WorldWideScience

Sample records for technologies indium bumps

  1. Process for Patterning Indium for Bump Bonding

    Science.gov (United States)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  2. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    Science.gov (United States)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  3. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  4. Indium bump array fabrication on small CMOS circuit for flip-chip bonding

    Institute of Scientific and Technical Information of China (English)

    Huang Yuyang; Zhang Yuxiang; Yin Zhizhen; Cui Guoxin; Liu H C; Bian Lifeng; Yang Hui; Zhang Yaohui

    2011-01-01

    We demonstrate a novel method for indium bump fabrication on a small CMOS circuit chip that is to be flip-chip bonded with a GaAs/AlGaAs multiple quantum well spatial light modulator.A chip holder with a via hole is used to coat the photoresist for indium bump lift-off.The 1000 μm-wide photoresist edge bead around the circuit chip can be reduced to less than 500μm,which ensures the integrity of the indium bump array.64 × 64 indium arrays with 20 μm-high,30 μm-diameter bumps are successfully formed on a 5 × 6.5 mm2 CMOS chip.

  5. Apparatus for Precise Indium-Bump Bonding of Microchips

    Science.gov (United States)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  6. Indium-bump-free antimonide superlattice membrane detectors on a silicon substrates

    Science.gov (United States)

    Zamiri, M.; Klein, B.; Schuler, T.; Myers, S.; Cavallo, F.; Krishna, S.

    2016-05-01

    We present an approach to realize antimonide based superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN based superlattice detectors are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxiallift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  7. Flip chip bumping technology-Status and update

    Energy Technology Data Exchange (ETDEWEB)

    Juergen Wolf, M. [Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin (Germany)]. E-mail: juergen.Wolf@izm.fraunhofer.de; Engelmann, Gunter [Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Dietrich, Lothar [Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Reichl, Herbert [Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin (Germany)

    2006-09-01

    Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.

  8. Bump Bonding Using Metal-Coated Carbon Nanotubes

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  9. Improved Switching Characteristics of Fast Power MOSFETs Applying Solder Bump Technology

    Directory of Open Access Journals (Sweden)

    Sibylle Dieckerhoff

    2008-01-01

    Full Text Available The impact of a reduced package stray inductance on the switching performance of fast power MOSFETs is discussed applying advanced 3D packaging technologies. Starting from an overview over new packaging approaches, a solder bump technology using a flexible PI substrate is exemplarily chosen for the evaluation. Measurement techniques to determine the stray inductance are discussed and compared with a numerical solution based on the PEEC method. Experimental results show the improvement of the voltage utilization while there is only a slight impact on total switching losses.

  10. Speed Bumps on the Road to Sustainability - Energy Technology and Geopolitics

    Energy Technology Data Exchange (ETDEWEB)

    Mandil, C.; Taylor, P.; Van Der Linde, C.; Buchner, B.; Ramsay, W.C.; Lipponen, J.; Meier, A.; Berkeley, L.; Di Paola-Galloni, J.L.; Jaureguy-Naudin, M.; Charpin, J.M.; Segar, Ch.; Zaleski, P.; Lesourne, J.; Pires Santos, A.; Menard, D.; Neuhoff, K.; Oettinger, G.

    2011-07-01

    This document gathers the slides of the available presentations given at the 2011 issue of the annual Conference of the Ifri (French Institute of International Relations) Energy Program: 1 - An Energy revolution under way (Peter Taylor, Head of the Energy Technology Division, International Energy Agency); 2 - A look back at Cancun: 'top down' versus 'bottom up' (Barbara Buchner, Director of the CPI - Climate Policy Initiative - Venice office; 3 - CCS: Still in the Starting Blocks? (Juho Lipponen, Head of CCS Unit, International Energy Agency); 4 - Energy Efficiency: Does Anyone Care? (Alan Meier, Senior Scientist and Principal Investigator, Lawrence Berkeley National Laboratory); 5 - The Transport Sector: Anything Goes? (Jean-Luc di Paola-Galloni, Corporate Vice-President, Sustainable Development and External Affairs, Valeo Group); 6 - The Mediterranean Ring: Power or Politics? (Jean-Michel Charpin, Inspecteur General des Finances); 7 - Iran gas and Iraq oil (Chris Segar, Regional Analyst/Middle East and North Africa, International Energy Agency); 8 - Nuclear Power: New Players, New Game, New Rules (Pierre Zaleski, General delegate for the Center of Geopolitics of Energy and Raw Materials, Universite Paris-Dauphine); 9 - The Grid: a Generic Speed Bump (Antonio Pires Santos, Energy and Utilities Industry Leader, Southwest Europe, IBM); 10 - Intellectual Property Rights/Technology transfer (Dominique Menard, Partner, Hogan Lovells (Paris) LLP); 11 - Energy Markets: Conducive to Sustainability (Karsten Neuhoff, Director of the CPI - Climate Policy Initiative - Berlin office, German Institute for Economic Research, DIW Berlin)

  11. Under bump metallurgy study for Pb-free bumping

    Science.gov (United States)

    Jang, Se-Young; Wolf, Juergen; Paik, Kyung-Wook

    2002-05-01

    The demand for Pb-free and high-density interconnection technology is rapidly growing. The electroplating-bumping method is a good approach to meet finepitch requirements, especially for high-volume production, because to volume change of patterned-solder bumps during reflow is not so large compared with the stencil-printing method. This paper proposes a Sn/3.5 Ag Pb-free electroplating-bumping process for high-density Pb-free interconnects. It was found that a plated Sn/Ag bump becomes Sn/Ag/Cu by reflowing when Cu containing under bump metallurgy (UBM) is used. Another important issue for future flip-chip interconnects is to optimize the UBM system for high-density and Pb-free solder bumps. In this work, four UBM systems, sputtered TiW 0.2 µm/Cu 0.3 µm/electroplated Cu 5 µm, sputtered Cr 0.15 µm/Cr-Cu 0.3 µm/Cu 0.8 µm, sputtered NiV 0.2 µm/Cu 0.8 µm, and sputtered TiW 0.2 µm/NiV 0.8 µm, were investigated for interfacial reaction with electroplated Pb/63Sn and Sn/3.5Ag solder bumps. Both Cu-Sn and Ni-Sn intermetallic compound (IMC) growth were observed to spall-off from the UBM/solder interface when the solder-wettable layer is consumed during a liquid-state “reflow” process. This IMC-spalling mechanism differed depending on the barrier layer material.

  12. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    Science.gov (United States)

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  13. A Semiconductor Under Insulator Technology in Indium Phosphide

    CERN Document Server

    Mnaymneh, Khaled; Frédérick, Simon; Lapointe, Jean; Poole, Philip J; Williams, Robin L

    2012-01-01

    This Letter introduces a Semiconductor-Under-Insulator (SUI) technology in InP for designing strip waveguides that interface InP photonic crystal membrane structures. Strip waveguides in InP-SUI are supported under an atomic layer deposited insulator layer in contrast to strip waveguides in silicon supported on insulator. We show a substantial improvement in optical transmission when using InP-SUI strip waveguides interfaced with localized photonic crystal membrane structures when compared with extended photonic crystal waveguide membranes. Furthermore, SUI makes available various fiber-coupling techniques used in SOI, such as sub-micron coupling, for planar membrane III-V systems.

  14. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.

    Science.gov (United States)

    Ma, En; Xu, Zhenming

    2013-12-15

    In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly.

  15. Development of X-ray microcalorimeters based on SOI technology and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, V. [CEA, Irfu, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France)], E-mail: virginie.szeflinski@cea.fr; Aliane, A.; De Moro, F. [CEA, Irfu, LETI-MINATEC, F-38053 Grenoble (France); Pigot, C.; Sauvageot, J-L. [CEA, Irfu, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Agnese, P.; Gasse, A.; Ribot, H. [CEA, Irfu, LETI-MINATEC, F-38053 Grenoble (France); Gremion, E.; De La Broise, X.; Navick, X.F. [CEA, Irfu, Service d' electronique, detecteur et informatique, F-91191 Gif-sur-Yvette (France)

    2009-10-21

    We are developing an X-ray spectro-imaging detector at cryogenic temperature (<100 mK) for next space generation missions, using silicon technology. Each pixel of this array detector is made of a tantalum absorber bonded by indium bump hybridization, to an implanted and high-temperature diffused silicon thermistor. The thermo-mechanical link, provided by the indium bump hybridization, is being improved in terms of thermal capacitance. We present the state of development and experimental results on this new generation of X-ray microcalorimeters.

  16. Critical Cleaning Requirements for Back End Wafer Bumping Processes

    Energy Technology Data Exchange (ETDEWEB)

    Bixenman, M. [Kyzen Corporation (United States)

    2000-04-24

    As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packages in a huge device with hundreds of leads. The solution is bumps; hold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research gas focused on enhanced cleaning solutions that meet this critical cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein. (author). 9 refs.

  17. The comprehensive treatment technology of vehicle bumping at bridge head under the bad geological condition%不良地质条件下桥梁桥头跳车的综合处治技术

    Institute of Scientific and Technical Information of China (English)

    常杰

    2012-01-01

    Combining with the specific example, this paper analyzed the root causes of bumping at bridge head phenomenon. Through the use of cement mixed pile foundation, construction of permeable materials, compaction, grouting, setting of bridge head slab and other comprehensive treatment technology to solve the problem of bumping at bridge head, had good using effect, was worth popularizing.%结合具体实例,分析了产生桥头跳车现象的根本原因,通过采用水泥搅拌桩地基、填筑透水性材料、强夯、注浆、设置桥头搭板等综合处治技术解决了桥头跳车难题,使用效果较好,值得推广。

  18. Condensation on Slippery Asymmetric Bumps

    CERN Document Server

    Park, Kyoo-Chul; He, Neil; Aizenberg, Joanna

    2015-01-01

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared...

  19. Extraction of indium from indium-zinc concentrates

    Institute of Scientific and Technical Information of China (English)

    LI Shi-qing; TANG Mo-tang; HE Jing; YANG Sheng-hai; TANG Chao-bo; CHEN Yong-ming

    2006-01-01

    A new process for extracting indium from indium-zinc concentrates was proposed. The process can directly extract indium from removed copper solution by D2EHPA, and cancel the stage of removing iron in the traditional process because of using iron and part of zinc in the In-Zn concentrates for direct preparing high quality Mn-Zn soft magnetic ferrites. The technologies in the processes, such as leaching the neutral leached residues with high concentrated acid at high temperature, reduction ferric and removing copper, and extracting indium, were investigated. The results show that total recovery ratio of indium is increased from less than 70% in the traditional process to more than 95%. This process has the advantages of largely simplifying the procedure of indium extraction, zero draining off of iron residue and zero emitting of SO2. So this is a clean production process.

  20. Low-cost bump bonding activities at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Vaehaenen, S; Tick, T; Campbell, M, E-mail: Sami.vaehaenen@cern.c [CERN, PH-ESE 1211 Geneva 23 (Switzerland)

    2010-11-15

    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 {mu}m / 50 {mu}m. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch no. 1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch no. 2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1

  1. Indium Sorption to Iron Oxides

    Science.gov (United States)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  2. 华亭煤矿冲击地压监测及防治技术%Monitoring and Measuring of Mine Pressure Bumping and Prevention and Control Technology in Huating Mine

    Institute of Scientific and Technical Information of China (English)

    张玉亮; 徐元强; 李俊; 李守峰

    2012-01-01

    为有效防治华亭煤矿冲击地压,系统分析了矿井冲击地压发生的原因,建立了以微震法为主,声发射、电磁辐射及钻屑检测为辅的冲击地压综合监测和预警管理体系。通过优化工作面布置、煤柱宽度、采放比、推进速度,改善了开采技术条件。采用煤层注水、顶底板深孔爆破、煤体卸压爆破及大直径钻孔等措施,实施主动解危。同时加强巷道支护和个体防护等强化防范措施,使冲击地压对矿井生产的影响时间由每年36 d减少到6 d,保证矿井安全生产。%In order effectively prevent and control the mine pressure bumping occurred in Huating Mine, the cause of the mine pressure bumping occurred was systematically analyzed and a mine pressure comprehensive monitoring and measuring and early warning manage-ment system was established mainly with micro seismic method and secondary with the acoustic emission, electromagnetic radiation and drilling cuttings detection. With the optimization of the coal mining face layout, coal pillar width, mining and caving ratio and the coal mining face advancing rate, the coal mining technology condition was improved. With the application of the seam water injection, the deep borehole blasting in the roof and floor, pressure releasing blasting in seam, the large diameter borehole and other measures, the mine pres- sure bumping danger could be actively released. Meanwhile the mine roadway support was enhanced and the personnel protection and other enhanced prevention measures conducted, the time of the mine pressure bumping affected to the mine production was reduced from 36 days to 6 days per year. The mine safety production could be ensured.

  3. Recent advances in understanding the reminiscence bump

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Rubin, David C.

    2016-01-01

    the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and temporal location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories...... stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved....

  4. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  5. Haglund syndrome with pump bump.

    Science.gov (United States)

    Kucuksen, Sami; Karahan, Ali Yavuz; Erol, Kemal

    2012-01-01

    Haglund's syndrome, which is an inflammation of the bursa and a bony enlargement on the back of the heel that most often leads to painful bursitis, is a rare cause of retrocalcaneal pain. The clinical diagnosis is often confusing as the clinical picture may mimic other causes of hindfoot pain such as isolated retrocalcaneal bursitis or hindfoot involvement from more systemic disorders such as seronegative spondyloarthropathies (Reiter's syndrome, ankylosing spondylitis) or rheumatoid arthritis. This report is of a 60-year-old woman with a painful swelling of the right heel, who was diagnosed with Haglund syndrome. The characteristic clinical photograph (showing the prominent 'pump bump'), radiographical and magnetic resonance imaging features are presented.

  6. Condensation on slippery asymmetric bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  7. High power diode laser array development using completely indium free packaging technology with narrow spectrum

    Science.gov (United States)

    Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng

    2016-03-01

    The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.

  8. Wandering bumps in stochastic neural fields

    CERN Document Server

    Kilpatrick, Zachary P

    2012-01-01

    We study the effects of noise on stationary pulse solutions (bumps) in spatially extended neural fields. The dynamics of a neural field is described by an integrodifferential equation whose integral term characterizes synaptic interactions between neurons in different spatial locations of the network. Translationally symmetric neural fields support a continuum of stationary bump solutions, which may be centered at any spatial location. Random fluctuations are introduced by modeling the system as a spatially extended Langevin equation whose noise term we take to be multiplicative or additive. For nonzero noise, these bumps are shown to wander about the domain in a purely diffusive way. We can approximate the effective diffusion coefficient using a small noise expansion. Upon breaking the (continuous) translation symmetry of the system using a spatially heterogeneous inputs or synapses, bumps in the stochastic neural field can become temporarily pinned to a finite number of locations in the network. In the case...

  9. Recent advances in understanding the reminiscence bump

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Rubin, David C.

    2016-01-01

    The reminiscence bump is the increased proportion of autobiographical memories from youth and early adulthood observed in adults over 40. It is one of the most robust findings in autobiographical-memory research. Although described as a single period from which there are more memories, a recent...... the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and temporal location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories...... stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved....

  10. Fluxless Bonding Processes Using Silver-Indium System for High Temperature Electronics and Silver Flip-Chip Interconnect Technology

    OpenAIRE

    Wu, Yuan-Yun

    2015-01-01

    In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. Due to large CTE mismatch, high quality joints are important to ma...

  11. Developmental toxicity of indium: embryotoxicity and teratogenicity in experimental animals.

    Science.gov (United States)

    Nakajima, Mikio; Usami, Makoto; Nakazawa, Ken; Arishima, Kazuyoshi; Yamamoto, Masako

    2008-12-01

    Indium, a precious metal classified in group 13 (IIIB) in the periodic table, has been used increasingly in the semiconductor industry. Because indium is a rare metal, technology for indium recycling from transparent conducting films for liquid crystal displays is desired, and its safety evaluation is becoming increasingly necessary. The developmental toxicity of indium in experimental animals was summarized. The intravenous or oral administration of indium to pregnant animals causes growth inhibition and the death of embryos in hamsters, rats, and mice. The intravenous administration of indium to pregnant animals causes embryonic or fetal malformation, mainly involving digit and tail deformities, in hamsters and rats. The oral administration of indium also induces fetal malformation in rats and rabbits, but requires higher doses. No teratogenicity has been observed in mice. Caudal hypoplasia, probably due to excessive cell loss by increased apoptosis in the tailbud, in the early postimplantation stage was considered to account for indium-induced tail malformation as a possible pathogenetic mechanism. Findings from in vitro experiments indicated that the embryotoxicity of indium could have direct effects on the conceptuses. Toxicokinetic studies showed that the embryonic exposure concentration was more critical than the exposure time regarding the embryotoxicity of indium. It is considered from these findings that the risk of the developmental toxicity of indium in humans is low, unless an accidentally high level of exposure or unknown toxic interaction occurs because of possible human exposure routes and levels (i.e. oral, very low-level exposure).

  12. Bump bonding of pixel systems

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, M. E-mail: manuel.lozano@cnm.es; Cabruja, E.; Collado, A.; Santander, J.; Ullan, M

    2001-11-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  13. Bump bonding of pixel systems

    CERN Document Server

    Lozano, M; Collado, A; Santander, J; Ullán, M

    2001-01-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  14. Say No to Speed Bumps!

    Science.gov (United States)

    Brannon, Sian

    2010-01-01

    No matter how cutting edge (and nicely funded) one's library is, there is always something cooler and more efficient on the horizon. Granted, not all new technology may be necessary in the library. But chances are one is going to want to get something--RFID (radio frequency identification), text reference, downloadable content, gaming,…

  15. Say No to Speed Bumps!

    Science.gov (United States)

    Brannon, Sian

    2010-01-01

    No matter how cutting edge (and nicely funded) one's library is, there is always something cooler and more efficient on the horizon. Granted, not all new technology may be necessary in the library. But chances are one is going to want to get something--RFID (radio frequency identification), text reference, downloadable content, gaming,…

  16. The reminiscence bump in autobiographical memory and for public events

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised......The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories...... of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced...

  17. The reminiscence bump in autobiographical memory and for public events

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories...... of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced...... for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised...

  18. Quasars and the Big Blue Bump

    OpenAIRE

    Shang, Zhaohui; Brotherton, Michael S.; Green, Richard F.; Kriss, Gerard A.; Scott, Jennifer; Quijano, Jessica Kim; Blaes, Omer; Hubeny, Ivan; Hutchings, John; Kaiser, Mary Elizabeth; Koratkar, Anuradha; Oegerle, William; Zheng, Wei

    2004-01-01

    We investigate the ultraviolet-to-optical spectral energy distributions (SEDs) of 17 active galactic nuclei (AGNs) using quasi-simultaneous spectrophotometry spanning 900-9000 Angstrom (rest frame). We employ data from the Far Ultraviolet Spectroscopic Explorer (FUSE), the Hubble Space Telescope (HST), and the 2.1-meter telescope at Kitt Peak National Observatory (KPNO). Taking advantage of the short-wavelength coverage, we are able to study the so-called "big blue bump," the region where the...

  19. Subdiffusive dynamics of bump attractors: mechanisms and functional roles.

    Science.gov (United States)

    Qi, Yang; Breakspear, Michael; Gong, Pulin

    2015-02-01

    Bump attractors are localized activity patterns that can self-sustain after stimulus presentation, and they are regarded as the neural substrate for a host of perceptual and cognitive processes. One of the characteristic features of bump attractors is that they are neutrally stable, so that noisy inputs cause them to drift away from their initial locations, severely impairing the accuracy of bump location-dependent neural coding. Previous modeling studies of such noise-induced drifting activity of bump attractors have focused on normal diffusive dynamics, often with an assumption that noisy inputs are uncorrelated. Here we show that long-range temporal correlations and spatial correlations in neural inputs generated by multiple interacting bumps cause them to drift in an anomalous subdiffusive way. This mechanism for generating subdiffusive dynamics of bump attractors is further analyzed based on a generalized Langevin equation. We demonstrate that subdiffusive dynamics can significantly improve the coding accuracy of bump attractors, since the variance of the bump displacement increases sublinearly over time and is much smaller than that of normal diffusion. Furthermore, we reanalyze existing psychophysical data concerning the spread of recalled cue position in spatial working memory tasks and show that its variance increases sublinearly with time, consistent with subdiffusive dynamics of bump attractors. Based on the probability density function of bump position, we also show that the subdiffusive dynamics result in a long-tailed decay of firing rate, greatly extending the duration of persistent activity.

  20. Load Express Analysis of the Car Running Against the Bumps in the Road

    Directory of Open Access Journals (Sweden)

    Yu. N. Baryshnikov

    2014-01-01

    Full Text Available In many fields of technology when calculating the strength there are options available to choose design cases and loads in compliance with different operating conditions. In the automotive industry there are no such standards yet. This is due to both a variety of operating conditions, and a complexity of calculating the actual loads.K. Ert`s article is considered to be a pioneering work in this regard. There the author makes a hypothesis of the linear dependence of torque acting on the car, and of the height of bumps in the road. All formulas were obtained for vehicles with the leaf spring suspensions. An appearing entire class of new cars made it necessary to generalize the experience.This paper proposes an engineering method for calculating the vertical loads acting on the car when bumping in the road. We derive general formulas to calculate the height of the road bumps (irregularities on the way of a running car with various types of suspension. A dump truck BELAZ with various types nonlinear of suspension has been used to test the obtained formulas. The results analysis has shown that under equal conditions a car with dependent rear suspension will bear the lower loads than its prototype with a different type of suspension.The paper presents the relationships between the hights of bumps, which cause an equivalent load when different wheels bump against them. It shows a relation between the loads acting on the car when bumping against the same road irregularity by different wheels. The practical significance of the equations is the possibility to calculate loads in various cases in the road using the one-test results. A comparative results analysis of analytical calculation of loads and numerical experiments is based on the nonlinear model of the vehicle.The proposed method is an effective tool for the rapid analysis of loads in the design and fine-tuning the car.

  1. The reminiscence bump reconsidered: Children's prospective life stories show a bump in young adulthood

    DEFF Research Database (Denmark)

    Bohn, Annette; Berntsen, Dorthe

    2011-01-01

    Abstract The reminiscence bump—the reporting of more memories from young adulthood than from other stages of life—is considered a hallmark of autobiographical memory research. The most prevalent explanations for this effect assume that events in young adulthood are favored because of the way...... showed a clear bump in young adulthood. In Study 2, children were prompted by word cues to write down events from their future lives. The events generated consisted mostly of non-life-script events, and those events did not show a bump in young adulthood. Our findings challenge prevailing explanations...

  2. \\title{Low-Cost Bump-Bonding Processes for High Energy Physics Pixel Detectors}

    CERN Document Server

    Caselle, Michele; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2015-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area at reasonable costs are required. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of the production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin ($15\\,\\rm{\\mu m}$) gold wire is presented. This technique allows producing metal bumps with diameters down to $30\\,\\rm{\\mu m}$ without using photolithography processes, which are typically required to provide suitable under bu...

  3. The Availability of Indium: The Present, Medium Term, and Long Term

    Energy Technology Data Exchange (ETDEWEB)

    Lokanc, Martin [Colorado School of Mines, Golden, CO (United States); Eggert, Roderick [Colorado School of Mines, Golden, CO (United States); Redlinger, Michael [Colorado School of Mines, Golden, CO (United States)

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  4. Design of Bump Magnet of CSR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four bumpers are required for the injection and extraction of CSR. The parameters of the bumpers are shown in table 1. Because of the steep raising and falling time and therefore the inductance of the magnet should be as small as possible, so the material of the magnet cores must be ferrite. And in order to reduce the cost of the bump magnet, the cross-section of the four ferrite cores was designed as the same, as shown in Fig.1.It is very similar to the lamination of the H-type dipole. And Fig.2 is the...

  5. ICHEP 2016: to b(ump) or not to b(ump)

    CERN Multimedia

    2016-01-01

    This week I’m in Chicago for the 38th International Conference on High Energy Physics, ICHEP 2016, hosted this year by the US particle physics community. While it became clear at the conference that the famous 750 GeV bump has flatlined, there’s been a wealth of physics from CERN and around the world.   Everyone in their heart felt that the bump would turn out to be no more than a statistical fluctuation, while secretly hoping that it would be something new. Even the designer of the ICHEP 2016 logo cleverly hid a bump with a subtle question mark in the Chicago skyline – appropriately enough in Anish Kapoor’s mysterious ‘Cloud Gate’ sculpture. That question mark has now been resolved. Kapoor’s sculpture returns to being just that, and the search for new physics goes on albeit further constrained as theorists revealed in the 400+ papers in the wake of the bump discussion. The highlight from CERN was undoubtedly the spectacular pe...

  6. Electrodeposition of indium

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S.; Ahmed, A.I.; Madkour, L.H.

    Metallic indium was deposited from aqueous solutions of indium trichloride containing also, acetate, thiocyanate, chloride, iodide, sulphate, oxalate, ethanol, acetamide and citrate of sodium or potassium. The optimum conditions are: pH 2-5, current density 2-25 mA cm/sup -2/, temperature 30/sup O/C and metal ion concentration O.2 mol l/sup -1/. Deposits have been obtained on a platinum sheet cathode. Chemical analysis reveals that the purity of the indium is better than 99%. The rate of deposition is also determined. 15 refs.

  7. NSRL Extraction Bump Control in the Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan,L.

    2008-10-01

    Due to inadequacies in the user interface of the booster orbit control system, a number of new tools were developed. The first priority was an accurate calculation of the winding currents given specific displacements at each extraction septa. Next, the physical limits of the power supplies ({+-}600 amps) needed to be taken into account. In light of this limit, a system is developed that indicates to the user what the allowed values of one bump parameter are once the other two have been specified. Finally, techniques are developed to account for the orbit behavior once power supplies are requested to exceed their {+-}600 amp limit. This includes a recalculation of bump parameters and a calculation of the amplitude of the residuals. Following this, possible areas for further development are outlined. These techniques were computationally developed in Mathematica and tested in the Methodical Accelerator Design (MAD) program before they were implemented into the control system. At the end, a description of the implementation of these techniques in a new interface is described. This includes a depiction of the appearance and functionality of the graphical user interface, a description of the input and output flow, and an outline of how each important calculation is performed.

  8. Cascading reminiscence bumps in popular music.

    Science.gov (United States)

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps.

  9. Decomposing the sales promotion bump with store data

    NARCIS (Netherlands)

    van Heerde, H.J.; Leeflang, P.S.H.; Wittink, D.R.

    2004-01-01

    Sales promotions generate substantial short-term sales increases. To determine whether the sales promotion bump is truly beneficial from a managerial perspective, we propose a system of store-level regression models that decomposes the sales promotion bump into three parts: cross-brand effects (seco

  10. Decomposing the sales promotion bump with store data

    NARCIS (Netherlands)

    van Heerde, H.J.; Leeflang, P.S.H.; Wittink, D.R.

    2004-01-01

    Sales promotions generate substantial short-term sales increases. To determine whether the sales promotion bump is truly beneficial from a managerial perspective, we propose a system of store-level regression models that decomposes the sales promotion bump into three parts: cross-brand effects

  11. Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Young; Jung, Hoon Sun; Lee, Jung Hoon; Choa, Sung-Hoon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2017-06-15

    In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

  12. Bump in the blue axion isocurvature spectrum

    Science.gov (United States)

    Chung, Daniel J. H.; Upadhye, Amol

    2017-01-01

    Blue axion isocurvature perturbations are both theoretically well motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the nonapplicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.

  13. Bump-hunting in LHC ttbar events

    CERN Document Server

    Czakon, Michal; Mitov, Alexander

    2016-01-01

    We demonstrate that a purposefully normalised NNLO top pair invariant mass differential spectrum can have very small theoretical uncertainty and, in particular, a small sensitivity to the top quark mass. Such observable can thus be a very effective bump-hunting tool for resonances decaying to top pair events during LHC Run II and beyond. To illustrate how the approach works, we concentrate on one specific example of current interest, namely, the possible 750 GeV di-gamma excess resonance Phi. Considering only theoretical uncertainties, we demonstrate that it is possible to distinguish pp -> Phi -> tt signals studied in the recent literature [Hespel, Maltoni and Vryonidou, arXiv:1606.04149] from the pure SM background with very high significance. Alternatively, in case of non-observation, a strong upper limit on the decay rate Phi -> tt can be placed.

  14. Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy.

    Science.gov (United States)

    Hulverson, Matthew A; Vinayak, Sumiti; Choi, Ryan; Schaefer, Deborah A; Castellanos-Gonzalez, Alejandro; Vidadala, Rama S R; Brooks, Carrie F; Herbert, Gillian T; Betzer, Dana P; Whitman, Grant R; Sparks, Hayley N; Arnold, Samuel L M; Rivas, Kasey L; Barrett, Lynn K; White, A Clinton; Maly, Dustin J; Riggs, Michael W; Striepen, Boris; Van Voorhis, Wesley C; Ojo, Kayode K

    2017-04-15

    Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Quasars and the Big Blue Bump

    CERN Document Server

    Shang, Z; Green, R F; Kriss, G A; Scott, J; Quijano, J K; Blaes, Omer M; Hubeny, I; Hutchings, J B; Kaiser, M E; Koratkar, A; Oegerle, W; Zheng, W; Shang, Zhaohui; Brotherton, Michael S.; Green, Richard F.; Kriss, Gerard A.; Scott, Jennifer; Quijano, Jessica Kim; Blaes, Omer; Hubeny, Ivan; Hutchings, John; Kaiser, Mary Elizabeth; Koratkar, Anuradha; Oegerle, William; Zheng, Wei

    2004-01-01

    We investigate the ultraviolet-to-optical spectral energy distributions (SEDs) of 17 active galactic nuclei (AGNs) using quasi-simultaneous spectrophotometry spanning 900-9000 Angstrom (rest frame). We employ data from the Far Ultraviolet Spectroscopic Explorer (FUSE), the Hubble Space Telescope (HST), and the 2.1-meter telescope at Kitt Peak National Observatory (KPNO). Taking advantage of the short-wavelength coverage, we are able to study the so-called ``big blue bump,'' the region where the energy output peaks, in detail. Most objects exhibit a spectral break around 1100 Angstrom Although this result is formally associated with large uncertainty for some objects, there is strong evidence in the data that the far-ultraviolet spectral region is below the extrapolation of the near-ultraviolet-optical slope, indicating a spectral break around 1100 Angstrom We compare the behavior of our sample to those of non-LTE thin-disk models covering a range in black-hole mass, Eddington ratio, disk inclination, and othe...

  16. Creep characterization of solder bumps using nanoindentation

    Science.gov (United States)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2017-08-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  17. Numerical analysis of bump foil bearings without nominal radial clearance

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; XU Huai-jin; ZHANG Guang-hui

    2008-01-01

    Bump foil bearings without nominal radial clearance were analyzed. An air film thickness model and a bearing theoretical analytical model were developed accounting for air compressibility and foil deformation. To analyze hydrodynamic characteristics of bump foil beatings with different operating eccentricities, the air film thickness equation and Reynolds equation were coupled through pressure and solved by Newton-Raphson Method(NRM) and Finite Difference Method (FDM). The characteristics of an bump foil bearing model were dis-cussed including load carrying capacity, film thickness and pressure distributions. The results of simulation show that bump foil beating without nominal radial clearance can provide better stability and greater load capaci-ty. This numerical analytical method also reveals a good convergence in numerical calculation.

  18. Do You Hear a Bump or a Hole?

    DEFF Research Database (Denmark)

    Serafin, Stefania; Turchet, Luca; Nordahl, Rolf

    2010-01-01

    In this paper, we present a preliminary experiment whose goal is to assess the role of temporal aspects in sonically simulating the act of walking on a bump or a hole. In particular, we investigate whether the timing between heel and toe and the timing between footsteps affects the perception of ...... of walking on unflat surfaces. Results show that it is possible to simulate a bump or a hole by only using temporal information in the auditory modality....

  19. Quality of scintillating fibres after hot bump shrinking

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Joram, Christian

    2016-01-01

    Shrinking the diameter of fibre bumps by a hot drawing tool requires to run the fibre through the hot tool over its full length, bearing the risk of a degradation of the fibre performance. In this study we demonstrated that the hot bump shrinking method has no visible effect on the optical attenuation length, the light yield following ionising radiation, the diameter, the mechanical stability and the integrity of the cladding. For the latter, even a small positive impact was observed.

  20. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  1. Recovering indium with sulfating roasting from copper-smelting ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A technology for recovering indium from Jinchuan copper-smelting ash was developed. Indium in the ash was first enriched to the leaching-slag in leaching process, and then recovered by sulfating roasting. The method included mixing the leaching-slag with sulfuric acid, making them into particles, roasting the mixture, and then leaching the calcine with hot water. Above 90% of indium in calcine could be dissolved into the leaching solution. The optimized conditions were determined as follows: the mass ratio of sulfuric acid to leaching slag was 0.1, the roasting time was about 1 to 1.5 h in the temperature range of 200-250 ℃, and the calcine was leached for 1 h with 5:1 of liquid/solid ratio at 60℃. Over 99% of indium in leaching solution was finally enriched by Zn substitution or sulfide precipitation.

  2. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  3. Analysis of mechanism of shock bump due to roof fall

    Institute of Scientific and Technical Information of China (English)

    GU Xin-jian; LI Jian-xiong

    2004-01-01

    According to the characteristics of the shock bump due to roof fall, a simple mechanics model has been established by applying the catastrophic theory and the law of energy conservation. The author suggests that the shock bump may be induced by the sudden energy release in the roof falling after underground mineral extractions, and through the systematic analysis of actual examples on site, the empirical formulae for the roof falling and energy release are derived, which would provide a new way for the study of the origin and mechanism of mine tremor due to fallen-in roof structure. It is of a great importance to enrich the shock bump theory and production safety in mine.

  4. Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect

    Science.gov (United States)

    Ouyang, Fan-Yi; Jhu, Wei-Cheng

    2013-01-01

    Packaging technology is currently transition from flip chip technology to three dimensional integrated circuits (3D ICs) to meet the requirements of consumer electronic products. Compared to flip chip technology, the dimension of microbumps in 3D ICs is shrunk by a factor of 10. In this study, the behaviors of thermomigration in Pb-free solders of flip chip and 3D ICs are presented. When the bump height is 100 μm in the flip chip samples, the Sn protrusion was observed at the hot end and voids formation at the cold end. However, when the bump height is reduced to 5.8 μm in the 3D IC samples, no significant microstructural evolution of Sn was found; instead, the dissolution of Ni under-bump metallization at hot end was observed. We propose that discrepancy between flip chip solder joints and 3D IC microbumps is mainly attributed to the effect of back stress and the presence of thicker Ni under-bump metallization in the 3D IC packaging. Moreover, the critical temperature gradient in terms of different bump heights is discussed, showing below which there will be no net effect of thermomigration of Sn.

  5. Directional Nanoslit-Bump Coupler for Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Liang; ZHAO De-Yin; ZHOU Chuan-Hong; JIANG Xun-Ya

    2008-01-01

    We investigate a p-polarized plane wave transmitted through a metallic slit-bump nanostructure using the finite difference time domain simulation.It is found that narrow bumps with suitable separation can diffract surface plasmons into highly directional collimating beams,The number and directionality of the beams can be controlled by adjusting the geometry parameters of the nanostructure.The structure with optimized parameters may be interesting for practical applications as directional nanoslit SPP-light coupler in integrated photonic devices.

  6. Sorption of indium (III) onto carbon nanotubes.

    Science.gov (United States)

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions.

  7. Recovery of indium from LCD screens of discarded cell phones.

    Science.gov (United States)

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4.

