video features.

  5. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS)

    Science.gov (United States)

    Pätzold, M.; Häusler, B.; Tyler, G. L.; Andert, T.; Asmar, S. W.; Bird, M. K.; Dehant, V.; Hinson, D. P.; Rosenblatt, P.; Simpson, R. A.; Tellmann, S.; Withers, P.; Beuthe, M.; Efimov, A. I.; Hahn, M.; Kahan, D.; Le Maistre, S.; Oschlisniok, J.; Peter, K.; Remus, S.

    2016-08-01

    The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle.

  6. Intimations of water on Mars.

    Science.gov (United States)

    2000-08-01

    This photo essay contains images of Mars that propose evidence of the possible present or past existence of liquid water on Mars. Images were taken by the Mars Global Surveyor Mars Orbiter Camera. Images presented include: Polar Wall Pit region, consisting of gully landforms possibly caused by seepage and runoff of liquid water; Noachis Terra region, an area of gullies eroded into the wall of a meteor impact crater, where channels and related debris are seen, possibly formed by seepage, runoff, and debris flow; two images of Gorgonum Chaos region, one a series of troughs and layers of gullies and the other of gullies in a specific layer forming an alcove similar to an aquifer; Sirenum Fossae/Gorgonum Chaos mosaic of two images from this region of the southern hemisphere of Mars, showing 20 different channels coming down from a trough and their associated debris fans. Images and their enhancements are from NASA/JPL/Malin Space Science System.

  7. Mathematics and Mars Exploration

    Science.gov (United States)

    Velasco, M. P.; Usero, D.; Jiménez, S.; Aguirre, C.; Vázquez, L.

    2015-01-01

    In this study we consider modelization associated with study of solar radiation at the surface of Mars and the Martian atmosphere. In particular, we present elements concerning retrieval of the solar irradiance spectrum on the surface of Mars from data collected by arrays of photodiodes, such as those onboard the "Curiosity" MSL-rover and other missions currently under design. By using these techniques we are able to provide an approximate description of the expected measures. In this work we have also developed a new method of tomography-based signal analysis for detection of events in the Martian atmosphere boundary layer, such as dust devils. In general, this method enables detection of events that occur briefly in time and are localized in space. This tomographic method allows us to identify the presence of more dust devils than detected previously using the same data. Finally we show new scenarios of modelization through fractional differential equations associated with diffusion processes and nonlocal problems. Such approaches could be used to model complex Martian dynamics.

  8. Mars synthetic topographic mapping

    Science.gov (United States)

    Wu, S.S.C.

    1978-01-01

    Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.

  9. Oxygen foreshock of Mars

    Science.gov (United States)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  10. Water on early Mars

    Science.gov (United States)

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  11. [Cryptobiosphere of Mars].

    Science.gov (United States)

    Gal'chenko, V F

    2003-01-01

    The US Viking missions (1975-1976) failed to discover any biological activity on the surface of Mars. Yet, life may exist in the planet lithosphere which was found to contain a substantial amount of water. Martian interior can also provide microbial cryptolife with sources of carbon (CO, CO2, CH4) and energy (reduced elements and compounds, e.g. H2, CO, H2S, NH4+, CH4, Fe3+). Microorganisms identical to the Earth's anaerobic methanogens, sulfate reducers, acetogens, denitrifiers etc. are the most probable Martian aborigines. Well-balanced continuous functioning of the Martian cryptobiosphere implies closure of biochemical carbon, sulfur and nitrogen cycles which cannot be reached but with participation of organotrophic and anaerobic hydrolytic and zymotic organisms, ammonifiers and denitrifiers. Considering the low intensity of biological and chemical processes in the absence of surface hydrosphere, low-power atmosphere and cryptobiosphere closure on Mars, and slow global energy matter cycles, evolution of the presumable Martian cryptolife should also go at a slack pace and directions and forms of the evolution of living substance can have little in common with those on Earth. Comprehensive investigations of the Martian biota will employ a great variety of geochemical, radi- and stable isotope, microbiological, enzymatic and molecular biology methods.

  12. Water on early Mars.

    Science.gov (United States)

    Carr, M H

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  13. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  14. Safety during MARS exercise

    CERN Multimedia

    2015-01-01

    It is MARS(1) time again! All employed members of the CERN personnel are currently undergoing the annual MARS evaluations.   This is also a good occasion for supervisors and their supervisees to fill in or update the OHS-0-0-3 form(2) “Identification of occupational hazards”. Filling in the OHS-0-0-3 form is an opportunity to assess any safety issues related to the supervisee's activities.  Each of us should, together with our supervisor, regularly identify and assess the hazards we may be exposed to in the course of our professional activities and reflect on how to control and mitigate them. When filling in the OHS form for the first time, it is important to determine any potential hazards as well as the corresponding preventive measures, in particular training and protective equipment. When updating the form, please review the available information to ensure that it still corresponds to the current activities. The form should be updated w...

  15. El aspecto kinky del entretenimiento honesto en María de Zayas

    DEFF Research Database (Denmark)

    Cifuentes-Aldunate, Claudio

    2009-01-01

    Det drejer sig om dobbeltlæsnigs mulighed indenfor en samling af fortællinger fra María de Zayas, en feminist forfatterinde fra barrok tiden i Spanien. Man centrerer sig i den gemte erotisme i den fiktive verden....

