WorldWideScience

Sample records for technologies generate large

  1. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and int

  2. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  3. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity.

    Science.gov (United States)

    Dapprich, Johannes; Ferriola, Deborah; Mackiewicz, Kate; Clark, Peter M; Rappaport, Eric; D'Arcy, Monica; Sasson, Ariella; Gai, Xiaowu; Schug, Jonathan; Kaestner, Klaus H; Monos, Dimitri

    2016-07-09

    The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing

  4. Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey

    NARCIS (Netherlands)

    Kerstens, H.H.D.; Crooijmans, R.P.M.A.; Veenendaal, A.; Dibbits, B.W.; Chin-A-Woeng, T.F.C.; Dunnen, den J.T.; Groenen, M.A.M.

    2009-01-01

    Background - The development of second generation sequencing methods has enabled large scale DNA variation studies at moderate cost. For the high throughput discovery of single nucleotide polymorphisms (SNPs) in species lacking a sequenced reference genome, we set-up an analysis pipeline based on a

  5. Large Optics Technology.

    Science.gov (United States)

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  6. Survey on the technological development issues for large-scale methanol engine power generation plant; Ogata methanol engine hatsuden plant ni kansuru gijutsu kaihatsu kadai chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Based on the result of `Survey on the feasibility of large-scale methanol engine power generation plant` in fiscal 1992, concrete technological development issues were studied for its practical use, and the technological R & D scheme was prepared for large-scale methanol engine power plant featured by low NOx and high efficiency. Technological development issues of this plant were as follows: improvement of thermal efficiency, reduction of NOx emission, improvement of the reliability and durability of ignition and fuel injection systems, and reduction of vibration. As the economical effect of the technological development, the profitability of NOx control measures was compared between this methanol engine and conventional heavy oil diesel engines or gas engines. As a result, this engine was more economical than conventional engines. It was suggested that development of the equipment will be completed in nearly 4 years through every component study, single-cylinder model experiment and real engine test. 21 refs., 43 figs., 19 tabs.

  7. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Directory of Open Access Journals (Sweden)

    Materne Michael

    2011-05-01

    Full Text Available Abstract Background Lentil (Lens culinaris Medik. is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Results Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs. De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. Conclusions A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

  8. Generations of Wireless Technology

    Directory of Open Access Journals (Sweden)

    Gagan Preet Kaur

    2011-08-01

    Full Text Available Wireless communication is the transfer of information over adistance without the use of enhanced electrical conductors or"wires”. The distances involved may be short (a few meters as intelevision remote control or long (thousands or millions ofkilometres for radio communications. When the context is clear,the term is often shortened to "wireless". It encompasses varioustypes of fixed, mobile, and portable two-way radios, cellulartelephones, Personal Digital Assistants (PDAs, and wirelessnetworking. In this paper we will throw light on the evolution anddevelopment of various generations of mobile wireless technologyalong with their significance and advantages of one over theother. In the past few decades, the mobile wireless technologies haveexperience of various generations of technology revolution &evolution, namely from 0G to 4G. An advance implementation of 5Gtechnology which are being made on the development of World WideWireless Web (WWW

  9. Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey

    Directory of Open Access Journals (Sweden)

    den Dunnen Johan T

    2009-10-01

    Full Text Available Abstract Background The development of second generation sequencing methods has enabled large scale DNA variation studies at moderate cost. For the high throughput discovery of single nucleotide polymorphisms (SNPs in species lacking a sequenced reference genome, we set-up an analysis pipeline based on a short read de novo sequence assembler and a program designed to identify variation within short reads. To illustrate the potential of this technique, we present the results obtained with a randomly sheared, enzymatically generated, 2-3 kbp genome fraction of six pooled Meleagris gallopavo (turkey individuals. Results A total of 100 million 36 bp reads were generated, representing approximately 5-6% (~62 Mbp of the turkey genome, with an estimated sequence depth of 58. Reads consisting of bases called with less than 1% error probability were selected and assembled into contigs. Subsequently, high throughput discovery of nucleotide variation was performed using sequences with more than 90% reliability by using the assembled contigs that were 50 bp or longer as the reference sequence. We identified more than 7,500 SNPs with a high probability of representing true nucleotide variation in turkeys. Increasing the reference genome by adding publicly available turkey BAC-end sequences increased the number of SNPs to over 11,000. A comparison with the sequenced chicken genome indicated that the assembled turkey contigs were distributed uniformly across the turkey genome. Genotyping of a representative sample of 340 SNPs resulted in a SNP conversion rate of 95%. The correlation of the minor allele count (MAC and observed minor allele frequency (MAF for the validated SNPs was 0.69. Conclusion We provide an efficient and cost-effective approach for the identification of thousands of high quality SNPs in species currently lacking a sequenced genome and applied this to turkey. The methodology addresses a random fraction of the genome, resulting in an even

  10. Student Engagement in a Large Classroom: Using Technology to Generate a Hybridized Problem- Based Learning Experience in a Large First Year Undergraduate Class

    Science.gov (United States)

    Fukuzawa, Sherry; Boyd, Cleo

    2016-01-01

    Large first year undergraduate courses have unique challenges in the promotion of student engagement and self-directed learning due to resource constraints that prohibit small group discussions with instructors. The Monthly Virtual Mystery was developed to increase student engagement in a large (N = 725) first year undergraduate class in…

  11. Student Engagement in a Large Classroom: Using Technology to Generate a Hybridized Problem-based Learning Experience in a Large First Year Undergraduate Class

    Directory of Open Access Journals (Sweden)

    Sherry Fukuzawa

    2016-06-01

    Full Text Available Large first year undergraduate courses have unique challenges in the promotion of student engagement and self-directed learning due to resource constraints that prohibit small group discussions with instructors. The Monthly Virtual Mystery was developed to increase student engagement in a large (N = 725 first year undergraduate class in anthropology at the University of Toronto Mississauga. The teaching challenge was to develop a participation component (worth 6% of the final grade that would increase student engagement without incurring any additional resource costs. The goal of the virtual mystery was to incorporate the principles of problem-based learning to engage students in self-directed learning through an online medium. Groups of approximately 50 students collaborated on a series of “virtual” case studies in a discussion board. Students submitted comments or questions each week to identify the information they needed to solve the mystery. A facilitator oversaw the discussion board to guide students in collaboration and resource acquisition. The final grades of students who participated in the virtual mystery (N=297 were compared to students who participated in a passive online learning exercise that involved watching weekly online videos and answering questions in a course reader (N = 347. Student self-selection determined group participation. Participation completion for both the virtual mystery and the course reader were high (78.8% and 91.6% respectively. There were no significant differences in the distribution of final grades between the participation options. The high completion rate of the virtual mystery demonstrated that an active learning project can be implemented using problem-based learning principles through an online discussion board; however, the large online group collaborations were problematic. Students were frustrated with repetition and inequitable participation in such large groups; however, students evaluated

  12. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  13. Solar power generation technology, new concepts & policy

    CERN Document Server

    Reddy, P Jayarama

    2012-01-01

    This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives i

  14. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  15. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  16. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does...... not have direct competition with food but requires several energy intensive processes to produce them and also increase the land use change, which reduces its environmental and economical feasibility. The third generation biofuels production avoids issues with first and second generation biofuels, viz...... of organic waste and carbon dioxide in flue gases for the production of biomass further increases the sustainability of third generation biofuels, as it does minimize greenhouse gases emission and disposal problems....

  17. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    Generation expansion planning (GEP) is the problem of finding the optimal strategy to plan the Construction of new generation while satisfying technical and economical constraints. In the deregulated and competitive environment, large-scale integration of wind generation (WG) in power system has...... necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...

  18. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  19. Next Generation Large Capacity Long Distance Fiber To The Home

    Directory of Open Access Journals (Sweden)

    N. M. A. Ayad and M. Elazazy

    2011-07-01

    Full Text Available Optical device technologies for photonic networks, are focusing on integrated optical device technologies for digital coherent optical transmission technologies. With the rapid spread of fiber to the home (FTTH, broadband video services and mobile Internet devices now require a highly functional optical network infrastructure with a large capacity 100-Gbit/s/channel system based on digital coherent technology is considered to be a promising candidate for next-generation large-capacity long-distance optical communication systems. The optical components required for such systems, such as Polarization Division Multiplexed Quadrate Phase Shift Keying (PDM-QPSK optical modulator, integrated receiver, and local light source, are under development. Opto-electrical integration technologies, which enable us to construct small, low-cost, and highly functional optical components, will play an important role in providing cost-effective transmission equipment for future 100-Gbit/s/ch and post-100-Gbit/s/ch optical communications

  20. Generating Local Needs through Technology

    DEFF Research Database (Denmark)

    á Rogvi, Sofie; Juul, Annegrete; Langstrup, Henriette

    2016-01-01

    The rhetoric of need is commonplace in discourses of technology and innovation, as well as in global health. Users are said to have a need for innovative technology, and citizens in resource-poor regions to have a need for improved healthcare. In this article we follow a global health technology......—more specifically, a piece of software for monitoring diabetes quality—from Denmark, where it was developed, to Jakarta, Indonesia, where it was introduced in 2012–13. Using ethnographic material, we show how the need for a specific technology is constituted through the very process of moving a technology from one...

  1. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  2. GPU Generation of Large Varied Animated Crowds

    OpenAIRE

    Isaac Rudomin; Benjamín Hernández; Oriam de Gyves; Leonel Toledo; Ivan Rivalcoba; Sergio Ruiz

    2013-01-01

    ..We discuss several steps in the process of simulating and visualizing large and varied crowds in real time for consumer-level computers and graphic cards (GPUs). Animating varied crowds using a diversity of models and animations (assets) is complex and costly. One has to use models that are expensive if bought, take a long time to model, and consume too much memory and computing resources. We discuss methods for simulating, generating, animating and rendering crowds of varied aspect and a d...

  3. The Design of Large Technological Systems

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama

    This is a study of the processes of design of large technological systems based on a two-case study: the rapid transit bus system, Transmilenio, in Bogotá, Colombia, and the urban rail system, Metro, in Copenhagen, Denmark. The research focused especially on the process by which designers define...... material scripts during the conception, construction, implementation and operation of large technological systems. The main argument is that designers define scripts in a process in which three parallel developments are at play: first, a reading takes place of the history (past, present, future...... dynamics involved in the design processes of large technological systems by revealing how their constitution produces a reconfiguration of the arena of development of urban transport. This dynamic substantiates the co-evolution of technological systems and the city....

  4. Photonic Arbitrary Waveform Generation Technology

    Science.gov (United States)

    2006-06-01

    radar/ lidar , optical communications, and signal processing. Our key achievements are as follows: • Frequency domain based architecture using...and combining the result onto a photodetector . The derivative of the time varying voltage applied to the phase modulator determines the addition... photodetectors would also be warranted. 28 References [1] K. Nosu, “Advanced coherent lightwave technologies,” IEEE Commun. Magn,, vol. 26

  5. 大容量SF6发电机断路器关键技术的探讨%Discussion on the Key Technologies of Large Capacity SF6 Generator Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    徐齐巍

    2015-01-01

    针对我国电力事业需求及国内发电机断路器的技术水平,阐述国内发电机断路器的发展趋势和迫切目标,提出推进国内发电机断路器发展进程的关键点;通过引入国际先进理念,探讨大容量SF6发电机断路器的关键技术,在结构型式、灭弧原理、特殊性能指标、冷却方式、操动机构方面进行深入研究,并针对该关键技术的难点问题提出解决思路,为研发满足60万kW以上至100万kW机组要求的额定短路电流160 kA以上的大容量、高参数、运行可靠的SF6发电机断路器提供理论依据。%Based on the demand of electric undertaking in china and the technological level of national generator circuit breaker , the development trend and the exigent goal are expounded, and the cores of furthering development course for national generator circuit breaker is put forward. Through importing international advanced ideas, the key technologies of large capacity SF6 generator circuit breaker are discussed. An embedded research in respects of construction form, arc interruption principle, special performance target, cooling type and operating mechanism is made, solving ideas are provided in allusion to the difficulties in key technologies, and theoretical basis is supplied for researching large capacity SF6 generator circuit breaker with rated short-circuit current being upwards of 160 kA, and with high parameter and running reliability in order to settle for the demand of the generating units with a capacity of 600 MW up to 1 000 MW.

  6. Next generation network management technology

    Science.gov (United States)

    Baras, John S.; Atallah, George C.; Ball, Mike; Goli, Shravan; Karne, Ramesh K.; Kelley, Steve; Kumar, Harsha; Plaisant, Catherine; Roussopoulos, Nick; Schneiderman, Ben; Srinivasarao, Mulugu; Stathatos, Kosta; Teittinen, Marko; Whitefield, David

    1995-01-01

    Today's telecommunications networks are becoming increasingly large, complex, mission critical and heterogeneous in several dimensions. For example, the underlying physical transmission facilities of a given network may be ``mixed media'' (copper, fiber-optic, radio, and satellite); the subnetworks may be acquired from different vendors due to economic, performance, or general availability reasons; the information being transmitted over the network may be ``multimedia'' (video, data, voice, and images) and, finally, varying performance criteria may be imposed e.g., data transfer may require high throughput while the others, whose concern is voice communications, may require low call blocking probability. For these reasons, future telecommunications networks are expected to be highly complex in their services and operations. Due to this growing complexity and the disparity among management systems for individual sub-networks, efficient network management systems have become critical to the current and future success of telecommunications companies. This paper addresses a research and development effort which focuses on prototyping configuration management, since that is the central process of network management and all other network management functions must be built upon it. Our prototype incorporates ergonomically designed graphical user interfaces tailored to the network configuration management subsystem and to the proposed advanced object-oriented database structure. The resulting design concept follows open standards such as Open Systems Interconnection (OSI) and incorporates object oriented programming methodology to associate data with functions, permit customization, and provide an open architecture environment.

  7. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sy; Moritz, Bob

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from

  8. Development of large wind energy power generation system

    Science.gov (United States)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  9. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  10. Generating Random Graphs with Large Girth

    CERN Document Server

    Bayati, Mohsen; Saberi, Amin

    2008-01-01

    We present a simple and efficient algorithm for randomly generating simple graphs without small cycles. These graphs can be used to design high performance Low-Density Parity -Check (LDPC) codes. For any constant k, alpha<1/2k(k+3) and m=O(n^{1+alpha}), our algorithm generate s an asymptotically uniform random graph with n vertices, m edges, and girth larger tha n k in polynomial time. To the best of our knowledge this is the first polynomial-algorith m for the problem. Our algorithm generates a graph by sequentially adding m edges to an empty graph with n vertices. Recently, these types of sequential methods for counting and random generation have been very successful.

  11. Outage maintenance checks on large generator windings

    Energy Technology Data Exchange (ETDEWEB)

    Nindra, B.; Jeney, S.I.; Slobodinsky, Y. [National Electric Coil, Columbus, OH (United States)

    1995-12-31

    In the present days of austerity, more constraints and pressures are being brought on the maintenance engineers to certify the generators for their reliability and life extension. The outages are shorter and intervals between the outages are becoming longer. The annual outages were very common when utilities had no regulatory constraints and also had standby capacities. Furthermore, due to lean and mean budgets, outage maintenance programs are being pursued more aggressively, so that longer interval outages can be achieved to ensure peak generator performance. This paper will discuss various visual checks, electrical tests and recommended fixes to achieve the above mentioned objectives, in case any deficiencies are found.

  12. Dynamic Test Generation for Large Binary Programs

    Science.gov (United States)

    2009-11-12

    Patrice Godefroid, Dennis Jeffries, and Adam Kiezun. The SAGE system builds on the iDNA/Time Travel Debugging and Nirvana infrastructure produced by... Nirvana [7] or Valgrind [74] (Catchconv is an example of the latter approach [70].) SAGE adopts offline trace-based constraint generation for two reasons

  13. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  14. Smooth Tracking Trajectory Generation of Large Antenna

    Directory of Open Access Journals (Sweden)

    Upnere S.

    2016-02-01

    Full Text Available The current paper presents an engineering approach for studies of the control algorithm designed for a mechanically robust large antenna. Feed-forward control methods with the 3rd-order polynomial tracking algorithm are supplemented to the original feed-back PID control system. Dynamical model of the existing servo system of 32m radio telescope has been developed to widen a case analysis of observation sessions and efficiency of the control algorithms due to limited access to an antenna. Algorithms along with the results from the system implemented on a real antenna as well as model results are presented.

  15. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  16. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin [Atk Launch Systems Inc., Brigham City, UT (United States)

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  17. An overview of second generation biofuel technologies.

    Science.gov (United States)

    Sims, Ralph E H; Mabee, Warren; Saddler, Jack N; Taylor, Michael

    2010-03-01

    The recently identified limitations of 1st-generation biofuels produced from food crops (with perhaps the exception of sugarcane ethanol) have caused greater emphasis to be placed on 2nd-generation biofuels produced from ligno-cellulosic feedstocks. Although significant progress continues to be made to overcome the technical and economic challenges, 2nd-generation biofuels production will continue to face major constraints to full commercial deployment. The logistics of providing a competitive, all-year-round, supply of biomass feedstock to a commercial-scale plant is challenging, as is improving the performance of the conversion process to reduce costs. The biochemical route, being less mature, probably has a greater cost reduction potential than the thermo-chemical route, but here a wider range of synthetic fuels can be produced to better suit heavy truck, aviation and marine applications. Continued investment in research and demonstration by both public and private sectors, coupled with appropriate policy support mechanisms, are essential if full commercialisation is to be achieved within the next decade. After that, the biofuel industry will grow only at a steady rate and encompass both 1st- and 2nd-generation technologies that meet agreed environmental, sustainability and economic policy goals.

  18. Technologies for Large Data Management in Scientific Computing

    CERN Document Server

    Pace, A

    2014-01-01

    In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focusses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.

  19. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  20. 大型风力发电机转轴加工工艺难点解析%Analysis on the Technological Difficulties in Machining the Shaft of the Large-size Wind Turbine Generator

    Institute of Scientific and Technical Information of China (English)

    王艳芳; 丁立国

    2014-01-01

    With the development tendency of greater power and higher reliability of the wind turbine generator, the construction of it was improved continuously. The configuration that the rotor outlet from axle hole connecting to the slip ring was becoming more and more popular. The improved technology brought up with such technological difficulties in machining the shaft as the outlet inclined hole and deep hole on the shaft. Through analyzing the drilling and cutting process on the shaft, the technological procedure was optimized and fixtures & tools were innovated, thus, to solve the technological difficulties in machining the shaft.%随着风力发电机大功率、高可靠性的发展趋势,电机的结构不断改进,转子引出线从轴孔穿出与滑环相连的结构越来越普遍。结构的改进给转轴制造工艺带来了难题,比如转轴出线斜孔加工、轴向深孔加工。通过对转轴钻削加工过程的分析,对工艺流程进行优化,对加工用工装和刀具作了改进,解决了大型风力发电机转轴加工难题。

  1. Integrating Information Technologies Into Large Organizations

    Science.gov (United States)

    Gottlich, Gretchen; Meyer, John M.; Nelson, Michael L.; Bianco, David J.

    1997-01-01

    NASA Langley Research Center's product is aerospace research information. To this end, Langley uses information technology tools in three distinct ways. First, information technology tools are used in the production of information via computation, analysis, data collection and reduction. Second, information technology tools assist in streamlining business processes, particularly those that are primarily communication based. By applying these information tools to administrative activities, Langley spends fewer resources on managing itself and can allocate more resources for research. Third, Langley uses information technology tools to disseminate its aerospace research information, resulting in faster turn around time from the laboratory to the end-customer.

  2. Transmission of large amounts of scientific data using laser technology

    Science.gov (United States)

    Isaev, E. A.; Tarasov, P. A.