  8. Hanford Waste Tank Bump Accident and Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    BRATZEL, D.R.

    2000-06-20

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  9. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  10. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  11. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  12. Extended-spectrum antiprotozoal bumped kinase inhibitors: A review.

    Science.gov (United States)

    Van Voorhis, Wesley C; Doggett, J Stone; Parsons, Marilyn; Hulverson, Matthew A; Choi, Ryan; Arnold, Samuel L M; Riggs, Michael W; Hemphill, Andrew; Howe, Daniel K; Mealey, Robert H; Lau, Audrey O T; Merritt, Ethan A; Maly, Dustin J; Fan, Erkang; Ojo, Kayode K

    2017-09-01

    Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The 5 MeV bump - a nuclear whodunit mystery

    CERN Document Server

    Huber, Patrick

    2016-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the the so-called 5 MeV bump. This analysis method has general applicability and in particular with higher statistics data sets will be able to shed significant light on the issue of the bump. With some caveat this also should allow to improve the sensitivity for sterile neutrino searches in NEOS.

  14. The AGB bump: a calibrator for the core mixing

    CERN Document Server

    Bossini, Diego; Salaris, Maurizio; Girardi, Léo; Montalbán, Josefina; Bressan, Alessandro; Marigo, Paola; Noels, Arlette

    2015-01-01

    The efficiency of convection in stars affects many aspects of their evolution and remains one of the key-open questions in stellar modelling. In particular, the size of the mixed core in core-He-burning low-mass stars is still uncertain and impacts the lifetime of this evolutionary phase and, e.g., the C/O profile in white dwarfs. One of the known observables related to the Horizontal Branch (HB) and Asymptotic Giant Branch (AGB) evolution is the AGB bump. Its luminosity depends on the position in mass of the helium-burning shell at its first ignition, that is affected by the extension of the central mixed region. In this preliminary work we show how various assumptions on near-core mixing and on the thermal stratification in the overshooting region affect the luminosity of the AGB bump, as well as the period spacing of gravity modes in core-He-burning models.

  15. The AGB bump: a calibrator for core mixing

    Science.gov (United States)

    Bossini, Diego; Miglio, Andrea; Salaris, Maurizio; Girardi, Léo; Montalbán, Josefina; Bressan, Alessandro; Marigo, Paola; Noels, Arlette

    2015-09-01

    The efficiency of convection in stars affects many aspects of their evolution and remains one of the key-open questions in stellar modelling. In particular, the size of the mixed core in core-He-burning low-mass stars is still uncertain and impacts the lifetime of this evolutionary phase and, e.g., the C/O profile in white dwarfs. One of the known observables related to the Horizontal Branch (HB) and Asymptotic Giant Branch (AGB) evolution is the AGB bump. Its luminosity depends on the position in mass of the helium-burning shell at its first ignition, that is affected by the extension of the central mixed region. In this preliminary work we show how various assumptions on near-core mixing and on the thermal stratification in the overshooting region affect the luminosity of the AGB bump, as well as the period spacing of gravity modes in core-He-burning models.

  16. The AGB bump: a calibrator for core mixing

    Directory of Open Access Journals (Sweden)

    Bossini Diego

    2015-01-01

    Full Text Available The efficiency of convection in stars affects many aspects of their evolution and remains one of the key-open questions in stellar modelling. In particular, the size of the mixed core in core-He-burning low-mass stars is still uncertain and impacts the lifetime of this evolutionary phase and, e.g., the C/O profile in white dwarfs. One of the known observables related to the Horizontal Branch (HB and Asymptotic Giant Branch (AGB evolution is the AGB bump. Its luminosity depends on the position in mass of the helium-burning shell at its first ignition, that is affected by the extension of the central mixed region. In this preliminary work we show how various assumptions on near-core mixing and on the thermal stratification in the overshooting region affect the luminosity of the AGB bump, as well as the period spacing of gravity modes in core-He-burning models.

  17. Life story chapters, specific memories and the reminiscence bump

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Pillemer, David B.; Ivcevic, Zorana

    2011-01-01

    Theories of autobiographical memory posit that extended time periods (here termed chapters) and memories are organised hierarchically. If chapters organise memories and guide their recall, then chapters and memories should show similar temporal distributions over the life course. Previous research...... demonstrates that positive but not negative memories show a reminiscence bump and that memories cluster at the beginning of extended time periods. The current study tested the hypotheses that (1) ages marking the beginning of positive but not negative chapters produce a bump, and that (2) specific memories...... are over-represented at the beginning of chapters. Potential connections between chapters and the cultural life script are also examined. Adult participants first divided their life story into chapters and identified their most positive and most negative chapter. They then recalled a specific memory from...

  18. The pH-sensitive Pd nanoparticles as ink for ink-jet printing technology and electroless Cu metallic patterns on indium-doped tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chun-Chieh; Lin, Yi [Medical Device Section, Medical Devices and Opto-Electronics Equipment Department, Metal Industries Research and Development Centre, Kaohsiung 802, Taiwan (China); Liu, Tsai-Yun [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Nian, Yan-Yu [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, 335 Taiwan (China); Wang, Min-Wen, E-mail: mwwang@cc.kuas.edu.tw [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, 335 Taiwan (China)

    2013-06-01

    In this work, a method to fabricate copper pattern on an indium-doped tin oxide (ITO) glass substrate is described. This method involves ink-jet printing of a pH-sensitive chitosan-g-polyvinyl acetate/Pd nanoparticle (CTS-g-PVAc-Pd) based ink on an untreated ITO plate to create the catalytic sites, onto which copper is subsequently deposited by an electroless plating method. To prepare the CTS-g-PVAc-Pd nanoparticles, a pH-sensitive chitosan-g-polyvinyl acetate (CTS-g-PVAc) copolymer is utilized to self-reduce Pd nanoparticles. The pH-sensitive CTS chains function as stabilizing agent for noble metal nanoparticles in acidic ink solution. On the other hand, CTS-g-PVAc copolymers convert to hydrophilic CTS-g-poly(vinyl alcohol) via alkali hydrolysis during the electroless copper plating. Therefore, the copper film with dramatically enhanced adhesion is formed on the surface of ITO glass without special pretreatment step before electroless deposition of copper film. Our results show that this process yields copper line with width down to 60 μm and ITO plated with the copper coating has good electrical conductivity, with an electrical resistivity of about 5.4 μΩ cm. - Highlights: • Chitosan-g-polyvinyl acetate copolymer provides reducing environment for Pd nanoparticles. • pH-sensitive Pd nanoparticles as ink for ink-jet printing. • Patterning Pd catalyst for the electroless deposition of copper patterns. • Method to fabricate copper patterns on In-doped tin oxide substrates. • Ink-jet printing can be directly and easily applied to fabricate metal patterns.

  19. Injection Bump Synchronization Study for the CERN PS

    CERN Document Server

    Serluca, Maurizio; Gilardoni, Simone; CERN. Geneva. ATS Department

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) project the CERN PS injection kinetic energy will be upgraded from 1.4 to 2 GeV. The present injection bump is made by four bumpers in Straight Section (SS) 40, 42, 43, 44 and it will be converted in a five bumpers system to allow additional flexibility in the bump shape with a reduction of the proton losses during the bump closure. The injection section SS42 has being redesigned to accommodate a new eddy current septum which will host a new bumper magnet in the same vacuum vessel due to reduced longitudinal space availability. The synchronization and amplitude variation of the power converter of the in-vacuum bumper 42 with respect to the remaining outside vacuum bumpers 40, 41, 43, 44 can lead to orbit distortion and consequent losses during injection. In this note we present the experimental results from Machine Development (MD) studies along with simulations for the present system at 1.4 GeV to quantify the acceptable orbit distortion and the performance ...

  20. Electromigration of composite Sn-Ag-Cu solder bumps

    Science.gov (United States)

    Sharma, Ashutosh; Xu, Di Erick; Chow, Jasper; Mayer, Michael; Sohn, Heung-Rak; Jung, Jae Pil

    2015-11-01

    This study investigates the electromigration (EM) behavior of lead free Sn-Ag-Cu (SAC) solder alloys that were reinforced with different types of nanoparticles [Copper-coated carbon nanotubes (Cu/CNT), La2O3, Graphene, SiC, and ZrO2]. The composite solders were bumped on a Cu substrate at 220°C, and the resistance of the bumped solders was measured using a four wire setup. Current aging was carried out for 4 hours at a temperature of 160°C, and an increase in resistance was noted during this time. Of all the composite solders that were studied, La2O3 and SiC reinforced SAC solders exhibited the smallest resistances after current aging. However, the rate of change in the resistance at room temperature was lower for the SiC-reinforced SAC solder. The SAC and Graphene reinforced SAC solder bumps completely failed within 15 - 20 min of these tests. The SiC nanoparticles were reported to possibly entrap the SAC atoms better than other nanoparticles with a lower rate of EM. [Figure not available: see fulltext.

  1. The reminiscence bump in autobiographical memory and for public events: A comparison across different cueing methods.

    Science.gov (United States)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised by spikes in citations according to the years these events occurred. Follow-up analyses suggested that the bump in most important autobiographical memories was a function of the cultural life script. Our findings did not yield support for any of the dominant existing accounts of the bump as underlying the bump in word-cued memories.

  2. Aqueous-based thick photoresist removal for bumping applications

    Science.gov (United States)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  3. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  4. Structure of Three-Dimensional Separated Flow on Symmetric Bumps

    Science.gov (United States)

    2005-11-30

    calculated using N - tan(SSA) -ni(/W/iy) t (1 N- - = - --(4 1 )tan(F(;A) - UII /(LI/’) where vih and 17’- are the stream-wise and span-wise eddy...velocity vectors only in bimodal region and the black lines are connecting these vectors for visual aid . As expected, the two flow patterns are totally... aid only at different yi of. Figure 5.7 Normalized FrF + IWk- vectors locally tangent to surface. 5. LDV Measurements near Large Bump#3 Surface 160

  5. Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite

    Science.gov (United States)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2017-03-01

    This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.

  6. The Effects of Campus Bump on Drivers’ Fixation Dispersion and Speed Reduction

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2015-01-01

    Full Text Available To evaluate the effects of campus speed bumps on drivers’ speed and fixation distribution, a quasinaturalistic driving test was conducted on a Chinese campus. Seven randomly selected drivers, wearing the Dikablis eye tracking devices, were required to drive an OPEL SUV passing the speed bumps. The area close to the bump was divided into ten subsegments (15 m for each one. The degree of fixation dispersion within each subsegment was defined as the distance from each subcenter to the whole fixation center. All traffic data were recorded using mounted camera, and the trajectories were extracted in Matlab. The speed and trajectory data was divided into two groups: the before group for bump-free case and the after group for a 5 cm bump case. The observational before-after analysis shows statistical significance between the two cases. The individual vehicular speed analysis reveals that bump reduces nearly 60% of vehicles’ speeds to a certain extent within the distance from 30 m upstream to 15 m downstream. The drivers’ fixation points begin to disperse 30–45 m before they see the bump, and it falls back to normal level 15–30 m downstream of the bump. These findings will help engineers install speed bumps at the most appropriate locations.

  7. The peaks of life: The differential temporal locations of the reminiscence bump across disparate cueing methods

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2015-01-01

    The reminiscence bump has generally been assessed through either (1) the cue word method, or (2) several related methods which we refer to under the umbrella of the important memories method. Here we provide a review of the literature demonstrating that the temporal location of the bump varies...... systematically according to cueing method, with the mean range of the bump located from 8.7 to 22.5 years of age for word-cued memories, versus 15.1 to 27.9 for important memories. This finding has hitherto been under-acknowledged, as existing theoretical accounts of the bump generally hold its location...

  8. Sensory feedback in a bump attractor model of path integration.

    Science.gov (United States)

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

  9. The peaks of life: The differential temporal locations of the reminiscence bump across disparate cueing methods

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2015-01-01

    The reminiscence bump has generally been assessed through either (1) the cue word method, or (2) several related methods which we refer to under the umbrella of the important memories method. Here we provide a review of the literature demonstrating that the temporal location of the bump varies sy...

  10. Experimental and modeling study of the flow over a skewed bump

    Science.gov (United States)

    Ching, David S.; Elkins, Christopher J.; Eaton, John K.

    2016-11-01

    Three-dimensional separated flows can be very sensitive to geometry and inlet conditions, such that a small change in the geometry or the upstream boundary layer could cause the flow structure to change drastically. This study examines the geometric sensitivity of a skewed bump with axis ratio 4/3 by changing the angle of the bump with respect to the flow. The three-dimensional, three-component mean velocity field was acquired using Magnetic Resonance Velocimetry (MRV) for several bump angles. The flow is dominated by large coherent vortices in the wake. For a symmetric case, two counter-rotating vortices exist in the wake, but when the bump is skewed relative to the oncoming flow one vortex structure is much stronger and overwhelms the other vortex. A comparison to RANS simulations found that the RANS simulations predict the velocity fields with reasonable accuracy within the separation bubble, but are very inaccurate downstream of reattachment. Using a time-resolved MRV sequence, the shedding frequency of the wake was determined for two bump angles. Hot-wire anemometry confirmed the shedding frequencies found from the MRV data and observed that the shedding frequency is sensitive to the bump angle at low bump angles, but is insensitive at high bump angles. Funding provided by the Office of Naval Research.

  11. Development of a solder bump technique for contacting a three-dimensional multi electrode array

    NARCIS (Netherlands)

    Frieswijk, T.A.; Frieswijk, T.A.; Bielen, J.A.; Bielen, J.A.; Rutten, Wim; Bergveld, Piet

    1997-01-01

    The application of a solder bump technique for contacting a three-dimensional multi electrode array is presented. Solder bumping (or C4: Controlled Collapse Chip Connections, also called Flip Chip contacting) is the most suitable contacting technique available for small dimensions and large numbers

  12. Shrinking of bumps by drawing scintillating fibres through a hot conical tool

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Gavardi, Laura; Joram, Christian; Kristic, Robert; Pierschel, Gerhard; Schneider, Thomas

    2016-01-01

    The LHCb SciFi tracker will be based on scintillating fibres with a nominal diameter of 250 $\\mu$m. A small length fraction of these fibres shows millimetre-scale fluctuations of the diameter, also known as bumps and necks. In particular, bumps exceeding a diameter of about 350 $\\mu$m are problematic as they can distort the winding pattern of the fibre mats over more extended regions. We present a method to reduce the diameter of large bumps to a diameter of 350 $\\mu$m by locally heating and pulling the fibre through a conical tool. The method has been proven to work for bumps up to 450 – 500 $\\mu$m diameter. Larger bumps need to be treated manually by a cut-and-glue technique which relies on UV-curing instant glue. The bump shrinking and cut-and-glue processes were integrated in a fibre diameter scanner at CERN. The central scanning and bump shrinking of all fibres is expected to minimise bump related issues at the four mat winding centres of the SciFi project.

  13. 2D-bail simulations on stiffness influences for coal bump

    Institute of Scientific and Technical Information of China (English)

    TAN Yun-liang; SUN Chun-jiang; ZHANG Zhen-yu

    2009-01-01

    Coal bump is a dynamic process, thus it is necessary to reveal the process validly. 2D-ball code is an efficient approach developed by the authors based on the basic DEM rationale proposed by Cundall. Numerical simulations show that the coal bump ex-periences a process of energy accumulation, sudden release of energy and energy de-crease. The stiffness of coal particles has a great influence on the coal bump morphosis and particle velocity. Generally, the larger the stiffness of particles, the longer the shooting off period and the larger the bump velocity. This is in agreement with the results of labora-tory experiment and in-situ studies. However, the stiffness of particles has an influence on the quantity value energy and no influence on the releasing energy pattern of the coal bump.

  14. Seismic Hazard Prediction Using Seismic Bumps: A Data Mining Approach

    Directory of Open Access Journals (Sweden)

    Musa Peker

    2016-04-01

    Full Text Available Due to the large number of influencing factors, it is difficult to predict the earthquake which is a natural disaster. Researchers are working intensively on earthquake prediction. Loss of life and property can be minimized with earthquake prediction. In this study, a system is proposed for earthquake prediction with data mining techniques. In the study in which Cross Industry Standard Process for Data Mining (CRISP-DM approach has been used as data mining methodology, seismic bumps data obtained from mines has been analyzed. Extreme learning machine (ELM which is an effective and rapid classification algorithm has been used in the modeling phase. In the evaluation stage, different performance evaluation criteria such as classification accuracy, sensitivity, specificity and kappa value have been used. The results are promising for earthquake prediction.

  15. A Bump in the Blue Axion Isocurvature Spectrum

    CERN Document Server

    Chung, Daniel J H

    2016-01-01

    Blue axion isocurvature perturbations are both theoretically well-motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the non-applicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.

  16. [Three cases of indium lung].

    Science.gov (United States)

    Taguchi, Osamu; Chonan, Tatsuya

    2006-07-01

    The production of indium tin oxide (ITO) has been increasing during the past decade because of its use in liquid crystal and plasma display panels. Following the first report on lethal lung injury in a ITO worker in 2001, we began pulmonary check-ups for 115 workers in the plant in our capacity of industrial physicians of the plant. Hence, we report interstitial pulmonary disease in 3 workers who had engaged in wet-surface grinding of ITO for 8 to 12 years and had significant lung injuries. The serum indium level and serum concentration of KL-6 were significantly elevated in all 3 cases. One non-smoker case among them showed severe obstructive changes on spirometry and had an episode of repeated bilateral pneumothorax before and during the follow-up period. All 3 cases showed both interstitial and/or emphysematous changes on HRCT. It is suggested that inhaled indium compounds can cause a new and unique interstitial pulmonary disease.

  17. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions

    Science.gov (United States)

    Inoue, Katsutoshi; Alam, Shafiq

    2015-02-01

    A recovery process for indium from waste liquid crystal display panels was developed on the basis of hydrometallurgical technology. The powdered sample was leached with 3 M HCl to extract its various metal constituents (indium, aluminum, tin, etc.). The mutual separation and subsequent recovery of the dissolved metals was achieved using two column adsorption tests: The first column was packed with a porous resin impregnated with Aliquat 336, a commercially available solvent extraction reagent based on a quaternary ammonium compound, and the resin contained in the second column was impregnated with Cyanex 923, also a commercially available solvent extraction reagent based on trialkylphosphine oxide. In the first column, tin, iron, and zinc were removed from the leach liquor. In the second column, only indium was selectively recovered. The metal ions trapped in these columns were eluted with 0.1 M H2SO4, yielding a solution purified indium solution with a concentration 10 times that of the feed solution.

  18. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage.

    Science.gov (United States)

    White, Sarah Jane O; Hussain, Fatima A; Hemond, Harold F; Sacco, Sarah A; Shine, James P; Runkel, Robert L; Walton-Day, Katherine; Kimball, Briant A

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29μg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45μm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    Science.gov (United States)

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  20. 溶胶凝胶法制备透明IZO薄膜晶体管%Fabrication of Transparent Indium Zinc Oxide Thin Film Transistors by Sol-gel Technology

    Institute of Scientific and Technical Information of China (English)

    信恩龙; 李喜峰; 张建华

    2013-01-01

    The amorphous InZnO (a-IZO) thin films were prepared by sol-gel technology, and thin film transistors ( TFTs) were further fabricated by employing the IZO films as the active channel layer after low temperature ( 300 ℃ ) annealing treatment. The influence of indium concentration on the electrical properties of IZO thin films and the IZO-TFTs was investigated in this paper. The results revealed that the IZO film was amorphous, surface was uniform and smooth, grain about 20 nm, and the visible average optical transmittance was more than 85 %. IZO-TFT with a threshold voltage of 1.3 V, a mobility of 0. 24 cm2·V-1·s-1, and a Ion: Ioff current ratio of 105 was obtained when n(In):n(Zn) =3:2.%采用溶胶凝胶法制备了非晶钢锌氧化物(a-IZO)薄膜,并作为薄膜晶体管(TFT)的有源层制备了a-IZO TFT.研究了IZO薄膜中铟锌比对薄膜性质及a-IZO TFT器件性能的影响.结果表明:溶胶凝胶法制备的IZO薄膜经低温(300℃)退火后为非晶结构,薄膜表面均匀平整、致密,颗粒大小为20 nm左右,并具有高透过率(>85%).IZO薄膜中的铟锌比对薄膜的电学性能和TFT器件特性影响显著,增加In含量有利于提高薄膜和器件的迁移率.当铟锌比为3∶2时,所获得的薄膜适合于作为薄膜晶体管的有源层,制备的IZO-TFT经过相对低温(300℃)退火处理具有较好的器件性能,阈值电压为1.3V,载流子饱和迁移率为0.24 cm2·V-1·s-1,开关比(Ⅰon∶Ⅰoff)为105.

  1. CIGS薄膜太阳能电池无镉缓冲层制备方法的研究现状%Deposition Technologies of Cd-Free Buffer Layers in Solar Cells Made of Copper Indium Gallium Diselenide Films

    Institute of Scientific and Technical Information of China (English)

    霍晓旭; 莫晓亮; 陈国荣

    2012-01-01

    The latest progress in the development of deposition technology of the Cd-free buffer layers in the solar cells made of copper indium gallium diselenide(CIGS) films was tentatively reviewed.The discussions focused on three topics: first, the film growth techniques and related properties of the three alternative Cd-free buffer layer materials (In2S3,ZnS,and Zn1-xMgxO) ; next,the possible impacts of the three alternative films and their deposition techniques on the fabrication and performance of the solar cells; finally, the development trends of the Cd-free layers in fabricating the CIGS solar cells.The strengths and weaknesses of the techniques, including the chemical bath deposition(CBD) , atomic layer deposition (AID) and sputtering depositions, on industrial scale production were evaluated in a thought-provoking way. We suggest that the sputtering deposition be most feasible to large scale industrial production. The technical problems to be solved were also discussed.%回顾了近年来CIGS薄膜太阳能电池无镉缓冲层的研究进展;着重介绍了In2S3,ZnS,Zn1-xMgxO三种可替代CdS缓冲层材料的常用制备方法及相关特性,并且对应给出了每种材料和方法获得的电池组件效率.展望了无镉缓冲层的发展前景,分析了化学水浴、原子层沉积、溅射三种缓冲层沉积技术各自在大规模工业化应用中的优劣势.认为溅射沉积技术是现阶段最理想的工业化制备技术,同时指出了无镉缓冲层在大规模工业化应用中亟需解决的问题.

  2. Investigation of fuel behaviour at different power levels (SKI-bump II). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lysell, G.; Bengtsson, Sven

    1994-12-31

    Fuel microstructure and fission product redistribution in the fuel and to the cladding inside were studied after a `bump` irradiation of a high burnup rod up to maximum Linear Heat Rating (LHR) of 43 kW/m. Fission gas induced swelling of the fuel imposed a large strain on the cladding. Total gas release in the rod as well as the local release at two different LHRs were measured. Reference fuel not subject to the bump was examined with the same techniques as the bumped fuel.

  3. Separation and Concentration of Indium from Leaching Solution Containing Indium, Antimony and Iron Ions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP-kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl3 solution is about 25~30 g/L.

  4. Geochemical Enirchment and Mineralization of Indium

    Institute of Scientific and Technical Information of China (English)

    张乾; 战新志; 等

    1998-01-01

    Indium occurs in a very dispersed manner in nature with enrichment of economic in terest rarely known.The highly dispersed nature of indium,among several other elements,has for a long time retarded our understanding of the regularities that control their mineralization,which in turn has hindered exploitation and application of these elements.Recent studies of ours show that no significant enrichment of indium can be recognized in various types of Pb-Zn sulphide deposits as well as in deposits of copper,iron and manganese,Indium Concentrations in ores of these deposits are generally below 10×10-6.In contrast,however,indium is found to be enriched to a significant extent in cassiterite-sulphide deposits and some tin-rich Pb-Zn polymetallic deposits.The average content of indium in these deposits can be over 100×10-6,and more than 90% of it is concentrated in sphalerite.Generally,these deposits may be considered as large paragenic deposits for indium and ,therefore,there must be some regularities that govern the geochemical enrichment of the so-called "dispersed element" indium.

  5. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  6. Franz Joseph Gall and music: the faculty and the bump.

    Science.gov (United States)

    Eling, Paul; Finger, Stanley; Whitaker, Harry

    2015-01-01

    The traditional story maintains that Franz Joseph Gall's (1758-1828) scientific program began with his observations of schoolmates with bulging eyes and good verbal memories. But his search to understand human nature, in particular individual differences in capacities, passions, and tendencies, can also be traced to other important observations, one being of a young girl with an exceptional talent for music. Rejecting contemporary notions of cognition, Gall concluded that behavior results from the interaction of a limited set of basic faculties, each with its own processes for perception and memory, each with its own territory in both cerebral or cerebellar cortices. Gall identified 27 faculties, one being the sense of tone relations or music. The description of the latter is identical in both his Anatomie et Physiologie and Sur les Fonctions du Cerveau et sur Celles de Chacune de ses Parties, where he provided positive and negative evidences and discussed findings from humans and lower animals, for the faculty. The localization of the cortical faculty for talented musicians, he explained, is demonstrated by a "bump" on each side of the skull just above the angle of the eye; hence, the lower forehead of musicians is broader or squarer than in other individuals. Additionally, differences between singing and nonsinging birds also correlate with cranial features. Gall even brought age, racial, and national differences into the picture. What he wrote about music reveals much about his science and creative thinking.

  7. Bump hunting in LHC t t ¯ events

    Science.gov (United States)

    Czakon, Michal; Heymes, David; Mitov, Alexander

    2016-12-01

    We demonstrate that a purposefully normalized next-to-next-to-leading-order mt t ¯ differential spectrum can have very small theoretical uncertainty and, in particular, a small sensitivity to the top quark mass. Such an observable can thus be a very effective bump-hunting tool for resonances decaying to t t ¯ events during LHC run II and beyond. To illustrate how the approach works, we concentrate on one specific example of current interest, namely, the possible 750 GeV digamma excess resonance Φ . Considering only theoretical uncertainties, we demonstrate that it is possible to distinguish p p →Φ →t t ¯ signals studied in the recent literature [Hespel, Maltoni, and Vryonidou, J. High Energy Phys. 10 (2016) 016, 10.1007/JHEP10(2016)016] from the pure Standard Model background with very high significance. Alternatively, in the case of nonobservation, a strong upper limit on the decay rate Φ →t t ¯ can be placed.

  8. Ship Sensor Observations for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Investigating the Charleston Bump 2003" expedition sponsored by the National...

  9. Comparison of Off-Line IR Bump and Action-Angle Kick Minimization

    CERN Document Server

    Luo, Yun; Ptitsyn, Vadim; Trbojevic, Dejan; Wei, Jie

    2005-01-01

    The interaction region bump (IR bump) nonlinear correction method has been used for the sextupole and octupole field error on-line corrections in the Relativistic Heavy Ion Collider (RHIC). Some differences were found for the sextupole and octupole corrector strengths between the on-line IR bump correction and the predictions from the action-angle kick minimization. In this report we compare the corrector strengths from these two methods based on the RHIC Blue ring lattice with the IR nonlinear modeling. The comparison confirms the differences between resulting corrector strengths. And the reason for the differences is found and discussed. It is followed by a further discussion of the operational IR bump applications to the octupole, and skew sextupole and skew quadrupole field error corrections.

  10. Submersible Data (Dive Trackpoints) for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II along its track during fourteen dives of the 2003 "Investigating the Charleston Bump"...

  11. Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression

    KAUST Repository

    Bressloff, Paul C.

    2011-01-01

    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.

  12. On some results of Bump-Choie and Choie-Kim

    CERN Document Server

    Hundley, Joseph

    2011-01-01

    This paper is motivated by a 2001 paper of Choie and Kim and a 2006 paper of Bump and Choie. The paper of Choie and Kim extends an earlier result of Bol for elliptic modular forms to the setting of Siegel and Jacobi forms. The paper of Bump and Choie provides a representation theoretic interpretation of the phenomenon, and shows how a natural generalization of Choie and Kim's result on Siegel modular forms follows from a natural conjecture regarding (g,K)-modules. In this paper, it is shown that the conjecture of Bump and Choie follows from work of Boe. A second proof which is along the lines of the proof given by Bump and Choie in the genus 2 case is also included, as is a similar treatment of the result of Choie and Kim on Jacobi forms.

  13. Fine-pitch wafer bumping and assembly for high density detector systems

    CERN Document Server

    Huffman, A; La Bennett, R; Statler, C

    2004-01-01

    A number of high energy physics experiments will rely on pixilated detector arrays to track particles generated in a collision event. In addition, several medical imaging applications are using pixilated devices as the imaging elements. The pixels in these detectors are very small (50-100 mu m pitch) to provide adequate spatial resolution for particle tracking. Since the pixels and their electrical interconnections are arrayed over the entire area of the device, solder bumping is the natural choice for the integration of detector elements to readout and support electronics. The small pitch of the I /O presents new challenges to the bumping and assembly processes. The processes for fabricating bumps and assembling the detectors must have a high yield and be compatible with a high radiation, high vacuum, and low temperature operating environment to provide the necessary performance and operating lifetime. This paper presents an overview of MCNC Research & Development Institute's bumping and assembly process...

  14. Optimization of Kicker Pulse Bump by Using a SR Monitor at the Photon Factory

    CERN Document Server

    Mitsuhashi, Toshiyuki

    2005-01-01

    We plan to operate the Photon Factory storage ring by top-up injection mode from 2006. To realize this operation mode, remaining coherent oscillation of the stored beam due to error in the injection pulse bump is one of most serious problem. To reducing the error in the injection pulse bump, we calibrated kicking angles of the injection kicker magnets by means of the term by term instantaneous observation of beam profile. We have a SR monitor inside of injection pulse bump. By measureing the tern by tern beam position after the excitation of kicker magnet, we can calibrate the kick angle of the kicker magnet. By using this calibration, we optimized injection pulse bump. As a result, we reduced amplitude of remaining coherent oscillation less than 1/4 of the 1??of the beam size.

  15. Multi-bump solutions in a neural field model with external inputs

    Science.gov (United States)

    Ferreira, Flora; Erlhagen, Wolfram; Bicho, Estela

    2016-07-01

    We study the conditions for the formation of multiple regions of high activity or "bumps" in a one-dimensional, homogeneous neural field with localized inputs. Stable multi-bump solutions of the integro-differential equation have been proposed as a model of a neural population representation of remembered external stimuli. We apply a class of oscillatory coupling functions and first derive criteria to the input width and distance, which relate to the synaptic couplings that guarantee the existence and stability of one and two regions of high activity. These input-induced patterns are attracted by the corresponding stable one-bump and two-bump solutions when the input is removed. We then extend our analytical and numerical investigation to N-bump solutions showing that the constraints on the input shape derived for the two-bump case can be exploited to generate a memory of N > 2 localized inputs. We discuss the pattern formation process when either the conditions on the input shape are violated or when the spatial ranges of the excitatory and inhibitory connections are changed. An important aspect for applications is that the theoretical findings allow us to determine for a given coupling function the maximum number of localized inputs that can be stored in a given finite interval.

  16. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.

  17. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  18. Stress investigation on the rolling tires across the speed bump using finite element method

    Science.gov (United States)

    Hidayat, Royan; Pranoto, Sarwo Edy; Tauviqirrahman, Mohammad; Bayuseno, Athanasius P.

    2016-04-01

    The interaction between road surface and tire on a vehicle may strongly determine the vehicle's stability. This study was conducted to find out the stress distribution as a result of pressure on the tires rolling across the speed bumps. This study used Abaqus software to simulate the movement of the tire, which rolls across the speed bump to determine the stress distribution that may occur. The tire component material used was a full path rubber on a speed bump. For the boundary conditions of the study, it was assumed that the tires had load variations as much as 2 kN, 6 kN, 10 kN, as well as pressure variations as much as 17 Psi, 30 Psi, 40 Psi. The tires were then rolled 8 km/h crossing the speed bump. Modeling speed bumps also varied i.e. the first variation of speed bumps that have a height of 50 mm with a width of 250 mm, the second variation of height 75 mm with a width of 300 mm, and a third variation of height 100 mm with a width of 400 mm. The simulation was done by giving the tire pressures as much as 17 Psi, 30 Psi, 40 Psi and loads as much as 2 kN, 6 kN, 10 kN. Further, the tires were rolled three times. It was rolled crossing the first speed bump, the second, and the third, respectively. Results showed stress distribution's fig and graphs. From the analysis results and simulation, it was shown that the greater the load received by the tires, the higher stress they produced.

  19. Dynamic failure in coal seams:Implications of coal composition for bump susceptibility

    Institute of Scientific and Technical Information of China (English)

    Lawson Heather; Weakley Andrew; Miller Arthur

    2016-01-01

    As a contributing factor in the dynamic failure (bumping) of coal pillars, a bump-prone coal seam has been described as one that is ‘uncleated or poorly cleated, strong. . .that sustains high stresses.”Despite extensive research regarding engineering controls to help reduce the risk for coal bumps, there is a paucity of research related to the properties of coal itself and how those properties might contribute to the mechanics of failures. Geographic distribution of reportable dynamic failure events reveals a highly localized clustering of incidents despite widespread mining activities. This suggests that unique, contributing geologic characteristics exist within these regions that are less prevalent elsewhere. To investigate a new approach for identifying coal characteristics that might lead to bumping, a principal component analysis (PCA) was performed on 306 coal records from the Pennsylvania State Coal Sample database to determine which characteristics were most closely linked with a positive history of reportable bumping. Selected material properties from the data records for coal samples were chosen as variables for the PCA and included petrographic, elemental, and molecular properties. Results of the PCA suggest a clear correlation between low organic sulfur content and the occurrence of dynamic failure, and a secondary correlation between volatile matter and dynamic failure phenomena. The ratio of vola-tile matter to sulfur in the samples shows strong correlation with bump-prone regions, with a minimum threshold value of approximately 20, while correlations determined for other petrographic and elemental variables were more ambiguous. Results suggest that the composition of the coal itself is directly linked to how likely a coal is to have experienced a reportable dynamic failure event. These compositional controls are distinct from other previously established engineering and geologic criteria and represent a missing piece to the bump prediction puzzle.

  20. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  1. Application of robust color composite fringe in flip-chip solder bump 3-D measurement

    Science.gov (United States)

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng

    2017-04-01

    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  2. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    CERN Document Server

    Delsante, M L; Arnau-Izquierdo, G

    2004-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  3. EO-1 Advanced Land Imager Technology Validation Report

    Science.gov (United States)

    2007-11-02

    Integrated Circuit (ROIC). The SWIR detectors are mercury-cadmium-telluride (HgCdTe) photo -diodes that are indium bump-bonded onto the ROIC that services the...internal reference source, located within the instrument telescope cavity, is used as a radiometric stability monitoring tool on orbit. This source consists...moons Io and Ganymede). Figure 3-97 is a collage of several celestial observations made to date. The stars detected by the ALI are represented as circles

  4. Recovery of galium and indium from liquid crystal displays and CIGS photovailtaic modules

    NARCIS (Netherlands)

    Bisselink, R.; Steeghs, W.; Brouwer, J.G.H.

    2014-01-01

    Abstract: The increasing amount of electronics, such as consumer products and green technologies (e.g. solar PV cells) increases the demand of metals such as indium and gallium. This increasing demand together with the dependency on import of these metals drive research on recycling of waste electro

  5. Recovery of galium and indium from liquid crystal displays and CIGS photovailtaic modules

    NARCIS (Netherlands)

    Bisselink, R.; Steeghs, W.; Brouwer, J.G.H.