  16. ACCESS Mars: A Mission Architecture for an initial settlement on Mars; using caves as habitation

    Science.gov (United States)

    Perez-Poch, Antoni; Gallardo, Beatriz; Laufer, Ren; Zavaleta, Jhony; Davila, Alfonso; de Carufel, Guy; Antonakopoulos, Konstantinos; Husseini, A. Al; Alvarez Sánchez, L.; Antonakopoulos, K.; Apeldoorn, J.; Ashford, K., Jr.; Atabay, D.; Barrios, I.; Baydaroglu, Y.; Bennell, K. M.; Chen, J.; Chen, X.; Cormier, D.; Crowley, P.; de Carufel, G.; Deper, B.; Drube, L.; Duffy, P.; Edwards, P.; Gutiérrez Fernandez, E.; Haider, O.; Kumar, G.; Henselowsky, C.; Hirano, D.; Hirmer, T.; Hogan, B.; Albalat, A. Jaime; Jens, E.; Jivenescu, I.; Jojaghaian, A.; Kerrigan, M.; Kodachi, Y.; Langston, S.; Macintosh, R.; Miguélez, X.; Panek, N.; Pegg, C.; Peldszus, R.; Peng, X.; Perez-Poch, A.; Perron, A.; Qiu, J.; Renten, P.; Ricardo, J.; Saraceno, T.; Sauceda, F.; Shaghaghi Varzeghani, A.; Shimmin, R.; Solaz, R.; Solé, A.; Suresh, E. R.; Mar Vaquero Escribano, T.; Vargas Muñoz, M.; Vaujour, P. D.; Zeile, D. Veilette, Y. Winetraub, O.

    This paper summarizes a team project report produced during the Summer Space Program of the International Space University, held at Nasa-Ames Research Center (CA, USA) by 56 students from 15 countries. Chair of the team project was Rene Laufer. Facilitators were Alfonso Davila and Jhonny Zavaleta, and teacher associate supporting the team was Beatriz Gallardo. The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and therefore represents a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration. Currently proposed Mars missions have identified a number of challenges such as high levels of radiation, harsh climate and limited launch windows. Recently discovered lava tubes on Mars present potential solutions to some of these issues, but raise a variety of intriguing new challenges. This paper reviews existing reference missions and identifies areas of further research essential for adapting mission architectures to utilize caves. Different mission scenarios are proposed and analyzed, with a number of different recommendations given. An analysis of the feasibility of using Martian lava tubes as habitation is given in another paper by the same authors at COSPAR 2010 F34 Technical Session. Literature suggests a low radiation environment within Martian caves, allowing for extended duration missions. The ACCESS Mars Team concludes that the use of lava tubes as human habitats will be more beneficial for human Mars exploration than currently proposed surface solutions.

  17. Humans to Mars: The Greatest Adventure in Human History

    Science.gov (United States)

    Levine, Joel S.; Schild,Rudy

    2011-01-01

    The reasons for a human mission to Mars are many and include (1) World technological leadership, (2) Enhanced national security, (3) Enhanced economic vitality, (4) The human urge to explore new and distant frontiers, (5) Scientific discovery (how did Mars evolve from an early Earth-like, hospitable planet to its present inhospitable state? Is there life on Mars?) (6) Inspiring the American public and the next generation of scientists and engineers (following the launch of Sputnik I by the USSR on October 4, 1957, the U. S. and the rest of the world witnessed a significant increase in the number of students going into science and engineering), (7) Develop new technologies for potential non-space spin-off applications, and, (8) Enhanced national prestige, etc. Other reasons for colonizing the Red Planet are more catastrophic in nature, including Mars as a safe haven for the survival of the human species in the event of an impact with a large asteroid (remember the demise of the dinosaurs 65-million years as a result of an asteroid impact!). Some have also suggested that the colonization of Mars may be a solution to the global exponential population explosion on our planet! A human mission to and the colonization of the Red Planet requires multi-disciplined expertise in many areas including engineering, technology, science, human health and medicine and the human psychological and behavior. To capture the relevant areas of needed expertise, we have invited a group of more than 70 U. S. and foreign experts in these areas, including astronauts, scientists, engineers, technologists, medical doctors, psychologists and economists to share their views and thoughts on a human mission to Mars.

  18. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  19. Oedipus king: preparing man for the polis

    OpenAIRE

    José Joaquim Pereira Melo; Renan Willian Fernandes Gomes

    2013-01-01

    Having Sophoclean play Oedipus King as a frame of reference, the purpose of this paper is to discuss the educative proposal conceived to the Greek Man as preparation for life in the polis. Although not intentionally, Sophocles pointed out an ideal of Man which, in his perspective, would fulfill Greek societal demands of that time. Such society was divided between myth and rationality and, as a result, Man found Himself in conflict and lacking direction for His life. Given that, Oedipus’ chara...

  20. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    Science.gov (United States)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  1. Sisters of The Iron Man Triathlon

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    THE Iron Man Triathlon challenges even the most veteran athlete. Competitors swim 3,000 meters, followed by a 40 kilometer bike race and ending with a i0 kilometer cross-country run.The Iron Man allows athletes to display their utmost abilities. As of January 1997, triathlete Wang Dan had accumulated the highest number of points of Asian iron man triathletes, according to the Asian Iron Man Triathlon Federation. Following her lead is Chinese triathlete Xing Lin. Liu Xiaodan, Chinese third ranking triathlete, comes in 5th among Asian competitors. All three girls are just 17 years old and all natives of Shenyang, Liaoning

  2. Becoming and development of man: anthroposophistic approach.

    Directory of Open Access Journals (Sweden)

    Ionova E.N.