    2016-08-01

    Currently, the volume of figures generated by different research scientific projects (the Large Hadron Collider (Large Hadron Collider, LHC), The Square Kilometre Array (SKA)), can reach tens of petabytes per day. The only technical solution that allows you to transfer such large amounts of scientific data to the places of their processing is the transfer of information by means of laser technology, using different propagation environment. This article discusses the possibility of data transmission via fiber-optic networks, data transmission using the modulation binary stream of light source by a special LED light source, the neccessity to apply laser technologies for deep space communications, the principle for an unlimited expansion of the capacity of laser data link. Also in this study is shown the need for a substantial increase in data transfer speed via a pre-existing communication networks and via the construction of new channels of communication that will cope with the transfer of very large scale data volumes, taking into account the projected rate of growth.

  3. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  4. Technology Management on Large Construction Projects

    DEFF Research Database (Denmark)

    Bonke, Sten

    The aim of this text is to discuss and to develop the concept of technology management in relation to the empirical field of construction projects. In the first of the two main sections central theories and their derived assertions concerning technology management criteria are summed up...... in a schematic theoretical framework. Hereafter the general characteristics of construction are examined from the point of view of serving as an empirical field for technology management analysis. In the second section the technology management theme is associated with the empirical properties of the Great Belt...... Fixed Link construction project. Finally on this basis the concluding remarks are pointing to the main theoretical problems and their practical implementations for the introduction of a technology management discipline in construction....

  5. Exploring the switchgrass transcriptome using second-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    Yixing Wang

    Full Text Available BACKGROUND: Switchgrass (Panicum virgatum L. is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass makes whole genome sequencing a daunting task even with current technologies. Exploring the transcriptional landscape using next generation sequencing technologies provides a viable alternative to whole genome sequencing in switchgrass. PRINCIPAL FINDINGS: Switchgrass cDNA libraries from germinating seedlings, emerging tillers, flowers, and dormant seeds were sequenced using Roche 454 GS-FLX Titanium technology, generating 980,000 reads with an average read length of 367 bp. De novo assembly generated 243,600 contigs with an average length of 535 bp. Using the foxtail millet genome as a reference greatly improved the assembly and annotation of switchgrass ESTs. Comparative analysis of the 454-derived switchgrass EST reads with other sequenced monocots including Brachypodium, sorghum, rice and maize indicated a 70-80% overlap. RPKM analysis demonstrated unique transcriptional signatures of the four tissues analyzed in this study. More than 24,000 ESTs were identified in the dormant seed library. In silico analysis indicated that there are more than 2000 EST-SSRs in this collection. Expression of several orphan ESTs was confirmed by RT-PCR. SIGNIFICANCE: We estimate that about 90% of the switchgrass gene space has been covered in this analysis. This study nearly doubles the amount of EST information for switchgrass currently in the public domain. The celerity and economical nature of second-generation sequencing technologies provide an in-depth view of the gene space of complex genomes like switchgrass. Sequence analysis of closely related members of the NAD(+-malic enzyme type C4 grasses such as

  6. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  7. Maize transformation technology development for commercial event generation

    Directory of Open Access Journals (Sweden)

    Qiudeng eQue

    2014-08-01

    Full Text Available Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996 paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  8. Large eddy simulation of the flow through a swirl generator

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Stephen

    1998-12-01

    The advances made in computer technology over recent years have led to a great increase in the engineering problems that can be studied using CFD. The computation of flows over and through complex geometries at relatively high Reynolds numbers is becoming more common using the Large Eddy Simulation (LES) technique. Direct numerical simulations of such flows is still beyond the capacity of todays fastest supercomputers, requiring excessive computational times and memory. In addition, traditional Reynolds Averaged Navier Stokes (RANS) methods are known to have limited applicability in a wide range of engineering flow situations. In this thesis LES has been used to simulate the flow through a cascade of guidance vanes, more commonly known as a swirl generator, positioned at the inlet to a gas turbine combustion chamber. This flow case is of interest because of the complex flow phenomena which occur within the swirl generator, which include compressibility effects, different types of flow instabilities, transition, laminar and turbulent separation and near wall turbulence. It is also of interest because it fits very well into the range of engineering applications that can be studied using LES. Two computational grids with different resolutions and two subgrid scale stress models were used in the study. The effects of separation and transition are investigated. A vortex shedding frequency from the guidance vanes is determined which is seen to be dependent on the angle of incident air flow. Interaction between the movement of the separation region and the shedding frequency is also noted. Such vortex shedding phenomena can directly affect the quality of fuel and air mixing within the combustion chamber and can in some cases induce vibrations in the gas turbine structure. Comparisons between the results obtained using different grid resolutions with an implicit and a dynamic divergence (DDM) subgrid scale stress models are also made 32 refs, 35 figs, 2 tabs

  9. Digital technologies to generate health awareness

    Directory of Open Access Journals (Sweden)

    Herman Adriaan van Wietmarschen

    2015-10-01

    A third use case for improving health awareness is the launch of a HealthCafé. The aim is to inspire people to measure their own health and measure the effects of interventions on their health, using all sorts of do-it-your-self technologies. The current version of the HealthCafé offers first of all a physical location where people can interact. It also offers devices such as activity trackers, glucose and cholesterol measurement devices, questionnaires, and a personal internet portal to store and analyse the data. The goal is to empower people and give people more control over their own health. Conclusions: Complexity science offers new opportunities to create health awareness. We have shown how a systems dynamics software tool can be used in group model building sessions to generate a shared understanding of a health problem among stakeholders. The resulted in a successful integrative overweight treatment program at a rehabilitation centre in the Netherlands. The HealthCafé was launched as a living lab which can be used by people to explore their own health and conduct studies on themselves. These activities are aiming for a transition in health care towards more awareness as the personal level, empowerment and thereby increasing the chances for successful life-style changes towards more health and happiness.

  10. Aging assessment of large generator insulation based on PD measurements

    Institute of Scientific and Technical Information of China (English)

    YUE Bo; CHEN Xiaolin; CHENG Yonghong; XIE Hengkun

    2005-01-01

    The statistical parameters of phase resolved partial discharge (PD) distribution and ultra-wideband (UWB) characteristics of PD pulse are proposed for aging assessment of large generator insulation. Multi-stress aging tests of the model generator stator bar specimens were performed and PD measurements were conducted using both digital PD detector with frequency ranging from 40 kHz to 400 kHz and UWB PD detector with bandwidth from 10 MHz to 3 GHz at different aging stages. The test results show that the skewness and UWB frequency characteristics of PD can be taken as the characterization parameters for aging assessment of generator insulation. Furthermore, the measurement results of real generator stator bars show that these methods based on statistical parameters and UWB characteristics of PD are prospective for aging assessment and residual lifetime estimation of large generator stator insulation.

  11. Study of ultra-wideband radar signals-generated technology using two-channel signal generator

    Institute of Scientific and Technical Information of China (English)

    Wan Yonglun; Lu Youxin; Si Qiang; Wang Xuegang; Cao Guangping

    2007-01-01

    Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.

  12. Improved Technologies for Decontamination of Crated Large Metal Objects

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.; Barbour, K.; Stallings, E.

    2003-02-25

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) has been identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats Environmental Technology Site (RFETS), Los Alamos National Laboratory (LANL), and other DOE sites. This paper reports on the results of four technology demonstrations on decontamination of plutonium contaminated gloveboxes with each technology compared to a common baseline technology, wipedown with nitric acid.

  13. Siemens: Smart Technologies for Large Control Systems

    CERN Document Server

    CERN. Geneva; BAKANY, Elisabeth

    2015-01-01

    The CERN Large Hadron Collider (LHC) is known to be one of the most complex scientific machines ever built by mankind. Its correct functioning relies on the integration of a multitude of interdependent industrial control systems, which provide different and essential services to run and protect the accelerators and experiments. These systems have to deal with several millions of data points (e.g. sensors, actuators, configuration parameters, etc…) which need to be acquired, processed, archived and analysed. Since more than 20 years, CERN and Siemens have developed a strong collaboration to deal with the challenges for these large systems. The presentation will cover the current work on the SCADA (Supervisory Control and Data Acquisition) systems and Data Analytics Frameworks.

  14. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  15. Generation of large-scale winds in horizontally anisotropic convection

    CERN Document Server

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  16. Evolution and Next Generation of Large Cosmic-Ray Experiments

    Science.gov (United States)

    Olinto, Angela

    2016-03-01

    With collaborations involving as many as 32 countries, next generation astro-particle observatories are being built to understand the puzzling origin of the most energetic processes in the Universe. We will review some recent results and the effort behind next generation observatories, which include large arrays of detectors and space missions to study high to ultra-high energy cosmic-rays, neutrinos, and gamma-rays. The great opportunity of word-wide scientific productivity and funding motivates these large-scale efforts, which also face many challenges due to geopolitical events and differences in science funding cultures.

  17. Summary of New Generation Technologies and Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  18. Superconducting light generator for large offshore wind turbines

    Science.gov (United States)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  19. Rotor dynamic considerations for large wind power generator systems

    Science.gov (United States)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  20. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  1. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  2. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture thin film solar cells, development of technologies to manufacture low-cost large-area modules (dissolution and deposition process); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu (yokai sekishutsuho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed by noticing on the plasma spraying method as a process that can manufacture thin poly-crystalline silicon films at a high speed. Fiscal 1997 has established a technology that can form a silicon film directly without using seed crystals in an area of 2-cm square on a carbon supported substrate by using a small film manufacturing equipment using the dissolution and deposition process. The size of the crystal is as very large as several hundred {mu}m, by which a possibility of making high-performance solar cells was verified. Discussions were given to apply this technology to large-area substrates, whereas a device was developed, which is capable of forming a film in an area corresponding to 10-cm square. According to a film forming experiment using this device, the film has begun being formed on part of a 10-cm square substrate, verifying the effectiveness of this method. While the film thickness is about 100 {mu}m, it was confirmed that the crystal size will not change even if the thickness is made mechanically as thin as about 50 {mu}m. Further discussions were given on enhancement of wettability by means of coating, and light enclosing structure. (NEDO)

  3. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  4. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani, M. C. ... Agricultural biotechnology provides new technological tools and aims to ..... constraints include poor fringe benefit to researchers ( x. = 2.90) ...

  5. Study on Technology Solutions of CEFR Steam Generator

    Institute of Scientific and Technical Information of China (English)

    WU; Zhi-guang; YU; Hua-jin; LIAO; Zi-yu; ZHANG; Zhen-xing

    2012-01-01

    <正>The technology solutions of CFR1000 steam generator were researched which were compared and analyze with foreign fast reactor steam generator technology solutions. The comparative analysis included the integral/modular structure, the number of modules per loop, structure types, the

  6. Research on Comparisons of New Clean Power Generation Technologies

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities to the development of supercritical and ultra-supercritical pressure coal-fired power generation technologies and taking vigorous action to nuclear power generation technology within the following 5-10 years, exploiting wind power within the following 10-15 years, and suggested that the installed capacity of nuclear power reach 80-100 GW and that of wind power reach 50-80 GW by 2020.

  7. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  8. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  9. Next-generation wireless technologies 4G and beyond

    CERN Document Server

    Chilamkurti, Naveen; Chaouchi, Hakima

    2013-01-01

    This comprehensive text/reference examines the various challenges to secure, efficient and cost-effective next-generation wireless networking. Topics and features: presents the latest advances, standards and technical challenges in a broad range of emerging wireless technologies; discusses cooperative and mesh networks, delay tolerant networks, and other next-generation networks such as LTE; examines real-world applications of vehicular communications, broadband wireless technologies, RFID technology, and energy-efficient wireless communications; introduces developments towards the 'Internet o

  10. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    ... generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... data from a sample of forty-three heads of departments from research institutes and ... for development and safe application of biotechnology innovations.

  11. Next Generation Public Safety and Emergency Technologies

    DEFF Research Database (Denmark)

    Bonde, Camilla; Tadayoni, Reza; Skouby, Knud Erik

    2014-01-01

    The paper researches the existing European standards for Public Safety and Emergency (PSE) services (also called Public Protection Disaster Relief “PPDR”), and identifies based on user studies in Denmark conflicts between the current deployments of the standards and the user requirements. The aim...... is further to identify the potentials of new technologies for PSE. The paper deals with policy and technology frameworks, regulatory issues and in particular the spectrum issues in the current PPDR deployments in the EU countries. The paper draws on the results and concepts developed in two EU...

  12. Generation of nonclassical states in a large detuning cavity

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying-Jie; Ren Ting-Qi; Xia Yun-Jie

    2008-01-01

    By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, SchrSdinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schr(o)dinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.

  13. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  14. Second-generation dental laser technology

    Science.gov (United States)

    Moretti, Michael

    1993-07-01

    The first generation of dental lasers proved limited to soft tissue applications. Due to the thermal properties of these lasers, drilling of enamel and dentin is harmful to the underlying nerve tissue. As a solution to this problem, more sophisticated solidstate lasers are under commercial development for hard tissue applications. The first of these second generation lasers to emerge is the erbium:YAG now marketed in Europe by KaVo. This system relies on a cumbersome articulated arm delivery device. Other manufacturers have overcome this delivery problem with the introduction of flexible delivery methods. Another hard tissue laser that has been introduced is the short-pulsed Nd:YAG. This laser uses shaped pulses to drill teeth without thermal damage. An overview of these and other second generation dental lasers is presented.

  15. Large-scale flow generation by inhomogeneous helicity

    CERN Document Server

    Yokoi, Nobumitsu

    2015-01-01

    The effect of kinetic helicity (velocity--vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters into the Reynolds stress (mirrorsymmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with non-uniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of hom...

  16. Next-generation sequencing and large genome assemblies

    OpenAIRE

    Henson, Joseph; Tischler, German; Ning, Zemin

    2012-01-01

    The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches ...

  17. Large photovoltages generated by plant photosystem I crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toporik, Hila; Carmeli, Chanoch; Nelson, Nathan [Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Carmeli, Itai [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Volotsenko, Irina; Molotskii, Michel; Rosenwaks, Yossi [Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-06-12

    Micrometer-thick plant photosystem I crystals made of up to 1000 layers of serially arranged protein complexes generate unprecedented high photovoltages when placed on a conducting solid surface and measured using Kelvin probe force microscopy. The successive layers form serially photoinduced dipoles in the crystal that give rise to electric fields as large as 100 kV cm{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Development Trends and Economics of Concentrating Solar Power Generation Technologies: A Comparative Analysis

    OpenAIRE

    2009-01-01

    In this paper we compare development trends, economics and financial risks of alternative large-scale solar power generation technologies (parabolic trough, solar tower, and three different photovoltaic technologies). In particular, a number of European countries, Algeria and the US promote solar power generation. In oure study, we investigate the economic viability of the solar trough projects Andasol-I (Spain), Nevada Solar One (US), the solar tower projects PS-10 and Solar Tres (Spain), an...

  19. Fuel cycle comparison of distributed power generation technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  20. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  1. Analyzing the next-generation catalog a library technology report

    CERN Document Server

    Nagy, Andrew

    2011-01-01

    his issue of ""Library Technology Reports"" analyzes five different academic libraries to better understand their investments, detailing the outcome thus far and drawing conclusions about the next-generation catalog.

  2. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  3. Development of Key Technologies of Large Hydro Unit in HEC

    Institute of Scientific and Technical Information of China (English)

    Wu Weizhang

    2010-01-01

    @@ Introduction to HEC Harbin Electric Machinery Company Limited (HEC) is a pivotal company that produces large electric machinery and accessorial control equipment in China.The hydro units made by HEC have accounted for about half of the large-and medium-size hydropower units installed in China,while the thermal generator units occupy about one-third of the total thermal capacity of China.HEC has the ability to develop,design and manufacture products independently,and its typical products include hydro turbine,hydro generator,turbo generator and control equipment.

  4. The Impact of Generational Status on Instructors' Reported Technology Usage

    Science.gov (United States)

    Skidmore, Susan Troncoso; Zientek, Linda Reichwein; Saxon, D. Patrick; Edmonson, Stacey L.

    2014-01-01

    Although the majority of colleges and universities are equipped with the latest instructional technologies, an appreciable integration of technology has not been observed in instructional practices (Flavin, 2013; Garrison & Akyol, 2009; Salinas, 2008). The purpose of this research is to understand the impact that generational differences can…

  5. Small shape deviations causes complex dynamics in large electric generators

    Science.gov (United States)

    Lundström, Niklas L. P.; Grafström, Anton; Aidanpää, Jan-Olov

    2014-05-01

    We prove that combinations of small eccentricity, ovality and/or triangularity in the rotor and stator can produce complex whirling motions of an unbalanced rotor in large synchronous generators. It is concluded which structures of shape deviations that are more harmful, in the sense of producing complex whirling motions, than others. For each such structure, we derive simplified equations of motions from which we conclude analytically the relation between shape deviations and mass unbalance that yield non-smooth whirling motions. Finally we discuss validity of our results in the sense of modeling of the unbalanced magnetic pull force.

  6. Five Large Generation Groups:Competing in Capital Operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Since the reform of electric power industry in 2002,the newly established five large generation groups have been persisting in the development strategy of "taking electricity as the core and extending to up-and-downstream businesses." Stringent measures were taken in capital operation and their potential has been shown through electric power assets acquiring,coal and financial resources investing,capital market financing as well as power utility restructuring.The five groups are playing more and more important roles in merger and acquisition (M&A) and capital markets.

  7. Ultra-large scale cosmology with next-generation experiments

    CERN Document Server

    Alonso, David; Ferreira, Pedro G; Maartens, Roy; Santos, Mario G

    2015-01-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for a range of future large-scale structure surveys: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and continuum surveys of radio galaxies. Our forecasts show that next-generation experiments, reaching out to redshifts z ~ 4, will not be able to detect previously-undetected general-relativistic effects from the single-tracer power spectra alone, although they may be able to measure the lensing magnification in the auto-correlation. We also perform a rigorous joint forecast for the detection of primordial non-...

  8. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture thin film solar cells, development of technologies to manufacture low-cost large-area modules, development of technologies to manufacture next-generation thin film solar cells (development of technologies to manufacture CIS solar cell modules); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu, jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu (CIS taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was made with an objective to achieve conversion efficiency of 13% in a 30 cm times 30 cm size submodule of a CIS-based thin film solar cell, and to develop a manufacturing technology that can achieve 140 yen/Wp. This paper describes the achievements attained during fiscal 1997. In fiscal 1997, based on the achievements reached during the previous year, a submodule with a size of 10 cm times 30 cm was fabricated for an attempt of improving the open voltage and short circuit current density. Simultaneously, the applicability thereof to a module with an area as large as 30 cm times 30 cm was evaluated. As a result of experimental discussions, enhancement in the open voltage was verified by increasing amount of Ga or sulfur, but it was not possible to achieve 600 mV or higher. In the research of component technologies to establish a mass production process, research and development was made on a high-resistance buffer layer film forming technology, a high-quality window layer film forming technology, a high-quality metallic rear electrode film forming technology, and patterning technologies. The outdoor exposure test was continued on laminated mini-modules with a size of 10 cm times 10 cm. (NEDO)

  9. Key Technologies in Large-scale Rescue Robot Wrists

    Directory of Open Access Journals (Sweden)

    Tang Zhidong

    2017-01-01

    Full Text Available The full-Automatic Quick Hitch Coupling Device (full-AQHCD for short is used as the starting point, key technologies in a large-scale rescue robot wrist, which is constituted by integrating a quick hitch coupling device, a turning device, and a swaying device together, are reviewed respectively. Firstly, the semi-AQHCD made domestically for the main-Arm Claw Wrist (main-ACW for short is introduced, and the full-AQHCD imported from Oil Quick company in Sweden for the vice-Arm Cutter Wrist (vice-ACW for short is presented. Secondly, aiming at three key technologies in the full-AQHCD including rotary joint technology, automatic docking technology and precise docking technology for quick action coupling, are concisely expressed. Thirdly, the hydraulic motor driving gear type slewing bearing technology of the turning device made domestically for the main-ACW is introduced, and the hydraulic motor driving worm type slewing bearing technology of the turning device imported from HKS company in Germany for the vice-ACW is presented, especially, the existing gap in the similar domestic technology is discussed. Subsequently, the hydraulic cylinder driving 4-bar linkage technology of the swaying device made domestically for the main-ACW is introduced, and the hydraulic double spiral swing cylinder technology of the swaying device imported from HKS company in Germany for the vice-ACW is presented, especially, the existing gap in the similar domestic technology is discussed. Finally, it is emphasized that these technological gaps have seriously restricted the ability of the vice-ACW to successfully work in future actual rescue combats, therefore, it must be highly valued in the follow-up research and development (R&D through cooperating with professional manufacturers in China, thereby making technological advances.