    2014-01-01

    Abstract: The increasing amount of electronics, such as consumer products and green technologies (e.g. solar PV cells) increases the demand of metals such as indium and gallium. This increasing demand together with the dependency on import of these metals drive research on recycling of waste

  6. Indium Corporation Introduces New Pb-Free VOC-Free Wave Solder Flux

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Indium Corporation of America has introduced WF-7742 Wave Solder Flux specifically designed to meet the process demands of Pb-Free manufacturing. WF-7742 is a VOC-Free material formulated for Pb-Free wave soldering of surface-mount, mixed-technology and through-holeelectronics assemblies.

  7. Recovery of galium and indium from liquid crystal displays and CIGS photovailtaic modules

    NARCIS (Netherlands)

    Bisselink, R.; Steeghs, W.; Brouwer, J.G.H.

    2014-01-01

    Abstract: The increasing amount of electronics, such as consumer products and green technologies (e.g. solar PV cells) increases the demand of metals such as indium and gallium. This increasing demand together with the dependency on import of these metals drive research on recycling of waste electro

  8. Indium Tin Oxide-Free Polymer Solar Cells: Toward Commercial Reality

    DEFF Research Database (Denmark)

    Angmo, Dechan; Espinosa Martinez, Nieves; Krebs, Frederik C

    2014-01-01

    Polymer solar cell (PSC) is the latest of all photovoltaic technologies which currently lies at the brink of commercialization. The impetus for its rapid progress in the last decade has come from low-cost high throughput production possibility which in turn relies on the use of low-cost materials...... and vacuum-free manufacture. Indium tin oxide (ITO), the commonly used transparent conductor, imposes the majority of the cost of production of PSCs, limits flexibility, and is feared to create bottleneck in the dawning industry due to indium scarcity and the resulting large price fluctuations. As such...

  9. The Best Location for Speed Bump Installation Using Experimental Design Methodology

    Directory of Open Access Journals (Sweden)

    Alireza Khademi

    2013-12-01

    Full Text Available Speed bumps, as traffic calming devices, have been extensively used to reduce traffic speed on local streets. This study represents a unique application of experimental design methodology where the effects of some controllable factors in determining the best location for installing speed bumps before stop points (e.g. entry gates, road junctions were investigated. Through Classical Design of Experiments (DOE, the optimum location of the speed bump was obtained based on the graphical plots of the significant effects. The speed at the stop point was treated as the response and minimum speed is desirable. Design-Expert® software was used to evaluate and analyze the results obtained. The suggested mathematical model effectively explains the performance indicators within the ranges of the factors. The car speed is the most significant factor that affects the distance-time in comparison with other factors, which provides secondary contributions.

  10. ADHESIVE CONTACT PROBLEM OF AXISYMMETRIC MINIATURE CIRCULAR PLATES WITH CENTRAL RIGID BUMP

    Institute of Scientific and Technical Information of China (English)

    Fu Yiming; Li Sheng; Tian Yanping

    2006-01-01

    Considering the adhesive effect and geometric nonlinearity, the adhesive contact between an elastic substrate and a clamped miniature circular plate with two different central rigid bumps under the action of uniform transverse pressure and in-plane tensile force in the radial direction was analyzed. And an analytical solution is presented by using the perturbation method. The relation of surface adhesive energies with critical load to detach the contacted surfaces is obtained. In the numerical results, the effects of adhesive energy, in-plane tensile force, rigid bump size and contact radius on the critical load are discussed, and the relation of critical contact radius with the gap between the central rigid bump and the substrate for different adhesive energies is investigated.

  11. Density bump formation in a collisionless electrostatic shock wave in a laser-ablated plasma

    CERN Document Server

    Garasev, M A; Kocharovsky, V V; Malkov, Yu A; Murzanev, A A; Nechaev, A A; Stepanov, A N

    2016-01-01

    The emergence of a density bump at the front of a collisionless electrostatic shock wave have been observed experimentally during the ablation of an aluminium foil by a femtosecond laser pulse. We have performed numerical simulations of the dynamics of this phenomena developing alongside the generation of a package of ion-acoustic waves, exposed to a continual flow of energetic electrons, in a collisionless plasma. We present the physical interpretation of the observed effects and show that the bump consists of transit particles, namely, the accelerated ions from the dense plasma layer, and the ions from the diluted background plasma, formed by a nanosecond laser prepulse during the ablation.

  12. Design of a local bump feedback system for a variably polarizing undulator.

    Science.gov (United States)

    Bizen, T; Shimada, T; Takao, M; Hiramatu, Y; Miyahara, Y

    1998-05-01

    A local bump feedback system is under construction to correct the orbit distortion caused by the magnetic field errors of a double-array undulator used to generate linear and circular polarization of light for a soft X-ray beamline. The local bump orbit is created by steering coils several turns long and four sets of steering magnets. The kick angle of the long steering coils and the steering magnets is determined according to the motion of the undulator and by detecting the beam position.

  13. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  14. The instability mechanics of surrounding rock-coal mass system in longwall face and the prevention of pressure bumps

    Institute of Scientific and Technical Information of China (English)

    李新元; 李英明

    2003-01-01

    According to the movement and change rules of mechanical structure of surrounding rock-coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.

  15. The reminiscence bump for public events: A review of its prevalence and taxonomy of alternative age distributions

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark

    2013-01-01

    a legitimate effect, and (ii) the alternative age distributions that are otherwise seen in recall for public events. I conclude that, though the bump is frequently found, the legitimacy of the effect is contingent upon the strictness of the standard one employs. I also find significant exceptions to the bump...

  16. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    Science.gov (United States)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  17. C4NP - Lead Free Flip Chip Solder Bumping Manufacturing and Reliability Data%C4NP-无铅倒装晶片焊凸形成生产工艺与可靠性数据

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    受控倒塌芯片连接新工艺是一种由IBM公司开发、由Suss MicroTec公司推向商品化的新型焊凸形成技术.受控倒塌芯片连接新工艺采用各种无铅焊料合金致力于解决现有的凸台.形成技术限定,使低成本小节距焊凸形成成为可能.受控倒塌芯片连接新工艺是一种焊球转移技术,熔焊料被注入预先制成并可重复使用的玻璃模板(模具).这种注满焊料的模具在焊料转入圆片之前先经过检查以确保高成品率.注满焊料的模具与圆片达到精确的接近后以与液态熔剂复杂性无关的简单工序转移在整个300 mm(或300 mm以下)圆片上.受控倒塌芯片连接新工艺技术能够在焊膏印刷中实现小节距凸台形成的同时提供相同合金选择的适应性.这种简单的受控倒塌芯片连接新工艺使低成本、高成品率以及快速封装周期的解决方法对于细节距FCiP以及WLCSP凸台形成均能适用.%C4NP is a new solder bumping technology developed by IBM and commercialized by Suss MicroTec. C4NP addresses the limitations of existing bumping technologies by enabling low-cost, fine pitch bumping using a variety of lead-free solder alloys. C4NP is a solder transfer technology where molten solder is injected into pre-fabricated and reusable glass templates (molds). The filled mold is inspected prior to solder transfer to the wafer to ensure high final yields. Filled mold and wafer are brought into close proximity and solder bumps are transferred onto the entire 300 mm (or smaller)wafer in a single process step without the complexities associated with liquid flux. C4NP technology is capable of fine pitch bumping while offering the same alloy selection flexibility as solder paste printing.The simplicity of the C4NP process makes it a low cost, high yield and fast cycle time solution for both,fine-pitch FCiP as well as WLCSP bumping applications.This paper summarizes the latest manufacturing and reliability data for

  18. Indium adhesion provides quantitative measure of surface cleanliness

    Science.gov (United States)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  19. CO2laser-induced bump formation and growth on polystyrene for multi-depth soft lithography molds

    KAUST Repository

    Li, Huawei

    2012-10-19

    This paper reports the process of creating bumps on the surface of polystyrene (PS) induced by a CO2laser at low powers. The paper also outlines the procedure for growing bumps induced by multiple laser scans on the aforementioned bumps. These bumps result from the net volume gain of the laser heat-affected zone on the PS rather than from a deposition process, and the expansion of the heat-affected zone on PS was verified by measuring the hardness change using nanoindentation. The bumps have a much smoother surface than microchannels fabricated with laser cutting; depending on the laser power, they have heights ranging from hundreds of nanometers to 42m. The laser scanning speed and scan times along with this technique offer a fast and low-cost alternative for fabricating molds for multi-depth PDMS microfluidic devices. © 2012 IOP Publishing Ltd.

  20. Lateral Scanning Linnik Interferometry for Large Field of View and Fast Scanning: Wafer Bump Inspection

    Science.gov (United States)

    Kim, Min Y.; Veluvolu, Kalyana C.; Lee, Soon-Geul

    2011-07-01

    Wafer-level packaging is currently the major trend in semiconductor packaging for miniaturization and high-density integration. To ensure the package reliability, the wafer and substrate bumps utilized as connection junctions need to be in-line inspected as regards their top-height distribution, coplanarity, and volume uniformity. This article proposes a lateral scanning interferometric system for wafer bump shape inspection in three dimensions with a large field of view and fast inspection speed based on an optomechatronic system design. For multiple-peak interferogram from wafer bumps around a transparent film layer, two-step information extraction algorithms are suggested, including top surface profile and under-layer surface profile detection algorithms. The multiple-peak interferogram is acquired with variations of lateral position of the reference mirror by a piezoelectric transducer (PZT). A series of experiments is performed for representative wafer samples with solder and gold bumps, and the effectiveness of the proposed inspection system is verified from the test results.

  1. Decomposing the sales promotion bump accounting for cross-category effects

    NARCIS (Netherlands)

    Leeflang, Peter S. H.; Selva, Josefa Parreno; Wittink, Dick R.; Dijk, Albertus Alard van

    2008-01-01

    Extant research on the decomposition of unit sales bumps due to price promotions considers these effects only within a single product category. This article introduces a framework that accommodates specific cross-category effects. Empirical results based on daily data measured at the item/SKU level

  2. Photogrammetric 3d Acquisition and Analysis of Medicamentous Induced Pilomotor Reflex ("goose Bumps")

    Science.gov (United States)

    Schneider, D.; Hecht, A.

    2016-06-01

    In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps). Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost) photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE) of the area resp. the volume of an individual goose bump.

  3. Indium-111 leukocyte scanning and fracture healing

    Energy Technology Data Exchange (ETDEWEB)

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. (Univ. of Texas Medical School, Houston (USA))

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  4. Preparation and characterization of mesoporous indium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-zhe; CHENG Zhi-xuan; PAN Qing-yi; DONG Xiao-wen; ZHANG Jian-cheng; PAN Ling-li

    2009-01-01

    Indium oxide nanocrystals with mesoporous structure were successfully synthesized by using triblock copolymer as a template,and characterized by thermogravimetry-differential scanning calorimeter (TG-DSC),X-ray powder diffraction (XRD),high resolution transmission electron microscopy (HRTEM) and N2 adsorption.A high EO/PO ratio is thought to be the key point to prepare mesoporous In2O3.The results show that the average pore diameter of the products is 6 nm,the BET surface area is 54.78 m2/g,and the adsorbing pore volume is 0.345 cm3/g.After comparing with normal indium oxide nanoparticles by BET test,mesoporous indium oxide demonstrates a large difference in adsorbing pore volume and average pore diameters from normal ones.

  5. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    Science.gov (United States)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  6. A novel method for direct solder bump pull testing using lead-free solders

    Science.gov (United States)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  7. A biokinetic and dosimetric model for ionic indium in humans

    Science.gov (United States)

    Andersson, Martin; Mattsson, Sören; Johansson, Lennart; Leide-Svegborn, Sigrid

    2017-08-01

    This paper reviews biokinetic data for ionic indium, and proposes a biokinetic model for systemic indium in adult humans. The development of parameter values focuses on human data and indium in the form of ionic indium(III), as indium chloride and indium arsenide. The model presented for systemic indium is defined by five different pools: plasma, bone marrow, liver, kidneys and other soft tissues. The model is based on two subsystems: one corresponding to indium bound to transferrin and one where indium is transported back to the plasma, binds to red blood cell transferrin and is then excreted through the kidneys to the urinary bladder. Absorbed doses to several organs and the effective dose are calculated for 111In- and 113mIn-ions. The proposed biokinetic model is compared with previously published biokinetic indium models published by the ICRP. The absorbed doses are calculated using the ICRP/ICRU adult reference phantoms and the effective dose is estimated according to ICRP Publication 103. The effective doses for 111In and 113mIn are 0.25 mSv MBq-1 and 0.013 mSv MBq-1 respectively. The updated biokinetic and dosimetric models presented in this paper take into account human data and new animal data, which represent more detailed and presumably more accurate dosimetric data than that underlying previous models for indium.

  8. Interstitial pulmonary disorders in indium-processing workers.

    Science.gov (United States)

    Chonan, T; Taguchi, O; Omae, K

    2007-02-01

    The production of indium-tin oxide has increased, owing to the increased manufacture of liquid-crystal panels. It has been reported that interstitial pneumonia occurred in two indium-processing workers; therefore, the present study aimed to evaluate whether interstitial pulmonary disorders were prevalent among indium workers. The study was carried out in 108 male workers in the indium plant where the two interstitial pneumonia patients mentioned above were employed, and included high-resolution computed tomography (HRCT) of the lungs, pulmonary function tests and analysis of serum sialylated carbohydrate antigen KL-6 and the serum indium concentration. Significant interstitial changes were observed in 23 indium workers on HRCT and serum KL-6 was abnormally high (>500 U x mL(-1)) in 40 workers. Workers with serum indium concentrations in the highest quartile had significantly longer exposure periods, greater HRCT changes, lower diffusing capacity of the lung for carbon monoxide and higher KL-6 levels compared with those in the lowest quartile. The serum indium concentration was positively correlated with the KL-6 level and with the degree of HRCT changes. In conclusion, the results of the present study indicated that serum KL-6 and high-resolution computed tomography abnormalities were prevalent among indium workers and that these abnormalities increased with the indium burden, suggesting that inhaled indium could be a potential cause of occupational lung disease.

  9. Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos.

    Science.gov (United States)

    Usami, Makoto; Nakajima, Mikio; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Sunouchi, Momoko; Doi, Osamu

    2009-12-01

    Indium embryotoxicity was investigated by proteomic analysis with two-dimensional electrophoresis of rat embryos cultured from day 10.5 of gestation for 24h in the presence of 50 microM indium trichloride. In the embryo proper, indium increased quantity of several protein spots including those identified as serum albumin, phosphorylated cofilin 1, phosphorylated destrin and tyrosyl-tRNA synthetase. The increased serum albumin, derived from the culture medium composed of rat serum, may decrease the toxicity of indium. The increase of phosphorylated cofilin 1 might be involved in dysmorphogenicity of indium through perturbation of actin functions. In the yolk sac membrane, indium induced quantitative and qualitative changes in the protein spots. Proteins from appeared spots included stress proteins, and those from decreased or disappeared spots included serum proteins, glycolytic pathway enzymes and cytoskeletal proteins, indicating yolk sac dysfunction. Thus, several candidate proteins that might be involved in indium embryotoxicity were identified.

  10. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    Science.gov (United States)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  11. Sinterless Formation Of Contacts On Indium Phosphide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  12. Surface planarization of Cu and CuNiSn Micro-bumps embedded in polymer for below 20μm pitch 3DIC applications

    OpenAIRE

    De Preter, Inge; Derakhshandeh, Jaber; Heylen, Nancy; Van Acker, Lut; June Rebibis, Kenneth; Miller, Andy; Beyer, Gerald; Beyne, Eric

    2016-01-01

    Planarization techniques such as Surface planer (better known as Fly-cut) and chemical-mechanical polishing (CMP) can be used to improve the bump roughness and bump height uniformity within the die and wafer which can be beneficial for solder based bump stacking and Cu-Cu direct bonding [1]. In this paper the influence of both planarization techniques on 20μm pitch Cu and CuNiSn bumps embedded in polymer are studied. The polymer protects the bumps from the shearing force of the planarization ...

  13. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2016-01-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be much larger than the electron scattering opacity primarily due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity "bump" on the thermal stability and vertical structure of radiation pressure dominated accretion disks, utilizing three dimensional radiation magneto-hydrodynamic simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a $5\\times 10^8$ solar mass black hole with $\\sim 3\\%$ of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than $10$ thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as ...

  14. A'Campo curvature bumps and the Dirac phenomenon near a singular point

    CERN Document Server

    Koike, S; Paunescu, L

    2012-01-01

    The level curves of an analytic function germ almost always have bumps at unexpected points near the singularity. This profound discovery of N. A'Campo is fully explored in this paper for $f(z,w)\\in \\C\\{z,w\\}$, using the Newton-Puiseux infinitesimals and the notion of gradient canyon. Equally unexpected is the Dirac phenomenon: as $c\\ra 0$, the total Gaussian curvature of $f(z,w)=c$ accumulates in the gradient canyons.

  15. NOAA TIFF Image - 30m Slope, Charleston Bump - Deep Coral Priority Areas - Little Hales- (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the slope (in degrees) of themultibeam bathymetry of the Charleston Bump off of the...

  16. NOAA TIFF Image - 50m Rugosity, Charleston Bump - Deep Coral Priority Areas - Whiting - (2000), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  17. NOAA TIFF Image - 50m Rugosity, Charleston Bump - Deep Coral Priority Areas - Little Hales - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  18. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  19. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Whiting - (2001), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  20. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the 2006 multibeam bathymetry of the Charleston Bump off of the South Atlantic Bight,...

  1. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the slope (in degrees) of the 2006 multibeam bathymetry of the Charleston Bump off of...

  2. NOAA TIFF Image - 50m Singlebeam Slope, Charleston Bump - Deep Coral Priority Areas - Whiting - (2000), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the slope of the Charleston Bump off of the South Atlantic Bight, derived from...

  3. NOAA TIFF Image - 50m Backscatter, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the backscatter intensity of the Charleston Bump off of the South Atlantic Bight,...

  4. NOAA TIFF Image - 30m Slope, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the slope (in degrees) of the 2006 multibeam bathymetry of the Charleston Bump off of...

  5. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  6. NOAA TIFF Image - 30m Slope, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the slope (in degrees) of the 2006 multibeam bathymetry of the Charleston Bump off...

  7. The instability of viscous self-gravitating protostellar disk affected by density bump

    Science.gov (United States)

    Elyasi, Mahjubeh; Nejad-Asghar, Mohsen

    2017-09-01

    In this work, we study the instability of viscous self-gravitating protostellar disk affected by infalling Low-mass condensations (LMCs) from the envelope of collapsing molecular cloud cores. The infalling low-mass-condensations (LMCs) are considered as density bumps through the nearly Keplerian viscous accretion disk, and their evolutions are analyzed by using the linear perturbation approximation. We investigate occurrence of instability in the evolution of these density bumps. We find the unstable regions of the bumped accretion disk and evaluate the growth time scale (GTS) of the instability. We also study the radial accretion and azimuthal rotation in these unstable regions. The results show that the GTS will be minimum at a special radius so that the unstable regions can be divided in two parts (inner and outer regions). The perturbed radial and azimuthal velocities in the inner unstable regions are strengthened, while in the outer unstable regions are weakened. Decreasing the radial and azimuthal velocities in the outer unstable regions may lead to coagulation of matters. This effect can help the fragmentation of the disk and formation of the self-gravitating bound objects.

  8. Diagnostics on the source properties of type II radio burst with spectral bumps

    CERN Document Server

    Feng, S W; Kong, X L; Li, G; Song, H Q; Feng, X S; Guo, F

    2013-01-01

    In recent studies (Feng et al., 2012; Kong et al., 2012), we proposed that source properties of type II radio bursts can be inferred through a causal relationship between the special shape of the type II dynamic spectrum (e.g., bump or break) and simultaneous extreme ultraviolet (EUV)/white light imaging observations (e.g., CME-shock crossing streamer structures). As a further extension of these studies, in this paper we examine the CME event dated on December 31 2007 associated with a multiple type II radio burst. We identify the presence of two spectral bump features on the observed dynamic spectrum. By combining observational analyses of the radio spectral observations and the EUV-white light imaging data, we conclude that the two spectral bumps are resulted from CME-shock propagating across dense streamers on the southern and northern sides of the CME, respectively. It is inferred that the corresponding two type II emissions originate separately from the two CME-shock flanks where the shock geometries are...

  9. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Hou Shujin [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lei Weihua, E-mail: xfwu@pmo.ac.cn, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-20

    A particularly interesting discovery in observations of GRB 121027A is that of a giant X-ray bump detected by the Swift/X-Ray Telescope. The X-ray afterglow re-brightens sharply at {approx}10{sup 3} s after the trigger by more than two orders of magnitude in less than 200 s. This X-ray bump lasts for more than 10{sup 4} s. It is quite different from typical X-ray flares. In this Letter we propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for a long-duration gamma-ray burst. The required fall-back radius of {approx}3.5 Multiplication-Sign 10{sup 10} cm and mass of {approx}0.9-2.6 M{sub Sun} imply that a significant part of the helium envelope should survive through the mass loss during the last stage of the massive progenitor of GRB 121027A.

  10. HST Morphologies of z ~ 2 Dust-Obscured Galaxies II: Bump Sources

    CERN Document Server

    Bussmann, R S; Lotz, J; Armus, L; Brown, M J I; Desai, V; Eisenhardt, P; Higdon, J; Higdon, S; Jannuzi, B T; Floc'h, E Le; Melbourne, J; Soifer, B T; Weedman, D

    2011-01-01

    We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission. These sources, which we call "bump DOGs", have star-formation rates of 400-4000 Msun/yr and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission --- a sign of vigorous on-going star-formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power-law and spectral features that are more typical of obscured active galactic nuclei than starbursts), sub-millimeter selected galaxies (SMGs), and other less-reddened ULIRGs from the Spitzer extragalactic First Look Survey (XFLS). Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 +/-...

  11. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, Eric [Los Alamos National Laboratory; Batha, Steve [Los Alamos National Laboratory; Sedillo, Tom [Los Alamos National Laboratory; Evans, Scott [Los Alamos National Laboratory; Sorce, Chuck [LLE; Landen, Otto [LLNL; Braun, Dave [LLNL

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps, divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl Heα - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS

  12. Recovery of indium and lead from lead bullion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lead and indium were recovered by electrolysis and nonequilibrium solvent extraction process from lead bullion.The effects of current density,electrolytic period and circle amnant of electrolyte on the electrochemical dissolution of lead and indium were investigated.The effects of extraction phase ratio and mixing time on solvent extraction of indium and striping phase ratio and stripping stage on the loaded organic phase stripping were also investigated.The experimental results indicate that under optimum conditions,the purity of lead deposited on cathode is 98.5% and the deposit rate of lead is 99.9%,the dissolution rate of indium is 94.28%,the extraction rate of indium is 98.69%,the stripping rate of indium is almost 100%,and the impurity elements,such as Zn,Fe and Sn can be removed.

  13. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    Science.gov (United States)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  14. Preparation for Ultra High Pure Indium Metal for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Shashwat V. Joshi

    2014-11-01

    Full Text Available Ultra high pure Indium metal is extensively used in optoelectronic devices. Indium and its alloys become potential candidates in aerospace, defense and communication sectors. Purification of Indium has been done by Instrolec-200 Refiner followed by Directional Melting/ Freezing and Solidification Systems. Major targeted impurities are Metallic impurities Ag, Al, As, Bi, Ca, Cu, Fe, Ga, Ge, Mg, Pb, Sb, Si, Sn, and Zn. Purified Indium is characterized by analytical techniques Inductively Coupled Plasma- Optical Emission Spectrophotometry and Inductively Coupled Plasma- Mass Spectrometry.

  15. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  16. Design and fabrication process of silicon micro-calorimeters on simple SOI technology for X-ray spectral imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aliane, A. [CEA/LETI, MINATEC, 17, Avenue des Martyrs, 38054 Grenoble (France)], E-mail: abdelkader.aliane@cea.fr; Agnese, P. [CEA/LETI, MINATEC, 17, Avenue des Martyrs, 38054 Grenoble (France); Pigot, C.; Sauvageot, J.-L. [Laboratoire AIM, CNRS, Universite Paris Diderot, CEA/DSM/IRFU/Service d' Astrophysique, Bat. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Moro, F. de; Ribot, H.; Gasse, A. [CEA/LETI, MINATEC, 17, Avenue des Martyrs, 38054 Grenoble (France); Szeflinski, V. [Laboratoire AIM, CNRS, Universite Paris Diderot, CEA/DSM/IRFU/Service d' Astrophysique, Bat. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Gobil, Y. [CEA/LETI, MINATEC, 17, Avenue des Martyrs, 38054 Grenoble (France)

    2008-09-01

    Several successful development programs have been conducted on infra-red bolometer arrays at the 'Commissariat a l'Energie Atomique' (CEA-LETI Grenoble) in collaboration with the CEA-SAp (Saclay); taking advantage of this background, we are now developing an X-ray spectro-imaging camera for next generation space astronomy missions, using silicon only technology. We have developed monolithic silicon micro-calorimeters based on implanted thermistors in an improved array that could be used for future space missions. The 8x8 array consists of a grid of 64 suspended pixels fabricated on a silicon on insulator (SOI) wafer. Each pixel of this detector array is made of a tantalum (Ta) absorber, which is bound by means of indium bump hybridization, to a silicon thermistor. The absorber array is bound to the thermistor array in a collective process. The fabrication process of our detector involves a combination of standard technologies and silicon bulk micro-machining techniques, based on deposition, photolithography and plasma etching steps. Finally, we present the results of measurements performed on these four primary building blocks that are required to create a detector array up to 32x32 pixels in size.

  17. Indium antimonide nanowires arrays for promising thermoelectric converters

    Directory of Open Access Journals (Sweden)

    Gorokh G. G.

    2015-02-01

    Full Text Available The authors have theoretically substantiated the possibility to create promising thermoelectric converters based on quantum wires. The calculations have shown that the use of quantum wires with lateral dimensions smaller than quantum confinement values and high concentration and mobility of electrons, can lead to a substantial cooling of one of the contacts up to tens of degrees and to the heating of the other. The technological methods of manufacturing of indium antimonide nanowires arrays with high aspect ratio of the nanowire diameters to their length in the modified nanoporous anodic alumina matrixes were developed and tested. The microstructure and composition of the formed nanostructures were investigated. The electron microscopy allowed establishing that within each pore nanowires are formed with diameters of 35 nm and a length of 35 microns (equal to the matrix thickness. The electron probe x-ray microanalysis has shown that the atomic ratio of indium and antimony in the semiconductor nanostructures amounted to 38,26% and 61,74%, respectively. The current-voltage measurement between the upper and lower contacts of Cu/InSb/Cu structure (1 mm2 has shown that at 2.82 V negative voltage at the emitter contact, current density is 129,8 A/cм2, and the collector contact is heated up to 75 degrees during 150 sec. Thus, the experimental results confirmed the theoretical findings that the quantum wire systems can be used to create thermoelectric devices, which can be widely applied in electronics, in particular, for cooling integrated circuits (processors, thermal controlling of the electrical circuits by changing voltage value.

  18. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes

    NARCIS (Netherlands)

    Schlatmann, A.R.; Floet, D.W.; Hilberer, A; Garten, F; Smulders, P.J M; Klapwijk, T.M; Hadziioannou, G

    1996-01-01

    We have found that polymer light-emitting diodes (LEDs) contain high concentrations of metal impurities prior to operation. Narrow peaks in the electroluminescence spectrum unambiguously demonstrate the presence of atomic indium and aluminum. Rutherford backscattering spectroscopy (RBS) and x-ray ph

  19. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  20. Unsteady features of the flow on a bump in transonic environment

    Science.gov (United States)

    Budovsky, A. D.; Sidorenko, A. A.; Polivanov, P. A.; Vishnyakov, O. I.; Maslov, A. A.

    2016-10-01

    The study deals with experimental investigation of unsteady features of separated flow on a profiled bump in transonic environment. The experiments were conducted in T-325 wind tunnel of ITAM for the following flow conditions: P0 = 1 bar, T0 = 291 K. The base flow around the model was studied by schlieren visualization, steady and unsteady wall pressure measurements and PIV. The experimentally data obtained using PIV are analyzed by Proper Orthogonal Decomposition (POD) technique to investigate the underlying unsteady flow organization, as revealed by the POD eigenmodes. The data obtained show that flow pulsations revealed upstream and downstream of shock wave are correlated and interconnected.

  1. The big blue bump and soft X-ray excess of individual quasars

    CERN Document Server

    Haro-Corzo, Sinhue A R; Krongold, Yair

    2008-01-01

    For 11 quasar, we find that the soft X-ray excess component is not prolongation of the Big Blue Bump. Furthermore, adopting a theoretical continuum that is absorbed by the appropriate amount of intrinsic dust, we are able to reconcile this universal theoretical continuum with the UV break and the softness problem. Para 11 quasares, encontramos que el exceso de rayos-X suaves no es una prolongacion de la Gran Joroba Azul. Aun mas, adoptando un continuo ionizante teorico absorbido por una cantidad diversa de polvo intrinseco para cada quasar, podemos reconciliar este continuo teorico con el quiebre UV con el problema de suavidad.

  2. The reminiscence bump without memories: The distribution of imagined word-cued and important autobiographical memories in a hypothetical 70-year-old

    DEFF Research Database (Denmark)

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump is the disproportionate number of autobiographical memories dating from adolescence and early adulthood. It has often been ascribed to a consolidation of the mature self in the period covered by the bump. Here we stripped away factors relating to the characteristics of autob......The reminiscence bump is the disproportionate number of autobiographical memories dating from adolescence and early adulthood. It has often been ascribed to a consolidation of the mature self in the period covered by the bump. Here we stripped away factors relating to the characteristics...

  3. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  4. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  5. Failure mechanisms and assembly-process-based solution of FCBGA high lead C4 bump non-wetting

    Institute of Scientific and Technical Information of China (English)

    Li Wenqi; Qiu Yiming; Jin Xing; Wang Lei; Wu Qidi

    2012-01-01

    This paper studies the typical failure modes and failure mechanisms of non-wetting in an FCBGA (flip chip ball grid array) assembly.We have identified that the residual lead and tin oxide layer on the surface of the die bumps as the primary contributor to non-wetting between die bumps and substrate bumps during the chipattach reflow process.Experiments with bump reflow parameters revealed that an optimized reflow dwell time and H2 flow rate in the reflow oven can significantly reduce the amount of lead and tin oxides on the surface of the die bumps,thereby reducing the non-wetting failure rate by about 90%.Both failure analysis results and mass production data validate the non-wetting failure mechanisms identified by this study.As a result of the reflow process optimization,the failure rate associated with non-wetting is significantly reduced,which further saves manufacturing cost and increases capacity utilization.

  6. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  7. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    Science.gov (United States)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  8. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    Science.gov (United States)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  9. Clinical role of indium-111 antimyosin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.; Lahiri, A. (Northwich Park Hospital and Clinical Research Centre, Harrow (UK). Dept. of Cardiology Northwich Park Hospital and Clinical Research Centre, Harrow (UK). Div. of Cardiovascular Sciences)

    1991-11-01

    Myocyte necrosis occurs in ischaemic, inflammatory and toxic heart diseases and can be detected by indium 111 antimyosin imaging. This allows a non-invasive evaluation of the site, extent and quantitation of the severity of myocardial necrosis. Simultaneous imaging of perfusion in patients with myocardial infarction allows the differentiation of necrosed and perfused areas and the varying degrees of mismatch and overlap, which has prognostic significance. Indium 111 antimyosin imaging is useful in the assessment of patients with unstable angina and in those for whom the diagnosis of infarction or unstable angina is not clear. In suspected myocarditis, a positive scan indicates the necessity for endomyocardial biopsy to confirm inflammation, whereas a negative scan makes the diagnosis of myocarditis unlikely. Antimyosin imaging is not useful as a marker of rejection in the 1 year-post-transplant, but uptake after this period is associated with an increased rejection rate and is therefore an important tool in planning management strategies. Most patients on anthracycline treatment have demonstrable uptake, which is related to the cumulative dose and to the ejection fraction. Its role in this situation is as yet unclear. The use of new ligands and radioisotopes ({sup 99m}Tc) is likely to allow earlier imaging and produce improved quality. (orig.).

  10. Indium-111 platelet scintigraphy in carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Branchereau, A.; Bernard, P.J.; Ciosi, G.; Bazan, M.; de Laforte, C.; Elias, A.; Bouvier, J.L.

    1988-07-01

    Forty-five patients (35 men, 10 women) undergoing carotid surgery had Indium-111 platelet scintigraphy as part of their preoperative work-up. Imaging was performed within three hours after injection of the Indium-111. A second series of views was obtained 24 hours later and repeated at 24 hour intervals for two days. Of 54 scintigrams, 22 were positive and 32 negative. Positive results were defined as a twofold or more increase in local activity on a visualized carotid after 24 hours. The sensitivity of the method was 41%, intraoperatively, and the specificity, 100%. The low sensitivity places this method behind sonography and duplex-scanning for screening patients for surgery. We believe that indications for platelet scintigraphy are limited to: 1. Repeated transient ischemic attacks in the same territory with minimal lesions on arteriography and non-homogeneous plaque on duplex scan; 2. Symptomatic patients being treated medically as a possible argument for surgery; 3. Determining therapeutic policy for patients having experienced a transient ischemic attack with a coexisting intracardiac thrombus.

  11. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  12. Preparation of 5N high purified indium by the method of chemical purification-electrolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The application of indium requires high purity indium as material. 5N high purity indium had been prepared by the method of a combination of chemically smelting and electrolysis. Smelting time was 10 min, the abstraction rate of cadmium was 80%-90% when used solution of I2-KI and glycerine to smelt indium. 4N metal indium was used as anode, high purity indium as cathode, In2(SO4)3-H2SO4 system as electrolyte, and In content is 100 g/L, pH 2-3 and current density 80-100 A/m2. The thallium was removed by smelting indium using 15% NH4Cl-glycerine solution for 20 min and tin by smelting indium using NaOH and NaNO3 for 20 min. The removed rate of tin was 60%.The product quality of indium reached national standard of 5N high purity indium.

  13. Deep-UV plasmonics of indium (Conference Presentation)

    Science.gov (United States)

    Kumamoto, Yasuaki; Saito, Yuika; Taguchi, Atsushi; Honda, Mitsuhiro; Kawata, Satoshi

    2016-09-01

    Deep-UV (DUV) plasmonics can expand the possibilities of DUV-based techniques (i.e. UV lithography, UV spectroscopy, UV imaging, UV disinfection). Here we present that indium is useful for research of DUV plasmonics. According to dielectric function, indium and aluminum are low-loss, DUV plasmonic metals, of which the imaginary parts are far smaller than those of other metals (i.e. rhodium, platinum) in the DUV range. Additionally, the real parts in the whole DUV range are close to but smaller than -2, allowing efficient generation of surface plasmon polaritons on an indium or aluminum nanosphere. In comparison to aluminum, indium provides a distinctive feature for fabricating DUV-resonant substrates. It is highly apt to form a grainy deposition film on a standard, optically transparent substrate (i.e. fused silica). The surface plasmon resonance wavelength becomes promptly tailored by simply varying the deposition thickness of the films, resulting in different grain sizes. Thus, we fabricated indium-coated substrates having different plasmon resonance wavelengths by varying the deposition thicknesses from 10 to 50 nm. DUV resonance Raman scattering of adenine molecules was best enhanced using the 25 nm deposition thickness substrates by the factor of 2. Furthermore, the FDTD calculation simulated the electromagnetic field enhancement over a grainy, indium-coated fused silica substrate. Both results indicate how indium plays an indispensable role in study of DUV plasmonics.