    2010-04-01

    Full Text Available Anthroposophistic orientated view of R.Shtayner to development of a man during all life is systematized. Anthroposophistic conception of development of a man is based on such substantive provisions: unity corporal-heartfelt-spiritual life; connection of component parts of psyche with physiological organization of man; an interconditionality of physiological, heartfelt and spiritual development is in the rhythm of seven years. It is rotined that a health, heartfelt rest and happiness, is the result of harmonic development. All three aspects are the legal certificates of constituents life of man.

  3. Enabling technologies for space exploration systems: The STEPS project results and perspectives

    Science.gov (United States)

    Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario

    2013-05-01

    The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a

  4. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera

    OpenAIRE

    Wang, Huiqun; Ingersoll, Andrew P.

    2002-01-01

    We have made daily global maps that cover both polar and equatorial regions of Mars for Ls 135°–360° and 0°–111° using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red and blue wide-angle swaths taken from May 1999 to January 2001. We study the seasonal distribution of condensate clouds and dust clouds during roughly 1 Martian year using these daily global maps. We present the development and decay of the tropical cloud belt and the polar hoods, the spatial and temporal distributi...

  5. HarkMan-A Vocabulary-Independent Keyword Spotter for Spontaneous Chinese Speech

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fang; XU Mingxing; MOU Xiaolong; WU Jian; WU Wenhu; FANG Ditang

    1999-01-01

    In this paper, a novel technique adopted in HarkMan is introduced. HarkMan is a keyword-spotter designed to automatically spot the given words of avocabulary-independent task in unconstrained Chinese telephone speech. The speaking manner and the number of keywords are not limited. This paper focuses on the novel technique which addresses acoustic modeling, keyword spotting network, search strategies, robustness, and rejection.The underlying technologies used in HarkMan given in this paper are useful not only for keyword spotting but also for continuous speech recognition. The system has achieved a figure-of-merit value over 90%.

  6. The Primal Exploration of Space launch and Manned Lunar-landing

    Institute of Scientific and Technical Information of China (English)

    Zhang Zeming; Jiang Yi; Fu Debin

    2006-01-01

    The lunar-landing is the continuity of manned spaceflight engineering. Comparing with the manned spacecraft engineering, it requires more reliability , larger scale, and more funds. On the basis of China's achievements and the experiences of foreign countries, the paper brings forward the idea that using the existing transportation technology to send the launch vehicles and cosmonauts to the near-earth orbit in batches,assembling the components together on the space-launch platform, and then launching them to the moon to fulfill our dream of manned landing on the moon. The paper also discusses the space launch platform and the launching ways.

  7. Human Mars Entry, Descent and Landing Architectures Study Overview

    Science.gov (United States)

    Polsgrove, Tara T.; Dwyer Cianciolo, Alicia

    2016-01-01

    Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.

  8. 调度自动化系统新型人机界面关键技术研究%Research on Key Technology of New Man-Computer Interface for Dispatching Automation System

    Institute of Scientific and Technical Information of China (English)

    赵林; 赵家庆; 钱科军; 吕洋; 丁宏恩; 张亮

    2014-01-01

    为使调控人员能更加便捷地利用触摸屏幕调阅电网监控所需的各类画面,使平面矢量图形画面、GUI控件画面、虚拟现实三维画面等调度自动化相关图形画面能够一体化地协同展示,提出了基于触摸操作方式的新型三维人机交互界面的设计思路及软件架构,并对其运行时所依赖的硬件环境进行了说明。对三维空间中画中画显示技术、通用 GUI图形控件界面的触摸操作技术、立体翻页效果优化技术以及虚拟现实三维空间图像嵌入及操作等关键技术进行了论述。研究成果为今后开发完整的基于触摸操作方式的调度自动化人机界面做了技术储备,同时也为调控中心大屏幕显示内容的随需快速切换提供了新的技术支撑手段。%To make the power dispatcher enable to call for various kinds of tableaus necessary for power grid monitoring by touch screen more conveniently and to make such graphics and pictures related to dispatching automation as plane vector graphic pictures, graphical user interface (GUI) widget graphic pictures, virtual reality 3D pictures and so on can be displayed integrally and synergistically, a touch-operating based design idea and software architecture for a new type of three dimensional human-computer interface are proposed and the hardware environment, which the operation of the proposed design idea and software architecture depend upon, are illustrated. Key technologies such as the display technology of picture in picture (PIP) in three dimensional space, the touch operation technology of versatile GUI graphical interface, the optimization technique of solid page turning effect and the embedding and operation of virtual reality three dimensional space graphic are presented. Research results in these aspects offer technical storage for developing the human-computer interface of complete and touch-operation based dispatching automation in future, besides, it

  9. "Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory", Köhler et al.