  10. Application of next-generation sequencing technologies in virology.

    Science.gov (United States)

    Radford, Alan D; Chapman, David; Dixon, Linda; Chantrey, Julian; Darby, Alistair C; Hall, Neil

    2012-09-01

    The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health.

  11. Current Advanced Power Generation Technologies and Options for China (1)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs and environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.

  12. Beyond the Next Generation in Drilling Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Tom; Heysse, Dale

    1998-12-31

    This presentation looks back at the history of offshore drilling and then projects a number of evolutionary developments into the years from 1998 to 2005: (1) By the end of 1999, LWD formation testers and nuclear magnetic resonance tools will become field proven. (2) Global personal networks should be further enhanced when such new communications satellites as Motorola`s Iridium enter operation. Global communications will lead to remote pay zone steering of offshore wells. (3) Casing will be expanded downhole, enabling drilling of smaller uniform diameter wells. (4) Riserless drilling will become available for more applications. (5) There will be increased used of multilateral well designs. (6) Somebody will drill an extended reach well longer than 15 km. (7) The current trend toward subsea production and large floating facilities will continue. (8) `Smart` well completions will mature and become more common, including downhole separation of oil, gas and water. Beyond 2005, rig efficiency will increase, riserless drilling will become commercially available for deepwater applications, computing and communication will become integrated worldwide, and seafloor gas-to-liquids conversion may become commercial. 16 refs.

  13. Large-scale generation of cell-derived nanovesicles

    Science.gov (United States)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  14. Pseudo—Random Test Generation for Large Combinational Circuits

    Institute of Scientific and Technical Information of China (English)

    李忠诚; 闵应骅

    1992-01-01

    In this paper, a simulation system of pseudo-random testing is described first to investigate the characteristics of pseudo-random testing.Several interesting experimntal results are obtained.It is found out that initial states of pseudo-random sequences have little effect on fault coverage.Fixed connection between lfsr outputs and circuit inputs in which the number of LFSR stages m is less than the number of circuit inputs n leads to low fault coverage,and the fault coverage is reduced as m decreases.The local unrandomness of pseudo-random sequences is exposed clearly.Geneally,when an LFSR is employed as a pseudo-random generator,there are at least as many LFSR stages as circuit inputs.However,for large circuits under test with hundreds of inputs,there are drawbacks of using and LFSR with hundreds of stages.In the paper,a new design for a pseudo-random pattern generator is proposed in whic mgenerator.

  15. Implementation of a large solar collector for electric charge generation

    Science.gov (United States)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper evaluates use of solar flux concentrator systems with photovoltaic cells, it provides analysis on overall economic feasibility based on cost/benefit considerations. Properties evaluated include launch volume/mass, efficiency once in a functioning configuration and service life. Production time will also be discussed considering research on existing technology to expedite integration. Solar energy is primarily harvested via solar panels. With the utilization of a large mirrored dish, solar energy can be concentrated to maximize the efficiency of photovoltaic systems form a cost/benefit standpoint. The design concepts for these systems include fully rigid, tensioned over frame, and inflatable approaches. The efficiency of such systems will be discussed. Pre-existing systems, such as the photovoltaic blanket arrays on the international space station, will be considered. Areas of consideration include cost/output ratio, the efficiency of the array, and the system's service life. Prior work on ridged, tensioned, and inflatable mirrored systems will be presented.

  16. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  17. The Uneven Diffusion of Collaborative Technology in a Large Organization

    Science.gov (United States)

    Jarulaitis, Gasparas

    This paper investigates the large-scale diffusion of a collaborative technology in a range of different business contexts. The empirical data used in the article were obtained from a longitudinal (2007-2009) case study of a global oil and gas company (OGC). Our study reports on ongoing efforts to deploy an inte grated collaborative system that uses Microsoft SharePoint (MSP) technology. We assess MSP as a configurational technology and analyze the diffusion of a metadata standard developed in-house, which forms an embedded component of MSP. We focus on two different organizational contexts, namely research and development (R&D) and oil and gas production (OGP), and illustrate the key differences between the ways in which configurational technology is managed and used in these contexts, which results in an uneven diffusion. In contrast with previous studies, we unravel the organizational and technological complexity involved, and thus empirically illustrate the flexibility of large-scale technology and show how the trajectories of the various components are influenced by multiple modes of ordering.

  18. Noise generated by flow through large butterfly valves

    Science.gov (United States)

    Huff, Ronald G.

    1987-01-01

    A large butterfly valve (1.37 m diam) was acoustically tested to measure the noise generated and propagating in both the upstream and downstream directions. The experimental investigation used wall mounted pressure transducers to measure the fluctuating component of the pipe static pressure upstream and downstream of the valve. Microphones upstream of the pipe inlet and located in a plenum were used to measure the noise radiated from the valve in the upstream direction. Comparison of the wall pressure downstream of the valve to a prediction were made. Reasonable agreement was obtained with the valve operating at a choked condition. The noise upstream of the valve is 30 dB less than that measured downstream.

  19. Next-generation sequencing and large genome assemblies.

    Science.gov (United States)

    Henson, Joseph; Tischler, German; Ning, Zemin

    2012-06-01

    The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined and the various software packages available are introduced and compared. The question of whether quality assemblies can be produced using short-read NGS data alone, or whether it must be combined with more expensive sequencing techniques, is considered. Prospects for future assemblers and tests of assembly performance are also discussed.

  20. Study on safety operation for large hydroelectric generator unit

    Science.gov (United States)

    Yan, Z. G.; Cui, T.; Zhou, L. J.; Zhi, F. L.; Wang, Z. W.

    2012-11-01

    Hydroelectric generator unit is a complex mechanical system which is composed of hydraulic turbine and electric generator. Rotary system is supported by the bearing bracket and the reinforced concrete structures, and vibration problem can't be avoided in the process of operating. Many large-scale hydroelectric units have been damaged because of the vibration problem in recent years. As the increase of the hydraulic turbine unit capacity and water head, the safe operation of hydraulic turbine has become a focus research in many countries. The operating characteristics of the hydraulic turbine have obvious differences at different working conditions. Based on the combination of field measurement and theoretical calculation, this paper shows a deep research on the safe operation of a large-scale Francis turbine unit. Firstly, the measurements of vibration, swing, pressure fluctuation and noise were carried out at 4 different heads. And also the relationships between vibrations and pressure fluctuations at different heads and working conditions were analysed deeply. Then the scientific prediction of safe operation for the unit at high head were done based on the CFD numerical calculation. Finally, this paper shows the division of the operating zone for the hydroelectric unit. According to the experimental results (vibrations, swings, pressure fluctuations and noise) as well as the theoretical results, the operating zone of the unit has been divided into three sections: prohibited operating zone, transition operating zone and safe operating zone. After this research was applied in the hydropower station, the security and economic efficiency of unit increased greatly, and enormous economic benefits and social benefits have been obtained.

  1. Development of technology for coal thermal power generation. Present state and future forecast

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Uichiro

    1987-01-01

    Summary of the 1987 coal technology development projects supported by the Agency of Natural Resources and Energy, and the related data such as positioning of coal thermal power plants, application technoloy system, etc. are presented. The coal power generation technology system projects scheduled for 1980 - 1990 were introduced. For the environmental protection, air polution constitutes a big problem, and technologies of desulfurization, denitration, etc. have been developed. In the field of application technology, liquefaction of coal, utilization of low-grade coals, coal gasification, application to combined cycle power generation, etc. can be quoted. The agency is supporting development of various application technologies as the 1987 projects, among them are: Development of entrained bed coal gasification power plant, Verification experiments of technologies for dry desulfurization for coal thermal power plant, Verification tests for operational improvement of coal thermal power plant, Study on the possibility of introducing large scale fluidized bed boiler to coal thermal power generation, Investigation of new power generation systems, Development of high performance coal thermal power technology, and Development of optimum control system for large scale fluidized bed boiler. (2 tabs, 4 photos)

  2. Tidal generation of large sub-mesoscale eddy dipoles

    Directory of Open Access Journals (Sweden)

    W. Callendar

    2011-08-01

    Full Text Available Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwaii (Queen Charlotte Islands are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagation direction appears to be more southerly than typical Haida Eddies, though the model contains no mean wind-driven flows. These eddies are smaller than Haida Eddies, but given their tidal origin, may represent a more consistent source of coastal water that is injected into the interior of the subpolar gyre.

  3. Tidal generation of large sub-mesoscale eddy dipoles

    Science.gov (United States)

    Callendar, W.; Klymak, J. M.; Foreman, M. G. G.

    2011-08-01

    Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwaii (Queen Charlotte Islands) are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagation direction appears to be more southerly than typical Haida Eddies, though the model contains no mean wind-driven flows. These eddies are smaller than Haida Eddies, but given their tidal origin, may represent a more consistent source of coastal water that is injected into the interior of the subpolar gyre.

  4. Tidal generation of large sub-mesoscale eddy dipoles

    Directory of Open Access Journals (Sweden)

    W. Callendar

    2011-04-01

    Full Text Available Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwai (Queen Charlotte Islands are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagation direction appears to be more southerly than typical Haida Eddies, though the model contains no mean wind-driven flows. These eddies are smaller than Haida Eddies, but given their tidal origin, may represent a more consistent source of coastal water that is injected into to the interior of the subpolar gyre.

  5. Generating technology assessment. Phase I work plan, Task 1 report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-15

    A plan of work outlining information to assess electric generating technologies is presented. Projections are made of realistic and understandable engineering and cost assessments of nonnuclear electrical generating technologies. A computer-based method of producing such engineering and cost estimates for use by EIA's Coal and Electric Power Analysis Division is to be developed and implemented. Technologies and processes to be assessed are: all nonnuclear conventional and nonconventional (coal gasification, advanced combustion turbines, atmospheric fluidized bed combustion, fuel cells, geothermal, solar thermal and photovoltaics, biomass conversion to electricity, ocean thermal, wind, and MHD). Engineering specifications recommended for determination are listed. Compatibility of the technologies are to be assessed with EIA models: MEFS, LEAP, and NCM.

  6. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    Wind represents a major and growing source of renewable energy for the electric power systems. This article provides an overview of state-of-the-art technologies and anticipated developments in the area of power electronic drives, controls, and electric generators for large multi-megawatt wind...... of power electronics, ranging from devices to circuit topologies, and similar matters for electric generators, together with results of optimal design studies are included. It is shown that the individual power rating of wind turbines has increased over the years, and technologies required to reach...... turbine systems. The principal components employed in a turbine for energy conversion from wind to electricity are described, and the main solutions that are commercially available are briefly reviewed. The specific issues of complex mission profiles, power codes, and reliability are discussed. Topics...

  7. Generating Relational Competitive Advantage from Strategic Technological Partnership

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2012-01-01

    Collaborating with external partners on strategic technological partnerships (STPs) have been popular phenomena for long, which leads new development in existing theories on competitive advantage. Under the relational view, the competitive advantage is jointly generated by alliance firms. Though ...... appropriation. In order to avoid opportunism and learning races, the success of an STP requires an integration and interaction among three ways of governance: economic investments or hostage, legal contract and trustful social relationships.......Collaborating with external partners on strategic technological partnerships (STPs) have been popular phenomena for long, which leads new development in existing theories on competitive advantage. Under the relational view, the competitive advantage is jointly generated by alliance firms. Though...

  8. Applications for Solid Propellant Cool Gas Generator Technology

    Science.gov (United States)

    van der List, M.; van Vliet, L. D.; Sanders, H. M.; Put, P. A. G.; Elst, J. W. E. C.

    2004-10-01

    In 2002 and 2003, Bradford Engineering B.V. conducted, in corporation with the Dutch research institute TNO Prins Maurits Laboratory (PML) a SME study for ESA-ESTEC for the identification of spaceflight applications and on-ground demonstration of Solid Propellant Cool Gas Generator (SPCGG) technology. This innovative technology has been developed by TNO-PML while Bradford Engineering also brought in its experience in spaceflight hardware development and manufacturing. The Solid Propellant Cool Gas Generator (SPCGG) technology allows for pure gas generation at ambient temperatures, as opposed to conventional solid propellant gas generators. This makes the SPCGG technology interesting for a wide range of terrestrial spaceflight applications. During the first part of the study, a variety of potential applications have been identified and three applications were selected for a more detailed quantitative study. In the third phase a ground demonstration was performed successfully for a cold gas propulsion system application. During the actual demonstration test, 10 cool gas generators were mounted and all operated successfully in sequence, demonstrating good repeatability of the produced amount of gas and pressure.

  9. Greener power generation technologies. Solutions for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Reimuth, Oliver; Kremer, Hermann; Vortmeyer, Nicolas [Siemens AG, Erlangen (Germany)

    2011-07-01

    Fossil-based power generation will continue to account for a dominant share of over 50 % in the future energy mix. In order to meet the requirements of climate protection, a combination of highly-efficient, flexible combined cycle power plants and the use of CCS in coal-based power generation will be necessary. In addition to funding of the first demonstration projects comprehensive statutory framework and public acceptance are necessary for launching CCS technology. (orig.)

  10. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  11. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Siahkali, H., E-mail: Siahkali@ee.sharif.ed [Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Vakilian, M. [Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2010-10-15

    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation scheduling under an uncertain environment. In this paper, a fuzzy optimization-based method is developed to solve power system GS problem with fuzzy objective and constraints. The crisp formulation of this GS problem is firstly defined and is rearranged by introduction of a membership function of some constraints and objective function. Then, this fuzzy optimization problem is converted to a crisp optimization and solved using GAMS software by mixed integer nonlinear programming. Employing the fuzzy optimization GS, it is expected that in practice a higher profit would be achieved in the operation and cost management of a real power system with large scale wind farms in different level of constraints' satisfaction. The proposed approach is applied to a sample system (including six conventional units and two wind farms) and the results are compared with the results of crisp solution. This approach is also applied to a larger test case to demonstrate the robustness of this fuzzy optimization method.

  12. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  13. Optical coherent technologies in next generation access networks

    Science.gov (United States)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  14. Nanopore-based Fourth-generation DNA Sequencing Technology

    Institute of Scientific and Technical Information of China (English)

    Yanxiao Feng; Yuechuan Zhang; Cuifeng Ying; Deqiang Wang; Chunlei Du

    2015-01-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than$100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.

  15. Rucio - The next generation large scale distributed system for ATLAS Data Management

    CERN Document Server

    Beermann, T; The ATLAS collaboration; Lassnig, M; Barisits, M; Vigne, R; Serfon, C; Stewart, G A; Goossens, L; Nairz, A; Molfetas, A

    2014-01-01

    Rucio is the next-generation Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address the ATLAS experiment scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 150 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will deal with these issues by relying on new technologies to ensure system scalability, address new user requirements and employ a new automation framework to reduce operational overheads.

  16. Technology Literacy and the MySpace Generation: They're Not Asking Permission

    Science.gov (United States)

    McLester, Susan

    2007-01-01

    As open source and other participatory Web venues become the norm in the new century, educators will be facing an even more overwhelming technology learning curve. A new digital divide is in the future--one that is largely generational. At its heart will be the fundamental questions of what "school" really means and whether digital immigrants can…

  17. Large space systems technology electronics: Data and power distribution

    Science.gov (United States)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  18. Next Generation Very Large Array: The Cradle of Life

    Science.gov (United States)

    Isella, Andrea; Hull, Charles L. H.; Moullet, Arielle; ngVLA Cradle of Life

    2017-01-01

    This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of giant planets in the Solar System. For each of these projects, we discuss the scientific importance and feasibility. The results presented here should be considered as the beginning of a more in-depth analysis of the science enabled by such a facility, and are by no means complete or exhaustive.

  19. Current Advanced Power Generation Technologies and Options for China (2)

    Institute of Scientific and Technical Information of China (English)

    Deng Nubo; Mohsen Assadi; Yang Cheng

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs arid environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.Here published is the second part of the paper.

  20. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  1. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  2. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Grant, E-mail: grant.j.allan@strath.ac.u [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Eromenko, Igor; McGregor, Peter [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Swales, Kim [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2011-01-15

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: {yields} Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. {yields} Reveals potential inefficiencies of selecting mixes based on levelised cost alone. {yields} Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  3. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  4. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, Rick [ICF International, Fairfax, VA (United States); Bluestein, Joel [ICF International, Fairfax, VA (United States); Rodriguez, Nick [ICF International, Fairfax, VA (United States); Knoke, Stu [ICF International, Fairfax, VA (United States)

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  5. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  6. Application of next-generation sequencing technology in forensic science.

    Science.gov (United States)

    Yang, Yaran; Xie, Bingbing; Yan, Jiangwei

    2014-10-01

    Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice.

  7. Application of Next-generation Sequencing Technology in Forensic Science

    Directory of Open Access Journals (Sweden)

    Yaran Yang

    2014-10-01

    Full Text Available Next-generation sequencing (NGS technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice.

  8. Application of Next-generation Sequencing Technology in Forensic Science

    Institute of Scientific and Technical Information of China (English)

    Yaran Yang; Bingbing Xie; Jiangwei Yan

    2014-01-01

    Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multi-ple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice.

  9. Generations of Research on New Technologies in Mathematics Education

    Science.gov (United States)

    Sinclair, Nathalie

    2014-01-01

    This article traces some of the influential ideas and motivations that have shaped a large part of the research on the use of new technologies in mathematics education over the past 40 years. Particular attention is focused on Papert's legacy, Celia's Hoyles' transformation of it, and how both relate to the current research landscape that features…

  10. Research of laser cleaning technology for steam generator tubing

    Science.gov (United States)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  11. Steam generator asset management: integrating technology and asset management

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, P.; Cislo, D. [AREVA NP Inc., Lynchburg, Virginia (United States)]. E-mail: paul.shoemaker@areva.com

    2006-07-01

    Asset Management is an established but often misunderstood discipline that is gaining momentum within the nuclear generation industry. The global impetus behind the movement toward asset management is sustainability. The discipline of asset management is based upon three fundamental aspects; key performance indicators (KPI), activity-based cost accounting, and cost benefits/risk analysis. The technology associated with these three aspects is fairly well-developed, in all but the most critical area; cost benefits/risk analysis. There are software programs that calculate, trend, and display key-performance indicators to ensure high-level visibility. Activity-based costing is a little more difficult; requiring a consensus on the definition of what comprises an activity and then adjusting cost accounting systems to track. In the United States, the Nuclear Energy Institute's Standard Nuclear Process Model (SNPM) serves as the basis for activity-based costing. As a result, the software industry has quickly adapted to develop tracking systems that include the SNPM structure. Both the KPI's and the activity-based cost accounting feed the cost benefits/risk analysis to allow for continuous improvement and task optimization; the goal of asset management. In the case where the benefits and risks are clearly understood and defined, there has been much progress in applying technology for continuous improvement. Within the nuclear generation industry, more specialized and unique software systems have been developed for active components, such as pumps and motors. Active components lend themselves well to the application of asset management techniques because failure rates can be established, which serves as the basis to quantify risk in the cost-benefits/risk analysis. A key issue with respect to asset management technologies is only now being understood and addressed, that is how to manage passive components. Passive components, such as nuclear steam generators

  12. Battery technologies for large-scale stationary energy storage.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2011-01-01

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  13. Technology Assessment for Large Vertical-Lift Transport Tiltrotors

    Science.gov (United States)

    Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.