  14. High-efficiency indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  15. Junction characteristics of indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  16. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection%The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    宋金星; 康文; 霍丽华; 郝耀斗; 王磊

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spalla- tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV) magnets. The BH magnets are operated at a repetition rat

  17. Monte Carlo simulation of electron slowing down in indium

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)

    2015-07-15

    Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.

  18. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  19. Nonlinear electronic transport behavior in Indium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Cloves G., E-mail: cloves@pucgoias.edu.br [Departamento de Fisica, Pontificia Universidade Catolica de Goias, CP 86, 74605-010 Goiania, Goias (Brazil)

    2012-11-15

    A theoretical study on the nonlinear transport of electrons and of the nonequilibrium temperature in n-doped Indium Nitride under influence of moderate to high electric fields (in this nonlinear domain) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The electric current and the mobility in the steady state are obtained, and their dependence on the electric field strength and on the concentration (that is, a mobility dependent nonlinearly on field and concentration) is obtained and analyzed. -- Highlights: Black-Right-Pointing-Pointer We have reported on the topic of nonlinear transport (electron mobility) in n-doped InN. Black-Right-Pointing-Pointer The results evidence the presence of two distinctive regimes. Black-Right-Pointing-Pointer The dependence of the mobility on the electric field is manifested through of the relaxation times.

  20. Indium-carbon pairs in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G; Vianden, R [Helmholtz Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2003-08-06

    The interactions of carbon with the probe nucleus {sup 111}In have been studied in germanium using the perturbed angular correlation method, which has the ability to detect the microscopic environments of the probe atom by means of the interaction of the nuclear moments of the probe with the surrounding electromagnetic fields. At high dose carbon implantation in germanium two complexes have been identified by their unique quadrupole interaction frequencies. An interaction frequency of {nu}{sub Q1} = 207(1) MHz ({eta} = 0.16(3)) appeared at annealing temperatures below 650 deg. C. Above 650 deg. C, it was replaced by a second interaction frequency of {nu}{sub Q2} 500(1) MHz ({eta} = 0). The frequencies are attributed to two different carbon-indium pairs. The orientation of the corresponding electric field gradients and the thermal stability of the defect complexes are studied.

  1. High quality factor indium oxide mechanical microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier [Department of Materials Physics, Faculty of Physics, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  2. Investigation of turbulent boundary layer flow over 2D bump using highly resolved large eddy simulation

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2011-01-01

    A large eddy simulation (LES) study of turbulent non-equilibrium boundary layer flow over 2 D Bump, at comparatively low Reynolds number Reh = U∞h/ν = 1950, was conducted. A well-known LES issue of obtaining and sustaining turbulent flow inside the computational domain at such low Re, is addresse...... partially confirm a close interdependency between generation and evolution of internal layers and the abrupt changes in the skin friction, previously reported in the literature. © 2011 American Society of Mechanical Engineers......., showed a good agreement with the available laser Doppler anemometry (LDA) measurements. Analysis of the flow was directly able to identify and confirm the existence of internal layers at positions related to the vicinity of the upstream and downstream discontinuities in the surface curvature and also...

  3. Failure Modes of Lead Free Solder Bumps Formed by Induction Spontaneous Heating Reflow

    Institute of Scientific and Technical Information of China (English)

    Mingyu LI; Hongbo XU; Jongmyung KIM; Hongbae KIM

    2007-01-01

    The shear failure modes and respective failure mechanism of Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder bumping on Au/Ni/Cu metallization formed by induction spontaneous heating reflow process have been investigated through the shear test after aging at 120℃ for 0, 1, 4, 9 and 16 d. Different typical shear failure behaviors have been found in the loading curves (shear force vs displacement). From the results of interfacial morphology analysis of the fracture surfaces and cross-sections, two main typical failure modes have been identified. The probabilities of the failure modes occurrence are inconsistent when the joints were aged for different times. The evolution of the brittle Ni3Sn4 and Cu-Ni-Au-Sn layers and the grains coarsening of the solder bulk are the basic reasons for the change of shear failure modes.

  4. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    SONG Jin-Xing; KANG Wen; HUO Li-Hua; HAO Yao-Dou; WANG Lei

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spallar tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV)magnets. The BH magnets are operated at a repetition rate of 25 Hz and are excited with a trapezoid rectangle waveform with about 1.6 milliseconds duration. The eddy current is induced in BH magnets and in the end plates it is expected to be large, so the heat generation is of our great concern. In this paper, the eddy current loss of the BH magnet has been investigated and calculated by using a coupling method of 3D electromagnetic and thermal analysis. The accuracy of the analysis is confirmed by testing the prototype BH magnet. The end plate temperature of the BH magnet provided with slit cuts has been decreased obviously and met the requirements.

  5. Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian

    Science.gov (United States)

    Benedikt, Jiří; Girg, Petr; Kotrla, Lukáš; Takáč, Peter

    2016-01-01

    The validity of the weak and strong comparison principles for degenerate parabolic partial differential equations with the p-Laplace operator Δp is investigated for p > 2. This problem is reduced to the comparison of the trivial solution (≡0, by hypothesis) with a nontrivial nonnegative solution u (x , t). The problem is closely related also to the question of uniqueness of a nonnegative solution via the weak comparison principle. In this article, realistic counterexamples to the uniqueness of a nonnegative solution, the weak comparison principle, and the strong maximum principle are constructed with a nonsmooth reaction function that satisfies neither a Lipschitz nor an Osgood standard "uniqueness" condition. Nonnegative multi-bump solutions with spatially disconnected compact supports and zero initial data are constructed between sub- and supersolutions that have supports of the same type.

  6. Solderjet bumping technique used to manufacture a compact and robust green solid-state laser

    Science.gov (United States)

    Ribes, P.; Burkhardt, T.; Hornaff, M.; Kousar, S.; Burkhardt, D.; Beckert, E.; Gilaberte, M.; Guilhot, D.; Montes, D.; Galan, M.; Ferrando, S.; Laudisio, M.; Belenguer, T.; Ibarmia, S.; Gallego, P.; Rodríguez, J. A.; Eberhardt, R.; Tünnermann, A.

    2015-06-01

    Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

  7. The reminiscence bump for public events: A review of its prevalence and taxonomy of alternative age distributions

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark

    2013-01-01

    , with a number of alternative age distributions seen in the literature. Therefore, I present a taxonomy of these alternative age distributions. Lastly, I discuss the implications of the existing literature regarding the mechanisms underlying the bump and offer suggestions for future research....

  8. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  9. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Science.gov (United States)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  10. Method of manufacturing tin-doped indium oxide nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form an indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.

  11. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    Directory of Open Access Journals (Sweden)

    Loomis Eric

    2013-11-01

    Full Text Available Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY, which sent a ∼1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα − 2.76keV backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  12. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.

    2011-01-01

    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  13. Indium-111 octreotide uptake in the surgical scar

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, B.; Bekis, R.; Durak, H.; Derebeck, E. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Nuclear Medicine; Sen, M. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Radiation Oncology

    1999-07-01

    Indium-111 octreotide uptake has been reported in various somatostatin receptor positive tumors, granulomas and autoimmune diseases in which activated leucocytes may play a role, subcutaneous cavernous hemangioma and angiofibroma. We present Indium-111 octreotide uptake in a surgical abdominal scar tissue 1.5 to 6 months after surgery in a patient who had been treated for recurrent carcinoid tumor in the rectosigmoid junction. Indium-111 octreotide uptake in a surgical scar may be related to the binding to somatostatin receptors in the activated lymphocytes and fibroblasts that is previously reported. (orig.) [German] In verschiedenen Somatostatinrezeptor-positiven Tumoren, Granulomen, bei Autoimmunerkrankungen, in denen aktivierte Leukozyten eine Rolle spielen, subcutanen kavernoesen Hammangiomen und Angiofibromen wurde ueber die Anreicherung von Indium-111-Oktreotid berichtet. Wir berichten ueber die Anreicherung von Indium-111-Oktreotid in einer chirurgischen Narbe ueber dem Abdomen nach 1,5 und 6 Monaten bei einem Patienten mit einem Rezidiv-Karzinoid im rektosigmoidalen Uebergang. Die Anreicherung von Indium-111-Oktreotid in chirurgischen Narbengewebe koennte in Zusammenhang stehen mit einer Bindung an Somatostationrezeptoren in aktivierten Lymphozyten und Fibroblasten, ueber die schon berichtet wurde. (orig.)

  14. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    Science.gov (United States)

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-01

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding π/2 at 1.0 THz was achieved in a ˜517 μm-thick cell. The phase shifter exhibits high transmittance (˜78%). The driving voltage required for quarter-wave operation is as low as 5.66 V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  15. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    Science.gov (United States)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  16. Low-voltage gallium-indium-zinc-oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application

    NARCIS (Netherlands)

    Tripathi, A.K.; Smits, E.C.P.; Putten, J.B.P.H. van der; Neer, M. van; Myny, K.; Nag, M.; Steudel, S.; Vicca, P.; O'Neill, K.; Veenendaal, E. van; Genoe, G.; Heremans, P.; Gelinck, G.H.

    2011-01-01

    In this work a technology to fabricate low-voltage amorphous gallium-indium-zinc oxide thin film transistors (TFTs) based integrated circuits on 25 µm foils is presented. High performance TFTs were fabricated at low processing temperatures (<150 °C) with field effect mobility around 17 cm2 /V s. The

  17. A review of indium phosphide space solar cell fabrication technology

    Science.gov (United States)

    Spitzer, M. B.; Dingle, B.; Dingle, J.; Morrison, R.

    1990-01-01

    A review of the status of InP cell efficiency and of approaches to the reduction of cell cost is presented. The use of heteroepitaxial techniques such as InP-on-GaAs and InP-on-Si is discussed along with the use of chemical and mechanical techniques for removal and recovery of the substrate. The efficiency ultimately obtainable with designs made possible by such an approach is calculated.

  18. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    StanislawSzweda

    2001-01-01

    In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction bf the rock mass, are discussed. The measurements have been taken in the Iongwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs Fro, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs Fst.p Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a Iongwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advanta igeous influence on their life, Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit

  19. Subnanometer Thin β-Indium Sulfide Nanosheets.

    Science.gov (United States)

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  20. Indium Antimonide Nanowires: Synthesis and Properties

    Science.gov (United States)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  1. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    Science.gov (United States)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  2. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum

    Science.gov (United States)

    Huber, Patrick

    2017-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the so-called 5 MeV bump. This analysis method has general applicability and, in particular, with higher statistics data sets, will be able to shed significant light on the issue of the bump. With some caveats, this should also allow us to improve the sensitivity for sterile neutrino searches in NEOS.

  3. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Angstrom Extinction Bump and Diffuse Interstellar Bands

    CERN Document Server

    Xiang, F Y; Zhong, J X

    2012-01-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars -- the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Angstrom extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Angstrom extinction bump is also often attributed to the \\pi--\\pi* transition in ...

  4. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes

    CERN Document Server

    Pérez-Arancibia, Carlos

    2014-01-01

    This paper presents high-order integral equation methods for evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely: scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined--even at and around points where singular fields and infinite currents exist.

  5. Optical Properties of Indium Doeped ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available We report the synthesis of the ZnO nanowires (NWs with different indium concentrations by using the thermal evaporation method. The gold nanoparticles were used as the catalyst and were dispersed on the silicon wafer to facilitate the growth of the ZnO NWs. High resolution transmission electron microscopy confirms that the ZnO NWs growth relied on vapor-liquid-solid mechanism and energy dispersion spectrum detects the atomic percentages of indium in ZnO NWs. Scanning electron microscopy shows that the diameters of pure ZnO NWs range from 20 to 30 nm and the diameters of ZnO:In were increased to 50–80 nm with increasing indium doping level. X-ray diffraction results point out that the crystal quality of the ZnO NWs was worse with doping higher indium concentration. Photoluminescence (PL study of the ZnO NWs exhibited main photoemission at 380 nm due to the recombination of excitons in near-band-edge (NBE. In addition, PL results also indicate the slightly blue shift and PL intensity decreasing of NBE emission from the ZnO NWs with higher indium concentrations could be attributed to more donor-induced trap center generations.

  6. Does recall of a past music event invoke a reminiscence bump in young adults?

    Science.gov (United States)

    Schubert, Emery

    2016-08-01

    Many studies of the reminiscence bump (RB) in music invoke memories from different autobiographical times by using stimulus specific prompts (SSPs). This study investigated the utility of a non-SSP paradigm to determine whether the RB would emerge when participants were asked to recall a single memorable musical event from "a time long ago". The presence of a RB in response to music has not been obtained in such a manner for younger participants. Eighty-eight 20-22 year olds reported music episodes that peaked when their autobiographical age was 13-14 years. Self-selected stimuli included a range of musical styles, including classical and non-Western pop forms, such as J-pop and K-pop, as well as generational pop music, such as the Beatles. However, most participants reported pop/rock music that was contemporaneous with encoding age, providing support for the utility of published SSP paradigms using pop music. Implications for and limitations of SSP paradigms are discussed. Participants were also asked to relate the selected musical piece to current musical tastes. Most participants liked the music that they selected, with many continuing to like the music, but most also reported a general broadening of their taste, consistent with developmental literature on open-earedness.

  7. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    Science.gov (United States)

    Zhong, Shu-Qing; Xin, Li-Ping; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-11-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow light curve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band light curve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of ∼1.70. The optical and X-ray afterglow light curves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the gamma-ray burst jet is ∼ 1 % and the magnetization parameter of the afterglow jet is \\lt 0.04 with a derived extremely low {ε }B (the ratio of shock energy to the magnetic field) of (1.64+/- 0.25)× {10}-6. These results indicate that the jet may be matter dominated. A discussion on delayed energy injection from the accretion of the late fall-back material of its pre-supernova star is also presented.

  8. Using a shock control bump to improve the performance of an axial compressor blade section

    Science.gov (United States)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  9. The influential effect of blending, bump, changing period and eclipsing Cepheids on the Leavitt law

    CERN Document Server

    García-Varela, A; Sabogal, B E; Domínguez, S Vargas; Martínez, J

    2016-01-01

    The investigation of the non-linearity of the Leavitt law is a topic that began more than seven decades ago, when some of the studies in this field found that the Leavitt law has a break at about ten days. The goal of this work is to investigate a possible statistical cause of this non-linearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that, in order to obtain the Leavitt law by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using $M$- and $MM$-regressions we establish firmly and without doubts the linearity of the Leavitt law in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses or period changes, do not affect the Leavitt law for this galaxy. For the SMC, including this kind of Cepheids, it is not possible to find an adequ...

  10. Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading Edge Bump

    Directory of Open Access Journals (Sweden)

    Majid Asli

    2015-01-01

    Full Text Available Aerodynamic performance improvement of wind turbine blade is the key process to improve wind turbine performance in electricity generated and energy conversion in renewable energy sources concept. The flow behavior on wind turbine blades profile and the relevant phenomena like stall can be improved by some modifications. In the present paper, Humpback Whales flippers leading edge protuberances model as a novel passive stall control method was investigated on S809 as a thick airfoil. The airfoil was numerically analyzed by CFD method in Reynolds number of 106 and aerodynamic coefficients in static angle of attacks were validated with the experimental data reported by Somers in NREL. Therefore, computational results for modified airfoil with sinusoidal wavy leading edge were presented. The results revealed that, at low angles of attacks before the stall region, lift coefficient decreases slightly rather than baseline model. However, the modified airfoil has a smooth stall trend while baseline airfoil lift coefficient decreases sharply due to the separation which occurred on suction side. According to the flow physics over the airfoils, leading edge bumps act as vortex generator so vortices containing high level of momentum make the flow remain attached to the surface of the airfoil at high angle of attack and prevent it from having a deep stall.

  11. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    CERN Document Server

    Zhong, Shu-Qing; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-01-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow lightcurve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band lightcurve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of $\\sim 1.70$. The optical and X-ray afterglow lightcurves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the GRB jet is $\\sim 1\\%$ and the magnetization parameter of the afterglow jet is $<0.04$ with the derived extremely low $\\epsilon_B$ (the fraction of shock energy to magnetic field) of $(1.64\\pm 0.25)\\times 10^{-6}$. These results indicate that the jet may be matter dominated. Discussion on delayed ...

  12. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Å Extinction Bump and Diffuse Interstellar Bands

    Science.gov (United States)

    Xiang, F. Y.; Li, Aigen; Zhong, J. X.

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars—the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Å extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Å extinction bump is also often attributed to the π-π* transition in PAHs. If PAHs are indeed responsible for both the 2175 Å extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 Å extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 Å feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 Å bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 Å bump.

  13. NOAA TIFF Image - 30m Slope, Charleston Bump - Deep Coral Priority Areas - R/V Maurice Ewing - (1997), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the backscatter intensity of the Charleston Bump off of the South Atlantic Bight,...

  14. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - R/V Maurice Ewing - (1997), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the backscatter intensity of the Charleston Bump off of the South Atlantic Bight,...

  15. NOAA TIFF Image - 30m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  16. NOAA TIFF Image - 30m Slope, Charleston Bump - Deep Coral Priority Areas - R/V Maurice Ewing - (1997), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the backscatter intensity of the Charleston Bump off of the South Atlantic Bight,...

  17. NOAA TIFF Image - 30m Rugosity, Charleston Bump - Deep Coral Priority Areas - R/V Maurice Ewing - (1997), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  18. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Little Hales - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  19. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Little Hales - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  20. NOAA TIFF Image - 30m Backscatter, Charleston Bump - Deep Coral Priority Areas - NOAA Ship Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the backscatter intensity of the Charleston Bump off of the South Atlantic Bight,...

  1. Improving Touschek lifetime in ultralow-emittance lattices through systematic application of successive closed vertical dispersion bumps

    Science.gov (United States)

    Breunlin, J.; Leemann, S. C.; Andersson, Å.

    2016-06-01

    In present ultralow-emittance storage ring designs the emittance coupling required for the production of vertically diffraction-limited synchrotron radiation in the hard x-ray regime is achieved and in many cases surpassed by a correction of the orbit and the linear optics alone. However, operating with a vertical emittance lower than required is disadvantageous, since it decreases Touschek lifetime and reduces brightness due to the transverse emittance increase from intrabeam scattering. In this paper we present a scheme consisting of closed vertical dispersion bumps successively excited in each arc of the storage ring by skew quadrupoles that couple horizontal dispersion into the vertical plane to a desired level and thereby raise the vertical emittance in a controlled fashion. A systematic approach to vertical dispersion bumps has been developed that suppresses dispersion and betatron coupling in the straight sections in order to maintain a small projected emittance for insertion devices. In this way, beam lifetime can be significantly increased without negatively impacting insertion device source properties and hence brightness. Using simulation results for the MAX IV 3 GeV storage ring including magnet and alignment imperfections we demonstrate that Touschek lifetime can be increased by more than a factor 2 by adjusting the vertical emittance from 1.3 pm rad (after orbit correction) to 8 pm rad (after application of dispersion bumps) using two to three independent skew quadrupole families all the while ensuring deviations from design optics are restrained to a minimum.

  2. Design of main linac emittance tuning bumps for the Compact Linear Collider and the International Linear Collider

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The installation of elements in the main linac of future linear colliders can only be done with a limited precision. The inevitable misalignments lead to unacceptable emittance growth. Beam-based alignment, e.g., one-to-one correction, dispersion free steering, or ballistic alignment, is necessary to reduce the emittance growth. In some cases, this is, however, not sufficient. For further reduction of the emittance growth, so-called emittance tuning bumps have to be used. A general strategy for the design of emittance tuning bumps has been developed and tested. Simulations suggest that the method can be conveniently used to understand the weaknesses of existing emittance tuning bumps and to significantly improve their performance in terms of, e.g., emittance reduction capability and convergence speed. An example of an application is the design of ten orthogonal knobs that, according to simulations, can reduce the normalized emittance growth in the Compact Linear Collider (CLIC) main linac from 23.8 to 0.34 nm...

  3. Self-Similar Bumps and Wiggles: Isolating the Evolution of the BAO Peak with Power-law Initial Conditions

    CERN Document Server

    Orban, Chris

    2011-01-01

    Motivated by cosmological surveys that demand accurate theoretical modeling of the baryon acoustic oscillation (BAO) feature in galaxy clustering, we analyze N-body simulations in which a BAO-like gaussian bump modulates the linear theory correlation function \\xi_L(r)=(r_0/r)^{n+3} of an underlying self-similar model with initial power spectrum P(k)=A k^n. These simulations test physical and analytic descriptions of BAO evolution far beyond the range of most studies, since we consider a range of underlying power spectra (n=-0.5, -1, -1.5) and evolve simulations to large effective correlation amplitudes (equivalent to \\sigma_8=4-12 for r_bao = 100 Mpc/h). In all cases, non-linear evolution flattens and broadens the BAO bump in \\xi(r) while approximately preserving its area. This evolution resembles a "diffusion" process in which the bump width \\sigma_bao is the quadrature sum of the linear theory width and a length proportional to the rms relative displacement \\Sigma_pair(r_bao}) of particle pairs separated by...

  4. Design of main linac emittance tuning bumps for the Compact Linear Collider and the International Linear Collider

    Directory of Open Access Journals (Sweden)

    Peder Eliasson

    2008-01-01

    Full Text Available The installation of elements in the main linac of future linear colliders can only be done with a limited precision. The inevitable misalignments lead to unacceptable emittance growth. Beam-based alignment, e.g., one-to-one correction, dispersion free steering, or ballistic alignment, is necessary to reduce the emittance growth. In some cases, this is, however, not sufficient. For further reduction of the emittance growth, so-called emittance tuning bumps have to be used. A general strategy for the design of emittance tuning bumps has been developed and tested. Simulations suggest that the method can be conveniently used to understand the weaknesses of existing emittance tuning bumps and to significantly improve their performance in terms of, e.g., emittance reduction capability and convergence speed. An example of an application is the design of ten orthogonal knobs that, according to simulations, can reduce the normalized emittance growth in the Compact Linear Collider (CLIC main linac from 23.8 to 0.34 nm with convergence within two iterations. Four orthogonal knobs have also been designed for the International Linear Collider (ILC. Simulations show that these knobs converge within a single iteration and reduce normalized emittance growth from 3.8 to 0.05 nm.

  5. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  6. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Science.gov (United States)

    Sears, Jasmine; Gibson, Ricky; Gehl, Michael; Zandbergen, Sander; Keiffer, Patrick; Nader, Nima; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2017-05-01

    Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM) Energy Dispersive Spectroscopy (EDS). Several sizes of islands are examined, with larger islands exhibiting high (>94%) average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  7. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  8. Clinical roles in indium-111 octreotide scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hain, S.F.; Roach, P.J [Royal North Shore Hospital, St Leonards, NSW (Australia). Department of Nuclear Medicine

    1997-12-01

    Full text: Octreotide is being increasingly used in the assessment of various tumour types, particularly those of neuroendocrine origin. It has even been proposed that octreotide scintigraphy should be used as the first localisation technique in such tumours. We present three cases which show different clinical roles for 111 In- octreotide scintigraphy in both evaluating the extent of disease and assessing likely response to somatostatin therapy. In the first case, a 55-year-old male presented with flushing, diarrhoea, weight loss and elevated urinary 5-HIM levels. Clinical examination showed left supraclavicular Iymphadenopathy and CT revealed only paraaortic Iymphadenopathy. In comparison, octreotide scintigraphy revealed much more extensive disease than noted on CT in both the abdomen and chest. Lesions were histologically confirmed as carcinoid tumour. In the second case, a 52-year-old male underwent scintigraphy for staging of small cell lung carcinoma. Similarly, more extensive disease was noted on octreotide scintigraphy than on CT scanning. In the third case, a 1 6-year-old female underwent debulking surgery for a growth hormone and prolactin producing pituitary tumour. The presence of somatostatin receptors was demonstrated by octreotide scintigraphy. This was performed to determine the potential response to somatostatin therapy which has been reported to reduce tumour size in these patients. These cases show a clinical role for {sup 111}In octreotide scintigraphy in the evaluation of disease extent in neuroendocrine tumours as well as some other tumour sub-types. In the first two cases described, scintigraphy revealed more extensive disease than CT scanning. Indium-111 octreotide can also be used to predict the response of such patients to somatostatin therapy

  9. Indium oxide inverse opal films synthesized by structure replication method

    Science.gov (United States)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  10. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  11. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    in- package integration. It involves the integration of circuits from fully processed wafers using micro- bumps and TSVs. There are 3 basic kinds of... bumping ” and “Cu-to-Cu” categories. The first approach involves the fabrication of micro- bumps on both sides of the thinned wafers with TSVs, and...interfacing wafers with bumps aligned. The application of pressure and heat makes permanent contact between bumps . A thin adhesive layer can be used between

  12. Control of flow separation on a contour bump by jets in a Mach 1.9 free-stream: An experimental study

    Science.gov (United States)

    Lo, Kin Hing; Zare-Behtash, Hossein; Kontis, Konstantinos

    2016-09-01

    Flow separation control over a three-dimensional contour bump using jet in a Mach 1.9 supersonic free-stream has been experimentally investigated using a transonic/supersonic wind tunnel. Jet total pressure in the range of 0-4 bar was blowing at the valley of the contour bump. Schlieren photography, surface oil flow visualisation and particle image velocimetry measurements were employed for flow visualisation and diagnostics. Experimental results show that blowing jet at the valley of the contour bump can hinder the formation and distort the spanwise vortices. The blowing jet can also reduce the extent of flow separation appears downstream of the bump crest. It was observed that this approach of flow control is more effective when high jet total pressure is employed. It is believed that a pressure gradient is generated as a result of the interaction between the flow downstream of the bump crest and the jet induced shock leads to the downwards flow motion around the bump valley.

  13. Growth and characterization of indium antimonide and gallium antimonide crystals

    Indian Academy of Sciences (India)

    N K Udayashankar; H L Bhat

    2001-10-01

    Indium antimonide and gallium antimonide were synthesized from the respective component elements using an indigenously fabricated synthesis unit. Bulk crystals of indium antimonide and gallium antimonide were grown using both the vertical and horizontal Bridgman techniques. Effect of ampoule shapes and diameters on the crystallinity and homogeneity was studied. The grown crystals were characterized using X-ray analysis, EDAX, chemical etching, Hall effect and conductivity measurements. In the case of gallium antimonide, effect of dopants (Te and In) on transport and photoluminescence properties was investigated.

  14. Study of electrical resistivity of lithium-indium thin films

    Science.gov (United States)

    Chandra, Gyanesh; Katyal, O. P.

    1984-12-01

    Experimental results are presented on the electrical resistivity of lithium-indium films. The resistivity has been studied as a function of temperature (150-300 K), thickness of the films (570-3300 Å) and concentration of Li (11.0-58.7 at. %). The resistivity is observed to be minimum for samples having a Li concentration of 25 and 50 at. %. In general, resistivity varies linearly with temperature but resistivity versus temperature plot shows two distinct regions which have different slopes, i.e., dρ/dT. The role of lithium in indium-lithium films is discussed.

  15. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn [Binghamton Univ., NY (United States); Quackenbush, Nicholas F. [Binghamton Univ., NY (United States); Williams, Deborah S. [Binghamton Univ., NY (United States); Senger, Mikell [Binghamton Univ., NY (United States); Woicik, Joseph C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); White, Bruce E. [Binghamton Univ., NY (United States); Piper, Louis F. [Binghamton Univ., NY (United States)

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  16. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2010-01-01

    Full Text Available Abstract This paper reports two new indium tin oxide (ITO-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length, were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter. The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested.

  18. Platelet labelling with indium-hydroxypyridinone and indium-hydroxypyranone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, R.D. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom)); Ellis, B.L. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Hider, R.C. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Porter, J.B. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom))

    1994-10-01

    In order to identify new compounds which label platelets without affecting their function, three classes of metal chelating agents have been compared with oxine for their efficiency of indium-113m platelet labelling and for their short- and long-term effects on platelet function. The 3-hydroxypyridinones (both 2-ones and 4-ones) and 3-hydroxypyranones are bidentate chelators of trivalent metal ions that are neutrally charged in the metal-complexed form and hence gain access to cells readily. The hydroxypyranone ethylmaltol has been compared with the 3-hydroxypyridin-4-one CP94 and to its structurally related lipophilic analogue CP25 as well as with the 3-hydroxypyridin-2-one, CP02. The platelet labelling efficiencies with these ligands were between 75% and 95% of that obtained with oxine, following a 12-min incubation in saline. The optimal concentration for the hydroxypyridin-2-ones and hydroxypyridin-4-ones was approximately 10 [mu]M compared with 100 [mu]M for the hydroxypyranone ethylmaltol and 60 [mu]M for oxine. Oxine and tropolone were found to produce significant inhibition of platelet aggregation to collagen in short-term experiments (10 min) or in longer term (18 and 42 h) ex vivo platelet cultures respectively. By contrast, ethylmaltol had no such inhibitory effects at either time interval. The relatively hydrophilic hydroxypyridin-4-one CP94 showed no inhibitory effects on collagen-induced aggregation in short-term studies, unlike the more lipid-soluble derivative CP25. These results suggest that ethylmaltol and related pyranones may have advantages over oxine and tropolone as indium platelet labelling agents where it is important not to damage platelets by the labelling process itself. (orig.)

  19. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    Stanislaw Szweda

    2001-01-01

    In the article the results of measurements of the resultant force in th e legs of a powered roof support unit, caused by a dynamic interaction of the ro ck mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs Fm, recorded during a dynam ic interaction of the rock mass, is proportional to the initial static force in the legs Fst,p. Th erefore a need for a careful selection of the initial load of the powered roof s upport, according to the local mining and geological conditions, results from su ch a statement. Setting the legs with the supporting load exceeding the indispen sable value for keeping the direct roof solids in balance, deteriorating the ope rational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dy namic interaction of the rock mass. A correct selection of the initial load caus es a decrease in the intensity of a dynamic interaction of the rock mass on powe red roof supports, which also has an advantageous influence on their life.   Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the exte rnal dynamic forces may act on the unit both from the roof as well as from the f loor. The changes of the force in the legs caused by dynamic phenomena intrinsic ally created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsi c phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, w here the bumping hazard occurs, will also transmit the loads

  20. Summary memorandum: EPRI (Electric Power Research Institute) copper indium diselenide scoping workshop

    Energy Technology Data Exchange (ETDEWEB)

    Morel, D.L. (University of South Florida, Tampa, FL (USA). Dept. of Electrical Engineering); Peterson, T.M. (Electric Power Research Inst., Palo Alto, CA (USA))

    1991-02-01

    This report reviews the proceedings and follow-up discussions of an EPRI workshop held in Chicago on March 22--23, 1990. The workshop carefully assessed the key R D issues facing Copper Indium Diselenide (CIS) technology and provided EPRI with a basis for deciding whether or not it should play a role in addressing them. The workshop began by reviewing CIS' recent history and technical progress. The participants, who represented a broad cross-section of the CIS R D community, then identified and tried to prioritize its important long-term R D needs. They agreed that most of the needed research is now addressed, but not optimally supported. They found three broad research categories that they agreed were central to advancing the technology: characterization of photovoltaic mechanisms, characterization and development of deposition processes, and development of novel alloys.

  1. Sputtered Ni-Zn under bump metallurgy (UBM) for Sn-Ag-Cu solders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jin; Kim, Young Min [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Young-Ho, E-mail: kimyh@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ni-Zn UBM can effectively suppress the growth of IMCs and the consumption of UBM. Black-Right-Pointing-Pointer The growth of (Ni, Cu){sub 3}Sn{sub 4} was retarded at the SAC305/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Only a single (Cu, Ni){sub 6}Sn{sub 5} formed at the SAC107/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Segregated Zn atoms on IMC layers retarded the interdiffusion of Cu, Ni, and Sn. Black-Right-Pointing-Pointer Sputtered Ni-Zn UBM is promising for Pb-free solder flip chip applications. - Abstract: We developed a new sputtered under bump metallurgy (UBM) based on Ni-20wt% Zn thin films for Pb-free solders. This study focuses on the interfacial reactions between two Pb-free solders (Sn3.0Ag0.5Cu and Sn1.0Ag0.7Cu) and a Ni-Zn alloy UBM. By adding Zn to Ni UBM, Zn is incorporated into intermetallic compounds (IMCs) to form a quaternary Cu-Ni-Zn-Sn phase at the solder/Ni-Zn interface after reflow and subsequent isothermal aging. The Ni-Zn UBM sufficiently reduces the interfacial reaction and IMCs formation rates as well as UBM consumption rates compared to a Ni UBM. In particular, the formation of (Ni, Cu){sub 3}Sn{sub 4} IMC was significantly retarded by adding Zn into UBM.

  2. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    Science.gov (United States)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  3. Quantitative analysis of amorphous indium zinc oxide thin films synthesized by Combinatorial Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Axente, E.; Socol, G.; Luculescu, C.R.; Craciun, V. [National Institute for Lasers, Plasma and Radiation Physics, Laser-Surface-Plasma Interactions Laboratory, Lasers Department, Magurele-Bucharest (Romania); Beldjilali, S.A. [LP3, CNRS-Aix-Marseille University, Marseille (France); LPPMCA, USTOMB-Universite des Sciences et de la Technologie d' Oran, BP 1505, Oran (Algeria); Mercadier, L.; Hermann, J. [LP3, CNRS-Aix-Marseille University, Marseille (France); Trinca, L.M.; Galca, A.C. [National Institute of Materials Physics, Laboratory of Multifunctional Materials and Structures, Magurele-Bucharest (Romania); Pantelica, D.; Ionescu, P. [National Institute of Physics and Nuclear Engineering Horia Hulubei, Magurele-Bucharest (Romania); Becherescu, N. [Apel Laser, Bucharest (Romania)

    2014-10-15

    The use of amorphous and transparent oxides is a key for the development of new thin film transistors and displays. Recently, indium zinc oxide (IZO) was shown to exhibit high transparency in the visible range, low resistivity, and high mobility. Since the properties and the cost of these films depend on the In/(In + Zn) values, the measurement of this ratio is paramount for future developments and applications. We report on accurate analysis of the elemental composition of IZO thin films synthesized using a Combinatorial Pulsed Laser Deposition technique. The monitoring of the thin films elemental composition by Laser-Induced Breakdown Spectroscopy was chosen in view of further in situ and real-time technological developments and process control during IZO fabrication. Our analytical approach is based on plasma modeling, the recorded spectra being then compared to the spectral radiance computed for plasmas in local thermal equilibrium. The cation fractions measured were compared to values obtained by complementary measurements using energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. Spectroscopic ellipsometry assisted the scientific discussion. A good agreement between methods was found, independently of the relative fraction of indium and zinc that varied from about 65 to 90 and 35 to 10 at%, respectively, and the measurement uncertainties associated to each analytical method. (orig.)

  4. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  5. Characteristics of Laser Reflow Bumping of Sn3.5Ag and Sn3.5Ag0.5Cu Lead-Free Solder Balls

    Institute of Scientific and Technical Information of China (English)

    Yanhong TIAN; Chunqing WANG; Yarong CHEN

    2008-01-01

    Lead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 interrnetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.

  6. Cross-current leaching of indium from end-of-life LCD panels.

    Science.gov (United States)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels.

  7. A new modal-based approach for modelling the bump foil structure in the simultaneous solution of foil-air bearing rotor dynamic problems

    Science.gov (United States)

    Bin Hassan, M. F.; Bonello, P.

    2017-05-01

    Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.