    Science.gov (United States)

    Miller, Jack

    2015-04-01

    The Mars Science Laboratory (MSL) spacecraft carried the Curiosity rover to Mars. While the dramatic, successful landing of Curiosity and its subsequent exploration of the Martian surface have justifiably generated great excitement, from the standpoint of the health of crewmembers on missions to Mars, knowledge of the environment between Earth and Mars is critical. This paper reports data taken during the cruise phase of the MSL by the Radiation Assessment Detector (RAD). The results are of great interest for several reasons. They are a direct measurement of the radiation environment during what will be a significant fraction of the duration of a proposed human mission to Mars; they were made behind the de facto shielding provided by various spacecraft components; and, in particular, they are a measurement of the contribution to radiation dose by neutrons. The neutron environment inside spacecraft is produced primarily by galactic cosmic ray ions interacting in shielding materials, and given the high biological effectiveness of neutrons and the increased contribution of neutrons to dose with increased depth in shielding, accurate knowledge of the neutron energy spectrum behind shielding is vital. The results show a relatively modest contribution from neutrons and gammas compared to that from charged particles, but also a discrepancy in both dose and dose rate between the data and simulations. The failure of the calculations to accurately reproduce the data is significant, given that future manned spacecraft will be more heavily shielded (and thus produce more secondary neutrons) and that spacecraft design will rely on simulations and model calculations of radiation transport. The methodology of risk estimation continues to evolve, and incorporates our knowledge of both the physical and biological effects of radiation. The relatively large uncertainties in the biological data, and the difficulties in reducing those uncertainties, makes it all the more important to

  10. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith

    Science.gov (United States)

    Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.

    2002-01-01

    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  11. Tafoni - A Llink Between Mars and Earth

    Science.gov (United States)

    Iacob, R. H.; Iacob, C. E.

    2013-12-01

    that no longer exist. NASA's current Mars Science Laboratory mission offers exceptional opportunities to perform a comparative study between tafoni formations on Mars and those on Earth. The present mission of Curiosity at Gale Crater, benefiting not only from the most advanced technology for in-situ investigations but also from a terrain rich in rock breakdown features, was able to reveal new tafoni formations. Gale Crater's landscape presents a variety of surface erosion elements, witnesses of major planetary transformations suffered by Mars during the past 3 billion years. While the wind and sand-blasting erosion are the most recent causes of the surface erosion at Gale Crater, leading to the smoothing, thinning, exfoliation and piercing of various rock layers, other geological formations such as alluvial fans, moat areas, gravel sediments, round shaped mounds and toadstool formations demonstrate that liquid water was vigorously shaping the surface of Mars billions of years ago. In such a context, the study of tafoni formations revealed during Curiosity's trek from Bradbury Landing through the Glenelg area of Gale Crater, will help advance the understanding of the Martian past and present environment, providing scenarios for the evolution of the Red Planet. The presentation contains various images of tafoni samples from Mars and Earth, explaining by similitude presumptive weathering mechanisms on Mars.

  12. MECHANISMS OF AUTOPOIESIS IN THE SYSTEM BASIS MAN-MADE WORLD

    OpenAIRE

    Sergey F. Sergeev

    2014-01-01

    The article is devoted to the problem of co-evolution of man-made environment, and human society. We explain the information and network technologies impact both on mankind and society. Our main goal is to show the techno-biology stage of human civilization evolution and present the concept of total human-authopoetic systems. We present the interpretation of autopoietics self-orienting and intersystem interactions arising from man-made environment. We describe the mechanism of environmental s...

  13. Manned-Unmanned Teaming: Expanding the Envelope of UAS Operational Employment (Reprint)

    Science.gov (United States)

    2014-11-01

    or ’over the horizon’ thinkers . In fact, in May of this year, the fi rst successful Hellfi re missile strike in Afghanistan was conducted with team ...USAARL Report No. 2015-11 Manned-Unmanned Teaming : Expanding the Envelope of UAS Operational Employment (Reprint) By Steven J. Gaydos1,2 Ian...Association Aviation, Space, and Environmental Medicine x Vol. 85, No. 12 x December 2014 1231 SCIENCE AND TECHNOLOGY WATCH Manned-Unmanned Teaming

  14. Mars Before the Space Age

    CERN Document Server

    Jones, Barrie W

    2008-01-01

    Mars has surely been scrutinised since the dawn of humankind. In the 16th century Tycho Brahe made accurate observations of the position of Mars that enabled Johannes Kepler to obtain his first two laws of planetary motion. In the 17th century the first telescope observations were made, but very little surface detail could be discerned. Throughout the 18th and 19th centuries telescopes improved, revealing many dark areas on the red tinted surface. After the close opposition of 1877 Giovanni Schiaparelli announced about 40 canali on Mars. This led to the saga of the canals of Mars, laid to rest in 1971 when Mariner 9 made observations from Martian orbit showing that the canali/canals of Mars do not exist. Belief that there was life on Mars was widespread in the 19th century, including the view that the dark areas were some form of plant life. This view persisted until Mariner 4 flew past Mars in 1965 and discovered a far thinner atmosphere than previously thought, with impact craters dominating the images. It ...

  15. Mars: a small terrestrial planet

    Science.gov (United States)

    Mangold, N.; Baratoux, D.; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-11-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration—the possibility of past or present life—is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water.

  16. Application of Leak Detection and Location Technology Based on Ultrasonic for Manned Spacecraft%基于超声的气体泄漏检测与定位技术在载人航天器中的应用

    Institute of Scientific and Technical Information of China (English)

    马永成; 陈青松

    2009-01-01

    The fundamental principle of leak detection and location technology based on ultrasonic is introduced in this paper.Both portable leak detection equipment and autonomous ultrasonic leak detection and location equipment are introduced,including their system composition,principle and working mode.The application of these equipments for the ISS and Shuttle is introduced.A scheme of ultrasonic leak detection and location that can be used for the space station of China is developed.%介绍了基于超声的气体泄漏检测与定位技术的基本原理;介绍了便携式超声检漏、无线超声自动检漏这两类已有设备的组成、工作原理及其在国际空间站、美国航天飞机上的应用情况.以此为参照,初步提出了一种可用于我国未来空间站建设的气体泄漏检测与定位方案.