    2010-01-01

    The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.

  14. Large geospatial images discovery: metadata model and technological framework

    Directory of Open Access Journals (Sweden)

    Lukáš Brůha

    2015-12-01

    Full Text Available The advancements in geospatial web technology triggered efforts for disclosure of valuable resources of historical collections. This paper focuses on the role of spatial data infrastructures (SDI in such efforts. The work describes the interplay between SDI technologies and potential use cases in libraries such as cartographic heritage. The metadata model is introduced to link up the sources from these two distinct fields. To enhance the data search capabilities, the work focuses on the representation of the content-based metadata of raster images, which is the crucial prerequisite to target the search in a more effective way. The architecture of the prototype system for automatic raster data processing, storage, analysis and distribution is introduced. The architecture responds to the characteristics of input datasets, namely to the continuous flow of very large raster data and related metadata. Proposed solutions are illustrated on the case study of cartometric analysis of digitised early maps and related metadata encoding.

  15. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    Science.gov (United States)

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  16. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  17. Novel forest fuel production technology for the large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A. [Timberjack Energy Technology, Tampere (Finland)

    2003-07-01

    This PowerPoint presentation outlined the operations of Timberjack Energy Technology and provided illustrated examples of how the latest technologies in bioenergy have been applied to generate power in Finland. In particular, it referred to mobile chippers and loose residue bundlers used to provide feed for the CFB boiler at a kraft pulp and paper pilot project plant in Alholmens, Finland. The boiler generates 700 GWh of heat, and 1,300 GWh of electricity using 45 per cent peat, 45 per cent bark and wood waste, and 10 per cent heavy fuel oil and coal. Illustrations of the fuel handling system for the facility were presented. The Alholmens Kraft facility operates the world's first slash bundle train for bark and wood waste. It handles 4,000 bundles per day, equivalent to 65 full truck loads and 2,000 metric tons. The use of Timberjack's wood buncher and bundling machines have been tested in Austria, Finland, France, Germany, Italy, Spain, Switzerland, Sweden and the United States. It is estimated that 720,000 bundles of loose residue were made in Finland in 2003, equivalent to 19 million US oil gallons of pure renewable energy. The target for 2004 is 1,250,000 bundles, equivalent to 1.3 TWh. Wood fuel accounts for 20 per cent of primary energy production in Finland. It was noted that an added benefit to bundling of forest residue is the potential to prevent forest fires. 1 tab., 53 figs.

  18. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    2017-01-01

    The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...

  19. Smart Home Technologies: Insights into Generation-Specific Acceptance Motives

    Science.gov (United States)

    Gaul, Sylvia; Ziefle, Martina

    In this research we examine the generation specific acceptance motives of eHealth technologies in order to assess the likelihood of success for these new technologies. 280 participants (14 - 92 years of age) volunteered to participate in a survey, in which using motives and barriers toward smart home technologies were explored. The scenario envisaged was the use of a medical stent implemented into the body, which monitors automatically the health status and which is able to remotely communicate with the doctor. Participants were asked to evaluate the pros and cons of the usage of this technology, their acceptance motives and potential utilization barriers. In order to understand the complex nature of acceptance, personal variables (age, technical expertise, health status), individual's cognitive concepts toward ageing as well as perceived usefulness were related. Outcomes show that trust, believe in the reliability of technology, privacy and security as well as intimacy facets are essential for acceptance and should be considered in order to proactively design a successful rollout of smart home technologies.

  20. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  1. Climate regulation enhances the value of second generation biofuel technology

    Science.gov (United States)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  2. Generating Relational Competitive Advantage from Strategic Technological Partnership

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2012-01-01

    Collaborating with external partners on strategic technological partnerships (STPs) have been popular phenomena for long, which leads new development in existing theories on competitive advantage. Under the relational view, the competitive advantage is jointly generated by alliance firms. Though...... appropriation. In order to avoid opportunism and learning races, the success of an STP requires an integration and interaction among three ways of governance: economic investments or hostage, legal contract and trustful social relationships....

  3. Diffusion of multi-generational high-technology products

    OpenAIRE

    Shi, Xiaohui; Fernandes, Kiran,; Chumnumpan, Pattarin

    2014-01-01

    Previous multi-generational product diffusion (MGPD) models were developed based on the diffusion patterns at that time, but may not be adopted in today’s cases. By incorporating the effect of customers’ forward-looking behaviour, this paper offers a parsimonious and original model that captures the dynamics of MGPD in current high-technology markets. We empirically examine the feasibility of using previous MGPD models and our suggested model to explain the market growth of new products from ...

  4. Knowledge Generation in Technology-Enhanced Health Exhibitions

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Kharlamov, Nikita; Zachariasssen, Maria

    2016-01-01

    This paper presents results from eye-tracking studies of audience interaction and knowledge generation in the technology-enhanced health promotion exhibition PULSE at a science centre in Copenhagen, Denmark. The main purpose of the study was to understand what types of knowledge audiences build...... in health promotion exhibitions designed to include direct physical interaction. The current study is part of the larger PULSE project, which aims to develop innovative health promotion activities that include a science museum exhibition as a key setting. The primary target group is families with children...... age 6–12. Health promotion technologies are defined here, as technologies designed specifically for the purpose of health promotion, be they educational or focused on physical activities. The study was conducted in late 2015 and comprised eight families with children in 2nd-6th grade visiting...

  5. Engineering the next generation of clinical deep brain stimulation technology.

    Science.gov (United States)

    McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F

    2015-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Technology commercialization: From generating ideas to creating economic value

    Directory of Open Access Journals (Sweden)

    Tayeb Dehghani

    2015-06-01

    Full Text Available Frequent changes in competitors' status, technology, and customer interests make it unwise and impossible for companies to rely on their products. Customers always seek to find new products. Consequently, companies should continuously produce and offer superior products to meet customer needs, tastes, and expectations. In fact, every company needs a development plan for its new products. Research has demonstrated that one of the major reasons for rapid development of technology in industrial countries is commercialization of research results. The basis of such commercialization is research-industry collaboration in converting research output into innovation. Today, technology commercialization and its outcomes can provide financial resources required for organizational longevity. The main objective of this article is to propose a model for commercializing research findings from idea generation to initial market entry. We believe that this article can, hopefully, contribute to commercialization literature by acting as a guide to local authorities involved in commercialization cycle.

  7. Large optical glass blanks for the ELT generation

    Science.gov (United States)

    Jedamzik, Ralf; Petzold, Uwe; Dietrich, Volker; Wittmer, Volker; Rexius, Olga

    2016-07-01

    The upcoming extremely large telescope projects like the E-ELT, TMT or GMT telescopes require not only large amount of mirror blank substrates but have also sophisticated instrument setups. Common instrument components are atmospheric dispersion correctors that compensate for the varying atmospheric path length depending on the telescope inclination angle. These elements consist usually of optical glass blanks that have to be large due to the increased size of the focal beam of the extremely large telescopes. SCHOTT has a long experience in producing and delivering large optical glass blanks for astronomical applications up to 1 m and in homogeneity grades up to H3 quality in the past. The most common optical glass available in large formats is SCHOTT N-BK7. But other glass types like F2 or LLF1 can also be produced in formats up to 1 m. The extremely large telescope projects partly demand atmospheric dispersion components even in sizes beyond 1m up to a range of 1.5 m diameter. The production of such large homogeneous optical glass banks requires tight control of all process steps. To cover this demand in the future SCHOTT initiated a research project to improve the large optical blank production process steps from melting to annealing and measurement. Large optical glass blanks are measured in several sub-apertures that cover the total clear aperture of the application. With SCHOTT's new stitching software it is now possible to combine individual sub-aperture measurements to a total homogeneity map of the blank. In this presentation first results will be demonstrated.

  8. Rucio - The next generation of large scale distributed system for ATLAS Data Management

    CERN Document Server

    Garonne, V; The ATLAS collaboration; Beermann, T; Goossens, L; Lassnig, M; Nairz, A; Stewart, GA; Vigne, V; Serfon, C

    2013-01-01

    Rucio is the next-generation Distributed Data Management(DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 140 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will address these issues by relying on a conceptual data model and new technology to ensure system scalability, address new user requirements and employ new automation framework to reduce operational overheads. We present the key concepts of Rucio, including its data organization/representation and a model of how ATLAS central group and user activities will be managed. The Rucio design, and the technology it employs, is described...

  9. Rucio - The next generation of large scale distributed system for ATLAS Data Management

    CERN Document Server

    Garonne, V; The ATLAS collaboration; Beermann, T; Goossens, L; Lassnig, M; Nairz, A; Stewart, GA; Vigne, V; Serfon, C

    2014-01-01

    Rucio is the next-generation Distributed Data Management(DDM) system benefiting from recent advances in cloud and ”Big Data” computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 140 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will address these issues by relying on a conceptual data model and new technology to ensure system scalability, address new user requirements and employ new automation framework to reduce operational overheads. We present the key concepts of Rucio, including its data organization/representation and a model of how ATLAS central group and user activities will be managed. The Rucio design, and the technology it employs, is descr...

  10. Rucio - The next generation of large scale distributed system for ATLAS Data Management

    Science.gov (United States)

    Garonne, V.; Vigne, R.; Stewart, G.; Barisits, M.; eermann, T. B.; Lassnig, M.; Serfon, C.; Goossens, L.; Nairz, A.; Atlas Collaboration

    2014-06-01

    Rucio is the next-generation Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 140 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will deal with these issues by relying on a conceptual data model and new technology to ensure system scalability, address new user requirements and employ new automation framework to reduce operational overheads. We present the key concepts of Rucio, including its data organization/representation and a model of how to manage central group and user activities. The Rucio design, and the technology it employs, is described, specifically looking at its RESTful architecture and the various software components it uses. We show also the performance of the system.

  11. Technology spin-offs generation – a multicase study

    Directory of Open Access Journals (Sweden)

    Jonas Mendes Constante

    2014-05-01

    Full Text Available The objective of this study is to understand how small businesses can innovate through the generation of technological spin-offs, identifying motivations, influences and barriers to achieving this phenomenon. Through a qualitative and exploratory study, we analyzed four cases of technological spin-offs in Santa Catarina State. We collected data through field observations, historical data and semi-structured interviews. The main reasons found for spin-offs creation were: diversification and to complement the value chain of the parent company and to ensure greater focus for a specific technology. The main barrier was lack of capital. Government initiatives to support the creation of new businesses, coupled with the organizational culture open to entrepreneurship and investment in R&D, contributed to the development of spin-offs analyzed. This work contributes to the understanding that small and medium-sized technology-based companies are a source of technological spin-offs and can benefit from the occurrence of this process.

  12. The regional electricity generation mix in Scotland. A portfolio selection approach incorporating marine technologies

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Grant; Eromenko, Igor; McGregor, Peter [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Swales, Kim [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2011-01-15

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. (author)

  13. Design Methodology of Large-scale Thermoelectric Generation

    DEFF Research Database (Denmark)

    Chen, Min; Gao, Junling; Zhu, Junpeng

    2011-01-01

    A thermoelectric generation system (TEGS) consists of not only thermoelectric modules (TEMs), but also the external load circuitry and the fluidic heat sources. In this paper, a system-level model is proposed in the SPICE-compatible environment to seamlessly integrate the complete fluid...

  14. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  15. Introduction and comparison of next-generation mobile wireless technologies

    Science.gov (United States)

    Zaidi, Syed R.; Hussain, Shahab; Ali, M. A.; Sana, Ajaz; Saddawi, Samir; Carranza, Aparicio

    2010-01-01

    Mobile networks and services have gone further than voice-only communication services and are rapidly developing towards data-centric services. Emerging mobile data services are expected to see the same explosive growth in demand that Internet and wireless voice services have seen in recent years. To support such a rapid increase in traffic, active users, and advanced multimedia services implied by this growth rate along with the diverse quality of service (QoS) and rate requirements set by these services, mobile operator need to rapidly transition to a simple and cost-effective, flat, all IP-network. This has accelerated the development and deployment of new wireless broadband access technologies including fourth-generation (4G) mobile WiMAX and cellular Long-Term Evolution (LTE). Mobile WiMAX and LTE are two different (but not necessarily competing) technologies that will eventually be used to achieve data speeds of up to 100 Mbps. Speeds that are fast enough to potentially replace wired broadband connections with wireless. This paper introduces both of these next generation technologies and then compares them in the end.

  16. Process Technology Development of Ni Electroplating in Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K.

    2009-11-15

    Operating nuclear power steam generator tubing material, Alloy 600, having superior resistance to corrosion has many experiences of damage by various corrosion mechanisms during long term operation period. In this research project, a new Ni electroplating technology to be applied to repair the damaged steam generator tubes has been developed. In this technology development, the optimum conditions for variables affecting the Ni electroplating process, optimum process conditions for maximum adhesion forces at interface between were established. The various mechanical properties (RT and HT tensile, fatigue, creep, burst, etc.) and corrosion properties (general corrosion, pitting, crevice corrosion, stress corrosion cracking, boric acid corrosion, doped steam) of the Ni plated layers made at the established optimum conditions have been evaluated and confirmed to satisfy the specifications. In addition, a new ECT probe developed at KAERI enable to detect defects from magnetic materials was confirmed to be used for Ni electroplated Alloy 600 tubes at the field. For the application of this developed technology to operating plants, a mock-up electroplating system has been designed and manufactured, and set up at Doosan Heavy Industry Co. and also its performance test has been done. At same time, the anode probe has been modified and improved to be used with the established mock-up system without any problem

  17. Cost efficient SAGD heave monitoring: new generation radar technology

    Energy Technology Data Exchange (ETDEWEB)

    Granda, Johanna; Arnaud, Alain; Payas, Blanca; Katsuris, Dimitra; Cooksley, Geraint [Altamira Information (Canada)

    2011-07-01

    Oil sands operations are subject to various regulations, one of them being the obligation to monitor heave monuments or other surfaces. Besides meeting the Energy Resources Conservation Board (ERCB) requirements, heave monitoring is efficient in steam chamber monitoring and guaranteeing the safety of SAGD operations. Several techniques exist for heave monitoring, such as GPS-measurement and Interferometry for synthetic aperture readar (InSAR). This paper aimed at presenting the InSAR technology and the advances made with the new generation X-band satellite technology. Two studies were conducted: one in an SAGD steam injection area in Alberta, Canada, and the other in a CO2 storage site in In Salah, Algeria. The new generation X-band radar satellites showed some advantages over traditional techniques, with: redundancy of satellites, frequency of images, measurement precision, a higher resolution and a smaller size of corner reflectors. The InSAR technology presented herein is a cost efficient technique allowing heavy oil operators to comply with ERCB requirements.

  18. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  19. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  20. Generating large misalignments in gapped and binary discs

    Science.gov (United States)

    Owen, James E.; Lai, Dong

    2017-08-01

    Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, ˜70° misalignments have been observed. Here, we show that these misalignments can be generated through a secular resonance between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. If resonance crossing occurs on the right time-scale, of the order of a few million years, characteristic for young protostellar systems, the inner and outer discs can become highly misaligned, with misalignments ≳ 60° typical. When the primary star has a mass of order a solar mass, generating a significant misalignment typically requires the companion to have a mass of ˜0.01-0.1 M⊙ and an orbital separation of tens of astronomical units. The recently observed companion in the cavity of the gapped, highly misaligned system HD 142527 satisfies these requirements, indicating that a previous resonance crossing event misaligned the inner and outer discs. Our scenario for HD 142527's misaligned discs predicts that the companion's orbital plane is aligned with the outer disc's; this prediction should be testable with future observations as the companion's orbit is mapped out. Misalignments observed in several other gapped disc systems could be generated by the same secular resonance mechanism.

  1. Success in large high-technology projects: What really works?

    Science.gov (United States)

    Crosby, P.

    2014-08-01

    Despite a plethora of tools, technologies and management systems, successful execution of big science and engineering projects remains problematic. The sheer scale of globally funded projects such as the Large Hadron Collider and the Square Kilometre Array telescope means that lack of project success can impact both on national budgets, and collaborative reputations. In this paper, I explore data from contemporary literature alongside field research from several current high-technology projects in Europe and Australia, and reveal common `pressure points' that are shown to be key influencers of project control and success. I discuss the how mega-science projects sit between being merely complicated, and chaotic, and explain the importance of understanding multiple dimensions of project complexity. Project manager/leader traits are briefly discussed, including capability to govern and control such enterprises. Project structures are examined, including the challenge of collaborations. I show that early attention to building project resilience, curbing optimism, and risk alertness can help prepare large high-tech projects against threats, and why project managers need to understand aspects of `the silent power of time'. Mission assurance is advanced as a critical success function, alongside the deployment of task forces and new combinations of contingency plans. I argue for increased project control through industrial-style project reviews, and show how post-project reviews are an under-used, yet invaluable avenue of personal and organisational improvement. Lastly, I discuss the avoidance of project amnesia through effective capture of project knowledge, and transfer of lessons-learned to subsequent programs and projects.

  2. Observation of a Turbulence-Generated Large Scale Magnetic Field

    CERN Document Server

    Spence, E J; Kendrick, R D; Nornberg, M D

    2006-01-01

    A uniform magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega-effect). Its potential role in the production of the induced dipole is discussed.

  3. Small RNA transcriptome investigation based on next-generation sequencing technology

    Institute of Scientific and Technical Information of China (English)

    Linglin Zhou; Xueying Li; Qi Liu; Fangqing Zhao; Jinyu Wu

    2011-01-01

    Over the past decade,there has been a growing realization that studying the small RNA transcriptome is essential for understanding the complexity of transcriptional regulation.With an increased throughput and a reduced cost,next-generation sequencing technology has provided an unprecedented opportunity to measure the extent and complexity of small RNA transcriptome.Meanwhile,the large amount of obtained data and varied technology platforms have also posed multiple challenges for effective data analysis and mining.To provide some insight into the small RNA transcriptome investigation,this review describes the major small RNA classes,experimental methods to identify small RNAs,and available bioinformatics tools and databases.

  4. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-08-01

    This paper presents a novel large-area strain sensing technology for monitoring fatigue cracks in steel bridges. The technology is based on a soft elastomeric capacitor (SEC), which serves as a flexible and large-area strain gauge. Previous experiments have verified the SEC’s capability to monitor low-cycle fatigue cracks experiencing large plastic deformation and large crack opening. Here an investigation into further extending the SEC’s capability for long-term monitoring of fatigue cracks in steel bridges subject to traffic loading, which experience smaller crack openings. It is proposed that the peak-to-peak amplitude (pk-pk amplitude) of the sensor’s capacitance measurement as the indicator of crack growth to achieve robustness against capacitance drift during long-term monitoring. Then a robust crack monitoring algorithm is developed to reliably identify the level of pk-pk amplitudes through frequency analysis, from which a crack growth index (CGI) is obtained for monitoring fatigue crack growth under various loading conditions. To generate representative fatigue cracks in a laboratory, loading protocols were designed based on constant ranges of stress intensity to limit plastic deformations at the crack tip. A series of small-scale fatigue tests were performed under the designed loading protocols with various stress intensity ratios. Test results under the realistic fatigue crack conditions demonstrated the proposed crack monitoring algorithm can generate robust CGIs which are positively correlated with crack lengths and independent from loading conditions.