  8. Cross-current leaching of indium from end-of-life LCD panels

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ubaldini, Stefano [Institute of Environmental Geology and Geoengineering IGAG, National Research Council, Via Salaria km 29300, 00015 Montelibretti, Rome (Italy); De Michelis, Ida [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Kopacek, Bernd [ISL Kopacek KG, Beckmanngasse 51, 1140 Wien (Austria); Vegliò, Francesco [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Beolchini, Francesca, E-mail: f.beolchini@univpm.it [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  9. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  10. Adsorption and Catalytic Oxidation of Methane by Indium Oxide Sensors Doped with Platinum

    Directory of Open Access Journals (Sweden)

    V.V. Golovanov

    2016-11-01

    Full Text Available Differential scanning calorimetry and X-ray photoelectron spectroscopy were used to investigate the mechanism of methane interaction with platinum-doped indium oxide surface. It was shown that sorption processes have a significant impact on the sensor response at the operating temperatures below 370 С for doped Pt/In2O3 and below 500 С for In2O3-based sensors. Above the critical temperatures the sensor response is dominated by the catalytic oxidation of methane. The operating temperature of sensors was decreased on 80 С by doping of the material with Pt 0.5 wt.%. Thus formed PtxIny clusters have a significant effect on the In¬2O3 catalytic properties. The developed sensors demonstrated high sensitivity, small operating parameters range, and low consuming power together with simple production technology.

  11. Can the bump in the composite spectrum of GRB 910503 be an emission line feature of gamma-ray bursts?

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Qin; Fu-Wen Zhang

    2005-01-01

    Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be Γ = 116+9-9 (at the 68% confident level,△X2 = 1) and the rest frame spectral peak energy to be EO,p= 2.96+0.24-0.18 keV. Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.

  12. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    OpenAIRE

    Chung Ping Liu; Ming Wei Chang; Chuan Lung Chuang; Nien Po Chen

    2014-01-01

    Copper-indium-gallium-diselenide (CIGS) thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga)=0.603, Ga/(In+Ga)=0.674, and Se/(Cu+In+Ga)=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diamet...

  13. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  14. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  15. Light forces on an indium atonic beam; Lichtkraefte auf einen Indiumatomstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeter, B.

    2007-07-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied.

  16. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    OpenAIRE

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor c...

  17. Patterning Cells on Optically Transparent Indium Tin Oxide Electrodes

    OpenAIRE

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them pr...

  18. Micropatterning of Proteins and Mammalian Cells on Indium Tin Oxide

    OpenAIRE

    Shah, Sunny S.; Howland, Michael C.; Chen, Li-Jung; Silangcruz, Jaime; Verkhoturov, Stanislav V.; Schweikert, Emile A.; Parikh, Atul N.; Revzin, Alexander

    2009-01-01

    This paper describes a novel surface engineering approach that combines oxygen plasma treatment and electrochemical activation to create micropatterned cocultures on indium tin oxide (ITO) substrates. In this approach, photoresist was patterned onto an ITO substrate modified with poly(ethylene) glycol (PEG) silane. The photoresist served as a stencil during exposure of the surface to oxygen plasma. Upon incubation with collagen (I) solution and removal of the photoresist, the ITO substrate co...

  19. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  20. Attempts at doping indium in MgB2

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2016-01-01

    Indium (In) doped MgB2 polycrystalline samples were prepared by solid-liquid phase reaction in Ar. After reaction at 800 °C, less than 1 at.% Mg was replaced by In in the MgB2 phase, without significant influence on its lattice parameters and only a slight decrease of its superconducting transition...... in both the doped and undoped samples....

  1. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  2. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  3. Laser ablation synthesis of indium oxide nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Acacia, N. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy); Barreca, F., E-mail: process@anmresearch.it [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166 Messina (Italy); Barletta, E.; Spadaro, D.; Curro, G. [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166 Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy)

    2010-09-01

    Colloidal solutions of Indium oxide nanoparticles have been produced by means of laser ablation in liquids (LALs) technique by simply irradiating with a second harmonic (532 nm) Nd:YAG laser beam a metallic indium target immersed in distilled water and varying the laser fluence up to 10 J cm{sup -2} and the ablation time up to 120 min. At all the investigated fluences the vaporization process of the indium target is the dominant one. It produces a majority (>80%) of small size (<6 nm) nanoparticles, with a very limited content of larger ones (size between 10 and 20 nm). The amount of particles increases regularly with the ablation time, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by both X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray (EDX) analysis. Optical bandgap values of 3.70 eV were determined by UV-vis absorption measurements. All these results confirm the complete oxidation of the ablated material.

  4. Spectroscopic Investigation of Indium Halides as Substitutes of Mercury in Low Pressure Discharges for Lighting Applications

    OpenAIRE

    Briefi, Stefan

    2012-01-01

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociatio...

  5. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    Science.gov (United States)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  6. The distribution of gallium, germanium and indium in conventional and non-conventional resources. Implications for global availability

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Max

    2016-10-25

    Over the past 10 years, increased interest in the supply security of metal and mineral raw materials has resulted in the compilation of many lists of materials of particular concern. These materials are generally referred to as 'critical'. They are perceived to be both of high economic importance, as well as subject to high supply risks. Of particular relevance with respect to supply risk is the assessment of geological risk factors. However, this aspect is not considered in sufficient detail in most studies. In particular, the specific features of elements won as by-products are not adequately represented in any assessment. Yet many of these elements are often classified as critical, mostly due to their apparent importance in high-tech applications, the intransparency of their respective markets and resulting price volatility, and the concentration of their production in China. Gallium, germanium and indium are all good examples of such elements. All three are similar in many respects, and commonly have a similar rating in both the economic importance and supply risk dimensions. The aim of this work was to use these three elements as examples, and investigate whether they are truly as similar as current assessments suggest, or whether there are large underlying differences in their specific supply situations. In particular, the focus was on physical supply limitations: Since by-products can only be extracted with other main-product raw materials, their rate of extraction is limited by the extraction rate of these main products. This means that the relevant quantities for an assessment of their physical supply limitations are not reserves and/or resources, but supply potentials. The supply potential is the quantity of a given by-product which could theoretically be extracted under current market conditions (price, technology) per year if all suitable raw materials were processed accordingly. To assess the supply potentials of gallium, germanium and indium

  7. Electronic spectroscopy of medium-sized polycyclic aromatic hydrocarbons: Implications for the carriers of the 2175 {\\AA} UV bump

    CERN Document Server

    Steglich, M; Rouillé, G; Huisken, F; Mutschke, H; Henning, Th

    2010-01-01

    Mixtures of polycylic aromatic hydrocarbons (PAHs) have been produced by means of laser pyrolysis. The main fraction of the extracted PAHs were primarily medium-sized, up to a maximum size of 38 carbon atoms per molecule. The use of different extraction solvents and subsequent chromatographic fractionation provided mixtures of different size distributions. UV-VIS absorption spectra have been measured at low temperature by matrix isolation spectroscopy and at room temperature with PAHs as film-like deposits on transparent substrates. In accordance with semi-empirical calculations, our findings suggest that large PAHs with sizes around 50 to 60 carbon atoms per molecule could be responsible for the interstellar UV bump at 217.5 nm.

  8. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    Science.gov (United States)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  9. Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, S.Q.; Jiao, J.J.; Tang, C.A.; Li, Z.G. [Chinese Academy of Sciences, Beijing (China)

    2006-12-15

    This paper studies the unstable mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain-softening medium which can be described by the Weibull's distribution theory of strength. It is found that the instability leading to coal bump depends mainly on the system's stiffness ratio k, which is defined as the ratio of the flexural stiffness of the beam to the absolute value of the stiffness at the turning point of the constitutive curve of the coal pillar, and the homogeneity index m or shape parameter of the Weibull's distribution for the coal pillar. The applicability of the cusp catastrophe is demonstrated by applying the equations to the Mentougou coal mine. A non-linear dynamical model, which is derived by considering the time-dependent property of the coal pillar, is used to study the physical prediction of coal bumps. An algorithm of inversion for determining the parameters of the nonlinear dynamical model is suggested for seeking the precursory abnormality from the observed series of roof settlement. A case study of the Muchengjian coal mine is conducted and its nonlinear dynamical model is established from the observation series using the algorithm of inversion. An important finding is that the catastrophic characteristic index D (i.e., the bifurcation set of the cusp catastrophe model) drastically increases to a high peak value and then quickly drops close to instability. From the viewpoint of damage mechanics of coal pillar, a dynamical model of acoustic emission (AE) is established for modeling the AE activities in the evolutionary process of the system. It is revealed that the values of m and the evolutionary path (D = 0 or D not equal 0) of the system have a great impact on the AE activity patterns and characters.

  10. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  11. Active Drag-Reducing Technique Using Bumps on Transonic Wings%跨音速机翼采用鼓包主动减阻技术研究

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Research on shock wave drag-reducing using two dimensional and three dimensional bumps is performed, including comparisons on wings of large aircraft. The mechanism of bump drag-reducing is researched via supercritical airfoil profile, and geometrical shape and location of bump are optimized. The research results show that location, shape and serial distribution of bump have significant effects on drag-reducing for wings. Finally, the drag-reducing technique using bumps is applied to the large aircraft. As a result, the presented technique reduces shock wave drag to a great extent, increases the ratio of lift to drag, and improves aerodynamic efficiency of the aircraft.%对二维、三维鼓包进行激波控制减阻,并在大型客机的机翼上进行了对比研究。在研究鼓包减阻的机理时,采用了超临界翼型,鼓包的几何形状及鼓包位置的优化也进行了研究。研究结果表明,鼓包位置、形状及串列式分布对机翼的减阻影响较大。最后把得到的研究结果应用到大型飞机的激波减阻上,结果表明,该方法能较大程度地减小激波阻力,进而提高飞机的升阻比,提高飞机的气动效率。

  12. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. (Kyoto Univ. (Japan))

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  13. Synthesis and Characterization of Chiral Organogallium and Indium Complexes with Salen Ligands

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several new chiral organogallium and indium complexes with chiral Salen (1 and 2) as anxciliary ligands have been synthesized and characterized by elemental analysis, IR, 1H NMR and Mass spectroscopy. For the gallium, mono and bimetallic complexes were obtained, whereas ring closure complexes of indium were obtained.

  14. Indium phosphide based photonic integrated circuits

    Science.gov (United States)

    Mason, Thomas Gordon Beck

    The continued advancement of growth and processing technology in compound semiconductor materials has opened up new possibilities for the creation of complex photonic devices and circuits. This dissertation discusses the design and development of a photonic circuit based on the monolithic integration of a widely tunable laser with an on chip wavelength monitor. The widely tunable laser is a four-section device with a pair of sampled grating distributed Bragg reflector mirrors. This enables it to use a Vernier effect tuning mechanism to overcome the Deltan/n characteristic which limits the wavelength range of conventional injection tuned semiconductor lasers. Index tuning in the laser is improved by using a thick low band gap waveguide with an optimized grating etch and regrowth technique. A record 22 nm quasi-continuous tuning range has been demonstrated for a ridge waveguide device. For even greater tuning range, a buried heterostructure device was developed that is capable of tuning over more than 47 nm, enabling it to cover almost 60 DWDM wavelength channels. The complexity of the tuning mechanism in these devices makes it desirable to have a wavelength monitor to provide feedback for control of the laser. In this work, we have developed a compact integrated wavelength monitor that can be fabricated on chip with the tunable sampled grating DBR laser. The wavelength monitor takes advantage of two-mode interference in a semiconductor waveguide to create a wavelength dependent splitter. Monitors based on this principle have been successfully integrated with both ridge waveguide and buried heterostructure sampled grating DBR lasers. This dissertation reviews all of the aspects of the design, growth, processing and packaging of these devices.

  15. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    OpenAIRE

    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.

    2013-01-01

    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  16. Optical and photocatalytic properties of indium phosphide nanoneedles and nanotubes

    DEFF Research Database (Denmark)

    Yu, Yanlong; Yu, Cuiyan; Xu, Tao

    2017-01-01

    , and Ultraviolet-visible (UV–vis) spectroscopy. The room temperature photoluminescence (PL) measurements showed that the InP nanoneedles and nanotubes possessed a pronounced blue shift in contrast to the bulk counterpart, which was ascribed to the crystalline defects effect. Moreover, the InP nanotubes exhibited......Large scale indium phosphide (InP) nanoneedles and nanotubes were synthesized through a facile solvothermal reaction. The morphology and microstructure of the samples were analyzed by employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy...

  17. pp-Solar Neutrino Spectroscopy: Return of the Indium Detector

    OpenAIRE

    2001-01-01

    A new indium-loaded liquid scintillator (LS) with up to 15wt% In and high light output promises a breakthrough in the 25y old proposal for observing pp solar neutrinos (nue) by tagged nue capture in 115In. Intense background from the natural beta-decay of In, the single obstacle blocking this project till now, can be reduced by more than x100 with the new In-LS. Only non-In background remains, dramatically relaxing design criteria. Eight tons of In yields ~400 pp nue/y after analysis cuts. Wi...

  18. Recent progress in the determination of gallium, indium, and thallium

    Institute of Scientific and Technical Information of China (English)

    GAO Jinzhang

    2005-01-01

    This mini-review covers the literatures of the determination of gallium, indium, and thallium by instrumental analysis with computer-assisted searching over the period of 1994 to 2003. Some papers appearing in the early of 2004 are also included. Because the rapid progress in the instrument has been made, these new papers are prioritized in selection in the similar papers. The contents are considered to be separation and preconcentration, spectrophotometry, spectrofluorimetry, electroanalyses, atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and so forth.

  19. Separation of Indium and Iron from Dilute Sulphate Solutions with a Phosphorous Mixer Extractant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The phosphorous mixer introduced could replace D2EHPA as an extractant applied in the extraction of indium. The extraction properties of the phosphorous mixer were studied. The influences of extractant concentration, organic/aqueous (O/A) phase ratio, equilibrium time, and pH value of the feed solutions on the extraction of indium and separation of indium-iron were investigated experimentally. Under the best operating conditions, more than 98% of indium was extracted through two-stage counter-current extraction. The optimizing condition of indium extraction is determined as follows: O/A = 1∶(9€?2) in volume ratio; 30% PPD in sulphonated kerosene; pH of the feed, about 0.6; equilibrium time, 3€? min. The extractant has good reusing and anti-aging properties.

  20. Analysis and calibration of transient enhanced diffusion for an indium impurity in a nanoscale semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Ha; Lee, Hoong-Joo [Sangmyung University, Chonan (Korea, Republic of)

    2005-02-15

    We developed a new systematic calibration procedure which was applied to the prediction of the diffusivity, the segregation, and transient enhanced diffusion (TED) of an indium impurity. The TED of the indium impurity was studied using four different experimental conditions. Although indium is susceptible to TED, rapid thermal annealing (RTA) is effective in suppressing the TED effect and maintaining a steep retrograde profile. Like boron impurities, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients much less than 1 at the Si/SiO{sub 2} interface. In contrast to boron, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed procedure was validated by using secondary ion mass spectrometry (SIMS) data and by using the 0.13-{mu}m device characteristics, such as V{sub th} and I{sub dsat}, for which the differences between simulation and experiment less than 5 %.

  1. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets

    Science.gov (United States)

    Potts, Heidi; Morgan, Nicholas P.; Tütüncüoglu, Gözde; Friedl, Martin; Morral, Anna Fontcuberta i.

    2017-02-01

    The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly debated in the last few years. Here, we report on the use of indium droplets to tune the growth direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb) stems. Their position is modified to promote growth in the or equivalent directions. We also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb nanowires. Our results demonstrate that indium droplets can initiate growth of InAs nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.

  2. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. (Mayo Clinic and Mayo Foundation, Rochester, MN (USA))

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  3. Indium incorporation into InGaN: The role of the adlayer

    Science.gov (United States)

    Rossow, U.; Horenburg, P.; Ketzer, F.; Bremers, H.; Hangleiter, A.

    2017-04-01

    We study the incorporation processes of indium into group-III nitride layers under pulsed and continuous growth conditions by in-situ reflection measurements. We want to clarify which processes limit the incorporation of indium and lead to a degrading layer structure. The data are discussed in the context of the adlayer model proposed by theory [1], which is a liquid-like layer of group-III atoms on the surface. The adlayer is built-up by the incoming flux but the high vapor pressure of indium leads to a high desorption rate and therefore it is apparent in the data only for low growth temperatures. The data suggests that segregated indium on the surface and the environment also contribute to the indium incorporation process likely also via the adlayer.

  4. Fabrication of 80-nm T-gate high indium In0.7Ga0.3As/In0.6Ga0.4As composite channels mHEMT on GaAs substrate with simple technological process

    Science.gov (United States)

    Xian, Ji; Xiaodong, Zhang; Weihua, Kang; Zhili, Zhang; Jiahui, Zhou; Wenjun, Xu; Qi, Li; Gongli, Xiao; Zhijun, Yin; Yong, Cai; Baoshun, Zhang; Haiou, Li

    2016-02-01

    An 80-nm gate length metamorphic high electron mobility transistor (mHEMT) on a GaAs substrate with high indium composite compound-channels In0.7Ga0.3 As/In0.6Ga0.4 As and an optimized grade buffer scheme is presented. High 2-DEG Hall mobility values of 10200 cm2/(V·s) and a sheet density of 3.5 × 1012 cm-2 at 300 K have been achieved. The device's T-shaped gate was made by utilizing a simple three layers electron beam resist, instead of employing a passivation layer for the T-share gate, which is beneficial to decreasing parasitic capacitance and parasitic resistance of the gate and simplifying the device manufacturing process. The ohmic contact resistance Rc is 0.2 ω·mm when using the same metal system with the gate (Pt/Ti/Pt/Au), which reduces the manufacturing cycle of the device. The mHEMT device demonstrates excellent DC and RF characteristics. The peak extrinsic transconductance of 1.1 S/mm and the maximum drain current density of 0.86 A/mm are obtained. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 246 and 301 GHz, respectively. Project supported by the Key Laboratory of Nano-Devices and Applications, Nano-Fabrication Facility of SINANO, Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 61274077, 61474031, 61464003), the Guangxi Natural Science Foundation (Nos. 2013GXNSFGA019003, 2013GXNSFAA019335), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Project (No. 9140C140101140C14069), and the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449, YJCXS201529).

  5. Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Nam, Taewook; Park, Jusang [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Gatineau, Julien [Air Liquide Laboratories, 28 Wadai, Tsukuba 300-4247 (Japan); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-31

    We investigated the growth of indium oxide (In{sub 2}O{sub 3}) and indium-doped zinc oxide (In-doped ZnO, IZO) thin films synthesized using thermal atomic layer deposition with dimethylamino-dimethylindium as the precursor, while varying the In{sub 2}O{sub 3}/ZnO ratio. The IZO films were deposited using the supercycle method, and the doping concentration of these films was controlled by changing the In{sub 2}O{sub 3}/ZnO cycle ratio. The microstructural properties and chemical compositions of the films were analyzed using X-ray diffraction analysis and X-ray photoelectron spectroscopy. Further, the electrical properties of the IZO films, including their carrier concentration, mobility, and resistivity, were investigated through Hall measurements. The lowest resistivity (6.15 × 10{sup −2} Ω·cm) was exhibited by the IZO film. The highest carrier concentration and mobility exhibited by the IZO films grown at 300 °C were 4.4 × 10{sup 18} cm{sup −3} and 28.7 cm{sup 2}/V·s, respectively. - Highlights: • Indium oxide and In-doped ZnO (IZO) were deposited using thermal ALD with DMLDMIn. • In doped ZnO (IZO) was deposited using thermal ALD using supercycle method. • Properties of IZO were investigated as a function of doping concentration. • The lowest resistivity can be obtained at the maximum In solubility of ZnO.

  6. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  7. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process

    Directory of Open Access Journals (Sweden)

    Satoru Yoshimura

    2017-06-01

    Full Text Available Indium nano-particle irradiations onto zeolite powders were carried out using a pulse arc plasma source system. X-ray photoelectron spectroscopic and scanning electron microscopic studies of an indium irradiated zeolite sample revealed that indium nano-particles were successfully deposited on the sample. Besides, the sample was found to be capable of catalyzing an organic chemical reaction (i.e., Friedel-Crafts alkylation. Then, we examined whether or not the catalytic ability depends on the irradiated indium dose, having established the optimal indium dose for inducing the catalytic effect.

  8. THE DEVELOPMENT OF 6.7% EFFICIENT COPPER ZINC INDIUM SELENIDE DEVICES FROM COPPER ZINC INDIUM SULFIDE NANOCRYSTAL INKS

    OpenAIRE

    Graeser, Brian Kemp

    2014-01-01

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with mic...

  9. Field-effect transistors based on cubic indium nitride.

    Science.gov (United States)

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-02-04

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.

  10. Placental localization by scanning with indium 113m

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Wook; Choe, Yong Kyu; Choi, Byung Sook [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1972-09-15

    The application of radioactive tracers for placental localization has been introduced as the worthwhile diagnostic method in placenta previa. Recently {sup 113m}In has been applied as the broad spectrum agent for the visualization of various organs. The advantage of {sup 113m}In are a short half-life with 1.7 hours and no beta particle emission. During the period from May 1970 to August 1971, the placental scanning with {sup 113m}In was carried out at Yonsei Medical Center on 19 cases of Korean pregnant females who had painless vaginal bleeding with suspicious placenta previa or other placental lesions, clinically. Followings are the results of placental scanning with Indium-113m. 1) Eight cases out of 19 cases were suggested as placenta previa and the remaining 11 cases were turned out to be normal placental location. 2) Among these 8 case of positive scanning, placenta previa totalis was 6 cases, placental previa partialis was 1 case and placenta previa marginalis was also 1 case. 3) Among 11 cases of normal placental localization, right side placenta was 7 cases and left side, 4 cases. The placental scanning with Indium-113m is thought to be one of the simple, safe and rapid method with high accuracy for clinical diagnosis of the placenta previa and placental localization.

  11. Oxygen-free atomic layer deposition of indium sulfide.

    Science.gov (United States)

    McCarthy, Robert F; Weimer, Matthew S; Emery, Jonathan D; Hock, Adam S; Martinson, Alex B F

    2014-08-13

    Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

  12. Mobility and carrier density in nanoporous indium tin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Weissbon, Jaqueline; Gondorf, Andreas; Geller, Martin; Lorke, Axel [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Inhester, Martina; Prodi-Schwab, Anna; Adam, Dieter [Evonik Degussa GmbH, D-45772 Marl (Germany)

    2011-07-01

    Indium tin oxide (ITO) has become an indispensable material for a range of electronic devices. It is transparent in the entire visible range and electrically conducting, hence, a well suited material for transparent electrodes. An interesting possibility to realize transparent, conducting films without the use of vacuum techniques is the printing of dispersions containing ITO nanoparticles. We study here the charge carrier concentration and mobility of various nanoporous indium tin oxide (ITO) films, using Hall measurements and optical spectroscopy. For the carrier density inside the particles (2-4 . 10{sup 20} cm{sup -3}), the results of these complementary measurement techniques are in good agreement with each other and suggest that even in highly porous materials the common equations for the Hall resistance can be applied. However, for the mobilities in these layers the results differ very strongly: from 50 (cm{sup 2})/(Vs) in optical spectroscopy (which is comparable to bulk ITO) to 0.4 (cm{sup 2})/(Vs) in Hall measurements.This suggests that the mobility for electrical transport in nanoporous ITO films is strongly suppressed by scattering at interparticle boundaries.

  13. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications

    Science.gov (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.

    2016-10-01

    The optical and electrical properties are the two important dimensions of Indium oxide and its derivatives (indium tin oxide) and were well studied to understand the origin of wide electronic band gap and high electrical conductivity at room temperature. In2O3 and its derivatives find many applications in electronic and optoelectronic domains based on the above properties. The recent discovery of ferromagnetism in In2O3 at room temperature become a third dimension and lead to intensive research on enhancement of ferromagnetic strength by various means such as dopants and synthesis protocols and extrinsic parameters. The research lead to enormous experimental data and theoretical models proliferation over the past one decade with diverse insights into the origin of ferromagnetism in In2O3 based dilute magnetic semiconductors. The experimental data and theoretical models of ferromagnetism in In2O3 has been thoroughly surveyed in the literature and compiled all the data and presented for easy of understanding in this review. We have identified best chemical composition, geometry and synthesis protocols for strongest ferromagnetic strength and suitable theoretical model of magnetism has been presented in this review.

  14. Measurement of the Electron Affinities of Indium and Thallium

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. S.; Carpenter, D. L.; Covington, A. M.; Williams, W. W.; Kvale, T. J.; Seely, D. G.

    1999-03-20

    The electron affinities of indium and thallium were measured in separate experiments using the laser-photodetachment electron spectroscopy technique. The measurements were performed at the University of Nevada, Reno. Negative ion beams of both indium and thallium were extracted from a cesium-sputter negative ion source, and mass analyzed using a 90{sup o} bending magnet. The negative ion beam of interest was then crossed at 90{sup o} with a photon beam from a cw 25-Watt Ar{sup +} laser. The resulting photoelectrons were energy analyzed with a 160{sup o} spherical-sector spectrometer. The electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404 {+-} 0.009 eV and the electron affinity of thallium was determined to be 0.377 {+-} 0.013 eV. The fine-structure splittings in the ground states of the negative ions were also determined. The experimental measurements will be compared to several recent theoretical predictions.

  15. Conductance through a helical state in an Indium antimonide nanowire.

    Science.gov (United States)

    Kammhuber, J; Cassidy, M C; Pei, F; Nowak, M P; Vuik, A; Gül, Ö; Car, D; Plissard, S R; Bakkers, E P A M; Wimmer, M; Kouwenhoven, L P

    2017-09-07

    The motion of an electron and its spin are generally not coupled. However in a one-dimensional material with strong spin-orbit interaction (SOI) a helical state may emerge at finite magnetic fields, where electrons of opposite spin will have opposite momentum. The existence of this helical state has applications for spin filtering and cooper pair splitter devices and is an essential ingredient for realizing topologically protected quantum computing using Majorana zero modes. Here, we report measurements of a quantum point contact in an indium antimonide nanowire. At magnetic fields exceeding 3 T, the 2 e (2)/h conductance plateau shows a re-entrant feature toward 1 e (2)/h which increases linearly in width with magnetic field. Rotating the magnetic field clearly attributes this experimental signature to SOI and by comparing our observations with a numerical model we extract a spin-orbit energy of approximately 6.5 meV, which is stronger than the spin-orbit energy obtained by other methods.Indium antimonide nanowires have large spin-orbit coupling, which can give rise to helical states that are an important part of proposals for topological quantum computing. Here the authors measure conductance through the helical states and extract a larger spin-orbit energy than obtained before.

  16. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting.

    Science.gov (United States)

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2011-06-21

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting "tapes" based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation.

  17. Investigation of Intrinsic and External Factors Contributing to the Occurrence of Coal Bumps in the Mining Area of Western Beijing, China

    Science.gov (United States)

    Wang, Hongwei; Jiang, Yaodong; Xue, Sheng; Pang, Xufeng; Lin, Zhinan; Deng, Daixin

    2017-04-01

    An investigation has been made to relate the occurrence of coal bumps to specific geological and mining conditions to the mining area of western Beijing. This investigation demonstrates that the high frequency of coal bumps in this area is due to four localized conditions, namely intrinsic coal properties, the presence of overturned strata and thrust faults, high in situ stress and the extraction of coal from island mining faces. Laboratory tests of coal samples indicated that the coals have a short duration of dynamic fracture, high bursting energy and high elastic strain energy, indicating that the coal is intrinsically prone to the occurrence of coal bumps. This investigation has also revealed that there are overturned strata and well-developed large- and medium-scale thrust faults in this area, and the presence of these structures results in plastic flow, severe discontinuities, rapid changes in overburden thickness and dipping of the coal seams. Well-developed secondary fold structures are also present in the axes and limbs of the primary folds. The instability of thrust faults, in combination with large-scale intrusion of igneous rocks, is closely associated with sudden roof breaking and induces sharp variations in electromagnetic radiation (EMR) and micro-seismic signals, which could be used to help predict coal bumps. In situ stress tests in the mining area demonstrate that the maximum and minimum principal stresses are nearly horizontal and that the intermediate principal stress is approximately vertical. The in situ stress level in the area is higher than the average in the Beijing area, North China and mainland China. In addition to the presence of overturned strata and thrust faults and high in situ stress levels, another external factor contributing to the frequency of coal bumps is coal extraction from island mining faces in this area. Island mining faces experience intermittent mining-induced abutment stress when a fault exists at one side of the

  18. The effect of NaCl on room-temperature-processed indium oxide nanoparticle thin films for printed electronics

    Science.gov (United States)

    Häming, M.; Baby, T. T.; Garlapati, S. K.; Krause, B.; Hahn, H.; Dasgupta, S.; Weinhardt, L.; Heske, C.

    2017-02-01

    One of the major challenges in flexible electronics industry is the fabrication of high-mobility field-effect transistors (FETs) at ambient conditions and on inexpensive polymer substrates compatible with roll-to-roll printing technology. In this context, a novel and general route towards room-temperature fabrication of printed FETs with remarkably high field-effect mobility (μFET) above 12 cm2/Vs has recently been developed. A detailed understanding of the chemical structure of the involved nanoparticle (NP) thin films, prepared by chemical flocculation, is essential for further optimization of the charge transport properties of such devices. In this study, we thus analyze indium oxide NP thin films with and without NaCl additive using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is demonstrated that the introduction of a sodium chloride additive to the ink leads to a strongly altered film morphology and a modification of the NP shell. The results suggest that, as a consequence of the additive, the charge-transport barriers between individual indium oxide NPs are lowered, facilitating long-range charge percolation paths despite the presence of a significant concentration of carbonaceous residues.

  19. 75 FR 53075 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-08-30

    ... technology directorate/functional area to implement the ``same mission'' principal. With this definition, the... Specialist, 0030 Fitness and Sports Specialist, 0080 Security Administration, 0099 Security Student Trainee... levels and in the exercise of bump and retreat rights. The same flexibilities for attracting...

  20. Cost effective flip chip assembly and interconnection technologies for large area pixel sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, T., E-mail: thomas.fritzsch@izm.fraunhofer.de [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Jordan, R.; Oppermann, H. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany); Ehrmann, O. [Berlin Institute of Technology (TUB), Berlin 10623 (Germany); Toepper, M.; Baumgartner, T.; Lang, K.-D. [Fraunhofer IZM, Gustav-Meyer-Allee 25, Berlin 13355 (Germany)

    2011-09-11

    Much of the cost of manufacturing pixel detectors is due to bumping and flip chip assembly of the readout chips onto sensor tiles, even if it is done on wafer level. To address this issue, Fraunhofer IZM investigated two new technological approaches, namely screen printing using dry film resist and chip-to-wafer assembly. In the first approach, solder bumps with diameters of 80 and 25 {mu}m in pitches of 110 and 60 {mu}m, respectively, were produced by screen-printing solder paste using a photo-structured dry film resist. Results indicated that the technology is a viable high yield and low cost bumping process. The second approach was developed to decrease the number of manual handling steps in pixel module manufacturing, which is critical for reducing processing time and cost. Here, chip designs on 200 mm readout chip (ROC) wafers and 150 mm sensor wafers were especially adapted for chip-to-wafer assembly and to ensure that the interconnection yield and reliability could be tested. After bumping and dicing of the readout chip wafer and UBM plating on the sensor wafer, individual dice were flip chip mounted on the pre-diced sensor wafer. This paper describes the technological steps, key processing parameters and first results for both technologies.

  1. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...... of the transducer and the intermediate chip is done by flip chip solder bump bonding. The bonding between the above two-layer stack and the circuit chip is done by conductive adhesive bonding combined with gold studs. We demonstrate the stacking technologies on passive test chips rather than real devices and report...... on technological details...

  2. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  3. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  4. Dissolution Behavior of Indium in CaO-SiO2-Al2O3 Slag

    Science.gov (United States)

    Ko, Kyu Yeol; Park, Joo Hyun

    2011-12-01

    The solubility of indium in a molten CaO-SiO2-Al2O3 system was measured at 1773 K (1500 °C) to establish the dissolution mechanism of indium under a highly reducing atmosphere. The solubility of indium increases with increasing oxygen potential, whereas it decreases with increased activity of basic oxide. Therefore, a dissolution mechanism of indium can be constructed according to the following equation: {{In}}({{s}}) + 1/4{{O}}2 ({{g}}) = ({{In}}^{ + } ) + 1/2({{O}}^{2 - } ) The relationship between indium capacity and sulfide capacity shows a good correlation that is consistent with theoretical expectations. The enthalpy change of the indium dissolution reaction is negative, which indicates that the dissolution is an exothermic reaction. The heat of dissolution into high-silica melts is greater than that into low-silica melts. The solubility of indium is strongly dependent on the silica content. The activity coefficient, and thus the excess free energy of In2O, decreases linearly with increasing silica content, indicating that the In2O is believed to behave as a weak basic oxide in the current CaO-SiO2-Al2O3 ternary system under reducing conditions.

  5. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    Science.gov (United States)

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  6. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang,Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  7. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  8. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang, Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  9. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition

    Indian Academy of Sciences (India)

    Benny Joseph; P K Manoj; V K Vaidyan

    2005-08-01

    The preparation of indium doped zinc oxide films is discussed. Variation of structural, electrical and optical properties of the films with zinc acetate concentration and indium concentration in the solution are investigated. XRD studies have shown a change in preferential orientation from (002) to (101) crystal plane with increase in indium dopant concentration. Films deposited at optimum conditions have a low resistivity of 1.33 × 10-4 m with 94% transmittance at 550 nm. SEM studies have shown smooth polycrystalline morphology of the films. Figure of merit is evaluated from electrical resistivity and transmittance data.

  10. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating

    OpenAIRE

    Fukui, Kunihiro; Kanayama, Keiji; Katoh, Manabu; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-01-01

    Indium tin oxide (ITO) powder was synthesized from indium oxide and tin oxide powders by a solid-phase method using microwave heating and conventional heating methods. Microwave heating could reduce the treatment time necessary for the completion of the solid-phase reaction by 1/30. This decrease was attributed to an increase in the diffusion rate of Sn at the local heat spot in the indium oxide formed by microwave irradiation. However, microwave heating also decreased the amount of ITO produ...

  11. PARTITION-OPTIMIZED SINGLE EMULSION PARTICLES IMPROVE SUSTAINED RELEASE OF AMPHIPHILIC BUMPED KINASE INHIBITORS TO CONTROL MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2015-11-01

    Full Text Available Amphiphilic molecules are challenging to be incorporatedinto polymeric particles for sustained release due to their significant solubility in both water and organic solvent used in the fabrication process. Here, we investigated an extensive panel of fabrication methods for the incorporation and release of amphiphilic molecules, in particular, novel amphiphilic bumped kinase inhibitors (BKIs. Previously, BKIswere shown to reduce malaria transmission by blocking of gametocyte exflagellation. Prolonged BKI bioavailability for effective transmission blocking is crucial since infectious gametocytes circulate for several weeks inthe mammalian host, well beyond the half-life of BKIs. So far, delivery systems for sustained release of those BKIs have not been successfully formulated yet. Here we demonstrate that out of several delivery vehicles the partition-optimized single emulsion particles are the ideal system for incorporation and sustained release of amphiphilic BKIs. They increased the incorporation greater than 90% through optimized partitioning of amphiphilic molecules to the polymer phase and sustained release of BKIs up to several weeks with a reduction in the initial burst release. Overall this work provides a method for the incorporation and sustained release of amphiphilic BKIs, and can be adapted for other amphiphilic molecules.

  12. X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies

    Science.gov (United States)

    Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.

    1994-01-01

    We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.