  17. Kepler's "War on Mars"

    Science.gov (United States)

    Dorsey, William; Orchiston, W.; Stephenson, F. R.

    2011-01-01

    This paper presents an interpretation of how Johannes Kepler changed the study of astronomy. We propose that in his metaphorical "War on Mars,” the Astronomia Nova, Kepler used a revolutionary rhetoric to bring about the usurpation of seventeenth-century astronomy. We discuss how Kepler approached the well-established conceptual framework within which the hypotheses of Ptolemy, Copernicus and Tycho Brahe functioned, and how he sought comprehensive physical principles that could determine the true cause and form of the known Universe. We examine Kepler's need to redefine reality and his use of rhetoric in shaping his astronomical argument for a new astronomy, and we show that his new `laws’ represent a fusion of physics and geometry based upon astronomical observations. We suggest that although Kepler may have believed in and defended some Copernican ideas, his innovative Astronomia Nova opened up a whole new vista for international astronomy.

  18. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  19. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  20. Illustration of Launching Samples Home from Mars

    Science.gov (United States)

    2005-01-01

    One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.

  1. NASA Mars Science Laboratory Rover

    Science.gov (United States)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  2. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  3. Recreational resources - basement for active rest of a man.

    Directory of Open Access Journals (Sweden)

    Zaytzev V.P.

    2011-03-01

    Full Text Available The theoretical aspects of active rest resources of Ukraine, their classification and ball estimation are presented: medical and biological, psychological, technological. The special complication in the estimation of active rest resources consists of that they are necessary to be examined both from position of organizers of rest and from position of holiday-makers. Importance of active rest a man (student is shown in sanatorium-resort terms. Therefore two basic tasks cost before counsels: medical service of patients (second prophylaxis and health rest. The active rest resources of Crimea are as an example considered, Zakarpatskoy and Kharkov areas. In every region there are the features of active rest resources which lift the physical and psychical health of man.

  4. The Affording Mars Workshop: Background and Recommendations

    Science.gov (United States)

    Thronson, Harley A.; Carberry, Christopher

    2014-01-01

    A human mission to Mars is the stated "ultimate" goal for NASA and is widely believed by the public to be the most compelling destination for America's space program. However, widely cited enormous costs - perhaps as much as a trillion dollars for a many-decade campaign - seem to be an impossible hurdle, although political and budget instability over many years may be equally challenging. More recently, a handful of increasingly detailed architectures for initial Mars missions have been developed by commercial companies that have estimated costs much less than widely believed and roughly comparable with previous major human space flight programs: the Apollo Program, the International Space Station, and the space shuttle. Several of these studies are listed in the bibliography to the workshop report. As a consequence of these new scenarios, beginning in spring, 2013 a multiinstitutional planning team began developing the content and invitee list for a winter workshop that would critically assess concepts, initiatives, technology priorities, and programmatic options to reduce significantly the costs of human exploration of Mars. The output of the workshop - findings and recommendations - would be presented in a number of forums and discussed with national leaders in human space flight. It would also be made available to potential international partners. This workshop was planned from the start to be the first in a series. Subsequent meetings, conferences, and symposia will concentrate on topics not able to be covered in December. In addition, to make progress in short meeting, a handful of ground rules were adopted by the planning team and agreed to by the participants. Perhaps the two most notable such ground rules were (1) the Space Launch System (SLS) and Orion would be available during the time frame considered by the participants and (2) the International Space Station (ISS) would remain the early linchpin in preparing for Mars exploration over the coming decade

  5. Robotic Exploration of Moon and Mars: Thematic Education Approach

    Science.gov (United States)

    Allen, J S.; Tobola, K. W.; Lowes, L. L.; Betrue, R.

    2008-01-01

    Safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond is a major NASA goal. Robotic exploration of the Moon and Mars will help pave the way for an expanded human presence in our solar system. To help share the robotic exploration role in the Vision for Space Exploration with classrooms, informal education groups, and the public, our team researched and consolidated the thematic story components and associated education activities into a useful education materials set for educators. We developed the set of materials for a workshop combining NASA Science Mission Directorate and Exploration Systems Mission Directorate engineering, science, and technology to train informal educators on education activities that support the robotic exploration themes. A major focus is on the use of robotic spacecraft and instruments to explore and prepare for the human exploration of the Moon and Mars.

  6. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  7. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  8. The ballistic Mars hopper: An alternative Mars mobility concept

    OpenAIRE

    1987-01-01

    The ballistic Mars hopper is proposed as an alternative mobility concept for unmanned exploration of the martian surface. In the ballistic Mars hopper concept, oxygen and carbon monoxide produced from the martian atmosphere are used as propellants in a rocket propulsion system for an unmanned vehicle on suborbital trajectories between landing sights separated by distances of up to 1000 km. This mobility concept is seen as uniquely capable of allowing both intensive and extensive exploration o...