  5. Large Artery Stiffness Assessment Using SphygmoCor Technology

    Science.gov (United States)

    Butlin, Mark; Qasem, Ahmad

    2017-01-01

    Large artery stiffness assessment has been an integral part of the SphygmoCor technology since 1998. Aortic stiffness is approximated with non-invasive measurement of carotid-femoral pulse wave velocity, with improvements made with time to make the assessment procedure quicker and more user independent. Also standard in the devices is the ability to reliably calculate the central aortic waveform shape from a peripheral pressure waveform from either the brachial or radial artery. This waveform contains much information beyond peak and trough (systolic and diastolic pressure). Relative waveform features such as the augmentation index, wave reflection magnitude, reflection time index, and subendocardial viability ratio are parameters that are influenced by the stiffness of systemic arteries. This article briefly describes these parameters related to large artery stiffness and provides reference to validation and repeatability studies relative to the clinical use of the SphygmoCor devices. It is beyond the scope to review here the 424 original research articles that have employed SphygmoCor devices in measuring arterial stiffness. Instead, the method of measurement across the devices is described, including tonometry, volumetric displacement through cuff placement around limbs, and ambulatory monitoring. Key population and subpopulation studies are cited where the average stiffness parameter progression with age and gender, as measured by SphygmoCor devices, is quantified in the healthy and general population. Finally, with reference to guidelines from working groups on arterial stiffness and hypertension, the clinical utility of large artery stiffness measurement is discussed in the context of the arterial stiffness parameters provided by the SphygmoCor systems. PMID:28229053

  6. Mechanochemical synthesis of mesoporous tin oxide: a new generation nanosorbent for (68)Ge/(68)Ga generator technology.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Shukla, Rakesh; Bahadur, Jitendra; Ram, Ramu; Mazumder, Subhasish; Dev Sarma, Haladhar; Tyagi, Avesh Kumar; Dash, Ashutosh

    2016-09-14

    The present article reports the synthesis and characterization of mesoporous tin oxide (MTO) nanoparticles by a solid-state mechanochemical route. The synthesized material was used as an advanced sorbent material for (68)Ge/(68)Ga radionuclide generator technology. Gallium-68 (t½ = 68 min) obtained from the (68)Ge/(68)Ga generator is an important diagnostic radioisotope which holds tremendous potential in the non-invasive monitoring of various diseases, including cancer, using positron emission tomography (PET). The crystallite size of the MTO nanoparticles was in the range of 6-12 nm with a large surface area of 265 ± 16 m(2) g(-1), while the mean pore radius was found to be 2.1 ± 0.6 nm. Determination of the zeta-potential of the MTO nanoparticles dispersed in solutions at different pH values aided in understanding the sorption and separation mechanisms, which were based on the surface charge developed on the nanosorbent. The sorption capacity observed under column-flow conditions was 85 ± 5 mg Ge per g of nanosorbent. A clinical-scale (68)Ge/(68)Ga generator (740 MBq) was developed using this nanosorbent. Gallium-68 could be regularly eluted from this generator over a prolonged period of 1 year with >70% elution yield and met all the requirements for clinical use. The suitability of (68)Ga obtained from it was evaluated in preclinical settings by the preparation of a (68)Ga-labeled peptide containing the arginine-glycine-aspartic acid (RGD) motif. To the best of our knowledge, this is the first report on the synthesis of MTO nanoparticles by a mechanochemical route which could be effectively utilized for the routine preparation of clinical-scale (68)Ge/(68)Ga generators. The promising results obtained in this study would facilitate greater implementation of mechanochemistry for the synthesis of nanosorbents for radionuclide generator technology since this method is simple, economical and convenient.

  7. A noise generation and propagation model for large wind farms

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2016-01-01

    A wind turbine noise calculation model is combined with a ray tracing method in order to estimate wind farm noise in its surrounding assuming an arbitrary topography. The wind turbine noise model is used to generate noise spectra for which each turbine is approximated as a point source. However......, the detailed three-dimensional directivity features are taken into account for the further calculation of noise propagation over the surrounding terrain. An arbitrary number of turbines constituting a wind farm can be spatially distributed. The noise from each individual turbine is propagated into the far......-field using the ray tracing method. These results are added up assuming the noise from each turbine is uncorrelated. The methodology permits to estimate a wind farm noise map over the surrounding terrain in a reasonable amount of computational time on a personal computer....

  8. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  9. Deciphering next-generation pharmacogenomics: an information technology perspective.

    Science.gov (United States)

    Potamias, George; Lakiotaki, Kleanthi; Katsila, Theodora; Lee, Ming Ta Michael; Topouzis, Stavros; Cooper, David N; Patrinos, George P

    2014-07-01

    In the post-genomic era, the rapid evolution of high-throughput genotyping technologies and the increased pace of production of genetic research data are continually prompting the development of appropriate informatics tools, systems and databases as we attempt to cope with the flood of incoming genetic information. Alongside new technologies that serve to enhance data connectivity, emerging information systems should contribute to the creation of a powerful knowledge environment for genotype-to-phenotype information in the context of translational medicine. In the area of pharmacogenomics and personalized medicine, it has become evident that database applications providing important information on the occurrence and consequences of gene variants involved in pharmacokinetics, pharmacodynamics, drug efficacy and drug toxicity will become an integral tool for researchers and medical practitioners alike. At the same time, two fundamental issues are inextricably linked to current developments, namely data sharing and data protection. Here, we discuss high-throughput and next-generation sequencing technology and its impact on pharmacogenomics research. In addition, we present advances and challenges in the field of pharmacogenomics information systems which have in turn triggered the development of an integrated electronic 'pharmacogenomics assistant'. The system is designed to provide personalized drug recommendations based on linked genotype-to-phenotype pharmacogenomics data, as well as to support biomedical researchers in the identification of pharmacogenomics-related gene variants. The provisioned services are tuned in the framework of a single-access pharmacogenomics portal.

  10. Automatic summary generating technology of vegetable traceability for information sharing

    Science.gov (United States)

    Zhenxuan, Zhang; Minjing, Peng

    2017-06-01

    In order to solve problems of excessive data entries and consequent high costs for data collection in vegetable traceablility for farmers in traceability applications, the automatic summary generating technology of vegetable traceability for information sharing was proposed. The proposed technology is an effective way for farmers to share real-time vegetable planting information in social networking platforms to enhance their brands and obtain more customers. In this research, the influencing factors in the vegetable traceablility for customers were analyzed to establish the sub-indicators and target indicators and propose a computing model based on the collected parameter values of the planted vegetables and standard legal systems on food safety. The proposed standard parameter model involves five steps: accessing database, establishing target indicators, establishing sub-indicators, establishing standard reference model and computing scores of indicators. On the basis of establishing and optimizing the standards of food safety and traceability system, this proposed technology could be accepted by more and more farmers and customers.

  11. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    Science.gov (United States)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing

  12. Bits of Homeland: Generational and Gender Transformations of Moroccan-Dutch Youth using digital technologies

    NARCIS (Netherlands)

    Leurs, K.H.A.; Ponzanesi, S.

    2013-01-01

    Generational and gendered specificities of digital technology use within migrant families remain understudied and undertheorized (Green & Kabir, 2012). Digital technologies are used among descendants of migrants to sustain and update networks while simultaneously they allow the younger generation to

  13. Extensive Recombination Due to Heteroduplexes Generates Large Amounts of Artificial Gene Fragments during PCR

    Science.gov (United States)

    Liu, Jia; Song, Hongshuo; Liu, Donglai; Zuo, Tao; Lu, Fengmin; Zhuang, Hui; Gao, Feng

    2014-01-01

    Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations. PMID:25211143

  14. Extensive recombination due to heteroduplexes generates large amounts of artificial gene fragments during PCR.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 10(13-10(14 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations.

  15. Next-generation sequencing technologies: breaking the sound barrier of human genetics.

    Science.gov (United States)

    Bahassi, El Mustapha; Stambrook, Peter J

    2014-09-01

    Demand for new technologies that deliver fast, inexpensive and accurate genome information has never been greater. This challenge has catalysed the rapid development of advances in next-generation sequencing (NGS). The generation of large volumes of sequence data and the speed of data acquisition are the primary advantages over previous, more standard methods. In 2013, the Food and Drug Administration granted marketing authorisation for the first high-throughput NG sequencer, Illumina's MiSeqDx, which allowed the development and use of a large number of new genome-based tests. Here, we present a review of template preparation, nucleic acid sequencing and imaging, genome assembly and alignment approaches as well as recent advances in current and near-term commercially available NGS instruments. We also outline the broad range of applications for NGS technologies and provide guidelines for platform selection to best address biological questions of interest. DNA sequencing has revolutionised biological and medical research, and is poised to have a similar impact on the practice of medicine. This tool is but one of an increasing arsenal of developing tools that enhance our capabilities to identify, quantify and functionally characterise the components of biological networks that keep us healthy or make us sick. Despite advances in other 'omic' technologies, DNA sequencing and analysis, in many respects, have played the leading role to date. The new technologies provide a bridge between genotype and phenotype, both in man and model organisms, and have revolutionised how risk of developing a complex human disease may be assessed. The generation of large DNA sequence data sets is producing a wealth of medically relevant information on a large number of individuals and populations that will potentially form the basis of truly individualised medical care in the future.

  16. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  17. Research and Application on Lightning Protection Grounding Technology for Large Scale Photovol-taic Power Generation System in Mountainous Areas%山区大型光伏发电系统防雷接地技术探究与应用

    Institute of Scientific and Technical Information of China (English)

    孙录贵

    2015-01-01

    Photovoltaic power generation system is based on a film area of solar panels. In order to avoid the waste of land resources,generally large-scale solar photovoltaic generation stations are built on the hillside far away from the town,where is empty,without high-buildings,in high risk area of lightning.It is especially important to make sure the quality of lightning protection earthing electrodes for the electrical resistivity of mountains soil is very high ,fur-thermore it with largescope of radiation,much electrical equipment in power station.In this article,explored the pho-tovoltaic power generation system on the slope of the high resistance of grounding technology theory method by twen-ty MW ground actual problems in the first phase of the photovoltaic powers station project in Xuanyang village Xieji town Yongqiao district. Make the photovoltaic power grounding system in accordance with the requirements of the drawings design basis.Achieve"adjust measures to local conditions,economic and reasonable". Finally the popular-ization and application of the conclution can be maken.%光伏发电系统需要成片区的太阳能电池板作为基础,为了尽量减小对土地的浪费,大型太阳能光伏发电站往往都建设在偏离城镇的山坡上,环境空旷,周边没有高大建筑物防护,其本身就处于雷击高风险区域,而且山区土壤电阻率较高,辐射范围大,电站内电气设备较多,因而确保防雷接地质量尤为重要.该文通过分析埇桥区谢集乡宣杨村20MW地面光伏电站项目一期工程遇到的实际问题,探究在高阻区的山坡上完成光伏发电系统防雷接地技术的方法,使光伏发电接地系统在符合图纸设计要求的基础上,做到"因地制宜、经济合理"并加以推广运用.

  18. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    Science.gov (United States)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  19. Enabling Technologies for Fabrication of Large Area Flexible Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MesoScribe Technologies, a high tech start-up from SUNY-Stony Brook, proposes to apply a breakthrough new direct writing technology to meet the objectives set-forth...

  20. Energy storage technology - Environmental implications of large scale utilization

    Science.gov (United States)

    Krupka, M. C.; Moore, J. E.; Keller, W. E.; Baca, G. A.; Brasier, R. I.; Bennett, W. S.

    Environmental effects are identified for several energy storage technologies including advanced lead-acid battery, compressed air, underground pumped hydroelectric, flywheel, superconducting magnet, and various thermal systems. A preliminary study on fuel cell technology is also reported. New applications for energy storage technologies and the additional costs of controls to be used for mitigation of specific impacts are briefly discussed.

  1. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  2. The Next-Generation Power Electronics Technology for Smart Grids

    Science.gov (United States)

    Akagi, Hirofumi

    This paper presents an overview of the next-generation power electronics technology for the Japanese-version smart grid. It focuses on a grid-level battery energy storage system, a grid-level STATCOM (STATic synchronous COMpensator), and a 6.6-kV BTB (Back-To-Back) system for power flow control between two power distribution feeders. These power electronic devices play an important role in achieving load frequency control and voltage regulation. Their circuit configurations based on modular multilevel cascade PWM converters are characterized by flexible system design, low voltage steps, and low EMI (Electro-Magnetic Interference) emission. Their downscaled laboratory models are designed, constructed, and tested to verify the viability and effectiveness of the circuit configurations and control methods.

  3. Mechanical technologies for PIGMI. [Pion Generator for Medical Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.

    1979-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator designed for a hospital environment. The prototype of the low energy section of PIGMI has been designed and is being fabricated at the Los Alamos Scientific Laboratory. It is an accelerator design which makes use of several advanced or innovative technologies. The PIGMI Prototype consists of a 250 keV injector, a double harmonic buncher, a tape-wound 13 KG solenoid magnet, and four accelerator tanks with a total of 63 drift tubes of which 18 contain strong focusing quadrupoles of permanent magnets. The accelerator tanks are mild steel, copper-plated using a bright acid leveling technique. Drift tubes are stainless steel, fabricated using electron beam welding, shaped in a lathe and then copper plated. Drift tubes loaded with permanent magnets are sealed using laser welding. The samarium cobalt magnets are shaped by cutting and grinding techniques developed at Los Alamos.

  4. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  5. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Guangling Zhao

    2016-09-01

    Full Text Available Electricity consumption is often the hotspot of life cycle assessment (LCA of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China Grids, and the China Southern Power Grid. The approach combines information from the Chinese national plans on for capacity changes in both production and distribution grids, and knowledge of resource availability. The results show that nationally, marginal technology is coal-fired electricity generation, which is the same scenario in the North and Northwest China Grid. In the Northeast, East, and Central China Grid, nuclear power gradually replaces coal-fired electricity and becomes the marginal technology. In the Southwest China Grid and the China Southern Power Grid, the marginal electricity is hydropower towards 2030.

  6. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  7. Overview of steam generator tube-inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Renaud, J.; Lakhan, R., E-mail: obrutskl@aecl.ca, E-mail: renaudj@aecl.ca, E-mail: lakhanr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-03-15

    Degradation of steam generator (SG) tubing due to both mechanical and corrosion modes has resulted in extensive repairs and replacement of SGs around the world. The variety of degradation modes challenges the integrity of SG tubing and, therefore, the stations' reliability. Inspection and monitoring aimed at timely detection and characterization of the degradation is a key element for ensuring tube integrity. Up to the early-70's, the in-service inspection of SG tubing was carried out using single-frequency eddy current testing (ET) bobbin coils, which were adequate for the detection of volumetric degradation. By the mid-80's, additional modes of degradation such as pitting, intergranular attack, and axial and circumferential inside or outside diameter stress corrosion cracking had to be addressed. The need for timely, fast detection and characterization of these diverse modes of degradation motivated the development in the 90's of inspection systems based on advanced probe technology coupled with versatile instruments operated by fast computers and remote communication systems. SG inspection systems have progressed in the new millennium to a much higher level of automation, efficiency and reliability. Also, the role of Non Destructive Evaluation (NDE) has evolved from simple detection tools to diagnostic tools that provide input into integrity assessment decisions, fitness-far-service and operational assessments. This new role was motivated by tighter regulatory requirements to assure the safety of the public and the environment, better SG life management strategies and often self-imposed regulations. It led to the development of advanced probe technologies, more reliable and versatile instruments and robotics, better training and qualification of personnel and better data management and analysis systems. This paper provides a brief historical perspective regarding the evolution of SG inspections and analyzes the motivations behind that

  8. Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy.

    Directory of Open Access Journals (Sweden)

    Corinne Kostic

    Full Text Available Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

  9. Tracking Success in Large Introductory Classes using Technology

    Science.gov (United States)

    Robertson, Thomas H.

    2011-01-01

    A common problem frequently encountered in large introductory classes is the anonymity experienced by students. An effort is underway at Ball State University to explore the impact of technology on reducing this anonymity and improving student performance and success. In preparation for this study, performance and success measures for students in a previous class have been examined to provide background for construction of a model for formal testing and a control group for comparison of future results. Student performance measures obtained early in the course and final course grades were examined to identify potential early warning indicators that might be used to plan interventions much earlier than the traditional midterm course reports used to alert freshmen at academic risk. Class participation scores were based on data obtained with a personal response system (i>clicker). The scores were scaled to reflect about 80% comprehension and 20% attendance. Homework scores were obtained using the LON-CAPA Course Management System and instructional materials created by the author. Substantial linear correlations exist between 1) Exam 1 Scores after Four Weeks and 2) Raw Class Participation Scores for the First Six Weeks and the Final Course Score. A more modest linear correlation was found between 3) Homework Scores for First Six Weeks and Final Course Score. Of these three measures, only Class Participation Scores identified all students who ultimately received course grades lower than C. Several students scored in the danger zone according to Homework and Class Participation Scores but earned course grades of C or better. It appears that an early warning plan based on Class Participation Scores would permit effective identification of at-risk students early in the course.

  10. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    Science.gov (United States)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  11. The impact of the EU ETS on the sectoral innovation system for power generation technologies. Findings for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Karoline [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Swiss Federal Inst. of Technology Zurich (ETH Zurich) (Switzerland). Dept. of Management, Technology, and Economics; Hoffmann, Volker [Swiss Federal Inst. of Technology Zurich (ETH Zurich) (Switzerland). Dept. of Management, Technology, and Economics

    2009-07-01

    This paper provides an overview of early changes in the sectoral innovation system for power generation technologies which have been triggered by the European Emission Trading Scheme (EU ETS). Based on a broad definition of the sector, our research analyses the impact of the EU ETS on the four building blocks 'knowledge and technologies', 'actors and networks', 'institutions' and 'demand' by combining two streams of literature, namely systems of innovation and environmental economics. Our analysis is based on 42 exploratory inter-views with German and European experts in the field of the EU ETS, the power sector and technological innovation. We find that the EU ETS mainly affects the rate and direction of the technological change of power generation technologies within the large-scale, coal-based power generation technological regime to which carbon capture technologies are added as a new technological trajectory. While this impact can be interpreted as defensive behaviour of incumbents, the observed changes should not be underestimated. We argue that the EU ETS' impact on corporate CO2 culture and routines may prepare the ground for the transition to a low carbon sectoral innovation system for power generation technologies. (orig.)

  12. Technological Challenges: Designing Large Compressed Video and Multimedia Classrooms.

    Science.gov (United States)

    Hart, Russ A.; Parker, Roger

    Designing a distance learning classroom requires integration of educational goals and philosophy with technology and ergonomics. The technological challenge and key to designing effective distance learning and multimedia classrooms is creating an environment in which the participants--students, and teacher--may easily interact with instructional…

  13. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    Science.gov (United States)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  14. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  15. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  16. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    Science.gov (United States)

    Inayat, Salman Bin; Hussain, Muhammad Mustafa

    2013-08-01

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  17. Technology Status and the Future of Large Deployable Antennas

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Ishikawa, Hironori; Tsunoda, Hiroaki; Watanabe, Mitsunobu; Mizuno, Hideki

    2002-01-01

    the number of cables in the conventional S-band antenna reflector. An equilibrium shape analysis confirms that the surface error of better than 0.4 mmRMS can be achieved. reliability in defining the difficulty index of ground deployment testing for large deployable antennas. The relationship between the index value and the accuracy of results from ground deployment testing has been estimated by deployment testing of a simple deployment truss structure under both full and micro- gravity conditions. We found that the deployment reliability of a deployable structure can not be evaluated with adequate accuracy if its size exceeds 10 m.The structure must be divided into modules ofappropriate size. Basic studies on inflatable structures and flexible patch elements for future large aperture, sophisticated direct radiation array antennas are underway. Inflatable structures, which consist of rigidized materials and flexible patch elements for feed elements, are interesting candidates. In addition to these studies, distributed sensor/actuator location, non-linear vibration control method, and optimum design methods are also being addressed. They are key technologies for high performance, highly stable, and re-configurable antenna systems.