  13. Novel Speed Bumps Design and Optimization for Vehicles' Energy Recovery in Smart Cities 

    Directory of Open Access Journals (Sweden)

    Riccardo E. Zich

    2012-11-01

    Full Text Available Recently the technology development and increasing amounts of investment in renewables has led to a growing interest towards design and optimization of green energy systems. In this context, advanced Computational Intelligence (CI techniques can be applied by engineers to several technical problems in order to find out the best structure and to improve efficiency in energy recovery. This research promises to give new impulse to using innovative unconventional renewable sources and to develop the so-called Energy Harvesting Devices (EHDs. In this paper, the optimization of a Tubular Permanent Magnet-Linear Generator for energy harvesting from vehicles to grid is presented. The optimization process is developed by means of hybrid evolutionary algorithms to reach the best overall system efficiency and the impact on the environment and transportation systems. Finally, an experimental validation of the designed EHD prototype is presented. 

  14. Laser generation of elliptical nanometre and sub-nanometre bump arrays on NiP/Al data storage disks and their effect on stiction performance.

    Science.gov (United States)

    Pena, A A; Wang, Z B; Zhang, J; Wu, N E; Li, L

    2011-09-07

    Elliptical nano-bumps on nickel-phosphorus coated aluminium (NiP/Al) hard disks were fabricated by a laser texturing system (maximum power 8 W, maximum frequency 300 kHz). By carefully selecting the level of laser power attenuation and defocus offset distance, bump height can be controlled below 6 nm and down to the sub-nanometre scale. This type of laser-induced texture (elliptical shape) on a disk surface is expected to provide better control of the stiction force along with the smallest separation distance between the head slider and the disk. Quantitative modelling based on the classical Hertzian theory for elliptic contacts has been carried out with the purpose of predicting the stiction behaviour of the presented elliptical shaped sub-10 nm bumps. It has been found that an elliptical shape not only reduces the overall stiction performance of the laser texturing zone (LZT) compared to the conventional circular shape but also extends the occurrence of the 'stiction wall' towards the sub-10 nm regime for ultra-low-glide applications.

  15. pp-Solar Neutrino Spectroscopy Return of the Indium Detector

    CERN Document Server

    Raghavan, R S

    2001-01-01

    A new indium-loaded liquid scintillator (LS) with up to 15wt% In and high light output promises a breakthrough in the 25y old proposal for observing pp solar neutrinos (nue) by tagged nue capture in 115In. Intense background from the natural beta-decay of In, the single obstacle blocking this project till now, can be reduced by more than x100 with the new In-LS. Only non-In background remains, dramatically relaxing design criteria. Eight tons of In yields ~400 pp nue/y after analysis cuts. With the lowest threshold yet, Q=118 keV, In is the most sensitive detector of the pp nue spectrum, the long sought touchstone for nue conversion.

  16. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    Science.gov (United States)

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-01

    In this paper, we demonstrate a simple and efficient method for synthesis of β-indium sulphide (In2S3) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In2S3 nanoparticles show blue shift compared to bulk In2S3, indicating strong quantum size confinement effects. PL emission in the wavelength range 530-600 nm was recorded using a 488 nm line from an Ar+ laser as the excitation source.

  17. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  18. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Directory of Open Access Journals (Sweden)

    N. P. Subiramaniyam

    2013-01-01

    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  19. Fractal characteristics of nanocrystalline indium and gallium sulfide particles

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P.U., E-mail: psastry@barc.gov.i [Solid State Physics Division, Mumbai 400085 (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-11-13

    The structure of nano-sized powders of indium sulfide (In{sub 2}S{sub 3}) and gallium sulfide (Ga{sub 2}S{sub 3}), prepared by single source precursor route has been investigated by small angle X-ray scattering technique. The particle morphology shows interesting fractal nature. For In{sub 2}S{sub 3}, the nanoparticle aggregates show a mass fractal with fractal dimension 2.0 that increases with longer time of thermal treatment. Below the length scale of about 20 nm, the particles have a rough surface with a surface fractal dimension of 2.8. Unlike In{sub 2}S{sub 3}, structure of Ga{sub 2}S{sub 3} exhibits a single surface fractal over whole q-range of study. The estimated particle sizes are in range of 5-15 nm and the results are supported by transmission electron microscope.

  20. Attempts at doping indium in MgB2

    Science.gov (United States)

    Grivel, J.-C.

    2016-12-01

    Indium (In) doped MgB2 polycrystalline samples were prepared by solid-liquid phase reaction in Ar. After reaction at 800 °C, less than 1 at.% Mg was replaced by In in the MgB2 phase, without significant influence on its lattice parameters and only a slight decrease of its superconducting transition temperature. For all studied In concentrations in the nominal composition, the formation of InMg was evidenced by X-ray diffraction. The critical current density and accommodation field of the wires are decreased in the samples containing In. The flux pinning mechanism can be described by surface pinning in both the doped and undoped samples.

  1. Indium-111 labeled platelet deposition following transfemoral angiography

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, M.K.; Brennan, S.S.; Shanik, D.G.

    1986-01-01

    The incidence of thromboembolitic events in patients undergoing transfemoral angiography was examined using indium-111 labeled platelets. Twenty-seven patients received approximately 300 muCi of autologous labeled platelets at least 3 hours before angiography and were scanned with a gamma camera immediately before and after angiography. All patients were free of clinically obvious complications in the 1-2 day period after angiography. Our results showed evidence of platelet deposition at 21 sites other than the puncture site in 12 (44%) patients. Most platelet deposition (54%) occurred along the region between the puncture site and the aortic bifurcation; 24% occurred at sites not traversed by the catheter. At the puncture site itself, there was substantial platelet uptake in 44% of patients. This study indicates the need for further work in determining the most suitable catheter material and in assessing the efficacy of other measures such as anticoagulant or antiplatelet therapy.

  2. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  3. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  4. Indium Tin Oxide-Polyaniline Biosensor: Fabrication and Characterization

    Directory of Open Access Journals (Sweden)

    Daniel L. Grooms

    2007-07-01

    Full Text Available In this study, a novel indium tin oxide (ITO-polyaniline (Pani biosensor wasdesigned, fabricated, and characterized. Initial testing was conducted for the detection ofbovine viral diarrhea virus (BVDV. The biosensor design was based upon the specific natureof antibodies to capture the target virus, and the conductive properties of self-doped Pani totranslate the antibody-antigen binding into a quantifying signal. The first part of the study wasto assess the feasibility of the self-doped Pani to be incorporated into the biosensor design byevaluating its several parameters, such as conductivity, physical structure, thermogravimetricproperties, and antibody-binding properties. The second part of the paper highlights thefabrication of the ITO-Pani biosensor to detect the presence of bovine viral diarrhea virus(BVDV in pure culture. Although only BVDV culture was tested in this study, the biosensoris versatile for the detection of other pathogen of interest by changing the specificity of theantibodies.

  5. Recycle use of phosphorous mixer extractant to extract indium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The stripping and regeneration of the loaded organic phase of phosphorous mixer extractant (PPD) were studied.The mixed solutions (3 mol/L HCl +2 mol/L ZnCl2) were used as the stripping agent and more than 99% of indium can bestripped after three-stage stripping when the volume ratio of organic phase to stripping agent is 1:1. The organic phase canbe recycled to use after regeneration with HCl. The parallel contrast experiments with D2EHPA (di-2-ethyl hexyl phospho-ric acid) were carried out under the same conditions. The results show that the mixer extractant has good reusability and thestripping and regeneration of PPD are superior to those of D2EHPA.

  6. Indium Growth and Island Height Control on Si Submonolayer Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jizhou [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    lithography (EUVL) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In

  7. Characterization of reliability of printed indium tin oxide thin films.

    Science.gov (United States)

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments.

  8. Macro- and microscopic properties of strontium doped indium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I. [Donetsk Institute for Physics and Technology, National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A. [Institute of Materials Science, Darmstadt University of Technology, 64287 Darmstadt (Germany)

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10{sup −13} cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  9. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  10. Solvent extraction of indium with aliquat 336S from malonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha Rao, R.; Khopkar, S.M. (Indian Inst. of Tech., Bombay. Dept. of Chemistry)

    1982-05-01

    Indium is quantitatively extracted with 4% Aliquat 336S in xylene from 0.01 M malonic acid buffered solution of pH 4.0-5.0. It is stripped with 0.5 M hydrochloric acid and determined spectrophotometrically with 4-(2-pyridylazo) resorcinol at 520 nm. It is possible to separate indium from alkali and alkaline earths, thallium(I), iron(II), silver, arsenic, yttrium, tin and lanthanons by selective sorption whereas cadmium, nickel, copper, cobalt, chromium(III), aluminium and manganese(II) form weak malonato complexes along with indium and hence are stripped before indium. The separation from bismuth, thallium(III), antimony, mercury(II), platinum(IV) and gold is carried out from 1 M hydrochloric acid, while gallium, titanium, scandium, vanadium and zirconium are separated in 4 M nitric acid. The separation of several anions is also reported.

  11. Time-Resolved Photoluminescence Studies of Indium-Rich InGaN Alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-De; ZHU You-Zhang; YAN Guo-Jun; YUAN Jin-She; K.H.Kim; J.Y.Lin; H.X.Jiang

    2005-01-01

    @@ Time-resolved photoluminescence (PL) spectroscopy has be used to investigate indium-rich InGaN alloys grown on sapphire substrates by metal organic chemical vapor deposition. Photoluminescence measurement indicates two dominant emission lines originating from phase-separated high- and low-indium-content regions. Temperature and excitation intensity dependence of the two main emission lines in these InGaN alloys have been measured.Temperature and energy dependence of PL decay lifetime show clearly different decay behaviour for the two main lines. Our results show that photo-excited carriers are deeply localized in the high indium regions while photo-excited carriers can be transferred within the low-indium-content regions as well as to high-content regions.

  12. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Science.gov (United States)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  13. Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique

    Indian Academy of Sciences (India)

    Girjesh Singh; S B Shrivastava; Deepti Jain; Swati Pandya; T Shripathi; V Ganesan

    2010-10-01

    We report the conducting and transparent In doped ZnO films fabricated by a homemade chemical spray pyrolysis system (CSPT). The effect of In concentration on the structural, morphological, electrical and optical properties have been studied. These films are found to show (0 0 2) preferential growth at low indium concentrations. An increase in In concentration causes a decrease in crystalline quality of films as confirmed by X-ray diffraction technique which leads to the introduction of defects in ZnO. Indium doping also significantly increased the electron concentrations, making the films heavily type. However, the crystallinity and surface roughness of the films decreases with increase in indium doping content likely as a result of the formation of smaller grain size, which is clearly displayed in AFM images. Typical optical transmittance values in the order of (80%) were obtained for all films. The lowest resistivity value of 0.045 -m was obtained for film with 5% indium doping.

  14. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Lie-Andersen, T.; Jensen, E. Pristed

    2015-01-01

    Indium doped tin pyrophosphates were prepared by three synthetic routes. A heterogeneous synthesis from metal oxides with excess phosphoric acid produces crystalline phosphate particles with a phosphorus rich amorphous phase along the grain boundaries. The amorphous phase prevents the agglomerati...

  15. Structural and electrical properties of sol-gel spin coated indium doped cadmium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rajammal, R. [Department of Physics, M.V.M Govt. Arts College for Women, Dindigul-624001 (India); Savarimuthu, E., E-mail: savari56@gmail.com; Arumugam, S., E-mail: savari56@gmail.com [Department of Physcis, Gandhigram Rural Institute, Gandhigram-624302 (India)

    2014-04-24

    The indium doped CdO thin films have been prepared by the sol-gel spin coating technique and the influence of indium doping concentration on the structural and electrical properties of the deposited films has been investigated. The indium doping concentration in the solution has been varied from 0-10 wt% insteps of 2wt%. A indium doping concentration of 6wt% has been found to be optimum for preparing the films and at this stage a minimum resistivity of 5.92×10{sup −4}Ω cm and a maximum carrier concentration of 1.20×10{sup 20}cm{sup −3} have been realized.

  16. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    Science.gov (United States)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  17. Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells

    Science.gov (United States)

    Wu, Hsiang-Chiu; Lyau, Jia-Bo; Lin, Min-Hsuan; Chuang, Yung-Jen; Chen, Hsin

    2017-07-01

    Contemporary semiconductor and micromachining technologies have been exploited to develop lab-on-a-chip microsystems, which enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of biological cells to be studied in situ. This kind of study is important, for example, for understanding how neuronal networks grow in response to environmental stimuli. To fulfill this application need, this paper investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with indium-tin-oxide (ITO) electrodes. The microfluidic channels are designed to guide and trap biological cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured cells efficiently in applications such as drug-screening.

  18. Performance of Indium Gallium Zinc Oxide Thin-Film Transistors in Saline Solution

    Science.gov (United States)

    Gupta, S.; Lacour, S. P.

    2016-06-01

    Transistors are often envisioned as alternative transducing devices to microelectrodes to communicate with the nervous system. Independently of the selected technology, the transistors should have reliable performance when exposed to physiological conditions (37°C, 5% CO2). Here, we report on the reliable performance of parylene encapsulated indium gallium zinc oxide (IGZO) based thin-film transistors (TFTs) after prolonged exposure to phosphate buffer saline solution in an incubator. The encapsulated IGZO TFTs (W/L = 500 μm/20 μm) have an ON/OFF current ratio of 107 and field effect mobility of 8.05 ± 0.78 cm2/Vs. The transistors operate within 4 V; their threshold voltages and subthreshold slope are ~1.9 V and 200 mV/decade, respectively. After weeks immersed in saline solution and at 37°C, we did not observe any significant deterioration in the transistors' performance. The long-term stability of IGZO transistors at physiological conditions is a promising result in the direction of metal oxide bioelectronics.

  19. Experiments on silver-indium-cadmium control rod failure during severe accident sequences

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, M.; Stegmaier, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2010-05-15

    Silver-indium-cadmium (SIC) alloy is used as neutron absorber material in control rods (CR) of Pressurized Water Reactors (PWR). It is the material with the lowest melting temperature (approx. 1100 K) among all metallic and ceramic materials applied in nuclear reactors. During a hypothetical severe accident the SIC melt is kept in its stainless steel (SS) cladding tube as long as this is intact. After failure of the cladding tube by eutectic interaction with the Zircaloy-4 (Zry-4) guide tube or latest by reaching the SS melting temperature SIC elements are released and may interact with other core components. Furthermore, Ag-In-Cd are one of the main contributors to aerosol release in the reactor cooling system and may strongly influence nature and transport of fission products in the primary circuit and later on in the containment. The bundle experiment QUENCH-13 with prototypical SIC control rod as well as two series of single-rod tests with 10-cm long CR segments were performed at Karlsruhe Institute of Technology (KIT, former FZK) in order to improve the data base on SIC CR degradation and aerosol release. This paper concentrates on the degradation and failure mechanisms of SIC CRs as well as on the interaction between SIC absorber melt with other core components. (orig.)

  20. Integrated optical MEMS using through-wafer vias and bump-bonding.

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Frederick Bossert; Frederick, Scott K.

    2008-01-01

    This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

  1. Effect of fabrication conditions on the properties of indium tin oxide powders

    Institute of Scientific and Technical Information of China (English)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity ε and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350℃ and Sn doping content 6~8wt% are determined. The application of ITO in the military camouflage field is proposed.

  2. Analysis of the relationship between the kink effect and the indium levels in MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hizem, N., E-mail: neila_tn2002@yahoo.fr [University of Monastir, Laboratory of Microelectronics and Instrumentation, Monastir 5019 (Tunisia); Fargi, A.; Kalboussi, A. [University of Monastir, Laboratory of Microelectronics and Instrumentation, Monastir 5019 (Tunisia); Souifi, A. [Institute of Nanotechnology of Lyon, 7 Avenue, Jean, Capelle, 69621 Villeurbanne Cedex (France)

    2013-12-01

    Graphical abstract: Low frequency (LF) output conductance dispersion analysis based on the Gain-Phase versus frequency biased in the saturation zone for V{sub ds} < V{sub kink} (where In is supposed to be inactive) is used to analyse the indium-related levels in nMOSFETs. -- Highlights: • We examine the effects of indium ion implantation on the channel of nMOSFETs. • The LF output conductance dispersion is used to characterise the nMOSFETs. • A kink effect is shown in the electrical characteristics of nMOSFETs. • We analyse the excess of the drain current in the kink zone. • A relationship is found between the kink effect and the In level. -- Abstract: In this work, we investigate the effects of indium ion implantation on the channel of nMOSFETs. Deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) measurements have been made on a series of indium doped silicon N{sup +}P structures and MOS capacitors. To analyse the indium-related levels in nMOSFETs, we used a low frequency (LF) output conductance dispersion analysis, which is based on the Gain-Phase versus frequency at different temperatures. These experiences show that the indium level when operated at low temperatures at which the majority of carriers freeze-out exhibit a kink effect. The effects of indium doping on the kink were studied using the variation of channel conductance g{sub d} and transconductance g{sub m} versus temperature in the kink zone. The excess drain current versus drain and gate voltage show the maximums of both conductance g{sub d} and transconductance g{sub m} at around T = 124 K when the indium level is activated.

  3. The structure of nickel and indium oxide thin films from EXAFS data

    Science.gov (United States)

    Bets, V.; Zamozdiks, T.; Lusis, A.; Purans, J.; Bausk, N.; Sheromov, M.

    1987-11-01

    The structure of nickel oxide and indium oxide doped by tin films prepared by reactive magnetron sputtering has been studied by the EXAFS method. It has been found that the nickel oxide thin film has a microcrystalline structure with significant disorder proved by the increase of the Debye-Waller factor and the sharp decrease of peak amplitudes. The indium oxide thin film has a noticeable structural disorder due to 8% tin dopping.

  4. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  5. Role of TBATB in nano indium oxide catalyzed C-S bond formation

    Science.gov (United States)

    Gogoi, Prasanta; Hazarika, Sukanya; Barman, Pranjit

    2015-09-01

    Nano sized indium oxide is found to be an efficient catalyst for the conversion of thiols to sulfides using Na2CO3 as base and TBATB as reagent in DMSO at 110 °C. Here in situ generation of bromo intermediate by TBATB takes place through indium surface. A variety of aryl sulfides can be synthesized in excellent yields from less reactive chlorides, boronic acids and thiols.

  6. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors.

    Science.gov (United States)

    Wang, A; Babcock, J R; Edleman, N L; Metz, A W; Lane, M A; Asahi, R; Dravid, V P; Kannewurf, C R; Freeman, A J; Marks, T J

    2001-06-19

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. In(x)Cd(1-x)O films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

  7. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Farid, S.; Mukherjee, S.; Sarkar, K.; Mazouchi, M. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Stroscio, M. A. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Dutta, M., E-mail: dutta@uic.edu [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-11

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurements confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.

  8. Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads

    Energy Technology Data Exchange (ETDEWEB)

    Calagui, Mary Jane C. [College of Engineering, Cagayan State University, Cagayan Valley 3500 (Philippines); School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Senoro, Delia B. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Kan, Chi-Chuan [Institute of Hot Spring Industrial, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China); Salvacion, Jonathan W.L. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Futalan, Cybelle Morales [Operations Department, Frontier Oil Corporation, Makati City 1229 (Philippines); Wan, Meng-Wei, E-mail: peterwan@mail.chna.edu.tw [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China)

    2014-07-30

    Highlights: • A more acidic pH causes a decrease in adsorption capacity. • The kinetic data follow the pseudo-second order equation. • Equilibrium data correlated well with Langmuir isotherm. • Removal of indium is a spontaneous and endothermic process. - Abstract: Batch adsorption study was utilized in evaluating the potential suitability of chitosan-coated bentonite (CCB) as an adsorbent in the removal of indium ions from aqueous solution. The percentage (%) removal and adsorption capacity of indium(III) were examined as a function of solution pH, initial concentration, adsorbent dosage and temperature. The experimental data were fitted with several isotherm models, where the equilibrium data was best described by Langmuir isotherm. The mean energy (E) value was found in the range of 1–8 kJ/mol, indicating that the governing type of adsorption of indium(III) onto CCB is essentially physical. Thermodynamic parameters, including Gibbs free energy, enthalpy, and entropy indicated that the indium(III) ions adsorption onto CCB was feasible, spontaneous and endothermic in the temperature range of 278–318 K. The kinetics was evaluated utilizing the pseudo-first order and pseudo-second order model. The adsorption kinetics of indium(III) best fits the pseudo-second order (R{sup 2} > 0.99), which implies that chemical sorption as the rate-limiting step.

  9. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  10. Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump

    Science.gov (United States)

    Mucciarelli, A.; Salaris, M.; Lovisi, L.; Ferraro, F. R.; Lanzoni, B.; Lucatello, S.; Gratton, R. G.

    2011-03-01

    We present Li and Fe abundances for 87 stars in the globular cluster M4, obtained by using high-resolution spectra collected with GIRAFFE at the Very Large Telescope. The targets range from the turn-off up to the red giant branch bump. The Li abundance in the turn-off stars is uniform, with an average value equal to A(Li)= 2.30 ± 0.02 dex (σ= 0.10 dex), consistent with the upper envelope of Li content measured in other globular clusters and in the halo field stars, confirming also for M4 the discrepancy with the primordial Li abundance predicted by Wilkinson Microwave Anisotropy Probe+ big bang nucleosynthesis (WMAP+BBNS). The global behaviour of A(Li) as a function of the effective temperature allows us to identify the two main drops in the Li evolution due to the first dredge-up and to the extra-mixing episode after the red giant branch bump. The measured iron content of M4 results to [Fe/H]=-1.10 ± 0.01 dex (σ= 0.07 dex), with no systematic offsets between dwarf and giant stars. The behaviour of the Li and Fe abundances along the entire evolutionary path is incompatible with theoretical models including pure atomic diffusion, pointing out that an additional turbulent mixing below the convective region needs to be taken into account, able to inhibit the atomic diffusion. The measured value of A(Li) and its homogeneity in the turn-off stars allow us to put strong constraints on the shape of the Li profile inside the M4 turn-off stars. The global behaviour of A(Li) with the effective temperature can be reproduced with different pristine Li abundances, depending on the kind of adopted turbulent mixing. One cannot reproduce the global trend that starts from the WMAP+BBNS A(Li) and adopts the turbulent mixing described by Richard, Michaud & Richer with the same efficiency as that used by Korn et al. to explain the Li content in NGC 6397. In fact, such a solution is not able to well reproduce simultaneously the Li abundance observed in turn-off and red giant branch

  11. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    Science.gov (United States)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  12. Indium recovery from acidic aqueous solutions by solvent extraction with D2EHPA: a statistical approach to the experimental design

    Directory of Open Access Journals (Sweden)

    Fortes M.C.B.

    2003-01-01

    Full Text Available This experimental work presents the optimization results of obtaining a high indium concentration solution and minimum iron poisoning by solvent extraction with D2EHPA solubilized in isoparaffin and exxsol. The variables studied in the extraction step were D2EHPA concentration, acidity of the aqueous phase and time of contact between phases. Different hydrochloric and sulfuric acid concentrations were studied for the stripping step. The optimum experimental conditions resulted in a solution with 99% indium extraction and less than 4% iron. The construction of a McCabe-Thiele diagram indicated two theoretical countercurrent stages for indium extraction and at least six stages for indium stripping. Finally, the influence of associated metals found in typical sulfate leach liquors from zinc plants was studied. Under the experimental conditions for maximum indium extraction, 96% indium extraction was obtained, iron extraction was about 4% and no Ga, Cu and Zn were co-extracted.

  13. [Health effects of solar cell component material. Toxicity of indium compounds to laboratory animals determined by intratracheal instillations].

    Science.gov (United States)

    Tanaka, Akiyo; Hirata, Miyuki

    2013-01-01

    Owing to the increasing interest being paid to the issue of the global environment, the production of solar cells has increased rapidly in recent years. Copper indium gallium diselenide (CIGS) is a new efficient thin film used in some types of solar cell. Indium is a constitutive element of CIGS thin-film solar cells. It was thought that indium compounds were not harmful until the beginning of the 1990s because there was little information regarding the adverse health effects on humans or animals arising from exposure to indium compounds. After the mid-1990s, data became available indicating that indium compounds can be toxic to animals. In animal studies, it has been clearly demonstrated that indium compounds cause pulmonary toxicity and that the dissolution of indium compounds in the lungs is considerably slow, as shown by repeated intratracheal instillations in experimental animals. Thus, it is necessary to pay much greater attention to human exposure to indium compounds, and precautions against possible exposure to indium compounds are paramount with regard to health management.

  14. Non-destructive method for the analysis of gold(I) cyanide plating baths Complexometric determination of nickel and indium.

    Science.gov (United States)

    Pribil, R; Veselý, V

    1972-12-01

    A method is described for rapid determination of nickel and indium in gold(I) cyanide baths containing large amounts of citric acid and/or sodium citrate, without previous destruction of organic matter. Gold is removed by extraction with ethyl acetate. In one aliquot of the solution indium is masked with thioglycollic acid and nickel is precipitated with sodium diethyldithiocarbamate, extracted into chloroform, stripped into water and determined complexometrically. In a second aliquot indium and nickel are precipitated together with the same reagent and stripped into water, then nickel is masked with 1,10-phenanthroline, and indium is determined by direct titration with EDTA.

  15. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    remains the primary material of choice. This research is about investigating Indium Arsenide nanowires as alternative platform for sensing charged species - chemical and biological, in solution. Starting with nanowires grown via molecular beam epitaxy in an ultra-high vacuum chamber, we discuss...

  16. Indium-Carrier Minerals in Polymetallic Sulphide Ore Deposits: A Crystal Chemical Insight into an Indium Binding State Supported by X-ray Absorption Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Diogo Rosa

    2012-11-01

    Full Text Available Indium is a typical chalcophile element of the Earth’s crust, with a very low average content that seldom forms specific minerals, occurring mainly as dispersed in polymetallic sulphides. Indium recovery is based primarily on zinc extraction from sphalerite, the prototype of so-called tetrahedral sulphides, wherein metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions, leaving interstices accessible for further in-filling. Ascertaining the tendency towards the establishment of In-In interactions through an x-ray absorption spectroscopy approach would efficiently contribute to understanding the behavior of indium in the carrier mineral. The successful results of applying such a near-edge absorption (XANES study at In L3-edge to samples collected at the Lagoa Salgada polymetallic orebody in the Iberian Pyrite Belt (IPB are described and the crystal chemistry of indium is re-evaluated, disclosing a potential clue for the metal binding state in polymetallic sulphides.

  17. Indium-111 granulocyte scintigraphy in inflammatory bowel disease; La scintigraphie aux polynucleaires marques a l`indium 111 dans les enterocolites cryptogenetiques

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, A.; Moisan, A.; Heresbach, D.; Darnault, P.; Bretagne, J.F.

    1996-12-31

    The present paper reports our experience since 1963 concerning 111-indium labeled autologous granulocytes scanning in the assessment of inflammatory bowel diseases and in the assessment of activity in Crohn`s disease and ulcerative colitis. (authors). 94 refs., 3 figs.

  18. A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohammad Nooredeen; Hend Samy Amer [National Research Centre, Cairo (Egypt)

    2013-04-15

    A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from 3 Χ 10{sup -7} to 1 Χ 10{sup -2} M and a lower detection limit (LDL) of 1 Χ 10{sup -7} M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

  19. Effects of indium chloride exposure on sperm morphology and DNA integrity in rats

    Directory of Open Access Journals (Sweden)

    Kuo-Hsin Lee

    2015-03-01

    Full Text Available Indium, a Group IIIA element of the periodic chart and a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry where released streams can contaminate the environment. Consequently, indium can reach humans mainly by natural ways, which could result in a health hazard. Although reproductive toxicities have been surveyed in some studies in animal models, the infertility effects of sperm function induced by indium compounds have not been greatly investigated. We designed a study to investigate the toxicities of subacute exposure to indium compounds on male sperm function and the process of spermatogenesis in a rodent model. Fourteen Sprague-Dawley rats on postnatal Day (PND 84 were randomly divided into exposure and control groups, and weekly received intraperitoneal injections of indium chloride (1.5 mg/kg body weight and normal saline, respectively, for 8 weeks. Cauda epididymal sperm count, motility, morphology, chromatin DNA integrity, mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation, and testis DNA content were investigated. The indium chloride exposed group showed significant toxicity to sperm function, as well as an increased percentage of sperm morphological abnormality and chromatin DNA damage. Furthermore, positive correlations between abnormal sperm morphology, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low dose indium exposure during sexual maturation on sperm function, resulting in sperm chromatin DNA damage through an increase in sperm ROS generation in a rodent model.

  20. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    Directory of Open Access Journals (Sweden)

    Tianhong Cui

    2011-09-01

    Full Text Available We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 µm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip.

  1. A conductometric indium oxide semiconducting nanoparticle enzymatic biosensor array.

    Science.gov (United States)

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I-V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4-12 nA/mM for channel lengths of 5-20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip.

  2. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    Science.gov (United States)

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  3. High Performance Indium-Doped ZnO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Junjie Qi

    2015-01-01

    Full Text Available Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s and recovery time (23 s to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16 of Co-doped ZnO nanofibers to acetone. These results indicate that doping elements can improve gas sensitivity, which is associated with oxygen space and valence ions. In-doped ZnO nanobelts exhibit higher sensitivity to acetone than that to ethanol. These results indicate that doped ZnO nanobelts can successfully distinguish acetone and ethanol, which can be put into various practical applications.

  4. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors

    Science.gov (United States)

    Kim, Chang-Jung; Kim, Sangwook; Lee, Je-Hun; Park, Jin-Seong; Kim, Sunil; Park, Jaechul; Lee, Eunha; Lee, Jaechul; Park, Youngsoo; Kim, Joo Han; Shin, Sung Tae; Chung, U.-In

    2009-12-01

    We developed amorphous hafnium-indium-zinc oxide (HIZO) thin films as oxide semiconductors and investigated the films electrically and physically. Adding of hafnium (Hf) element can suppress growing the columnar structure and drastically decrease the carrier concentration and hall mobility in HIZO films. The thin film transistors (TFTs) with amorphous HIZO active channel exhibit good electrical properties with field effect mobility of around 10 cm2/Vs, S of 0.23 V/decade, and high Ion/off ratio of over 108, enough to operate the next electronic devices. In particular, under bias-temperature stress test, the HIZO TFTs with 0.3 mol % (Hf content) showed only 0.46 V shift in threshold voltage, compared with 3.25 V shift in HIZO TFT (0.1 mol %). The Hf ions may play a key role to improve the instability of TFTs due to high oxygen bonding ability. Therefore, the amorphous HIZO semiconductor will be a prominent candidate as an operation device for large area electronic applications.

  5. Finite-size effects in amorphous indium oxide

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-04-01

    We study the low-temperature magnetotransport properties of several highly disordered amorphous indium oxide (a:InO) samples. Simultaneously fabricated devices comprising a two-dimensional (2D) film and 10 -μ m -long wires of different widths were measured to investigate the effect of size as we approach the 1D limit, which is around 4 times the correlation length, and happens to be around 100 nm for a:InO. The film and the wires showed magnetic field (B )-induced superconductor to insulator transition (SIT). In the superconducting side, the resistance increased with decrease in wire width, whereas an opposite trend is observed in the insulating side. We find that this effect can be explained in light of charge-vortex duality picture of the SIT. Resistance of the 2D film follows an activated behavior over the temperature (T ), whereas, the wires show a crossover from the high-T -activated to a T -independent behavior. At high-temperature regime the wires' resistance follow the film's until they deviate and became independent of T . We find that the temperature at which this deviation occurs evolves with the magnetic field and the width of the wire, which show the effect of finite size on the transport.

  6. Broadband resonances in indium-tin-oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Qiang, E-mail: s-li@u.northwestern.edu, E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Sakoda, Kazuaki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Ketterson, John B. [NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Department of Physics, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113 (United States); Chang, Robert P. H., E-mail: s-li@u.northwestern.edu, E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States)

    2015-07-20

    There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.

  7. Band gap engineering of indium zinc oxide by nitrogen incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.J., E-mail: jjosila@hotmail.com [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo la Bufa, Fracc. Progreso, C.P. 98060 Zacatecas (Mexico); Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava, Zona Universitaria, C.P. 78270 San Luis Potosí (Mexico); Aguilar-Frutis, M.A.; Alarcón, G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Unidad Legaría, Calz. Legaría No. 694, Col. Irrigación, C.P. 11500 México D.F. (Mexico); Falcony, C. [Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional campus Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México D.F. (Mexico); and others

    2014-09-15

    Highlights: • IZON thin films were deposited by RF reactive sputtering at room temperature. • The effects of nitrogen on physical properties of IZO were analyzed. • Optical properties of IZON were studied by SE and UV–vis spectroscopy. • Adachi and classical parameters were quantitative and qualitatively congruent. • Nitrogen induces a gradual narrowing band gap from 3.5 to 2.5 eV on IZON films. - Abstract: The effects of nitrogen incorporation in indium zinc oxide films, as grown by RF reactive magnetron sputtering, on the structural, electrical and optical properties were studied. It was determined that the variation of the N{sub 2}/Ar ratio, in the reactive gas flux, was directly proportional to the nitrogen percentage measured in the sample, and the incorporated nitrogen, which substituted oxygen in the films induces changes in the band gap of the films. This phenomenon was observed by measurement of absorption and transmission spectroscopy in conjunction with spectral ellipsometry. To fit the ellipsometry spectra, the classical and Adachi dispersion models were used. The obtained optical parameters presented notable changes related to the increment of the nitrogen in the film. The band gap narrowed from 3.5 to 2.5 eV as the N{sub 2}/Ar ratio was increased. The lowest resistivity obtained for these films was 3.8 × 10{sup −4} Ω cm with a carrier concentration of 5.1 × 10{sup 20} cm{sup −3}.

  8. Patterning cells on optically transparent indium tin oxide electrodes.

    Science.gov (United States)

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them protein and cell resistive. Presence of insulating PEG molecules on the electrode surface was verified by cyclic voltammetry employing potassium ferricyanide as a redox reporter molecule. Importantly, the application of reductive potential caused desorption of the PEG layer, resulting in regeneration of the conductive electrode surface and appearance of typical ferricyanide redox peaks. Application of reductive potential also corresponded to switching of ITO electrode properties from cell non-adhesive to cell-adhesive. Electrochemical stripping of PEG-silane layer from ITO microelectrodes allowed for cell adhesion to take place in a spatially defined fashion, with cellular patterns corresponding closely to electrode patterns. Micropatterning of several cell types was demonstrated on these substrates. In the future, the control of the biointerfacial properties afforded by this method will allow to engineer cellular microenvironments through the assembly of three or more cell types into a precise geometric configuration on an optically transparent substrate.

  9. Thermal contraction phenomenon of cluster structure of indium melt

    Institute of Scientific and Technical Information of China (English)

    程素娟; 秦绪波; 边秀房; 孙民华; 王忠华

    2002-01-01

    The structure of liquid indium was studied at 280, 390, 550, 650, 750℃, respectively, by using an elevated temperature X-ray diffractometer. The diffraction intensity, structure factor, pair distribution function, radial distribution function, nearest interatomic distance and coordination number were obtained. The results show that the structure of In melt can be approximately described by the random closed packed hard-sphere model with hard-sphere diameter d=2.86, packing density η=0.45. The cluster structure of In melt transforms from quasi-face-centered-cubic lattice into random closed packed structure above melting point. It has been found that the nearest interatomic distance r1 and coordination number Ns decrease with increasing temperature from 280℃ to 750℃, r1 decreases from 3.25 to 3.18 and Ns decreases from 12.771 to 6.648, and thermal contraction phenomenon of atom cluster occurs. Thermal contraction of In melt cluster is not homogeneous in whole measured temperature range. The sudden transformation and the biggest contraction have been found in the range of 390~550℃.