  9. The man and the universe

    Science.gov (United States)

    Kolodziejska, Magdalena

    2016-04-01

    The universe has always aroused people's curiosity. It fascinates and at the same time scares in its vastness. Encourages us to reflect of the meaning of human life. This begs the questions: whether there is a life beyond Earth? Whether is it possible that the man is alone in such a large space? These questions still remain unanswered, and topics concerning "the cosmos" constantly evoke many emotions. It is especially fascinating for the youngest students. Quite often, preschoolers can flawlessly name the planets according to their order of appearance in relation to the sun. They are happy to take the fun inspired by journeys into space. Teaching through action is extremely important for the development of the child-man* (Piaget, 2006). The thinking originates primarily from the action. Therefore, students should undertake independent research activities, perform experiments and conduct observations and thus raise questions about the world, looking for meanings and solutions. Adults (a teacher, a person with a passion) are to be the support in the search for knowledge, its processing and cleaning. Its role is to ensure a proper development of environment that is conducive to research activity. The answer to these requirements was to create in the oldest technical school in Poland (Railway Technical College, now Technical College No. 7) the astronomical observatory, which can be used by pupils of Warsaw's kindergartens and schools. There are organized activities for children and youth in this school, as well as trainings for teachers. Younger students during such an interdisciplinary courses are, among others, the opportunity to get acquainted with the construction of the telescope, they can build their own rockets and organize their racing or create your own star constellations. Older students as a result of observations and experiments may confirm or refute the hypothesis that the universe is within each of us. The classes are enriched using applications on

  10. Marihuana in Man: Three Years Later

    Science.gov (United States)

    Hollister, Leo E.

    1971-01-01

    Reviews three years of research on the effects of marihuana in man. Previously known clinical mental and physical effects have been confirmed. Causes and mechanisms of these effects generally remain undetermined in man and animals. Social implications and long term effects require additional study, although usage appears detrimental. (JM)

  11. Alternative Frameworks for the Study of Man.

    Science.gov (United States)

    Markova, Ivana

    1979-01-01

    Two frameworks for the study of man are discussed. The Cartesian model views man as a physical object. A dialectic framework, with the emphasis on the self, grew out of nineteenth century romanticism and reflects the theories of Hegel. Both models have had an effect on social psychology and the study of interpersonal communication. (BH)

  12. Marihuana in Man: Three Years Later

    Science.gov (United States)

    Hollister, Leo E.

    1971-01-01

    Reviews three years of research on the effects of marihuana in man. Previously known clinical mental and physical effects have been confirmed. Causes and mechanisms of these effects generally remain undetermined in man and animals. Social implications and long term effects require additional study, although usage appears detrimental. (JM)

  13. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  14. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    Science.gov (United States)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  15. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    Science.gov (United States)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  16. Human capabilities in space. [man machine interaction

    Science.gov (United States)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  17. The Pursuit of Identity in Invisible Man

    Institute of Scientific and Technical Information of China (English)

    谭佳

    2013-01-01

    Invisible Man is a representative work of black literature in America. In this novel, the writer Ralph Ellison depicts the hero’s growth experience in the white dominated society with his unique narrative techniques. As an individual in a society, the hero in this novel gradually realizes that he is an invisible man in the white dominated society and he doesn ’t have the social sta-tus which can be recognized by the white at all. To change this situation, the hero in this novel suffers many difficulties and hard-ships with an attempt to prove his existence in front of the white and the numerous black fellows and obtain his own identity as a black man which will be recognized by others. This paper tries to explore African American ’s pursuit of identity in Invisible Man by interpreting Ellison’s Invisible Man.

  18. Manned in Situ Confirmation of Lunar Ice

    Science.gov (United States)

    Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    construction of a telescope, a lunar hotel, a lunar solar power system or even harvesting of Helium-3. The preliminary design study shows the feasibility of both missions, meaning that ESA has the capability to put a man on the Moon to search for ice and bring him back safely with today's technology.

  19. An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars

    Science.gov (United States)

    McGraw, Allison M.

    2016-10-01

    Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.

  20. Mars-Learning AN Open Access Educational Database

    Science.gov (United States)

    Kolankowski, S. M.; Fox, P. A.

    2016-12-01

    Schools across America have begun focusing more and more on science and technology, giving their students greater opportunities to learn about planetary science and engineering. With the development of rovers and advanced scientific instrumentation, we are learning about Mars' geologic history on a daily basis. These discoveries are crucial to our understanding of Earth and our solar system. By bringing these findings into the classroom, students can learn key concepts about Earth and Planetary sciences while focusing on a relevant current event. However, with an influx of readily accessible information, it is difficult for educators and students to find accurate and relevant material. Mars-Learning seeks to unify these discoveries and resources. This site will provide links to educational resources, software, and blogs with a focus on Mars. Activities will be grouped by grade for the middle and high school levels. Programs and software will be labeled, open access, free, or paid to ensure users have the proper tools to get the information they need. For new educators or those new to the subject, relevant blogs and pre-made lesson plans will be available so instructors can ensure their success. The expectation of Mars-Learning is to provide stress-free access to learning materials that falls within a wide range of curriculum. By providing a thorough and encompassing site, Mars-Learning hopes to further our understanding of the Red Planet and equip students with the knowledge and passion to continue this research.

  1. Consideration for solar system exploration - A system to Mars. [biomedical, environmental, and psychological factors

    Science.gov (United States)

    Nicogossian, Arnauld E.; Garshnek, Victoria

    1989-01-01

    Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.