  18. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  19. Next-generation sequencing technology in clinical virology.

    Science.gov (United States)

    Capobianchi, M R; Giombini, E; Rozera, G

    2013-01-01

    Recent advances in nucleic acid sequencing technologies, referred to as 'next-generation' sequencing (NGS), have produced a true revolution and opened new perspectives for research and diagnostic applications, owing to the high speed and throughput of data generation. So far, NGS has been applied to metagenomics-based strategies for the discovery of novel viruses and the characterization of viral communities. Additional applications include whole viral genome sequencing, detection of viral genome variability, and the study of viral dynamics. These applications are particularly suitable for viruses such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, whose error-prone replication machinery, combined with the high replication rate, results, in each infected individual, in the formation of many genetically related viral variants referred to as quasi-species. The viral quasi-species, in turn, represents the substrate for the selective pressure exerted by the immune system or by antiviral drugs. With traditional approaches, it is difficult to detect and quantify minority genomes present in viral quasi-species that, in fact, may have biological and clinical relevance. NGS provides, for each patient, a dataset of clonal sequences that is some order of magnitude higher than those obtained with conventional approaches. Hence, NGS is an extremely powerful tool with which to investigate previously inaccessible aspects of viral dynamics, such as the contribution of different viral reservoirs to replicating virus in the course of the natural history of the infection, co-receptor usage in minority viral populations harboured by different cell lineages, the dynamics of development of drug resistance, and the re-emergence of hidden genomes after treatment interruptions. The diagnostic application of NGS is just around the corner. © 2012 The Authors Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious

  20. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  1. Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring

    Science.gov (United States)

    Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter

    2016-04-01

    The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.

  2. Lessons learned in the generation of biomedical research datasets using Semantic Open Data technologies.

    Science.gov (United States)

    Legaz-García, María del Carmen; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2015-01-01

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, which automates the generation of semantic datasets from heterogeneous data sources. SWIT produces four stars datasets, given that fifth one can be obtained by being the dataset linked from external ones. In this paper, we describe how we have applied the tool in two projects related to health care records and orthology data, as well as the major lessons learned from such efforts.

  3. Antenna Electronics Concept for the Next-Generation Very Large Array

    Science.gov (United States)

    Beasley, Anthony J.; Jackson, Jim; Selina, Robert

    2017-01-01

    The National Radio Astronomy Observatory (NRAO), in collaboration with its international partners, completed two major projects over the past decade: the sensitivity upgrade for the Karl Jansky Very Large Array (VLA) and the construction of the Atacama Large Millimeter/Sub-Millimeter Array (ALMA). The NRAO is now considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milli-arcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.A number of key technical challenges have been identified for the project. These include cost-effective antenna manufacturing (in the hundreds), suitable wide-band feed and receiver designs, broad-band data transmission, and large-N correlators. Minimizing the overall operations cost is also a fundamental design requirement.The designs of the antenna electronics, reference distribution system, and data transmission system are anticipated to be major construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. Additionally, due to the uncertainty in the feasibility of wideband receivers, advancements in digitizer technology, and budget constraints, the hardware system architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizers.Here, we present the projected performance requirements of the ngVLA, a proposed block diagram for the instrument’s electronics systems, parameter tradeoffs within the system specifications, and areas of technical risk where technical advances may be required for successful production and installation.

  4. Quantum plasmonics for next-generation optical and sensing technologies

    Science.gov (United States)

    Moaied, Modjtaba; Ostrikov, Kostya (Ken)

    2015-12-01

    Classical plasmonics has mostly focused on structures characterized by large dimension, for which the quantummechanical effects have nearly no impact. However, recent advances in technology, especially on miniaturized plasmonics devices at nanoscale, have made it possible to imagine experimental applications of plasmons where the quantum nature of free charge carriers play an important role. Therefore, it is necessary to use quantum mechanics to model the transport of charge carriers in solid state plasma nanostructures. Here, a non-local quantum model of permittivity is presented by applying the Wigner equation with collision term in the kinetic theory of solid state plasmas where the dominant electron scattering mechanism is the electron-lattice collisions. The surface plasmon resonance of ultra-small nanoparticles is investigated using this non-local quantum permittivity and its dispersion relation is obtained. The successful application of this theory in ultra-small plasmonics structures such as surface plasmon polariton waveguides, doped semiconductors, graphene, the metamaterials composed of alternating layers of metal and dielectric, and the quantum droplets is anticipated.

  5. Advanced manufacturing techniques for next generation power FET technology

    OpenAIRE

    2005-01-01

    The development and incorporation of an evaporated airbridge technology into an established power pHEMT device is described. Advantages of this technology over a conventional plated technology are discussed. Use of this technology has resulted in improvements to the process flow in terms of reduced complexity and cycle time. Improvements in uniformity and reduced feature size have enabled the use of an automated visual inspection capability to reliably differentiate good and bad die.

  6. Generational Differences in Technology Adoption in Community Colleges

    Science.gov (United States)

    Rosario, Victoria C.

    2012-01-01

    This research study investigated the technological perceptions and expectations of community college students, faculty, administrators, and Information Technology (IT) staff. The theoretical framework is based upon two assumptions on the process of technological innovation: it can be explained by diffusion of adoption theory, and by studying the…

  7. Proceed with Caution: Technology Fetishism and the Millennial Generation

    Science.gov (United States)

    Alvi, Shahid

    2011-01-01

    Purpose: This paper seeks to examine the impact of information communication technology on the learning process and on the profession of teaching. Design/methodology/approach: The paper reviews arguments for and against the use of technology in the classroom and draws on student comments on technology use in the classroom. Findings: The paper…

  8. New technologies for HWIL testing of WFOV, large-format FPA sensor systems

    Science.gov (United States)

    Fink, Christopher

    2016-05-01

    Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

  9. Development of Key Technologies of Large Hydro Unit in HEC

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Introduction to HEC Harbin Electric Machinery Company Limited (HEC) is a pivotal company that produces large electric machinery and accessorial control equipment in China. The hydro units made by HEC have accounted

  10. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  11. Discovery of posttranscriptional regulatory RNAs using next generation sequencing technologies.

    Science.gov (United States)

    Gelderman, Grant; Contreras, Lydia M

    2013-01-01

    Next generation sequencing (NGS) has revolutionized the way by which we engineer metabolism by radically altering the path to genome-wide inquiries. This is due to the fact that NGS approaches offer several powerful advantages over traditional methods that include the ability to fully sequence hundreds to thousands of genes in a single experiment and simultaneously detect homozygous and heterozygous deletions, alterations in gene copy number, insertions, translocations, and exome-wide substitutions that include "hot-spot mutations." This chapter describes the use of these technologies as a sequencing technique for transcriptome analysis and discovery of regulatory RNA elements in the context of three main platforms: Illumina HiSeq, 454 pyrosequencing, and SOLiD sequencing. Specifically, this chapter focuses on the use of Illumina HiSeq, since it is the most widely used platform for RNA discovery and transcriptome analysis. Regulatory RNAs have now been found in all branches of life. In bacteria, noncoding small RNAs (sRNAs) are involved in highly sophisticated regulatory circuits that include quorum sensing, carbon metabolism, stress responses, and virulence (Gorke and Vogel, Gene Dev 22:2914-2925, 2008; Gottesman, Trends Genet 21:399-404, 2005; Romby et al., Curr Opin Microbiol 9:229-236, 2006). Further characterization of the underlying regulation of gene expression remains poorly understood given that it is estimated that over 60% of all predicted genes remain hypothetical and the 5' and 3' untranslated regions are unknown for more than 90% of the genes (Siegel et al., Trends Parasitol 27:434-441, 2011). Importantly, manipulation of the posttranscriptional regulation that occurs at the level of RNA stability and export, trans-splicing, polyadenylation, protein translation, and protein stability via untranslated regions (Clayton, EMBO J 21:1881-1888, 2002; Haile and Papadopoulou, Curr Opin Microbiol 10:569-577, 2007) could be highly beneficial to metabolic

  12. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  13. Audio watermarking technologies for automatic cue sheet generation systems

    Science.gov (United States)

    Caccia, Giuseppe; Lancini, Rosa C.; Pascarella, Annalisa; Tubaro, Stefano; Vicario, Elena

    2001-08-01

    Usually watermark is used as a way for hiding information on digital media. The watermarked information may be used to allow copyright protection or user and media identification. In this paper we propose a watermarking scheme for digital audio signals that allow automatic identification of musical pieces transmitted in TV broadcasting programs. In our application the watermark must be, obviously, imperceptible to the users, should be robust to standard TV and radio editing and have a very low complexity. This last item is essential to allow a software real-time implementation of the insertion and detection of watermarks using only a minimum amount of the computation power of a modern PC. In the proposed method the input audio sequence is subdivided in frames. For each frame a watermark spread spectrum sequence is added to the original data. A two steps filtering procedure is used to generate the watermark from a Pseudo-Noise (PN) sequence. The filters approximate respectively the threshold and the frequency masking of the Human Auditory System (HAS). In the paper we discuss first the watermark embedding system then the detection approach. The results of a large set of subjective tests are also presented to demonstrate the quality and robustness of the proposed approach.

  14. Internet of Things and big data technologies for next generation healthcare

    CERN Document Server

    Dey, Nilanjan; Ashour, Amira

    2017-01-01

    This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the I...

  15. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  16. Creating and Using Large Monolingual Parallel Corpora for Sentential Paraphrase Generation

    NARCIS (Netherlands)

    Wubben, S.; Bosch, A.P.J. van den; Krahmer, E.J.

    2014-01-01

    In this paper we investigate the automatic generation of paraphrases by using machine translation techniques. Three contributions we make are the construction of a large paraphrase corpus for English and Dutch, a re-ranking heuristic to use machine translation for paraphrase generation and a proper

  17. A Statistical Model for Hourly Large-Scale Wind and Photovoltaic Generation in New Locations

    DEFF Research Database (Denmark)

    Ekstrom, Jussi; Koivisto, Matti Juhani; Mellin, Ilkka

    2017-01-01

    The analysis of large-scale wind and photovoltaic (PV) energy generation is of vital importance in power systems where their penetration is high. This paper presents a modular methodology to assess the power generation and volatility of a system consisting of both PV plants (PVPs) and wind power ...

  18. A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products

    OpenAIRE

    John A. Norton; Frank M. Bass

    1987-01-01

    This study deals with the dynamic sales behavior of successive generations of high-technology products. New technologies diffuse through a population of potential buyers over time. Therefore, diffusion theory models are related to this demand growth. Furthermore, successive generations of a technology compete with earlier ones, and that behavior is the subject of models of technological substitution. Building upon the Bass (Bass, F. M. 1969. A new-product growth model for consumer durables. M...

  19. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    Science.gov (United States)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  20. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  1. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    Science.gov (United States)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  2. Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology

    Science.gov (United States)

    Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.

    2016-10-01

    Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.

  3. Net Generation Students: Agency and Choice and the New Technologies

    Science.gov (United States)

    Jones, C.; Healing, G.

    2010-01-01

    Based on research investigating English first-year university students, this paper examined the case made for a new generation of young learners often described as the Net Generation or Digital Natives in terms of agency and choice. Generational arguments set out a case that links young people's attitudes and orientations to their lifelong…

  4. Net Generation Students: Agency and Choice and the New Technologies

    Science.gov (United States)

    Jones, C.; Healing, G.

    2010-01-01

    Based on research investigating English first-year university students, this paper examined the case made for a new generation of young learners often described as the Net Generation or Digital Natives in terms of agency and choice. Generational arguments set out a case that links young people's attitudes and orientations to their lifelong…

  5. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors

    NARCIS (Netherlands)

    Tatara, A.M.; Shah, S.R.; Demian, N.; Ho, T.; Shum, J.; Beucken, J.J.J.P van den; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2016-01-01

    Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of 3-4ye

  6. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors

    NARCIS (Netherlands)

    Tatara, A.M.; Shah, S.R.; Demian, N.; Ho, T.; Shum, J.; Beucken, J.J.J.P van den; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2016-01-01

    Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of

  7. Transcriptome analysis of carnation (Dianthus caryophyllus L. based on next-generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Tanase Koji

    2012-07-01

    Full Text Available Abstract Background Carnation (Dianthus caryophyllus L., in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380 of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  8. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  9. High-Efficiency, Multijunction Solar Cells for Large-Scale Solar Electricity Generation

    Science.gov (United States)

    Kurtz, Sarah

    2006-03-01

    A solar cell with an infinite number of materials (matched to the solar spectrum) has a theoretical efficiency limit of 68%. If sunlight is concentrated, this limit increases to about 87%. These theoretical limits are calculated using basic physics and are independent of the details of the materials. In practice, the challenge of achieving high efficiency depends on identifying materials that can effectively use the solar spectrum. Impressive progress has been made with the current efficiency record being 39%. Today's solar market is also showing impressive progress, but is still hindered by high prices. One strategy for reducing cost is to use lenses or mirrors to focus the light on small solar cells. In this case, the system cost is dominated by the cost of the relatively inexpensive optics. The value of the optics increases with the efficiency of the solar cell. Thus, a concentrator system made with 35%- 40%-efficient solar cells is expected to deliver 50% more power at a similar cost when compare with a system using 25%-efficient cells. Today's markets are showing an opportunity for large concentrator systems that didn't exist 5-10 years ago. Efficiencies may soon pass 40% and ultimately may reach 50%, providing a pathway to improved performance and decreased cost. Many companies are currently investigating this technology for large-scale electricity generation. The presentation will cover the basic physics and more practical considerations to achieving high efficiency as well as describing the current status of the concentrator industry. This work has been authored by an employee of the Midwest Research Institute under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow

  10. Inkjet technology for large-area OPV applications

    NARCIS (Netherlands)

    Ren, M.; Sweelssen, J.; Andriessen, H.A.J.M.

    2011-01-01

    The roll-to-roll manufacturing process is believed to significantly reduce the cost-price of large area organic photovoltaic systems. Therefore, we build up knowledge base concerning the influence of process conditions on the performance of polymer solar cells. Inkjet printing has been a major resea

  11. Advanced Technology Large-Aperture Space Telescope (ATLAST): Characterizing Habitable Worlds

    CERN Document Server

    Postman, M; Krist, J; Stapelfeldt, K; Brown, R; Oegerle, W; Lo, A; Clampin, M; Soummer, R; Wiseman, J; Mountain, M

    2009-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.

  12. Next-generation sequencing technology:A technology review and future perspective

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As one of the most powerful tools in biomedical research,DNA sequencing not only has been improving its productivity at an exponential growth rate but has also been evolving into a new layout of technological territories toward engineering and physical disciplines over the past three decades.In this technical review,we look into technical characteristics of the next-generation sequencers and provide insights into their future development and applications.We envisage that some of the emerging platforms are capable of supporting the USD1000 genome and USD100 genome goals if given a few years for technical maturation.We also suggest that scientists from China should play an active role in this campaign that will have a profound impact on both scientific research and societal healthcare systems.

  13. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  14. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  15. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  16. The Interactive Lecture: Teaching and Learning Technologies for Large Classrooms

    OpenAIRE

    2005-01-01

    Conventional lectures in large classrooms are connected to fundamental didactic problems due to a lack of interactivity and feedback opportunities. In an interactive lecture each student is equipped with a light-weight, mobile device that can be used to interact with the lecturer during the lesson, thus creating an additional channel of communication. These devices support new teaching and learning paradigms such as participatory simulations. In this paper, we present our experiences with the...

  17. The technology of generating infrared image based on electric heating film technology

    Science.gov (United States)

    Lu, Yuan; Feng, Yun-song; Qiao, Ya

    2011-08-01

    The technology of generating infrared image based on electric heating film technology by its resistance per unit area was studied. A Lifgt-off-road vehicle was used as an object to be simulated. An infrared thermograph was used to photography the light-off-road vehicle from a specific corner. As a result several infrared images of the light-off-road vehicle were obtained and the thermal distribution of the vehicle was also obtained at the same time. A matlab program was used to process the image. The image was divided into several areas according to its grey level. Each area has its own temperature range. The average temperature of each area was calculated. A thermal balance equation was established according to the average temperature of each area and the environment temperature. By solving these equations, the radiant existances of these areas were gotten. The heating power per unit area of these areas was calculated. The electric heating film was preparation accordingly. The power was applied on the film and the infrared thermograph was used to observe it. The infrared image of the film has a high similarity with the true light-off-road vehicle's.

  18. Development of next generation biodiesel technology. Catalytic deoxygenation of renewables

    Energy Technology Data Exchange (ETDEWEB)

    Snaare, M.

    2006-07-01

    New sustainable solutions for energy production have to be found in the near future to satisfy the rapid increase of the global energy consumption. One highly functional source of energy is diesel fuel, which can be produced from renewable raw materials and can therefore be regarded as a potential sustainable alternative for the fossil fuels in future. In this study, a novel catalytic biodiesel production technology from triglyceride containing vegetable oils and animal fats was investigated. Natural oils and fats were heterogeneously deoxygenated by selectively removing the carboxyl group (decarboxylation or decarbonylation) in the triglyceride structure, forming a diesel-like linear hydrocarbon. Catalyst screening was performed in a semi-batch reactor with dispersed metal catalysts and stearic acid as model compound, in order to obtain the most promising metal-support combination for deoxygenation. The experiments were carried out at elevated temperatures (270-360 deg C) and pressures (1-40 bar), typically under inert (Ar, N{sub 2} and He) or hydrogen atmosphere and in a solvent. Palladium and platinum on active carbon support were proven to be the most promising catalysts for the deoxygenation of stearic acid. In particular, a commercial 5 % Pd on activated carbon was highly active and selective. To study the relationship between the reaction activities and catalysts physical-chemical properties, a range of Pd/C catalysts was synthesized at the laboratory of Industrial Chemistry and evaluated. Selective deoxygenation was successfully achieved over the Pd on activated carbon catalyst with a large variety of renewable feedstocks, such as different saturated and unsaturated fatty acids, fatty acid esters and triglycerides. Moreover, the most essential reaction parameters were investigated and optimized. A deoxygenation mechanism was proposed and discussed. The mechanism was further evaluated and confirmed by kinetic modeling. The kinetic model gave an excellent fit

  19. Tracking Next Generation Automatic Identification Technology into 2035

    Science.gov (United States)

    2010-12-01

    architectures (LF, HF, UHF, very high frequency [VH], etc.) and net- work architectures (Wi-Fi, Zigbee , ultra-wide band, mesh, ad hoc, cloud computing...Technology Concept of Operations, 4-4. 109. Silberglitt and Wong, Global Technology Revolution China, 77. 110. ZigBee Alliance, “Awarepoint with ZigBee ...2001. http://www .transcore.com/pdf/AIM%20shrouds_of_time.pdf. Legg, Gary. “ ZigBee : Wireless Technology for Low-Power Sensor Networks.” CommsDesign

  20. More than Moore technologies for next generation computer design

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of key technologies being used to address challenges raised by continued device scaling and the extending gap between memory and central processing unit performance.  Authors discuss in detail what are known commonly as “More than Moore” (MtM), technologies, which add value to devices by incorporating functionalities that do not necessarily scale according to “Moore's Law”.  Coverage focuses on three key technologies needed for efficient power management and cost per performance: novel memories, 3D integration and photonic on-chip interconnect.

  1. Clinical operations generation next… The age of technology and outsourcing

    Directory of Open Access Journals (Sweden)

    Priya Temkar

    2015-01-01

    Full Text Available Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  2. Clinical operations generation next… The age of technology and outsourcing.

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  3. Clinical operations generation next… The age of technology and outsourcing

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  4. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  5. The Facilitating University: Positioning Next Generation Educational Technology

    NARCIS (Netherlands)

    Van der Zanden, A.H.W.