  10. Broadband resonances in indium-tin-oxide nanorod arrays

    Science.gov (United States)

    Li, Shi-Qiang; Sakoda, Kazuaki; Ketterson, John B.; Chang, Robert P. H.

    2015-07-01

    There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.

  11. Stability and electronic properties of two-dimensional indium iodide

    Science.gov (United States)

    Wang, Jizhang; Dong, Baojuan; Guo, Huaihong; Yang, Teng; Zhu, Zhen; Hu, Gan; Saito, Riichiro; Zhang, Zhidong

    2017-01-01

    Based on ab initio density functional calculations, we studied the stability and electronic properties of two-dimensional indium iodide (InI). The calculated results show that monolayer and few-layer InI can be as stable as its bulk counterpart. The stability of the monolayer structure is further supported by examining the electronic and dynamic stability. The interlayer interaction is found to be fairly weak (˜160 meV/atom) and mechanical exfoliation to obtain monolayer and few-layer structures will be applicable. A direct band gap of 1.88 eV of the bulk structure is obtained from the hybrid functional method, and is comparable to the experimental one (˜2.00 eV). The electronic structure can be tuned by layer stacking and external strain. The size of the gap is a linear function of an inverse number of layers, suggesting that we can design few-layer structures for optoelectronic applications in the visible optical range. In-plane tensile or hydrostatic compressive stress is found to be useful not only in varying the gap size to cover the whole visible optical range, but also in inducing a semiconductor-metal transition with an experimentally accessible stress. The present result strongly supports the strategy of broadening the scope of group-V semiconductors by looking for isoelectronic III-VII atomic-layered materials.

  12. Indium-111-labeled platelet scintigraphy in carotid atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Minar, E.; Ehringer, H.; Dudczak, R.; Schoefl, R.J.; Jung, M.; Koppensteiner, R.; Ahmadi, R.; Kretschmer, G.

    1989-01-01

    We evaluated platelet accumulation in carotid arteries by means of a dual-radiotracer method, using indium-111-labeled platelets and technetium-99m-labeled human serum albumin, in 123 patients (92 men, 31 women; median age 60 years). Sixty patients had symptoms of transient ischemic carotid artery disease, and 63 patients with peripheral arterial occlusive disease served as controls. Antiplatelet treatment with acetylsalicylic acid was taken by 53 of the 123 patients. In 36 of the 60 symptomatic patients, platelet scintigraphy was repeated 3-4 days after carotid endarterectomy. Comparison of different scintigraphic parameters (platelet accumulation index and percent of the injected dose of labeled platelets at the carotid bifurcation) showed no significant differences between symptomatic and asymptomatic patients, and the severity of stenosis and the presence of plaque ulceration also had no influence on the parameters. There was no difference between patients with a short (less than 4 weeks) or long (greater than 4 weeks) interval from the last transient ischemic attack to scintigraphy and no difference between patients with or without antiplatelet treatment. Classifying the patients according to plaque morphology judged by high-resolution real-time ultrasonography also demonstrated no differences. No significant correlation was found between any scintigraphic parameter and other platelet function parameters such as platelet survival time, platelet turnover rate, and concentration of platelet-specific proteins. Quantification of platelet deposition after carotid endarterectomy in 36 patients demonstrated a significant increase of the median platelet accumulation index and the percent injected dose index.

  13. Incorporation of indium tin oxide nanoparticles in PEMFC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wolz, Andre [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Zils, Susanne; Ruch, David; Michel, Marc [CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Kotov, Nicholas [University of Michigan, Department of Chemical Engineering, Ann Arbor, MI (United States); Roth, Christina [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); Institute for Applied Materials (IAM)-Energy Storage Systems (ESS), Eggenstein-Leopoldshafen (Germany)

    2012-05-15

    Carbon materials suffer from corrosion at the cathode of polymer electrolyte membrane fuel cells (PEMFCs). In the presence of water, carbon support materials are oxidized to carbon dioxide even at low potentials. Hence, nowadays it is very fashionable to look for alternative support materials, like oxides or conductive polymers. To gain the maximum performance for a new material one should also consider an appropriate electrode structure. This study shows the results for the incorporation of nanosized alternative support materials into advanced electrode architectures. Commercially available indium tin oxide (ITO) nanoparticles (<50 nm) are used as support for Pt nanoparticles in combination with Nafion-coated multi-walled carbon nanotubes (MWCNTs) on the cathode side of a PEMFC. The MWCNTs promote a high electronic conductivity and help to form a porous network, which could accommodate the Pt/ITO nanoparticles. The microscopic investigations show a homogeneous electrode structure composed of Pt/ITO and MWCNT/Nafion multilayer. Single cell measurements show a maximum power density of 73 mW cm{sup -2} and a Pt utilization of 1468 mW mg{sub Pt}{sup -1} for the cathode. The performance data and the Pt utilization are comparable to a standard Pt/carbon black electrode possessing the same Pt loading in the electrode. Beside this, it is shown for the first time that ITO serves as support material under real fuel cell conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Multifunctional Indium Tin Oxide Electrode Generated by Unusual Surface Modification

    Science.gov (United States)

    Bouden, Sarra; Dahi, Antoine; Hauquier, Fanny; Randriamahazaka, Hyacinthe; Ghilane, Jalal

    2016-11-01

    The indium tin oxide (ITO) material has been widely used in various scientific fields and has been successfully implemented in several devices. Herein, the electrochemical reduction of ITO electrode in an organic electrolytic solution containing alkali metal, NaI, or redox molecule, N-(ferrocenylmethyl) imidazolium iodide, was investigated. The reduced ITO surfaces were investigated by X-ray photoelectron spectroscopy and grazing incident XRD demonstrating the presence of the electrolyte cation inside the material. Reversibility of this process after re-oxidation was evidenced by XPS. Using a redox molecule based ionic liquid as supporting electrolyte leads to fellow electrochemically the intercalation process. As a result, modified ITO containing ferrocenyl imidazolium was easily generated. This reduction process occurs at mild reducing potential around -1.8 V and causes for higher reducing potential a drastic morphological change accompanied with a decrease of the electrode conductivity at the macroscopic scale. Finally, the self-reducing power of the reduced ITO phase was used to initiate the spontaneous reduction of silver ions leading to the growth of Ag nanoparticles. As a result, transparent and multifunctional active ITO surfaces were generated bearing redox active molecules inside the material and Ag nanoparticles onto the surface.

  15. The reminiscence bump without memories: The distribution of imagined word-cued and important autobiographical memories in a hypothetical 70-year-old

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Berntsen, Dorthe

    2016-01-01

    of autobiographical memories per se, most notably factors that aid in their encoding or retention, by asking students to generate imagined word-cued and imagined ‘most important’ autobiographical memories of a hypothetical, prototypical 70-year-old of their own culture and gender. We compared the distribution...... of these fictional memories with the distributions of actual word-cued and most important autobiographical memories in a sample of 61–70-year-olds. We found a striking similarity between the temporal distributions of the imagined memories and the actual memories. These results suggest that the reminiscence bump...

  16. The development of 6.7% efficient copper zinc indium selenide devices from copper zinc indium sulfide nanocrystal inks

    Science.gov (United States)

    Graeser, Brian K.

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2)0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2)0.5(Zn(S,Se)) 0.5 layer with micron size grains. Due to the large amount of zinc in the film, the sintered grains exhibit the zinc blende structure instead of the usual chalcopyrite structure of CuIn(S,Se)2 films. The use of the selenide films as a p-type absorber layer has yielded solar cells with total area power conversion efficiencies as high as 6.7% (7.4% based on active area). These preliminary results are encouraging and indicate that with further optimization this class of materials has promise as the absorber layer in solar cells.

  17. Bone scan: Indium-WBC correlation in the diagnosis of osteomyelitis of the foot

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, B.; Wrege, S.S.; Altman, M.I.; Moore, J.W. (Veterans Administration Medical Center, Albuquerque, NM (USA))

    1989-11-01

    A retrospective study was performed of 20 podiatric cases using technetium-99m methylene diphosphonate three-phase bone scans along with indium-111 oxine leukocyte scans, as needed, to determine the presence and extent of osteomyelitis of the foot. Using criteria developed at our institution, the authors attempt to provide a mechanism to make a reliable diagnosis for osteomyelitis that has been supported by surgical/pathologic confirmation of long-term clinical follow-up. The sensitivity, using bone scans alone, was 100%, and specificity was 47%. Correlating bone and indium-111 leukocyte scans yielded a sensitivity of 100% with a specificity raised to 81%. Indium-111 leukocyte scans were used in 40% of cases when a definitive diagnosis for osteomyelitis could not be made on the basis of the three-phase bone scan or clinical presentation alone. Indium-111 leukocyte scans were also helpful in delineating the extent of the disease process. The authors present a standard technique for a 5-hour delayed imaging in the three-phase bone scan, as well as marking the foot in the indium-111 leukocyte scan with three routine views obtained for each imaging procedure, to ensure clinical accuracy.

  18. On the impact of indium distribution on the electronic properties in InGaN nanodisks

    KAUST Repository

    Benaissa, M.

    2015-03-09

    We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations - plasmons - at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening. In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.

  19. Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuankun [University of Shanghai for Science and Technology, School of Materials Science and Engineering, Shanghai (China); Lei, Pei; Zhu, Jiaqi; Han, Jiecai [Harbin Institute of Technology, Center for Composite Materials, Harbin (China)

    2016-04-15

    The influences of indium doping and subsequent annealing in nitrogen and air atmospheres on the microstructure and optical properties of cadmium oxide films were studied in detail with the aid of various characterizations. X-ray photoelectronic spectroscopy analysis shows that indium atom forms chemically oxidized bonds in Cd-O matrix. X-ray diffraction results demonstrate that CdO structure remains FCC structure with indium doping, whereas the preferential orientation transforms from (222) into (200) orientation. Indium doping prevents the large crystalline growth, and this role still works under both nitrogen and air annealing processes. Similarly, CdO films show rough surface under annealing conditions, but the force has been greatly weakened at high doping level. It is clear that refractive index and extinction coefficient are closely correlated with crystalline size for undoped films, whereas it turns to the doping level for doped films, which can be performed by the mechanism of indium atom substitution. This work provides a very useful guild for design and application of optical-electronic devices. (orig.)

  20. Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films

    Science.gov (United States)

    Zhu, Yuankun; Lei, Pei; Zhu, Jiaqi; Han, Jiecai

    2016-04-01

    The influences of indium doping and subsequent annealing in nitrogen and air atmospheres on the microstructure and optical properties of cadmium oxide films were studied in detail with the aid of various characterizations. X-ray photoelectronic spectroscopy analysis shows that indium atom forms chemically oxidized bonds in Cd-O matrix. X-ray diffraction results demonstrate that CdO structure remains FCC structure with indium doping, whereas the preferential orientation transforms from (222) into (200) orientation. Indium doping prevents the large crystalline growth, and this role still works under both nitrogen and air annealing processes. Similarly, CdO films show rough surface under annealing conditions, but the force has been greatly weakened at high doping level. It is clear that refractive index and extinction coefficient are closely correlated with crystalline size for undoped films, whereas it turns to the doping level for doped films, which can be performed by the mechanism of indium atom substitution. This work provides a very useful guild for design and application of optical-electronic devices.

  1. Synthesis and decomposition of a novel carboxylate precursor to indium oxide

    Science.gov (United States)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.

    1994-01-01

    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  2. Imaging of cardiac allograft rejection in dogs using indium-111 monoclonal antimyosin Fab

    Energy Technology Data Exchange (ETDEWEB)

    Addonizio, L.J.; Michler, R.E.; Marboe, C.; Esser, P.E.; Johnson, L.L.; Seldin, D.W.; Gersony, W.M.; Alderson, P.O.; Rose, E.A.; Cannon, P.J.

    1987-03-01

    The acute rejection of cardiac allografts is currently diagnosed by the presence of myocyte necrosis on endomyocardial biopsy. We evaluated the efficacy of noninvasive scintigraphic imaging with indium-111-labeled anticardiac myosin Fab fragments (indium-111 antimyosin) to detect and quantify cardiac allograft rejection. Six dogs that had intrathoracic heterotopic cardiac allograft transplantation were injected with indium-111 antimyosin and planar and single photon emission computed tomographic (SPECT) images were obtained in various stages of acute and subacute rejection. Four dogs had an allograft older than 8 months and had been on long-term immunosuppressive therapy; two dogs had an allograft less than 2 weeks old and were not on immunosuppressive therapy. Count ratios comparing heterotopic with native hearts were calculated from both SPECT images and in vitro scans of excised and sectioned hearts and were compared with the degree of rejection scored by an independent histopathologic review. Indium-111 antimyosin uptake was not visible in planar or SPECT images of native hearts. Faint diffuse uptake was apparent in cardiac allografts during long-term immunosuppression and intense radioactivity was present in hearts with electrocardiographic evidence of rejection. The heterotopic to native heart count ratios in SPECT images correlated significantly with the count ratios in the excised hearts (r = 0.93) and with the histopathologic rejection score (r = 0.97). The distribution of indium-111 antimyosin activity in right and left ventricles corresponded to areas of histopathologic abnormalities.

  3. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles.

    Science.gov (United States)

    Pérez, I; Sestelo, J P; Sarandeses, L A

    2001-05-09

    The novel metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles is described. Triorganoindium compounds (R(3)In) containing alkyl, vinyl, aryl, and alkynyl groups are efficiently prepared from the corresponding lithium or magnesium organometallics by reaction with indium trichloride. The cross-coupling reaction of R(3)In with aryl halides and pseudohalides (iodide 2, bromide 5, and triflate 4), vinyl triflates, benzyl bromides, and acid chlorides proceeds under palladium catalysis in excellent yields and with high chemoselectivity. Indium organometallics also react with aryl chlorides as under nickel catalysis. In the cross-coupling reaction the triorganoindium compounds transfer, in a clear example of atom economy, all three of the organic groups attached to the metal, as shown by the necessity of using only 34 mol % of indium. The feasibility of using R(3)In in reactions with different electrophiles, along with the high yields and chemoselectivities obtained, reveals indium organometallics to be useful alternatives to other organometallics in cross-coupling reactions.

  4. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  5. Effect of impurity on high pressure behavior of nano indium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai– 400085 (India); Singhal, Anshu [Chemistry Division, Bhabha Atomic Research Centre, Mumbai –400085 (India)

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of the intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.

  6. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    K K Makhija; Arabinda Ray; R M Patel; U B Trivedi; H N Kapse

    2005-02-01

    A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.

  7. Low-threshold indium gallium nitride quantum dot microcavity lasers

    Science.gov (United States)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  8. PHOTOELECTRIC AND PHOTOMAGNETIC RESPONSE OF INDIUM-TIN OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    I. K. Meshkovsky

    2015-11-01

    Full Text Available Subject of Research. The goal of the present research is investigation of photoelectric and photomagnetic response of ITO (indium-tin oxide films under UV laser irradiation. Method. The ITO films were prepared by magnetron sputtering with the thickness equal to 300nm. The films were irradiated by UV laser light with 248 nm wavelength in laser pulse energy range from 10 mJ to 150 mJ by KrF excimer laser. Metallic electrodes were deposited on the films. Information about the films surface topography was obtained by atomic force microscopy and scanning electron microscopy. The film structure was investigated by X-ray diffraction. Main Results. It was shown that voltage appears between metallic contacts under the UV light effect. The electric current was observed through resistive load. The anisotropy of electric field producing photoelectric response was demonstrated for the first time. The appearance of magnetic field under the laser light irradiation was observed for the first time. The dependence of the response voltage on the laser pulse energy was linear over the whole measured energy range. The following physical mechanism was proposed for description of the observed phenomenon: electric voltage is associated with non-uniform distribution of the average crystallite size along the film surface, and, therefore, with mean free path of the charge carriers along the film surface. Photomagnetic response could be associated with collective behavior of the large number of charged particles, created due to high intensity laser irradiation. Practical Relevance. The phenomenon being studied could be applied for creation of new optoelectronic devices, for example, modulators, optical detectors, etc. Particularly, due to linear dependence of photoelectric response on the laser pulse energy, this phenomenon is attractive for manufacturing of simple and cheap excimer laser pulse energy detectors.

  9. Micropatterning of proteins and mammalian cells on indium tin oxide.

    Science.gov (United States)

    Shah, Sunny S; Howland, Michael C; Chen, Li-Jung; Silangcruz, Jaime; Verkhoturov, Stanislav V; Schweikert, Emile A; Parikh, Atul N; Revzin, Alexander

    2009-11-01

    This paper describes a novel surface engineering approach that combines oxygen plasma treatment and electrochemical activation to create micropatterned cocultures on indium tin oxide (ITO) substrates. In this approach, photoresist was patterned onto an ITO substrate modified with poly(ethylene) glycol (PEG) silane. The photoresist served as a stencil during exposure of the surface to oxygen plasma. Upon incubation with collagen (I) solution and removal of the photoresist, the ITO substrate contained collagen regions surrounded by nonfouling PEG silane. Chemical analysis carried out with time-of-flight secondary ion mass spectrometry (ToF-SIMS) at different stages in micropatterned construction verified removal of PEG-silane during oxygen plasma and presence of collagen and PEG molecules on the same surface. Imaging ellipsometry and atomic force microscopy (AFM) were employed to further investigate micropatterned ITO surfaces. Biological application of this micropatterning strategy was demonstrated through selective attachment of mammalian cells on the ITO substrate. Importantly, after seeding the first cell type, the ITO surfaces could be activated by applying negative voltage (-1.4 V vs Ag/AgCl). This resulted in removal of nonfouling PEG layer and allowed to attach another cell type onto the same surface and to create micropatterned cocultures. Micropatterned cocultures of primary hepatocytes and fibroblasts created by this strategy remained functional after 9 days as verified by analysis of hepatic albumin. The novel surface engineering strategy described here may be used to pattern multiple cell types on an optically transparent and conductive substrate and is envisioned to have applications in tissue engineering and biosensing.

  10. Lithium indium diselenide: A new scintillator for neutron imaging

    Science.gov (United States)

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min; Wiggins, Brenden; Trtik, Pavel; Penumadu, Dayakar; Young, Stephen; Santodonato, Louis; Bilheux, Hassina; Burger, Arnold; Matei, Liviu; Stowe, Ashley C.

    2016-09-01

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the 6Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  11. Lithium indium diselenide: A new scintillator for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lukosi, Eric, E-mail: elukosi@utk.edu [University of Tennessee, Knoxville, TN (United States); Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min [University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Trtik, Pavel [Paul Scherrer Institut, Villigen CH-5232 (Switzerland); Penumadu, Dayakar; Young, Stephen [University of Tennessee, Knoxville, TN (United States); Santodonato, Louis; Bilheux, Hassina [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Burger, Arnold; Matei, Liviu [Fisk University, Nashville, TN (United States); Stowe, Ashley C. [University of Tennessee, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-11

    Lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 µm or larger resulted in an average spatial resolution of 67 µm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 µm thick LISe (27 µm) outperforms a commercial 50 µm thick ZnS(Cu):{sup 6}LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the {sup 6}Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of {sup 115}In and its long-lived {sup 116}In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  12. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are h

  13. Structure determination of the indium-induced Ge(103)-(1x1) reconstruction by surface X-ray diffraction

    DEFF Research Database (Denmark)

    Bunk, O.; Falkenberg, G.; Zeysing, J.H.;

    1999-01-01

    A detailed structural model of the indium-induced Ge(103)-(1 X 1) surface reconstruction has been established by analyzing an extensive set of X-ray data recorded with synchrotron radiation. Our results show that models with one indium and one germanium adatom per unit cell are incompatible with ...

  14. The red giant branch phase transition: Implications for the RGB luminosity function bump and detections of Li-rich red clump stars

    CERN Document Server

    Cassisi, Santi; Pietrinferni, Adriano

    2015-01-01

    We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${\\rm 0.01M_\\odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.

  15. Measurement of Activity of Indium in Liquid Bi-In-Sn Alloys by EMF Method

    Science.gov (United States)

    Kumar, M. R.; Mohan, S.; Behera, C. K.

    2016-08-01

    The electrochemical technique based on a molten salt electrolyte galvanic cell has been used to measure the activity of indium in liquid Bi-In-Sn alloys in the temperature range of 723 K to 855 K along three ternary sections. The activity of tin in Bi-Sn binary alloys has also been measured by the same technique in the above temperature range. The activity of indium in Bi-In-Sn alloys shows negative deviation from Raoult's law for most of the compositions and slight positive deviations for a few indium-rich compositions. The ternary excess molar free energies have been calculated by Darken's treatment. Isoactivity curves at 813 K in the ternary Bi-In-Sn alloys were derived by combining the activity data of In-Sn and Bi-In alloys. The values of excess molar free energy obtained in this study are compared with those calculated from the Muggianu model at 813 K.

  16. Charge mobility increase in indium-molybdenum oxide thin films by hydrogen doping

    Science.gov (United States)

    Catalán, S.; Álvarez-Fraga, L.; Salas, E.; Ramírez-Jiménez, R.; Rodriguez-Palomo, A.; de Andrés, A.; Prieto, C.

    2016-11-01

    The increase of charge mobility in transparent conductive indium molybdenum oxide (IMO) films is correlated with the presence of hydroxyl groups. The introduction of H2 in the chamber during sputtering deposition compensates the excess charge introduced by cationic Mo doping of indium oxide either by oxygen or hydroxyl interstitials. Films present a linear increase of carrier mobility correlated with H2 content only after vacuum annealing. This behavior is explained because vacuum annealing favors the removal of oxygen interstitials over that of hydroxyl groups. Since hydroxyl groups offer lower effective charge and smaller lattice distortions than those associated with interstitial oxygen, this compensation mechanism offers the conditions for the observed increase in mobility. Additionally, the short-range order around molybdenum is evaluated by extended X-ray absorption fine structure (EXAFS) spectroscopy, showing that Mo4+ is placed at the In site of the indium oxide.

  17. Evaluation of musculoskeletal sepsis with indium-111 white blood cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, T.J.; Thompson, L.; Grogan, T.J.; Webber, M.M.; Amstutz, H.C.

    1987-08-01

    The detection of musculoskeletal sepsis, especially following joint replacement, continues to be a challenging problem. Often, even with invasive diagnostic evaluation, the diagnosis of infection remains uncertain. This is a report on the first 55 Indium-111 white blood cell (WBC) images performed in 39 patients for the evaluation of musculoskeletal sepsis. There were 40 negative and 15 positive Indium-111 WBC images. These were correlated with operative culture and tissue pathology, aspiration culture, and clinical findings. Thirty-eight images were performed for the evaluation of possible total joint sepsis (8 positive and 30 negative images); 17 for the evaluation of nonarthroplasty-related musculoskeletal sepsis (7 positive and 10 negative images). Overall, there were 13 true-positive, 39 true-negative, two false-positive, and one false-negative images. Indium-111 WBC imaging is a sensitive and specific means of evaluating musculoskeletal sepsis, especially following total joint replacement.

  18. Flotation of indium-beard marmatite from multi-metallic ore

    Institute of Scientific and Technical Information of China (English)

    TONG Xiong; SONG Shaoxian; HE Jian; Alejandro Lopez-Valdivieso

    2008-01-01

    Flotation of indium-beard marmatite from Dulong multi-metallic ore in Yunnan Province of China was studied to improve the grades and recoveries of zinc and indium of the zinc concentrate in Dulong concentration plant.The experimental results indicated that copper sulfate mixed with a chemical reagent X-1 as the activator in the marmatite flotation produced a much better beneficiation than copper sulfate alone,increasing the zinc and indium recoveries of 10% and 6%,respectively,while the concentrate grades remained unchanged.Also,the new activator acted well around pH 10,allowing large savings on lime consumption in the rnarmatite flotation.In addition,it has been found that a sufficient activated lime of activator with ore slurry in the flotation is needed to achieve good beneficiation of the marmatite ore.

  19. Indium sulfide buffer/CIGSSe interface engineering: Improved cell performance by the addition of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allsop, N.A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: allsop@hmi.de; Camus, C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Haensel, A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Gledhill, S.E. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lauermann, I. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lux-Steiner, M.C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Fischer, Ch.-H. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)

    2007-05-31

    Indium sulfide buffer layers deposited by the spray-ion layer gas reaction (Spray-ILGAR) technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. In the present work we report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)(S,Se){sub 2} absorber (CIGSSe) and the indium sulfide buffer. It is shown that the deposition of a small amount of zinc sulfide at the absorber/buffer interface can be used to increase the open circuit voltage. A small but significant increase of 20 mV (up to 580 mV), as compared to the pure indium sulfide buffered cells is possible leading to an increase in the overall efficiency.

  20. Ternary arsenides based on platinum–indium and palladium–indium fragments of the Cu{sub 3}Au-type: Crystal structures and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, Elena Yu.; Andreeva, Natalia A.; Kazakov, Sergey M. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow (Russian Federation)

    2015-02-05

    Highlights: • Three metal-rich platinum–indium and palladium–indium arsenides were synthesized. • Their crystal structures were determined from powder XRD. • Electronic structures and bonding were studied using DFT/FP-LAPW calculations. • Multi-centered Pt–In or Pd–In bonding was revealed using ELF and ELI-D analysis. • Extra pairwise Pt–Pt interactions are observed only for Pt-based compounds. - Abstract: Three metal-rich palladium–indium and platinum–indium arsenides, Pd{sub 5}InAs, Pt{sub 5}InAs, and Pt{sub 8}In{sub 2}As, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data. All the compounds crystallize in tetragonal system with P4/mmm space group (Pd{sub 5}InAs: a = 3.9874(1) Å, c = 6.9848(2) Å, Z = 1, R{sub p} = 0.053; R{sub b} = 0.013; Pt{sub 5}InAs: a = 3.9981(2) Å, c = 7.0597(4) Å, Z = 1, R{sub p} = 0.058, R{sub b} = 0.016; Pt{sub 8}In{sub 2}As: a = 3.9872(3) Å, c = 11.1129(7) Å, Z = 1, R{sub p} = 0.047; R{sub b} = 0.014). The first two compounds belong to the Pd{sub 5}TlAs structure type, while the third one is isotypic with the recently discovered Pd{sub 8}In{sub 2}Se. Main structural units in all arsenides are indium-centered [TM{sub 12}In] cuboctahedra (TM = Pd, Pt) of the Cu{sub 3}Au type, single- and double-stacked along the c axis in TM{sub 5}InAs and Pt{sub 8}In{sub 2}As, respectively, alternating with [TM{sub 8}As] rectangular prisms. DFT electronic structure calculations predict all three compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function and electron localizability indicator topologies, all compounds feature multi-centered interactions between transition metal and indium in their heterometallic fragments. Additionally, pairwise interactions between platinum atoms are also observed, indicating a somewhat more localized bonding

  1. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    Science.gov (United States)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program

  2. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S., E-mail: Zhongshan.Li@forbrf.lth.se [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  3. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM.

    Science.gov (United States)

    Lee, Cheol-Hee; Jeong, Mi-Kyung; Kilicaslan, M Fatih; Lee, Jong-Hyeon; Hong, Hyun-Seon; Hong, Soon-Jik

    2013-03-01

    In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.

  4. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    Science.gov (United States)

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  5. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    Science.gov (United States)

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  8. Processing of indium (III) solutions via ion exchange with Lewatit K-2621 resin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Diaz-Pavon, A.; Cerpa, A.; Alguacil, F. J.

    2014-10-01

    The processing of indium(III)-hydrochloric acid solutions by the cationic ion exchange Lewatit K-2621 resin has been investigated. The influence of several variables such as the hydrochloric acid and metal concentrations in the aqueous solution and the variation of the amount of resin added has been studied. Moreover, a kinetic study performed in the uptake of indium(III) by Lewatit K-2621, shows that either the film-diffusion and the particle-diffusion models fit the ion exchange process onto the resin, depending upon the initial metal concentration in the aqueous solution. The loaded resin could be eluted by HCl solutions at 20 degree centigrade. (Author)

  9. Synthesis and electrical property of indium tin oxide nanofibers using electrospinning method.

    Science.gov (United States)

    Lee, Young-In; Lee, Kun-Jae; Kim, Ki Do; Kim, Hee Taik; Chang, Young-Wook; Kang, Shin-Choon; Choa, Yong-Ho

    2007-11-01

    In this study indium tin oxide (ITO) nanofibers were synthesized using an electrospinning method. The morphological properties of the ITO nanofibers were considered and their specific resistances were measured to determine their applicability as filler for a transparent conducting film. ITO/PVP composite nanofibers were successfully obtained by electrospinning using a precursor solution containing indium nitrate, tin chloride, and poly(vinlypyrrolidone). After the heat treatment of ITO/PVP composite nanofibers at 600 degrees C and 1000 degrees C, ITO nanofibers with an average diameter of about 168 nm and 165 nm were synthesized, respectively.

  10. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Dominic; White, Andrew J.P. [Department of Chemistry, Imperial College London (United Kingdom); Forsyth, Craig M. [School of Chemistry, Monash University, Clayton, VIC (Australia); Bown, Mark [CSIRO Manufacturing, Bayview Avenue, Clayton, VIC (Australia); Williams, Charlotte K. [Department of Chemistry, Oxford University (United Kingdom)

    2017-05-02

    Polylactide (PLA) is the leading bioderived polymer produced commercially by the metal-catalyzed ring-opening polymerization of lactide. Control over tacticity to produce stereoblock PLA, from rac-lactide improves thermal properties but is an outstanding challenge. Here, phosphasalen indium catalysts feature high rates (30±3 m{sup -1} min{sup -1}, THF, 298 K), high control, low loadings (0.2 mol %), and isoselectivity (P{sub i}=0.92, THF, 258 K). Furthermore, the phosphasalen indium catalysts do not require any chiral additives. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Chelant-induced reclamation of indium from the spent liquid crystal display panels with the aid of microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hiroshi, E-mail: hhiroshi@t.kanazawa-u.ac.jp [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Rahman, Ismail M.M., E-mail: I.M.M.Rahman@gmail.com [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Department of Applied and Environmental Chemistry, University of Chittagong, Chittagong 4331 (Bangladesh); Egawa, Yuji; Sawai, Hikaru; Begum, Zinnat A. [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Maki, Teruya [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Mizutani, Satoshi [Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-Ku, Osaka 558-8585 (Japan)

    2013-06-15

    Highlights: • A new process for indium recovery from end-of-life LCD panels. • Chelants are used for the dissolution of indium from the waste LCD panels. • Indium extraction with chelant is enhanced with the aid of microwave irradiation. • Extraction rate is quantitative in the hyperbaric high-temperature environment. -- Abstract: Indium is a rare metal that is mostly consumed as indium tin oxide (ITO) in the fabrication process of liquid crystal display (LCD) panels. The spent LCD panels, termed as LCD-waste hereafter, is an increasing contributor of electronic waste burden worldwide and can be an impending secondary source of indium. The present work reports a new technique for the reclamation of indium from the unground LCD-waste using aminopolycarboxylate chelants (APCs) as the solvent in a hyperbaric environment and at a high-temperature. Microwave irradiation was used to create the desired system conditions, and a substantial abstraction of indium (≥80%) from the LCD-waste with the APCs (EDTA or NTA) was attained in the acidic pH region (up to pH 5) at the temperature of ≥120 °C and the pressure of ∼50 bar. The unique point of the reported process is the almost quantitative recovery of indium from the LCD-waste that ensured via the combination of the reaction facilitatory effect of microwave exposure and the metal extraction capability of APCs. A method for the selective isolation of indium from the extractant solution and recycle of the chelant in solution is also described.

  12. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  13. Synthesis and molecular structure of indium complexes based on 3,6-di-tert-butyl-o-benzoquinone. Looking for indium(I) o-semiquinolate.

    Science.gov (United States)

    Piskunov, Alexandr V; Maleeva, Aryna V; Fukin, Georgii K; Baranov, Evgenii V; Bogomyakov, Artem S; Cherkasov, Vladimir K; Abakumov, Gleb A

    2011-01-21

    The interaction of 3,6-di-tert-butyl-o-benzoquinone (3,6-Q) with indium in toluene leads to the tris-o-semiquinolate derivative (3,6-SQ)(3)In (3,6-SQ - radical-anion of 3,6-Q). According to single-crystal X-ray diffraction analysis, this complex has a trigonal prismatic structure. Magnetic measurements revealed that the exchange interactions between odd electrons of the paramagnetic ligands in (3,6-SQ)(3)In are antiferromagnetic in character. The treatment of (3,6-SQ)(3)In with 2,2'-dipyridyl (Dipy) causes the displacement of one o-quinone ligand and the formation of the (3,6-SQ)In(Dipy)(3,6-Cat) (3,6-Cat - dianion of 3,6-Q) derivative containing mixed charged o-quinoid ligands. The reaction of InI with (3,6-SQ)K in THF solution is accompanied by a redox process and the potassium-indium(iii) catecholate derivative was obtained as a result. The oxidation of InI with 3,6-Q in THF produces the dimeric In(iii) iodo-catecholate complex [(3,6-Cat)(2)In·2THF]InI(2). The same derivative can be synthesized by the interaction of indium metal with a mixture of I(2) and 3,6-Q.

  14. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    Science.gov (United States)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  15. Use of indium-111-labeled white blood cells in the diagnosis of diabetic foot infections

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, L.S.; Fox, I.M.

    1990-01-01

    The diagnosis of bone infection in the patient with nonvirgin bone is a diagnostic dilemma. This is especially true in the diabetic patient with a soft tissue infection and an underlying osteoarthropathy. The authors present a retrospective study using the new scintigraphic technique of indium-111-labeled white blood cells as a method of attempting to solve this diagnostic dilemma.

  16. CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties.

    Science.gov (United States)

    Wu, Jih-Jen; Jiang, Wan-Ting; Liao, Wen-Pin

    2010-08-28

    CuInS(2) nanotube (NT) arrays were synthesized on indium tin oxide (ITO) substrates for the first time using a successive ionic layer absorption and reaction (SILAR) process with self-dissolved ZnO nanowire (NW) templates. The p-type CuInS(2) NT array shows promising conversion efficiency in a photoelectrochemical cell with polysulfide electrolyte.

  17. Chain Elongation of Aldoses by Indium-Mediated Coupling with 3-Bromopropenyl Esters

    DEFF Research Database (Denmark)

    Palmelund, Anders; Madsen, Robert

    2005-01-01

    A procedure is described for acyloxyallylation of unprotected aldoses with two functionalized reagents: 3-bromopropenyl acetate and 3-bromopropenyl benzoate. The reaction is performed in ethanol or a dioxane/water mixture in the presence of indium metal. The products are deesterified in the worku...

  18. Impact of atmospheric species on copper indium gallium selenide solar cell stability: An overview

    NARCIS (Netherlands)

    Theelen, M.

    2016-01-01

    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their

  19. Liquid precursor for deposition of indium selenide and method of preparing the same

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  20. Room temperature ferromagnetic ordering in indium substituted nano-nickel-zinc ferrite

    Science.gov (United States)

    Thakur, Sangeeta; Katyal, S. C.; Gupta, A.; Reddy, V. R.; Singh, M.

    2009-04-01

    Nano-nickel-zinc-indium ferrite (NZIFO)(Ni0.58Zn0.42InxFe2-xO4) with varied quantities of indium (x =0,0.1,0.2) have been synthesized via reverse micelle technique. X-ray diffraction and transmission electron microscopy confirmed the size, structure, and morphology of the nanoferrites. The addition of indium in nickel-zinc ferrite (NZFO) has been shown to play a crucial role in enhancing the magnetic properties. Room temperature Mössbauer spectra revealed that the nano-NZFO ferrite exhibit collective magnetic excitations, while indium doped NZFO samples have the ferromagnetic phase. The dependence of Mössbauer parameters, viz. isomer shift, quadrupole splitting, linewidth, and hyperfine magnetic field, on In3+ concentration has been studied. Mössbauer study on these nanosystems shows that the cation distribution not only depends on the particle size but also on the preparation route. Mössbauer results are also supported by magnetization data. Well defined sextets and appearance of hysteresis at room temperature indicate the existence of ferromagnetic couplings which makes nano-NZIFO ferrite suitable for magnetic storage data.