  2. Man Bites Python, Escapes Death

    Institute of Scientific and Technical Information of China (English)

    王淀楼

    2001-01-01

    自古只有蛇咬人,而南非的这位57岁的Lucas Sibanda却演绎了一场“人咬蛇”的“活剧”,他的利嘴钢牙竟然让一条巨蟒逃之夭夭,从而拾回自己一条老命。文章虽然很短,却写得文采斐然。标题出现了Python(巨蟒),而在文章里,作者却分别换用monster和reptile的表达,以求遣词之新,这在英语中称为Elegant Variation(求雅换词),以下三句中的动词你是否觉得用得也很精彩:1/A South African man bit his way to freedom. 2/I froze for almost 10 seconds. 3/Sibanda sank his teeth into…】

  3. Microrecanalization after vasectomy in man.

    Science.gov (United States)

    Freund, M J; Weidmann, J E; Goldstein, M; Marmar, J; Santulli, R; Oliveira, N

    1989-01-01

    Previously spermatozoa in the semen of vasectomized men were reported in 62 of 63 specimens from 24 men 2 to 31 years postvasectomy (Freund and Couture, 1982). A morphologic basis and term, "microrecanalization," was proposed for this observation. Serial sections (5 mu at 200-mu intervals) of 40 specimens removed at vasovasostomy from 20 men (2 to 14 years postvasectomy) were examined and microcanals (small epithelial-lined channels) were demonstrated in 27 specimens from 18 men. In nine of the 27 specimens, spermatozoa or sperm heads were found within the microcanals. Microcanals occurred in smooth muscle, connective tissue and scar tissue, in each segment, testicular, central and abdominal, in the presence or absence of the vas deferens. Microcanal continuity was traced for 200 to 1140 microns by computerized image analysis. Microrecanalization is characterized by the absence of inflammation or sperm extravasation and is histologically distinct from vasitis nodes or sperm granuloma. Microrecanalization provides morphologic and physiologic bases for the protection of the testis and maintenance of spermatogenesis in man after vasectomy.

  4. 2031, an edaphological Mars odyssey

    Science.gov (United States)

    Barrón, Vidal

    2016-04-01

    NASA is projecting to send humans to Mars in the 2030s. In the PICO session we will make a 4D experience, a journey in space and time. Wéll connect with a meeting in the future mission "Edaphos one" travelling to Mars in 2031. In that meeting, an international scientific team with one geophysicist, one mineralogist and two agronomist will review the state of the art of the geo-edaphological knowledge of the martian surface, based on the main Mars missions using orbiters (Mariner), landers (Viking) and rovers (Pathfinder, Spirit-Opportunity, Curiosity). A special attention will be devoted to the mineralogy of the iron oxides, as important aquamarkers. Finally, they discuss about the biological, physical and chemical limitations for plants growth on Mars. You can see the trailer of the presentation in this link: https://www.youtube.com/watch?v=yRS0tPNpvFU

  5. BUILDING ON THE MARS PLANET

    National Research Council Canada - National Science Library

    Valeriy Pershakov; Tatyana Petrova

    2012-01-01

    The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources...

  6. Properties of cryobrines on Mars

    DEFF Research Database (Denmark)

    Möhlmann, D.; Thomsen, Kaj

    2011-01-01

    Brines, i.e. aqueous salty solutions, increasingly play a role in a better understanding of physics and chemistry (and eventually also putative biology) of the upper surface of Mars. Results of physico-chemical modeling and experimentally determined data to characterize properties of cryobrines...... of potential interest with respect to Mars are described. Eutectic diagrams, the related numerical eutectic values of composition and temperature, the water activity of Mars-relevant brines of sulfates, chlorides, perchlorides and carbonates, including related deliquescence relative humidity, are parameters...... and properties, which are described here in some detail. The results characterize conditions for liquid low-temperature brines ("cryobrines") to evolve and to exist, at least temporarily, on present Mars. (C) 2010 Elsevier Inc. All rights reserved....

  7. Mars Regolith Water Extractor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Regolith Water Extractor (MRWE) is a system for acquiring water from the Martian soil. In the MRWE, a stream of CO2 is heated by solar energy or waste heat...

  8. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  9. Mars Exploration Science in 2050

    Science.gov (United States)

    Ehlmann, B. L.; Johnson, S. S.; Horgan, B.; Niles, P. B.; Amador, E. S.; Archer, P. D.; Byrne, S.; Edwards, C. S.; Fraeman, A. A.; Glavin, D. P.; Glotch, T. D.; Hardgrove, C.; Hayne, P. O.; Kite, E. S.; Lanza, N. L.; Lapotre, M. G. A.; Michalski, J.; Rice, M.; Rogers, A. D.

    2017-02-01

    We describe an approach to Mars exploration in 2050 and the decades leading in that couples fundamental science on the workings of planets and the search for life with collection of information on resources and hazards essential for human exploration.

  10. MARVY: Mars Velocity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The successful landing of the large Mars rover Curiosity on August 5, 2012 outlined the increasing complexity of safely landing large rovers on the planet. A precise...

  11. Outstanding problems in Mars aeronomy

    Science.gov (United States)

    Luhmann, J. G.