    2009-01-01

    Higher education is directly and indirectly subjected to pressures of diminishing subsidies, increasing student populations, heterogeneity, shorter knowledge and product lifecycles, labour demands, proliferation of technology, and new educational approaches and practices. Higher education must chang

  6. Prospects for generating electricity by large onshore and offshore wind farms

    DEFF Research Database (Denmark)

    Volker, Patrick; Hahmann, Andrea N.; Badger, Jake

    2017-01-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very la...... regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient....

  7. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  8. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    Science.gov (United States)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  9. The Optimum Vibration Generator for the Technological Process in Casting Bays

    Directory of Open Access Journals (Sweden)

    Codruţa-Oana Hamat

    2008-01-01

    Full Text Available The performing of some experimental investigations caucering theapplication of vibrations to the technological processes in foundries has required in the first place a vibration generator. By an analysis of the existent generator types it has been established that the optimum generator for these processes is the pneumatic ball-generator. In the work the principle of functioning of this kind of generator is treated and the dimensional and functional characteristics for two realized prototypes are given.

  10. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  11. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors.

    Science.gov (United States)

    Tatara, Alexander M; Shah, Sarita R; Demian, Nagi; Ho, Tang; Shum, Jonathan; van den Beucken, Jeroen J J P; Jansen, John A; Wong, Mark E; Mikos, Antonios G

    2016-11-01

    Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of 3-4year-old sheep for nine weeks. Bioreactors were filled with either morcellized autologous bone, synthetic ceramic particles, or a combination thereof. Tissues generated within synthetic graft-filled bioreactors were transferred into a large right-sided mandibular angle defect as either avascular grafts (n=3) or vascularized free flaps (n=3). After twelve additional weeks, reconstructed mandibular angles were harvested and compared to contralateral control angles. Per histologic and radiologic evaluation, a greater amount of mineralized tissue was generated in bioreactors filled with autologous graft although the quality of viable bone was not significantly different between groups. Genetic analyses of soft tissue surrounding bioreactor-generated tissues demonstrated similar early and late stage osteogenic biomarker expression (Runx2 and Osteocalcin) between the bioreactors and rib periosteum. Although no significant differences between the height of reconstructed and control mandibular angles were observed, the reconstructed mandibles had decreased bone volume. There were no differences between mandibles reconstructed with bioreactor-generated tissues transferred as flaps or grafts. Tissues used for mandibular reconstruction demonstrated integration with native bone as well as evidence of remodeling. In this study, we have demonstrated that synthetic scaffolds are sufficient to generate large volumes of mineralized tissue in an in vivo bioreactor for mandibular reconstruction. A significant clinical challenge in craniofacial surgery is the reconstruction of large mandibular defects. In this work, we demonstrated that vascularized tissues of large volume and custom geometry

  12. Development of photonic crystal based large format IR scene projection technology

    Science.gov (United States)

    Wilson, J. A.; Burckel, B.; Caulfield, J.; Cogan, S.; Massie, M.; Rapp, R.; Rose, R.; Snyder, D.

    2012-06-01

    This paper describes recent results from the Extremely High Temperature Photonic Crystal System Technology (XTEMPS) technology program. The XTEMPS program has developed a Photonic Crystal (PhC) based high efficiency IR emitter array for use in the emerging generation of wide field of view high performance scene projectors. Cyan's approach provides high dynamic range, multispectral emission from SWIR to LWIR and is uniquely capable of accurately simulating very realistic system spectral signatures. The PhC array is fabricated from refractory materials to provide high radiance and long service lifetime. Cyan is teamed with Sandia National Laboratories for design and fabrication of the emitter and with Nova sensors to utilize their advanced Read In Integrated Circuit (RIIC). PhC based emitters show improved inband output power efficiency when compared to broad band "graybody" emitters due to the absence of out-of-band emission. Less electrical power is required to achieve high operating temperature, and non-Lambertian emission pattern puts a large fraction of the emitted energy into a straight ahead beam. Both effects significantly boost effective radiance output. Cyan has demonstrated pixel designs compatible with Nova's medium format RIIC, which ensures high apparent output temperatures with modest drive currents and low operating voltages of less than five volts. Unit cell pixel structures for high radiative efficiency have been demonstrated and arrays using PhC optimized for up to four spectral bands have been successfully patterned and fabricated into high yield wafers.

  13. Next Generation Integrated Power System: NGIPS Technology Development Roadmap

    Science.gov (United States)

    2007-11-30

    Technology Development Roadmap – Ser 05D/349 APPROVED FOR PUBLIC RELEASE 24 PCM (Inverter transformer co nverter) PCM (Inverter transformer converter) HVDC ...Technology Development Roadmap – Ser 05D/349 APPROVED FOR PUBLIC RELEASE 27 P C M -1 AMVAC HFAC HVDC or 1000 VDC via PCM-4 MVAC HFAC HVDC or 1000 VDC...require additional development. 3.9.2 PCM-2A A PCM-2A is an evolution of the PCM-2 of the IFTP system. For HVDC and HFAC systems, it converts

  14. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    Science.gov (United States)

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  15. Voltage Control of Distribution Network with a Large Penetration of Photovoltaic Generations using FACTS Devices

    Science.gov (United States)

    Kondo, Taro; Baba, Jumpei; Yokoyama, Akihiko

    In recent years, there is a great deal of interest in distributed generations from viewpoints of environmental problem and energy saving measure. Thus, a lot of distributed generators will be connected to the distribution network in the future. However, increase of distributed generators, which convert natural energy into electric energy, is concerned on their adverse effects on distribution network. Therefore, control of distribution networks using Flexible AC Transmission System (FACTS) devices is considered in order to adjust the voltage profile, and as a result more distributed generations can be installed into the networks. In this paper, four types of FACTS devices, Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and self-commutated Back-To-Back converter (BTB), are analyzed by comparison of required minimum capacity of the inverters in a residential distribution network with a large penetration of photovoltaic generations.

  16. Costing Generated Runtime Execution Plans for Large-Scale Machine Learning Programs

    OpenAIRE

    Boehm, Matthias

    2015-01-01

    Declarative large-scale machine learning (ML) aims at the specification of ML algorithms in a high-level language and automatic generation of hybrid runtime execution plans ranging from single node, in-memory computations to distributed computations on MapReduce (MR) or similar frameworks like Spark. The compilation of large-scale ML programs exhibits many opportunities for automatic optimization. Advanced cost-based optimization techniques require---as a fundamental precondition---an accurat...

  17. Advanced relay technologies in next generation wireless communications

    CERN Document Server

    Krikidis, Ioannis

    2016-01-01

    This book details the use of the cooperative networks/relaying approach in new and emerging telecommunications technologies such as full-duplex radio, massive multiple-input multiple-output (MIMO), network coding and spatial modulation, and new application areas including visible light communications (VLC), wireless power transfer, and 5G.

  18. Photographic Inquiry and Educational Technologies: Generating Meaningful Narratives

    Science.gov (United States)

    Swaminathan, Raji; Mulvihill, Thalia M.

    2013-01-01

    This article examines the possibilities of photography as a tool for Qualitative Research data collection, data analysis, and display. The authors argue that the new vanguard of Educational Technologies (ETs) further illuminates the analytical possibilities of photographic data and ETs can serve as an engaging way to interact with meaning-making…

  19. Technology developments to initiate a next generation of cochlear implants.

    Science.gov (United States)

    Volckaerts, B; Corless, A R; Mercanzini, A; Silmon, A M; Bertsch, A; Van Himbeeck, C; Wasikiewicz, J; Vanden Bulcke, M; Vadgama, P; Renaud, P

    2007-01-01

    In the framework of the EU-supported research project Healthy Aims, we developed a range of novel electrode arrays and related technologies for use in hearing prosthesis. This paper summarizes our ongoing research activities on alternative electrode manufacturing routes, functional electrode interfaces and smart intra-cochlear and intra-modiolus electrode arrays.

  20. Occupational therapy students' technological skills: Are 'generation Y' ready for 21st century practice?

    Science.gov (United States)

    Hills, Caroline; Ryan, Susan; Smith, Derek R; Warren-Forward, Helen; Levett-Jones, Tracy; Lapkin, Samuel

    2016-12-01

    Technology is becoming increasingly integral to the practice of occupational therapists and part of the everyday lives of clients. 'Generation Y' are purported to be naturally technologically skilled as they have grown up in the digital age. The aim of this study was to explore one cohort of 'Generation Y' occupational therapy students' skills and confidence in the use of technologies relevant to contemporary practice. A cross-sectional survey design was used to collect data from a cohort of 274 students enrolled in an Australian undergraduate occupational therapy programme. A total of 173 (63%) students returned the survey. Those born prior to 1982 were removed from the data. This left 155 (56%) 'Generation Y' participants. Not all participants reported to be skilled in everyday technologies although most reported to be skilled in word, Internet and mobile technologies. Many reported a lack of skills in Web 2.0 (collaboration and sharing) technologies, creating and using media and gaming, as well as a lack of confidence in technologies relevant to practice, including assistive technology, specialist devices, specialist software and gaming. Overall, the results suggested that this group of 'Generation Y' students were not universally skilled in all areas of technology relevant to practice but appear to be skilled in technologies they use regularly. Recommendations are therefore made with view to integrating social networking, gaming, media sharing and assistive technology into undergraduate programmes to ensure that graduates have the requisite skills and confidence required for current and future practice. © 2016 Occupational Therapy Australia.

  1. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    Directory of Open Access Journals (Sweden)

    Claudia eKnief

    2014-05-01

    Full Text Available Next generation sequencing (NGS technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the pant associated microbiota to demonstrate the worth of the new methods.

  2. Material design and engineering of next-generation flow-battery technologies

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil

    2016-11-01

    Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

  3. Material design and engineering of next-generation flow-battery technologies

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil

    2017-01-01

    Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

  4. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  5. Technology for the Next-Generation-Mobile User Experience

    Science.gov (United States)

    Delagi, Greg

    The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including

  6. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  7. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    2009-01-01

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  8. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    Science.gov (United States)

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  9. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    Science.gov (United States)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  10. Environmental evaluation of carbon capture and storage technology and large scale deployment scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhawna

    2011-03-15

    Carbon capture and storage (CCS) is the most viable option to reduce CO{sub 2} emissions from power plants while continuing the use of fossil fuels required to satisfy the increasing energy demand. However, CCS is an energy intensive process, and demands additional energy, chemicals and infrastructure. The capture processes may also have certain direct emissions to air (NH{sub 3}, aldehydes, solvent vapor etc.) and generate solid wastes from degradation byproducts. A trade-off in environmental impacts is expected, and with the large-scale application of CCS needed to make any significant reduction in CO emissions, these potential trade-offs can become enormous in magnitude. Therefore a systematic process of evaluation of complete life cycle for all available CCS options and large-scale CCS deployment scenarios is needed. Life Cycle Assessment (LCA) methodology is well established and best suited for such analysis. Methodology of hybrid life cycle assessment is used in this work and methodological developments are made to build-up simple approaches for evaluation of future CCS systems and scenarios. The thesis also extends the result presentation to more comprehensible damage indicators and evaluates control potentials for human health, ecosystem damage and resource depletion for the technology. The results of the study shows that the CCS systems achieve significant reduction in global warming impact but have multiple environmental trade-offs depending on the technology. These trade-offs are mainly due to energy penalty from capture process, infrastructure development and waste treatment processes. Damage assessment shows that the CCS systems greatly reduce human health damage and ecosystem damage by mitigating the climate change impact while increasing the resource consumption. Scenario assessment results show the clear advantage of global CCS integration scenarios over the Baseline scenario having significantly lower impact potential scores for all impact and

  11. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  12. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    Science.gov (United States)

    2003-09-01

    Heliostats Heliostats , or solar concentrators, can be used to collect heat to power Stirling en- gines. They use a lens or reflectors to concentrate...Configurations ......................................................................................................... 38 Heliostats ...equipment is possible in the form of cooling and heating ; enhancing a 20 to 35 percent generation efficiency to between 75 and 80 percent. DG increases

  13. Photovoltaic Technology of Electricity Generation for Desert Camping

    Directory of Open Access Journals (Sweden)

    Shafiqur Rehman

    2005-01-01

    Full Text Available This study presents a case study on the utilization of global solar radiation data on horizontal surface to perform economical feasibility of using Photovoltaic (PV panels with battery backup to meet a small load for a camping site in Saudi Arabia. The analysis considers three scenarios with daily average energy demands of: (i full load, (ii 75% load and (iii half load with annual peak load of 3.84, 3.06 and 2.27 kW, respectively. Each of these loads is further studied economically to investigate the effect of battery storage for 1 to 5 days. The study also compares the cost of electricity generation in $/kWh from PV system and diesel generating systems. The lower mean temperature (~20°C and high intensity of radiation (~ 6.3 kWh m2/day in Abha make it a promising site for the usage of PV systems for desert camping. Analysis of the data indicates that the battery storage capacity cost plays an important role in the overall cost of the PV system. The economical indicators suggest that larger PV systems be preferred over the smaller ones with minimal storage option. The energy generation cost analysis indicated that the diesel generating cost was found to be 29, 56 and 116% higher than the PV system for full, 75% and half load systems, respectively.

  14. NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies

    NARCIS (Netherlands)

    Koene, R.A.; Tijms, B.; van Hees, P.; Postma, F.; de Ridder, A.; Ramakers, G.J.A.; van Pelt, J.; van Ooyen, A.

    2009-01-01

    We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal o

  15. Scott correction for large atoms and molecules in a self-generated magnetic field

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...

  16. Scott correction for large atoms and molecules in a self-generated magnetic field

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...

  17. Knowledge generation in technology-enhanced health exhibitions

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Kharlamov, Nikita; Zachariasssen, Maria;

    2016-01-01

    age 6–12. Health promotion technologies are defined here, as technologies designed specifically for the purpose of health promotion, be they educational or focused on physical activities. The study was conducted in late 2015 and comprised eight families with children in 2nd-6th grade visiting...... in health promotion exhibitions designed to include direct physical interaction. The current study is part of the larger PULSE project, which aims to develop innovative health promotion activities that include a science museum exhibition as a key setting. The primary target group is families with children...... with the exhibition to understand how they had experienced the exhibition, what they saw as the thematic focus and if they thought they had gained new knowledge from the activities. Results from the project indicated that the participants gained knowledge linked to both health fitness topics and social aspects...

  18. Next generation sequencing (NGS)technologies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vuyisich, Momchilo [Los Alamos National Laboratory

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  19. The Status and Trends Of New Power Generation technology

    OpenAIRE

    Zhou, Jianguo

    2016-01-01

    Science and technology development cannot leave energy, and our life is also inseparable from energy. Oil and coal in all energy is 80%. However, oil and coal are non-renewable. If precious energies would disappear, what should we do? Oil and coal combustion and release of energy we need, and it also releases harmful gases which lead to damage of our home planet. These problems forces us to develop clean and renewable new energy. This report discusses mainly three new source...

  20. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  1. How large-scale energy-environment models represent technology and technological change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    In the process of selecting measures against global warming, it is important to consider the introduction of technological innovations into the models, and studies were made in this connection. An induced technical change model has to be an economically total model that represents various incentives involving the form of profits from innovations; profits from cost functions, research-and-development production functions, and abstract profits from empirical estimates; and the dimensions in which technological change is assumed to progress. Under study at the Stanford Energy Modeling Forum is how to represent various technological assumptions and development, which is necessary to predict the cost for dealing with global warming. At the conference of February 2001, 10 cases of preliminary model scenarios were discussed. In one case, for instance, a carbon tax of $25/ton in 2010 is raised $25 every decade to be $100/ton in 2040. Three working groups are engaged in the study of long-run economy/technology baseline scenarios, characterization of current and potential future technologies, and ways of modeling technological change. (NEDO)

  2. Two methods for estimating limits to large-scale wind power generation.

    Science.gov (United States)

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  3. Scenarios to explore the futures of the emerging technology of organic and large area electronics

    OpenAIRE

    Parandian, Alireza; Rip, Arie

    2013-01-01

    Emerging technologies pose challenges for futures research because of their uncertainties combined with promises. Actors are anticipating and acting strategically. Sociotechnical scenarios building on endogenous futures support and enlighten actors. Such scenarios contribute to “strategic intelligence” about the technologies and their embedding in society. Organic and large area electronics promise to substitute silicon-based technologies, but firms and potential users are reluctant to invest...

  4. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  5. Framing Innovation: Do Professional Learning Communities Influence Acceptance of Large-Scale Technology Initiatives?

    Science.gov (United States)

    Nolin, Anna P.

    2014-01-01

    This study explored the role of professional learning communities for district leadership implementing large-scale technology initiatives such as 1:1 implementations (one computing device for every student). The existing literature regarding technology leadership is limited, as is literature on how districts use existing collaborative structures…

  6. VATE: VAlidation of high TEchnology based on large database analysis by learning machine

    NARCIS (Netherlands)

    Meldolesi, E; Van Soest, J; Alitto, A R; Autorino, R; Dinapoli, N; Dekker, A; Gambacorta, M A; Gatta, R; Tagliaferri, L; Damiani, A; Valentini, V

    2014-01-01

    The interaction between implementation of new technologies and different outcomes can allow a broad range of researches to be expanded. The purpose of this paper is to introduce the VAlidation of high TEchnology based on large database analysis by learning machine (VATE) project that aims to combine

  7. Survey of Current and Next Generation Space Power Technologies

    Science.gov (United States)

    2006-06-26

    porous carbon and sulfur dioxide (or thionyl chloride ), electrolyte of acetronitrile and lithium bromide salt, the lithium sulfur dioxide chemistry...TRL 6); recent laboratory developments have yielded energy densities of 600 Wh/kg22. Lithium -Air- Lithium -air batteries consist of lithium anodes...generation, battery types are discussed below and a comparative table of traditional non- lithium , terrestrial battery types are presented in Table 11

  8. A Lightweight, Direct-Drive, Fully Superconducting Generator for Large Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer [Advanced Magnet Lab, Palm Bay, FL (United States); Morrison, Darrell [Emerson Inc., St. Louis, MO (United States); Prince, Vernon Gregory [Advanced Magnet Lab, Palm Bay, FL (United States)

    2014-12-31

    The current trend in the offshore wind turbine industry favors direct-drive generators based on permanent magnets, as they allow for a simple and reliable drivetrain without a gearbox. These generators, however, do not scale very well to high power levels beneficial for offshore wind, and their use in wind turbines over 6 MW is questionable in terms of mass and economic feasibility. Moreover, rare earth materials composing the permanent magnets are becoming less available, more costly and potentially unavailable in the foreseeable future. A stated goal of the DOE is a critical materials strategy that pursues the development of substitute materials and technology for rare earth materials to improve supply chain flexibility and meet the needs of the clean energy economy.Therefore, alternative solutions are needed, in terms of both favorable up-scaling and minimizing or eliminating the use of permanent magnets. The generator design presented in this document addresses both these issues with the development of a fully superconducting generator (FSG) with unprecedented high specific torque. A full-scale, 10-MW, 10-rpm generator will weigh less about 150 metric tons, compared to 300 metric tons for an equivalent direct-drive, permanent magnet generator. The developed concept does not use any rare earth materials in its critical drive components, but rather relies on a superconductor composed of mainly magnesium and boron (MgB2), both of which are in abundant supply from multiple global sources.

  9. Application of Load Compensation in Voltage Controllers of Large Generators in the Polish Power Grid

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available The Automatic Voltage Regulator normally controls the generator stator terminal voltage. Load compensation is used to control the voltage which is representative of the voltage at a point either within or external to the generator. In the Polish Power Grid (PPG compensation is ready to use in every AVR of a large generator, but it is utilized only in the case of generators operating at the same medium voltage buses. It is similar as in most European Power Grids. The compensator regulating the voltage at a point beyond the machine terminals has significant advantages in comparison to the slower secondary Voltage and Reactive Power Control System (ARNE1. The compensation stiffens the EHV grid, which leads to improved voltage quality in the distribution grid. This effect may be particularly important in the context of the dynamic development of wind and solar energy.