  1. Short circuit current in indium tin oxide/silicon solar cells

    Science.gov (United States)

    Singh, R.

    1980-09-01

    The short-circuit current density of indium tin oxide/single and polycrystalline silicon solar cells reported by Schunck and Coche (1979) is much higher than other silicon solar cells. It is shown that the short-circuit current density reported in the above reference does not represent the true value of these devices.

  2. Palladium-catalyzed cross-coupling reactions of allylic halides and acetates with indium organometallics.

    Science.gov (United States)

    Rodríguez, David; Pérez Sestelo, José; Sarandeses, Luis A

    2004-11-12

    The palladium(0)-catalyzed cross-coupling reaction of allylic halides and acetates with indium organometallics is reported. In this synthetic transformation, triorganoindium compounds and tetraorganoindates (aryl, alkenyl, and methyl) react with cinnamyl and geranyl halides and acetates to afford the S(N)2 product regioselectively and in good yield. The reaction proceeds with net inversion of the stereochemical configuration.

  3. Nano indium oxide as a recyclable catalyst for the synthesis of arylaminotetrazoles

    Indian Academy of Sciences (India)

    Siavash Bahari; Mehdi Ahmadi Sabegh

    2013-01-01

    Nano indium oxide is an effective heterogeneous catalyst for the reaction between aryl cyanamides and sodium azide to synthesize the arylaminotetrazoles in good yields. This method has advantages of high yields, simple methodology, short reaction times and easy work-up. The catalyst can be recovered and reused in good yields.

  4. Therapeutic applications of indium-111-octreotide for carcinoid syndrome. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Camden, B.M.; Chu, J.M.G. [Liverpool Health Service, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: A 83 year old female presented to our department for an Indium-111 Octreotide study to evaluate her carcinoid syndrome with the view of delivering therapeutic doses of Indium-111 Octreotide. Indium-111 Octreotide uptake has been shown in tumours with high-affinity somatostatin receptor sites. In many instances a positive scintigram predicts a favourable response to treatment with Octreotide. The diagnostic scan appearance demonstrated abnormal increased focal uptake in multiple sites of both lobes of the liver and one in the right iliac fossa, her primary site. Before the therapeutic doses, both haematological and biochemical indices of her carcinoid were performed to evaluate therapeutic response. The patient was then admitted into our isolation room and underwent 3 therapeutic doses of Indium-111 Octreotide of between 180 and 350 mCi intravenously at 4 to 6 weekly intervals. A post-therapeutic total body scan with abdominal SPECT was performed after each dose to assess therapeutic uptake and response. Before the second therapeutic dose, an FDG coincidence PET study was performed. This scan corresponded with similar sites of uptake to the Octreotide scan The patient has now had 2 of her 3 therapeutic doses with the third due in late January 1998. At this point of time her biochemical indices and clinical facial flushing and diarrhoea have shown favourable response to therapy

  5. Gallium(III) and indium(III) dithiolate complexes: Versatile precursors for metal sulfides

    Indian Academy of Sciences (India)

    Shamik Ghoshal; Vimal K Jain

    2007-11-01

    The chemistry of classical and organometallic complexes of gallium and indium with dithiolate ligands, i.e., dithiocarboxylates, xanthates, dithiocarbamates, dithiophosphates, dithiophophinates and dithioarsenates, has been reviewed. Synthesis, spectroscopic and structural aspects of these complexes are described. Their emerging role as single source molecular precursors for the preparation of metal sulfide thin films and nano-particles has been discussed.

  6. Structural analysis of the indium-stabilized GaAs(001)-c(8×2) surface

    DEFF Research Database (Denmark)

    Lee, T.-L.; Kumpf, C.; Kazimirov, A.

    2002-01-01

    The indium-stabilized GaAs(001)-c(8x2) surface was investigated by surface x-ray diffraction and x-ray standing waves. We find that the reconstruction closely resembles the c(8x2) structure described by the recently proposed unified model for clean III-V semiconductor surfaces [Kumpf , Phys. Rev....

  7. Efficient Indium-Mediated Dehalogenation of Aromatics in Ionic Liquid Media

    Directory of Open Access Journals (Sweden)

    Flavia C. Zacconi

    2012-12-01

    Full Text Available An efficient indium-mediated dehalogenation reaction of haloaromatics and haloheteroaromatics in ionic liquids has been studied. This method is simple and effective in the presence of [bmim]Br. Furthermore, this methodology is environmentally friendly compared with conventional ones.

  8. Identification of photoluminescence P line in indium doped silicon as InSi-Sii defect

    Directory of Open Access Journals (Sweden)

    Kevin Lauer

    2015-01-01

    Full Text Available Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line was found to depend on the position of a silicon interstitial rich region, the existence of a SiNx:H/SiOx stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by ASi-Sii, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as InSi-Sii in neutral charge state and C2v configuration.

  9. Surface Plasmon Polariton Modulator with Periodic Patterning of Indium Tin Oxide Layers

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2011-01-01

    We study a metal-dielectric-metal waveguide as an absorption modulator. The system consists of an indium tin oxide (ITO) layer and silicon nitride (Si3N4) imbedded between two silver plates. We analyze the system and perform numerical simulations with the aim to increase transmittance and enhance...

  10. Preparation and properties of hydrogen-intercalated indium and gallium monoselenides

    Energy Technology Data Exchange (ETDEWEB)

    Koz' mik, I.D.; Kovalyuk, Z.D.; Grigorchak, I.I.; Bakhmatyuk, B.P.

    1987-10-01

    Indium and gallium monoselenides can be intercalated by hydrogen ions. Thermodynamic parameters have been calculated for the intercalation and the proton diffusion coefficient in the van der Waals' spaces has been determined. The effects of hydrogen intercalation on the resistance perpendicular to the layers in InSe and GaSe have been determined.

  11. Surface Plasmon Polariton Modulator with Periodic Patterning of Indium Tin Oxide Layers

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2011-01-01

    We study a metal-dielectric-metal waveguide as an absorption modulator. The system consists of an indium tin oxide (ITO) layer and silicon nitride (Si3N4) imbedded between two silver plates. We analyze the system and perform numerical simulations with the aim to increase transmittance and enhance...

  12. Indium tin oxide nanosized composite powder prepared using waste ITO target

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaxiang; GAN Yong; ZENG Shengnan

    2005-01-01

    Indium tin oxide (TTO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized ITO composite powder was prepared after the precursor heat-treated at 500C for 2h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder heat-treated at 500C. The purity of ITO composite powder is 99.9907%. The content of indium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Apfully prepared by heat-treating.

  13. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    Science.gov (United States)

    Bazioti, C.; Papadomanolaki, E.; Kehagias, Th.; Walther, T.; Smalc-Koziorowska, J.; Pavlidou, E.; Komninou, Ph.; Karakostas, Th.; Iliopoulos, E.; Dimitrakopulos, G. P.

    2015-10-01

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults and threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.

  14. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kishor Kr. [Department of Chemistry, ADP College, Nagaon, Assam 782002 (India); Nandi, Mithun [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India); Talukdar, Anup K., E-mail: anup_t@sify.com [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India)

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  15. Pixel Hybridization Technologies for the HL-LHC

    Science.gov (United States)

    Alimonti, G.; Biasotti, M.; Ceriale, V.; Darbo, G.; Gariano, G.; Gaudiello, A.; Gemme, C.; Rossi, L.; Rovani, A.; Ruscino, E.

    2016-12-01

    During the 2024-2025 shut-down, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×1034 cm-2s-1. This upgrade of the collider is called High-Luminosity LHC (HL-LHC). ATLAS and CMS detectors will be upgraded to meet the new challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing and an integrated luminosity of 3000 fb-1 over ten years. In particular, the current trackers will be completely replaced. In HL-LHC the trackers should operate under high fluences (up to 1.4 × 1016 neq cm-2), with a correlated high radiation damage. The pixel detectors, the innermost part of the trackers, needed a completely new design in the readout electronics, sensors and interconnections. A new 65 nm front-end (FE) electronics is being developed by the RD53 collaboration compatible with smaller pixel sizes than the actual ones to cope with the high track densities. Consequently the bump density will increase up to 4 ·104 bumps/cm2. Preliminary results of two hybridization technologies study are presented in this paper. In particular, the on-going bump-bonding qualification program at Leonardo-Finmeccanica is discussed, together with alternative hybridization techniques, as the capacitive coupling for HV-CMOS detectors.

  16. JOULE HEATING INDUCED INTERCONNECT FAILURE IN 3D IC TECHNOLOGY

    OpenAIRE

    Li, Menglu

    2016-01-01

    With the slow-down of Moore’s law of scaling transistors, the industry is looking for 3D IC technology to extend the Moore’s law by stacking chips vertically. In the 3D IC technology, Joule heating is the most serious reliability concern because of increased power density. Moreover, there are new interconnects in the package to support vertical stacking, including the Through Silicon Via (TSV) inside silicon die, μ-bumps between different dies, and redistribution layer (RDL) to fan out the cu...

  17. LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Page, K. L.; O’Brien, P. T.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Metzger, B. D. [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bloom, J. S., E-mail: A.J.Levan@warwick.ac.uk [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States)

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t{sup −70}. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L{sub X} ∼ 5 × 10{sup 42} erg s{sup −1} and are marginally inconsistent with a continuing decay of t{sup −5/3}, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M{sub BH} = 3 × 10{sup 6} M{sub ⊙}, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of M{sub R} ∼ −22 to −23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  18. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  19. [Mechanism of renal elimination of 2 elements of group IIIA of the periodic table : aluminum and indium].

    Science.gov (United States)

    Galle, P

    1981-01-05

    Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.

  20. Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification

    Science.gov (United States)

    Schwerdtfeger, C. R.; Ciszek, T. F.

    1992-12-01

    Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification is presented. A supply of good quality angle crystals is essential to characterization of the fundamental material properties. [AIP

  1. Effect of variation in indium concentration on the photosensitivity of chlorine doped In2S3 thin films

    Science.gov (United States)

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-01

    Consequence of variation in Indium concentration in chlorine doped In2S3 thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ˜2300 was obtained only when 36ml 0.5M HCl was added to the solution of In2S3 having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  2. Low Thermal Conductivity and High Thermoelectric Performance in In4Se3- x with Phase-Separated Indium Inclusions

    Science.gov (United States)

    Rawat, Pankaj Kumar; Park, Hwanjoo; Hwang, Junphil; Kim, Woochul

    2017-03-01

    We report the thermoelectric properties of undoped hot-pressed In4Se3- x ( x = 0.05). Stoichiometric imbalance due to selenium deficiency in In4Se3 was found to create a secondary phase of elemental indium in the host material. Heat treatment drove grain growth and increased the indium solubility in In4Se3. Indium-rich domains at grain surfaces/boundaries in untreated samples were found to redistribute inside the grains and their junctions after heat treatment. Due to enhanced phonon scattering by secondary phase of indium, very low values of thermal conductivity were observed for all samples, leading to a maximum thermoelectric figure of merit ( zT) of 1.13 at 723 K along the hot-pressing direction for the heat-treated sample.

  3. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene

    National Research Council Canada - National Science Library

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-01

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied...

  4. Indium-mediated Facile Synthesis of (6-Chloropyridine-3-yl)methyl Heterocyclic Thioether Derivatives in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Bao An SONG; Gang LIU; De Yu HU; Hua ZHANG

    2004-01-01

    A series of substituted (6-chloropyridine-3-yl)methyl heterocyclic thioether derivatives were prepared by indium mediating in water. The preliminary biological tests showed that compound 3d exhibited good antiviral activity.

  5. Low Thermal Conductivity and High Thermoelectric Performance in In4Se3-x with Phase-Separated Indium Inclusions

    Science.gov (United States)

    Rawat, Pankaj Kumar; Park, Hwanjoo; Hwang, Junphil; Kim, Woochul

    2016-12-01

    We report the thermoelectric properties of undoped hot-pressed In4Se3-x (x = 0.05). Stoichiometric imbalance due to selenium deficiency in In4Se3 was found to create a secondary phase of elemental indium in the host material. Heat treatment drove grain growth and increased the indium solubility in In4Se3. Indium-rich domains at grain surfaces/boundaries in untreated samples were found to redistribute inside the grains and their junctions after heat treatment. Due to enhanced phonon scattering by secondary phase of indium, very low values of thermal conductivity were observed for all samples, leading to a maximum thermoelectric figure of merit (zT) of 1.13 at 723 K along the hot-pressing direction for the heat-treated sample.

  6. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    Science.gov (United States)

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-08

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  7. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2014-01-01

    Full Text Available Copper-indium-gallium-diselenide (CIGS thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga=0.603, Ga/(In+Ga=0.674, and Se/(Cu+In+Ga=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios of Ga/(In+Ga and Cu/(In+Ga are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.

  8. Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng, E-mail: z.kuang@liv.ac.uk [Laser Group, School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom); Perrie, Walter; Liu Dun; Fitzsimons, Paul; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken G. [Laser Group, School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2012-07-15

    In the last decade, indium tin oxide (ITO) has been most commonly employed to create transparent conducting oxides (TCOs) thin films for many industrial applications. It is usually necessary to pattern ITO thin films to create functional structures for specific applications. Direct-write micro-patterning of ITO thin films by ultra-short pulse lasers has demonstrated high quality without requiring multiple processing stations, compared with conventional patterning technologies (e.g. wet-etch lithography). However, the processing efficiency and throughput with a single beam can be insufficient because of the high level of attenuation needed for the output to meet the required 'thermal-free' parameters. In this paper, high throughput surface direct micro-structuring of ITO on glass is demonstrated by parallel processing using diffractive multiple ultrashort pulse laser beams ({lambda} = 1064 nm, {tau}p = 10 ps). By avoiding periodic and symmetrical geometry design, the diffractive multiple beam pattern generated by a spatial light modulator has high uniformity (the energy variation between each diffractive beam is <9%). The ITO thin film is removed by laser ablation of 25 identical beams at the same time without any damage to the glass substrate. Additionally, by synchronizing a scanning galvanometer, the processing demonstrates high flexibility to generate various surface patterns.

  9. An Investigation into the Effect of Cation-exchange on the Adsorption Performance of Indium-based Sodalite-ZMOF

    KAUST Repository

    Samin, Umer A.

    2016-04-13

    There is a pressing need for advanced solid-state materials that can be implemented in industrial gas separation processes to achieve separations with a significantly reduced energy input compared to what is typically required from current technologies. Although certain porous materials like zeolites bear some commercial significance for gas separation; their inherent lack of tunability limits the extent to which these materials may be exploited in industry. Zeolite-like Metal-Organic Frameworks (ZMOFs) are a sub-class of Metal-Organic Framework materials (MOFs) that show a structural semblance to zeolites while possessing the tunability advantages of MOF materials. ZMOFs which are topologically similar to certain zeolites can be functionalised and tuned in numerous ways to improve their gas separation properties. In this work, indium-based sod-ZMOF was tuned by cation-exchange and then characterised by different experimental tools such as single-crystal x-ray diffraction, elemental analysis and gas adsorption. It was found that various parameters like the choice of cation, the concentration of salt solution and the choice of solvent had a significant bearing on the cation-exchange of sod-ZMOF and its subsequent adsorption properties.

  10. Structural, optical and electrical properties of undoped and indium doped zinc oxide prepared by spray pyrolysis

    Science.gov (United States)

    Addou, M.; Moumin, A.; El Idrissi, B.; Regragui, M.; Bougrine, A.; Kachouane, A.; Monty, C.

    1999-02-01

    Thin films of transparent undoped and indium doped ZnO have been deposited using the spray pyrolysis technique. The structural, optical properties and electrical resistivity of these films are investigated as a function of substrate temperature and indium concentration in the solution. X-ray diffraction showed that the films prepared at substrate temperature greater than 300 °C exhibit the hexagonal wurtzite structure with a preferential orientation along the (002) direction. Indium doping changes the orientation of grains to the (110) direction. This result is confirmed by SEM. The composition of the films is also examined by XPS. High transmittance (80%) in the visible region and low resistivity of about 10-1 Ω.cm at room temperature are obtained for thin films prepared under optimum deposition conditions: Ts = 450 ^circC and In/Zn = 2 at.%. Des couches minces transparentes et conductrices d'oxydes de zinc (ZnO) non dopées et dopées indium ont été élaborées par pulvérisation chimique réactive en phase liquide (spray). Les propriétés structurales, optiques et électriques de ces couches ont été étudiées en fonction de certains paramètres expérimentaux tel que la température du dépôt et la concentration d'indium dans la solution. L'étude par diffraction X a montré que les couches préparées à des températures de dépôt supérieures à 300 °C ont une structure hexagonale type wurtzite avec une orientation préférentielle suivant l'axe [002]. Le dopage à l'indium change l'orientation des cristallites suivant la direction [110]. Ce résultat a été confirmé par la microscopie électronique à balayage. La résistivité électrique de l'ordre de 10-1 Ω.cm et la transmission optique de 80 % ont été obtenues pour des couches préparées dans les conditions optimales : Ts = 450 ^circC et In/Zn = 2 at.%.

  11. GEMAS: Concentrations and origin of indium in agricultural soil of Europe

    Science.gov (United States)

    Ladenberger, Anna; Sadeghi, Martiya; Demetriades, Alecos; Reimann, Clemens; Birke, Manfred; Andersson, Madelen; Jonsson, Erik

    2014-05-01

    Indium is classified as a critical metal, urgently needed in the electronics industry, especially for the production of solar panels and LCD screens. It is a volatile chalcophile rare element and its primary sources are different types of sulphide ore deposits. Although sphalerite is the main host mineral for indium, chalcopyrite-rich ores usually contain the highest contents of this element. Apart from common sulphides, higher indium concentrations can occur in cassiterite, wolframite and magnetite, in addition to few known indium minerals such as roquesite. Indium is a very rare element and its determination needs a technique with very low detection limits. Data for In are hardly ever provided in geochemical data sets due to its function as an internal standard when using the ICP-MS for analysis. Within the GEMAS project, over 4000 samples of agricultural (Ap) and grazing land (Gr) soil have been collected, and indium concentrations have been measured by ICP-MS in an aqua regia extraction. The median value of aqua regia extractable In in European soil is 0.0176 mg/kg in the Ap and 0.0177 mg/kg in the Gr samples. The most striking pattern on an In distribution map of Europe in an aqua regia extraction is the large difference between northern (low - median 0.012 mg/kg In in the Ap samples) and southern Europe (high - median 0.021 mg/kg In in the Ap samples). The boundary between predominantly high and low concentrations follows exactly the southernmost limit of the last glaciation. In southern Scandinavia, clay-rich soil is indicated by In anomalies, as is the Oslo Rift and the old silver mine at Kongsberg (Norway). Generally, distinct In anomalies mark many of the famous old mining areas of the continent, typically those featuring relatively young hydrothermal deposits (northern Portugal, Iberian Pyrite Belt, Cornwall in the UK, Harz in Germany and Erzgebirge at the German/Czech border), and granitic intrusions (probably related to associated Sn and skarn

  12. Tris(2,2'-bipyridyl) Ruthenium(Ⅱ) Doped Silica Film Modified Indium Tin Oxide Electrode and Its Electrochemiluminescent Properties

    Institute of Scientific and Technical Information of China (English)

    WEI Hui; DU Yan; KANG Jian-Zhen; XU Guo-Bao; WANG Er-Kang

    2007-01-01

    An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane.The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.

  13. Study of Pulse Laser Assisted Metalorganic Vapor Phase Epitaxy of InGaN with Large Indium Mole Fraction

    Science.gov (United States)

    Kangawa, Yoshihiro; Kawaguchi, Norihito; Hida, Ken-nosuke; Kumagai, Yoshinao; Koukitu, Akinori

    2004-08-01

    The indium composition of the InGaN film increases with decreasing growth temperature; however, the crystalline quality of the film is poor when it is grown at low temperatures. To form a high-quality InGaN film with a large indium mole fraction, Nd: YAG pulse laser assisted metalorganic vapor phase epitaxy (MOVPE) was carried out at low temperatures. The results suggest that film quality can be improved by pulse laser irradiation on the surface of the film.

  14. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium-gallium-zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Geng-Wei [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsin-Chu, 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung, Taiwan (China); Syu, Yong-En [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung, Taiwan (China); Tsai, Tsung-Ming; Chang, Kuan-Chang [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 70 Lien-hai Road, Kaohsiung, 804, Taiwan (China); Tu, Chun-Hao [Institute of Electronics, National Chiao Tung University, Hsin-Chu, 300, Taiwan (China); Jian, Fu-Yen [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung, Taiwan (China); Hung, Ya-Chi [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 70 Lien-hai Road, Kaohsiung, 804, Taiwan (China); Tai, Ya-Hsiang [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsin-Chu, 300, Taiwan (China)

    2011-12-30

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol-gel process in the atmosphere. The high yield and low cost passivation layer of sol-gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  15. Atomic layer deposition of indium oxide thin film from a liquid indium complex containing 1-dimethylamino-2-methyl-2-propoxy ligands

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Hwan, E-mail: jhan@krict.re.kr [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114 (Korea, Republic of); Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113 (Korea, Republic of); Jung, Eun Ae [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114 (Korea, Republic of); Department of Chemistry, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Kim, Hyo Yeon [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kim, Da Hye [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114 (Korea, Republic of); Department of Chemistry, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Park, Bo Keun [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114 (Korea, Republic of); Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113 (Korea, Republic of); Park, Jin-Seong [Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Son, Seung Uk [Department of Chemistry, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); and others

    2016-10-15

    Highlights: • Novel liquid indium complex, tris(1-dimethylamino-2-methyl-2-propoxy)indium, was developed with showing excellent thermal properties. • Self-limited atomic layer deposition (ALD) of In{sub 2}O{sub 3} was realized from the newly developed indium precursor and O{sub 3} at the deposition temperatures of 150–200 °C. • The In{sub 2}O{sub 3} films grown at 150–200 °C showed carrier concentrations of 1.5 × 10{sup 18}–6.6 × 10{sup 19} cm{sup −3}, resistivities of 2 × 10{sup −3}–15.1 Ω cm, and Hall mobilities of 0.8–42 cm{sup 2}/(V s). - Abstract: In{sub 2}O{sub 3} thin films were grown from a newly developed, liquid, homoleptic, In-based complex, tris(1-dimethylamino-2-methyl-2-propoxy)indium [In(dmamp){sub 3}], and O{sub 3} by atomic layer deposition (ALD) at growth temperatures of 150–200 °C. In(dmamp){sub 3} exhibited single-step evaporation with negligible residue and excellent thermal stability between 30 and 250 °C. The self-limiting surface reaction of In{sub 2}O{sub 3} during ALD was demonstrated by varying the In(dmamp){sub 3} and O{sub 3} pulse lengths, with a growth rate of 0.027 nm/cycle achieved at 200 °C. The In{sub 2}O{sub 3} films grown at temperatures over 175 °C exhibited negligible concentrations of impurities, whereas that grown below 175 °C had concentrations of residual C of 6–8 at.%. Glancing angle X-ray diffraction revealed that the In{sub 2}O{sub 3} films were polycrystalline in nature when the deposition temperature was greater than 200 °C. The In{sub 2}O{sub 3} films grown at 150–200 °C exhibited carrier concentrations of 1.5 × 10{sup 18}–6.6 × 10{sup 19} cm{sup −3}, resistivities of 15.1–2 × 10{sup −3} Ω cm, and Hall mobilities of 0.8–42 cm{sup 2}/(V s).

  16. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming, E-mail: corrosion@fudan.edu.cn

    2012-09-30

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: Black-Right-Pointing-Pointer Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. Black-Right-Pointing-Pointer Cathodic polarization studied with electrochemical impedance spectroscopy. Black-Right-Pointing-Pointer ITO underwent a corrosion attack during cathodic polarization, indium was observed. Black-Right-Pointing-Pointer Electrochemical parameters of ITO were obtained using equivalent electrical circuit. Black-Right-Pointing-Pointer A corrosion mechanism is proposed.

  17. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  18. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  19. Carbon-Incorporated Amorphous Indium Zinc Oxide Thin-Film Transistors

    Science.gov (United States)

    Parthiban, S.; Park, K.; Kim, H.-J.; Yang, S.; Kwon, J.-Y.

    2014-11-01

    We propose the use of amorphous-carbon indium zinc oxide (a-CIZO) as a channel material for thin-film transistor (TFT) fabrication. This study chose a carbon dopant as a carrier suppressor and strong oxygen binder in amorphous-indium zinc oxide (a-IZO) channel material. a-CIZO thin films were deposited using radiofrequency (RF) sputtering and postannealed at 150°C. X-ray diffraction and transmission electron microscopy analysis revealed that the film remained amorphous even after postannealing. The a-CIZO TFT postannealed at 150°C exhibited saturation field-effect mobility of 16.5 cm2 V-1 s-1 and on-off current ratio of ˜4.3 × 107.

  20. The calibration of DD neutron indium activation diagnostic for Shenguang-III facility

    CERN Document Server

    Song, Zi-Feng; Liu, Zhong-Jie; Zhan, Xia-Yu; Tang, Qi

    2014-01-01

    The indium activation diagnostic was calibrated on an accelerator neutron source in order to diagnose deuterium-deuterium (DD) neutron yields of implosion experiments on Shenguang-III facility. The scattered neutron background of the accelerator room was measured by placing a polypropylene shield in front of indium sample, in order to correct the calibrated factor of this activation diagnostic. The proper size of this shield was given by Monte Carlo simulation software. The affect from some other activated nuclei on the calibration was verified by judging whether the measured curve obeys exponential decay and contrasting the half life of the activated sample. The calibration results showed that the linear range reached up to 100 cps net count rate in the full energy peak of interest, the scattered neutron background of accelerator room was about 9% of the total neutrons and the possible interferences mixed scarcely in the sample. Subtracting the portion induced by neutron background, the calibrated factor of ...

  1. Indium-111 antimyosin monoclonal antibody uptake in patients with cardiomyopathy and myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Matsumori, Akira; Yamada, Takehiko; Morishima, Shigeru (Kyoto Univ. (Japan). Faculty of Medicine) (and others)

    1990-10-01

    Prognostic significance of myocardial uptake of indium-111 antimyosin antibody was evaluated in 17 patients with idiopathic cardiomyopathy; 10 patients with dilated cardiomyopathy and 7 patients with hypertrophic cardiomyopathy. Seven of 10 patients with dilated cardiomyopathy showed positive images. Three of these 7 patients with strongly positive scans died after scintigraphic examination. Six of 7 patients with hypertrophic cardiomyopathy showed positive images. Three of the patients with dilated left ventricle had prominent positive scans and higher heart to lung ratio. The heart to lung ratio of antimyosin uptake in total patients was correlated with left ventricular end-diastolic dimension and ejection fraction measured by echocardiography. In patients with myocarditis, all three patients showed positive scintigrams within 4 weeks after the onset of the disease and 1 of 6 patients was positive thereafter, who had dilated ventricle and decreased cardiac function. Thus, indium-111 antimyosin antibody imaging may be useful to evaluate prognosis of patients with cardiomyopathy and myocarditis. (author).

  2. Detection of adriamycin cardiotoxicity with indium-111 labeled antimyosin monoclonal antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takehiko; Matsumori, Akira; Tamaki, Nagara; Morishima, Shigeru; Watanabe, Yuji; Yonekura, Yoshiharu; Endo, Keigo; Konishi, Junji; Kawai, Chuichi (Kyoto Univ. (Japan). Faculty of Medicine)

    1991-04-01

    Myocardial imaging with indium-111 labeled antimyosin monoclonal antibody (antimyosin imaging) has been reported to be useful in the noninvasive detection of myocardial cell necrosis in dilated cardiomyopathy as well as in myocardial infarction and myocarditis. We used antimyosin imaging to detect myocardial damage in 2 patients with malignant lymphoma in whom adriamycin cardiotoxicity was suspected. Patients were injected with 74 MBq of indium-111 labeled antimyosin (Fab. fraction). Forty-eight hours later, planar imaging and single-photon emission computed tomography were performed using a gamma camera with a medium energy general purpose collimator. Antimyosin imaging demonstrated diffuse myocardial uptake not only in one patient with congestive heart failure but also in another patient at the early stage without congestive heart failure. Antimyosin imaging may be a sensitive method for noninvasive visualization of myocardial cell damage and useful in the early diagnosis of specific heart muscle disease. (author).

  3. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala (India); Mathew, Thomas [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala (India); Department of Physics, St Pius X College Rajapuram, Kasaragod, Kerala (India)

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  4. Structural, Optical, and Electrical Characterization of Spray Pyrolysed Indium Sulfide Thin Films

    Science.gov (United States)

    Rahman, F.; Podder, J.; Ichimura, M.

    2013-03-01

    Indium sulfide (In2S3) thin films were deposited onto the glass substrates by a low cost simple spray pyrolysis technique at 300°C temperature. Aqueous solution of indium chloride and thiourea were used to deposit the binary In-S film. The deposited thin films were annealed at 400° and 500°C temperatures and characterized structurally, optically and electrically using EDX, X-ray diffraction, UV-visible spectroscopy and four probe van der Pauw methods. The optical constants such as refractive index and extinction coefficient are calculated from absorbance and transmittance data from 300 to 1100 nm wavelength. The optical transmittance increased after annealing at 400° and 500°C. The band gap energy was reduced from 2.90 to 2.50 eV after annealing the as deposited films. The electrical conductivity as well as the activation energy was increased after annealing the samples.

  5. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Science.gov (United States)

    Zacate, M. O.

    2016-12-01

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema's semi-empirical model.

  6. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Science.gov (United States)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  7. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  8. Improvement of tribological responses of sputtered MoSx films by indium ion implantation

    Institute of Scientific and Technical Information of China (English)

    YasuhideNAWATA; HideoFUJIURA; MakotoNISHIMURA

    2001-01-01

    Molybdenum disulfide (MoS2) has been applied to various space mechanisms as solidlubricant. The tribological characteristics of sputtered MoSx films have been improved by inert gasion implantation. We tried to extend the wear life and reduce friction coefficient by high energyimplantation of indium ions. In friction tests, a pin-on-disk tester was used to measure friction coeffi-cient and wear life in a vacuum, dry air and air of 30%, 50% and 80% RH. Indium ions implanted the filmat a dose of 1×1016 ions/cm2 exhibited friction coefficient of 0.008 and 5.0 times longer wear life thanthe unimplanted ones did. However, the wear life of this film tested in high humid air presented no im-provement.

  9. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  10. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun; Ozaki, Toshinori; Gu, Genda; Li, Qiang, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  11. Inductively coupled plasma etching of hafnium-indium-zinc oxide using chlorine based gas mixtures

    Science.gov (United States)

    Choi, Yong-Hee; Jang, Ho-Kyun; Jin, Jun-Eon; Joo, Min-Kyu; Piao, Mingxing; Shin, Jong Mok; Kim, Jae-Sung; Na, Junhong; Kim, Gyu Tae

    2014-04-01

    We report the etching characteristics of a stacked hafnium-indium-zinc oxide (HIZO) with a photoresist using the gas mixture of chlorine and argon (Cl2/Ar). The etching behaviors of HIZO have been investigated in terms of a source power, a bias power and a chamber pressure. As the concentration of Cl2 was increased compared to pure Ar, the etch rate of HIZO film was found slightly different from that of indium-zinc oxide (IZO) film. Moreover, to investigate the etching mechanism systematically, various inspections were carried out such as atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) depending on the portion of Cl2. Additionally, we compared the etching mechanism of HIZO film with IZO film to confirm the difference of chemical bonds caused by the influence of hafnium doping.

  12. Limitations of indium-111 leukocyte scanning in febrile renal transplant patients

    Energy Technology Data Exchange (ETDEWEB)

    Sebrechts, C.; Biberstein, M.; Klein, J.L.; Witztum, K.F.

    1986-04-01

    Indium-111-labeled leukocyte scanning was evaluated as a technique for investigating possible abscess as the cause of fever in 10 renal allograft recipients under therapy for rejection, acute tubular necrosis, or urinary infection. The usefulness of the method in this setting was found to be limited by marked nonspecificity of renal, pulmonary, and other focal leukocyte accumulation. Although wound infections were correctly identified, false-positive scans resulted in multiple nonproductive consultations and radiologic procedures (some invasive) and contributed to the decision to perform one negative exploratory laparotomy. Such generalized nonspecificity in this patient population is in distinct contrast to the experience with this diagnostic test in nontransplant patients, and has not previously been reported. Possible explanations and implications of these findings are discussed. Consequently, great caution is recommended in the use of indium-111 leukocyte scans to diagnose infection in febrile renal transplant patients who present in a similar clinical setting.

  13. Temperature dependence of the Raman-active phonon frequencies in indium sulfide

    Science.gov (United States)

    Gasanly, N. M.; Özkan, H.; Aydinli, A.; Yilmaz, İ.

    1999-03-01

    The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.

  14. Structural, optical and electrical properties of chemically deposited nonstoichiometric copper indium diselenide films

    Indian Academy of Sciences (India)

    R H Bari; L A Patil; P P Patil

    2006-10-01

    Thin films of copper indium diselenide (CIS) were prepared by chemical bath deposition technique onto glass substrate at temperature, 60°C. The studies on composition, morphology, optical absorption, electrical conductivity and structure of the films were carried out and discussed. Characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDAX) and absorption spectroscopy. The results are discussed and interpreted.

  15. Nonlinear Optical Properties of Indium Phthalocyanine Axially Grafted Polystyrene Thin Film

    Institute of Scientific and Technical Information of China (English)

    ZHU Rong-Yi; QIU Xue-Qiong; CHEN Yu; QIAN Shi-Xiong

    2006-01-01

    @@ Ultrafast dynamics and third-order nonlinearity of thin films of tert-butyl peripherally-substituted indium ph thalocyanine axially grafted polystyrene (tBu4PcIn-PS) are investigated by femtosecond optical-Kerr-effect (OKE) and z-scan experiments. The fastest component (< 200 fs) in the OKE traces of the film is related to the electron cloud distortion, where the phthalocyanine-polymer interaction may enhance this contribution.

  16. Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells

    OpenAIRE

    Jehl, Zacharie

    2012-01-01

    In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collect...

  17. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    OpenAIRE

    Hemati, A; Shrestha, S; M. Agarwal; K. Varahramyan

    2012-01-01

    Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL) nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS). Raising the pH of the nanoparticle disper...

  18. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    Science.gov (United States)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed

  19. Synthesis of 3,4-disubstituted maleimides by selective cross-coupling reactions using indium organometallics.

    Science.gov (United States)

    Bouissane, Latifa; Pérez Sestelo, José; Sarandeses, Luis A

    2009-03-19

    Unsymmetrical 3,4-disubstituted maleimides have been synthesized by palladium-catalyzed cross-coupling reactions of indium organometallics with 3,4-dihalomaleimides. The synthesis was performed by stepwise or sequential one-pot palladium-catalyzed cross-coupling reactions with various triorganoindium reagents. This method was used to prepare a wide variety of alkyl, aryl, heteroaryl, and alkynyl 3,4-disubstituted maleimides in good yields and with high selectivity and atom economy.

  20. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    OpenAIRE

    Mario Boehme; Emanuel Ionescu; Ganhua Fu; Wolfgang Ensinger

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless de...