    1995-01-01

    Although the Phobos-2 spacecraft recently obtained important results relevant to some of the major remaining questions in Mars aeronomy, much remains to be done. In particular, not since the Viking Landers have we made in-situ measurements of aeronomical quantities such as atmospheric and ionospheric densities and temperatures below 400 km altitude. We have never made magnetic field measurements at these altitudes. Without such measurements we cannot unambiguously resolve arguments concerning issues such as the significance of the planetary magnetic field in the solar wind interaction, or understand the atmospheric cycle that leads to escape to space. With the trio of future orbiters including Mars Observer, Mars-94, and Planet-B we should see a veritable explosion of new knowledge, but some gaps in aeronomical science coverage will still remain. This paper briefly reviews some of the major unsolved problems in Mars aeronomy, and points out which are expected to remain outstanding after this flotilla of missions.

  12. Ice at Mars lander site

    National Research Council Canada - National Science Library

    Showstack, Randy

    2008-01-01

    Eight dice‐sized bits of ice vanished within 4 days from a trench dug on Mars by the robotic arm on NASA's Phoenix lander, confirming what scientists suspected the material was. “It must be ice...

  13. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  14. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  15. Mars Express releases Beagle 2

    Science.gov (United States)

    2003-12-01

    At 9:31 CET, the crucial sequence started to separate the Beagle 2 lander from Mars Express. As data from Mars Express confirm, the pyrotechnic device was fired to slowly release a loaded spring, which gently pushed Beagle 2 away from the mother spacecraft. An image from the onboard visual monitoring camera (VMC) showing the lander drifting away is expected to be available later today. Since the Beagle 2 lander has no propulsion system of its own, it had to be put on the correct course for its descent before it was released. For this reason, on 16 December the trajectory of the whole Mars Express spacecraft had to be adjusted to ensure that Beagle 2 would be on course to enter the atmosphere of Mars. This manoeuvre, called "retargeting'' was critical: if the entry angle is too steep, the lander could overheat and burn up in the atmosphere; if the angle is too shallow, the lander might skim like a pebble on the surface of a lake and miss its target. This fine targeting and today's release were crucial manoeuvres for which ESA's Ground Control Team at ESOC (European Space Operations Centre) had trained over the past several months. The next major milestone for Mars Express will be the manoeuvre to enter into orbit around Mars. This will happen at 3:52 CET on Christmas morning, when Beagle 2 is expected to land on the surface of Mars. "Good teamwork by everybody - ESA, industry and the Beagle 2 team - has got one more critical step accomplished. Mars, here comes Europe!" said David Southwood, ESA Director of Science.

  16. Europe's eye on Mars: first spectacular results from Mars Express

    Science.gov (United States)

    2004-01-01

    Although the seven scientific instruments on board Mars Express are still undergoing a thorough calibration phase, they have already started collecting amazing results. The first high-resolution images and spectra of Mars have already been acquired. This first spectacular stereoscopic colour picture was taken on 14 January 2004 by ESA’s Mars Express satellite from 275 km above the surface of Mars by the High Resolution Stereo Camera (HRSC). This image is available on the ESA portal at: http://mars.esa.int The picture shows a portion of a 1700 km long and 65 km wide swath which was taken in south-north direction across the Grand Canyon of Mars (Valles Marineris). It is the first image of this size that shows the surface of Mars in high resolution (12 metres per pixel), in colour, and in 3D. The total area of the image on the Martian surface (top left corner) corresponds to 120 000 km². The lower part of the picture shows the same region in perspective view as if seen from a low-flying aircraft. This perspective view was generated on a computer from the original image data. One looks at a landscape which has been predominantly shaped by the erosional action of water. Millions of cubic kilometres of rock have been removed, and the surface features seen now such as mountain ranges, valleys, and mesas, have been formed. The HRSC is just one of the instruments to have collected exciting data. To learn more about the very promising beginning to ESA's scientific exploration of Mars, media representatives are invited to attend a press conference on Friday, 23 January 2004, at 11:00 CET at ESA’s Space Operations Centre in Darmstadt, Germany, and in video-conference with the other ESA centres. There, under the auspices of ESA Council Chair at Ministerial level, Germany's Minister for Education and Research, Mrs Edelgard Bulmahn, ESA's Director of the Scientific Programme, Prof. David Southwood and the Principal Investigators of all instruments on board Mars Express will

  17. Modeling atmospheric drag effect on Mangalyaan Mars orbiter during geocentric, heliocentric and areocentric trajectories

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2016-07-01

    Interplanetary missions are susceptible to gravitational and non-gravitational perturbing forces at every trajectory phase, assuming that the man made rockets and thrusters work as expected. These forces are mainly due to planetary and solar-forcing-induced perturbations during geocentric, heliocentric and Martian trajectories, and before orbit insertion. In this study, we analyzed perturbing forces and their possible effects on interplanetary and/or Mars mission satellites, before Orbit Insertion. We also model the significance of atmospheric drag force on Mangalyaan Mars orbiter mission, as a function of appropriate space environmental parameters during its 28 days in Earth's orbit (around and during perigee passage), 300 days of heliocentric and 100 days of Martian trajectory based on Earth-Mars atmosphere density ratio.

  18. On the identity of Dorylaimus robustus de Man

    NARCIS (Netherlands)

    Loof, P.A.A.

    1961-01-01

    The taxonomic position of Dorylaimus robustus de Man, 1876 is fully discussed. It is concluded that D. robustus de Man, 1876 is a synonym of D. stagnalis Dujardin, 1845; also included in this synonymy are D. robustus apud de Man, 1880, apud de Man, 1884 (male, partim) and Labronema robustum (de Man,

  19. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  20. Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    Science.gov (United States)

    Langhoff, Stephanie R. (Editor)

    2008-01-01

    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.