  10. Long term reliability and machine operation diagnosis with fiber optic sensors at large turbine generators

    Science.gov (United States)

    Bosselmann, T.; Strack, S.; Villnow, M.; Weidner, J. R.; Willsch, M.

    2013-05-01

    The increasing quantity of renewable energy in electric power generation leads to a higher flexibility in the operation of conventional power plants. The turbo generator has to face the influence of frequent start-stop-operation on thermal movement and vibration of the stator end windings. Large indirect cooled turbo generators have been equipped with FBG strain and temperature sensors to monitor the influence of peak load operation. Fiber optic accelerometers measure the vibration of the end windings at several turbine generators since many years of operation. The long term reliability of fiber optic vibration, temperature and strain sensors has been successfully proved during years of online operation. The analysis of these data in correlation to significant operation parameter lead to important diagnostic information.

  11. Processing large sensor data sets for safeguards : the knowledge generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  12. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  13. The Mobile Commerce technologies: Generations, Standards and Protocols

    OpenAIRE

    Tiwari, Rajnish; Buse, Stephan; Herstatt, Cornelius

    2006-01-01

    Mobile Commerce has staged a remarkable come-back. Driven by the technological innovations in the field of telecommunications, it is showing signs of a healthy recovery. The collapse of the dot-com boom in 2001/2002 had dealt a severe blow not only to Electronic Commerce but also to Mobile Commerce, which was just about developing at that time. In addition to a general lack of customer demand for mobile, location-based, services, it suffered heavily under the technical deficiencies of end-dev...

  14. [Technological convergence will quickly generate disruptive innovations in oncology].

    Science.gov (United States)

    Coucke, Ph A

    2016-06-01

    Convergence between information and communication technology and recent developments in medical care will totally change the health care sector. The way we perform diagnosis, treatment and follow-up will undergo disruptive changes in a very near future. We intend to highlight this statement by a limited selection of examples of radical innovations, especially in the field of oncology. To be totally disruptive and to illustrate the concept of "lateral power" - especially cognitive distribution - the list of references is only made up of internet links. Anyone - patients included - can easily and instantly access to this information everywhere.

  15. Comparison of large central and small decentralized power generation in India

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  16. CRISPR-Based Typing and Next-Generation Tracking Technologies.

    Science.gov (United States)

    Barrangou, Rodolphe; Dudley, Edward G

    2016-01-01

    Bacteria occur ubiquitously in nature and are broadly relevant throughout the food supply chain, with diverse and variable tolerance levels depending on their origin, biological role, and impact on the quality and safety of the product as well as on the health of the consumer. With increasing knowledge of and accessibility to the microbial composition of our environments, food supply, and host-associated microbiota, our understanding of and appreciation for the ratio of beneficial to undesirable bacteria are rapidly evolving. Therefore, there is a need for tools and technologies that allow definite, accurate, and high-resolution identification and typing of various groups of bacteria that include beneficial microbes such as starter cultures and probiotics, innocuous commensals, and undesirable pathogens and spoilage organisms. During the transition from the current molecular biology-based PFGE (pulsed-field gel electrophoresis) gold standard to the increasingly accessible omics-level whole-genome sequencing (WGS) N-gen standard, high-resolution technologies such as CRISPR-based genotyping constitute practical and powerful alternatives that provide valuable insights into genome microevolution and evolutionary trajectories. Indeed, several studies have shown potential for CRISPR-based typing of industrial starter cultures, health-promoting probiotic strains, animal commensal species, and problematic pathogens. Emerging CRISPR-based typing methods open new avenues for high-resolution typing of a broad range of bacteria and constitute a practical means for rapid tracking of a diversity of food-associated microbes.

  17. ASP - Grid connections of large power generating units; ASP - Anslutning av stoerre produktionsanlaeggningar till elnaetet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aake; Larsson, Richard [Vattenfall Power Consultants, Stockholm (Sweden)

    2006-12-15

    Grid connections of large power generating units normally require more detailed studies compared to small single units. The required R and D-level depends on the specific characteristics of the production units and the connecting grid. An inquiry for a grid connection will raise questions for the grid owner regarding transmission capability, losses, fault currents, relay protection, dynamic stability etc. Then only a few larger wind farms have been built, the experiences from these types of grid connections are limited and for that reason it can be difficult to identify issues appropriate for further studies. To ensure that electric power generating units do not have unacceptable impact on the grid, directions from the Swedish TSO (Svenska Kraftnaet) have been stated. The directions deal, for example, with power generation in specific ranges of voltage level and frequency and the possibility to remain connected to the grid when different faults occur. The requirements and the consequences of these directions are illustrated. There are three main issues that should be considered: Influence on the power flow from generating units regarding voltage level, currents, losses etc.; Different types of electric systems in generating units contribute to different levels of fault currents. For that reason the resulting fault current levels have to be studied; It is required that generating units should remain connected to the grid at different modes of operation and faults. These modes have to be verified. Load flow and dynamic studies normally demand computer models. Comprehensive models, for instance of wind farms, can bee difficult to design and normally large computer capacity is required. Therefore simplified methods to perform relevant studies are described. How to model an electric power generating unit regarding fault currents and dynamic stability is described. An inquiry for a grid connection normally brings about a discussion concerning administration. To make it

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  20. Generation of large-scale magnetic fields from inflation in teleparallelism

    CERN Document Server

    Bamba, Kazuharu; Luo, Ling-Wei

    2012-01-01

    We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1Mpc scale with its strength of $\\sim 10^{-9}$G at the present time can be generated.

  1. Generation of large-scale magnetic fields from inflation in teleparallelism

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Geng, Chao-Qiang; Luo, Ling-Wei, E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: geng@phys.nthu.edu.tw, E-mail: d9622508@oz.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan (China)

    2012-10-01

    We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1 Mpc scale with its strength of ∼ 10{sup −9} G at the present time can be generated.

  2. Scheduling of power generation a large-scale mixed-variable model

    CERN Document Server

    Prékopa, András; Strazicky, Beáta; Deák, István; Hoffer, János; Németh, Ágoston; Potecz, Béla

    2014-01-01

    The book contains description of a real life application of modern mathematical optimization tools in an important problem solution for power networks. The objective is the modelling and calculation of optimal daily scheduling of power generation, by thermal power plants,  to satisfy all demands at minimum cost, in such a way that the  generation and transmission capacities as well as the demands at the nodes of the system appear in an integrated form. The physical parameters of the network are also taken into account. The obtained large-scale mixed variable problem is relaxed in a smart, practical way, to allow for fast numerical solution of the problem.

  3. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  4. Tension awareness of stakeholders in large technology projects : a duality perspective

    NARCIS (Netherlands)

    Boonstra, Albert; van Offenbeek, Marjolein; Vos, Janita F.J.

    2017-01-01

    This paper analyzes the tensions evolving from project management dilemmas and how they relate to stakeholders in large technology projects. The study addresses an organization-wide electronic health record implementation in a large hospital. It adopts a duality lens in exploring whether and how

  5. IEngage: Using Technology to Enhance Students' Engagement in a Large Classroom

    Science.gov (United States)

    Sawang, Sukanlaya; O'Connor, Peter; Ali, Muhammad

    2017-01-01

    This paper aims to answer how we can increase students' engagement in a large class. We hypothesised that the use of KeyPad, an interactive student response system, can lead to enhanced student engagement in a large classroom. We tested a model of classroom technology integration enhancing the students' engagement among first year undergraduate…

  6. Tension Awareness of Stakeholders in Large Technology Projects : A Duality Perspective

    NARCIS (Netherlands)

    Boonstra, Albert; van Offenbeek, Marjolein; Vos, Janita F.J.

    2017-01-01

    This article analyzes the tensions evolving from project management dilemmas and how they relate to stakeholders in large technology projects. The study addresses an organization-wide electronic health record implementation in a large hospital. It adopts a duality lens in exploring whether and how

  7. NOx control in large-scale power plant boilers through superfine pulverized coal technology

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Jianxing REN; Dunsong WEI

    2008-01-01

    Superfine pulverized coal technology can effectively reduce NOx emission in coal-fired power plant boilers. It can also economize the cost of the power plant and improve the use of the ash in the flue gas. Superfine pulverized coal technology, which will be widely used in China, includes common superfine pulverized coal technology and superfine pulverized coal reburning technology. The use of superfine pulver-ized coal instead of common coal in large-scale power plants will not only reduce more than 30% of NOx emission but also improve the thermal efficiency of the boiler.

  8. New paradigm for rapid production of large precision optics: frozen membrane mirror technology

    Science.gov (United States)

    Lieber, Mike; Kendrick, Stephen; Lipscy, Sarah; Ebbets, Dennis; Acton, Scott; Knight, Scott

    2013-09-01

    Traditional mirror manufacturing, particularly for astronomical purposes, requires substantial lead time, due to the nature of the materials and the grinding/polishing process. We propose a new technique for rapid, low-cost production of large, lightweight precision optics by fusing several technologies which in combination we call frozen membrane mirror technology (FMMT). FMMT combines well-understood subsystem technologies, including electrostatic control of membrane mirrors, adaptive optics, wavefront sensing and control, and inflatable structures technology to shorten production time. The basic technique is to control the surface of a reflective coated membrane mirror with electrostatic actuation and wavefront sensor feedback and freeze the membrane shape. We discuss the details of the concept and present results of early lab testing. We focus on the optical regime, but this technology has applicability from the microwave to x-ray spectral bands. Starting with a flexible membrane mirror, one can envision techniques for deployment of large apertures in space.

  9. PMm2: large photomultipliers and innovative electronics for the next-generation neutrino experiments

    CERN Document Server

    Genolini, B; Blin, S; Campagne, J -E; Combettes, B; Conforti, S; De-haine, A -G; Duchesneau, D; Dulucq, F; Dumont-Dayot, N; Favier, J; Fouché, F; Hermel, R; de La Taille, C; Martin-Chassard, G; Trung, T Nguyen; Périnet, C; Peyré, J; Pouthas, J; Raux, L; Rindel, E; Rosier, P; Tassan-Viol, J; Wei, W; Zghiche, A

    2008-01-01

    The next generation of proton decay and neutrino experiments, the post-SuperKamiokande detectors as those that will take place in megaton size water tanks, will require very large surfaces of photodetection and a large volume of data. Even with large hemispherical photomultiplier tubes, the expected number of channels should reach hundreds of thousands. A funded R&D program to implement a solution is presented here. The very large surface of photodetection is segmented in macro pixels made of 16 hemispherical (12 inches) photomultiplier tubes connected to an autonomous front-end which works on a triggerless data acquisition mode. The expected data transmission rate is 5 Mb/s per cable, which can be achieved with existing techniques. This architecture allows to reduce considerably the cost and facilitate the industrialization. This document presents the simulations and measurements which define the requirements for the photomultipliers and the electronics. A proto-type of front-end electronics was successf...

  10. The theories and key technologies for the new generation mine wireless information system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Feng, X.; Cheng, S.; Sun, J. [Beijing Jiaotong University, Beijing (China). Key Laboratory of ARP Optical Network and Advanced Telecommunication Network

    2004-07-01

    Breaking through the traditional mine wireless communication theories and technologies, combining advanced wireless communication technologies, wireless network technologies with optical fiber communication technologies have been proposed to construct a new generation mine wireless information system. This has a full range of functions such as managing mobile communications, vehicle positioning and navigation, personnel positioning and tracing, wireless multimedia surveillance, mobile computing and mine environment parameters monitoring. The relevant theories and key technologies were proposed. The urgency to do research work for China is stressed. 10 refs., 2 figs.

  11. Exploring Large Scale Data Analysis and Visualization for ARM Data Discovery Using NoSQL Technologies

    Science.gov (United States)

    Krishna, B.; Gustafson, W. I., Jr.; Vogelmann, A. M.; Toto, T.; Devarakonda, R.; Palanisamy, G.

    2016-12-01

    This paper presents a new way of providing ARM data discovery through data analysis and visualization services. ARM stands for Atmospheric Radiation Measurement. This Program was created to study cloud formation processes and their influence on radiative transfer and also include additional measurements of aerosol and precipitation at various highly instrumented ground and mobile stations. The total volume of ARM data is roughly 900TB. The current search for ARM data is performed by using its metadata, such as the site name, instrument name, date, etc. NoSQL technologies were explored to improve the capabilities of data searching, not only by their metadata, but also by using the measurement values. Two technologies that are currently being implemented for testing are Apache Cassandra (noSQL database) and Apache Spark (noSQL based analytics framework). Both of these technologies were developed to work in a distributed environment and hence can handle large data for storing and analytics. D3.js is a JavaScript library that can generate interactive data visualizations in web browsers by making use of commonly used SVG, HTML5, and CSS standards. To test the performance of NoSQL for ARM data, we will be using ARM's popular measurements to locate the data based on its value. Recently noSQL technology has been applied to a pilot project called LASSO, which stands for LES ARM Symbiotic Simulation and Observation Workflow. LASSO will be packaging LES output and observations in "data bundles" and analyses will require the ability for users to analyze both observations and LES model output either individually or together across multiple time periods. The LASSO implementation strategy suggests that enormous data storage is required to store the above mentioned quantities. Thus noSQL was used to provide a powerful means to store portions of the data that provided users with search capabilities on each simulation's traits through a web application. Based on the user selection

  12. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    Directory of Open Access Journals (Sweden)

    Ramina Angelo

    2008-07-01

    Full Text Available Abstract Background After 10-year-use of AFLP (Amplified Fragment Length Polymorphism technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO, consisting in three structured vocabularies (i.e. ontologies describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. Results Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. Conclusion Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization

  13. Application of next generation sequencing technology in Mendelian movement disorders.

    Science.gov (United States)

    Wang, Yumin; Pan, Xuya; Xue, Dan; Li, Yuwei; Zhang, Xueying; Kuang, Biao; Zheng, Jiabo; Deng, Hao; Li, Xiaoling; Xiong, Wei; Zeng, Zhaoyang; Li, Guiyuan

    2016-02-01

    Next generation sequencing (NGS) has developed very rapidly in the last decade. Compared with Sanger sequencing, NGS has the advantages of high sensitivity and high throughput. Movement disorders are a common type of neurological disease. Although traditional linkage analysis has become a standard method to identify the pathogenic genes in diseases, it is getting difficult to find new pathogenic genes in rare Mendelian disorders, such as movement disorders, due to a lack of appropriate families with high penetrance or enough affected individuals. Thus, NGS is an ideal approach to identify the causal alleles for inherited disorders. NGS is used to identify genes in several diseases and new mutant sites in Mendelian movement disorders. This article reviewed the recent progress in NGS and the use of NGS in Mendelian movement disorders from genome sequencing and transcriptome sequencing. A perspective on how NGS could be employed in rare Mendelian disorders is also provided.

  14. Tellurite suspended nanowire surrounded with large holes for single-mode SC and THG generations

    Science.gov (United States)

    Liao, Meisong; Qin, Guanshi; Yan, Xin; Chaudhari, Chitrarekha; Suzuki, Takenobu; Ohishi, Yasutake

    2011-05-01

    For a suspended nanowire, the holes surrounding the core are expected to be as large as possible to propagate the light at wavelengths as long as possible. However, the fabrication of nanowire surrounded with large holes is still a challenge so far. In this paper, a method which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, is proposed. A suspended nanowire, with a core diameter of 480 nm and an unprecedented large diameter ratio of holey region to core (DRHC) of at least 62, is fabricated in the length of several hundred meters. Owing to the large holes, the confinement loss of the suspended nanowire is insignificant when the wavelength of light propagated in it is 1700 nm. Additionally, the tube-shaped glass cladding of the suspended nanowire shifts the singlemode cutoff wavelength to 810 nm, which is much shorter than the cutoff wavelength, 1070 nm, of a naked nanowire with the same diameter. A single-mode supercontinuum (SC) generation covering a wavelength range of 900-1600 nm is obtained under 1064 nm pump pulse with the peak power as low as 24 W. A single-mode third harmonic generation (THG) is observed by this nanowire under the pump of a 1557 nm femtosecond fiber laser. This work indicates that the suspended nanowire with large holes can provide high nonlinearity together with single-mode propagation, which leads to interesting applications in compact nonlinear devices.

  15. Perspectives of DNA microarray and next-generation DNA sequencing technologies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research,in revealing both the structural and functional characteristics of genomes.In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics,systems biology and pharmacogenomics.The next-generation DNA sequencing method was first introduced by the 454 Company in 2003,immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies.Though it has not been long since the first emergence of this technology,with the fast and impressive improvement,the application of this technology has extended to almost all fields of genomics research,as a rival challenging the existing DNA microarray technology.This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

  16. Perspectives of DNA microarray and next-generation DNA sequencing technologies

    Institute of Scientific and Technical Information of China (English)

    TENG XiaoKun; XIAO HuaSheng

    2009-01-01

    DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequenc-ing method was first introduced by the 454 Company in 2003, immediately followed by the establish-ment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

  17. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    Science.gov (United States)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  18. Mind the Gap: Technology, Millennial Leadership and the Cross-Generational Workforce

    Science.gov (United States)

    Murray, Adam

    2011-01-01

    It comes as no surprise that different generations respond to and utilise emerging technology in vastly different ways. However as more Millennials take on leadership positions within academic libraries, their attitudes towards and uses of technology may bring conflicting expectations for leadership to the forefront. What are the generational…

  19. Applications and Case Studies of the Next-Generation Sequencing Technologies in Food, Nutrition and Agriculture.

    Science.gov (United States)

    Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...

  20. Mind the Gap: Technology, Millennial Leadership and the Cross-Generational Workforce

    Science.gov (United States)

    Murray, Adam

    2011-01-01

    It comes as no surprise that different generations respond to and utilise emerging technology in vastly different ways. However as more Millennials take on leadership positions within academic libraries, their attitudes towards and uses of technology may bring conflicting expectations for leadership to the forefront. What are the generational…

  1. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  2. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  3. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Science.gov (United States)

    1994-05-01

    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  4. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  5. Developing Next-Generation Telehealth Tools and Technologies: Patients, Systems, and Data Perspectives

    OpenAIRE

    Ackerman, Michael J.; Filart, Rosemarie; Burgess, Lawrence P.; Lee, Insup; Poropatich, Ronald K.

    2010-01-01

    The major goals of telemedicine today are to develop next-generation telehealth tools and technologies to enhance healthcare delivery to medically underserved populations using telecommunication technology, to increase access to medical specialty services while decreasing healthcare costs, and to provide training of healthcare providers, clinical trainees, and students in health-related fields. Key drivers for these tools and technologies are the need and interest to collaborate among telehea...

  6. Generation of weakly nonlinear nonhydrostatic internal tides over large topography: a multi-modal approach

    Directory of Open Access Journals (Sweden)

    R. Maugé

    2008-03-01

    Full Text Available A set of evolution equations is derived for the modal coefficients in a weakly nonlinear nonhydrostatic internal-tide generation problem. The equations allow for the presence of large-amplitude topography, e.g. a continental slope, which is formally assumed to have a length scale much larger than that of the internal tide. However, comparison with results from more sophisticated numerical models show that this restriction can in practice be relaxed. It is shown that a topographically induced coupling between modes occurs that is distinct from nonlinear coupling. Nonlinear effects include the generation of higher harmonics by reflection from boundaries, i.e. steeper tidal beams at frequencies that are multiples of the basic tidal frequency. With a seasonal thermocline included, the model is capable of reproducing the phenomenon of local generation of internal solitary waves by a tidal beam impinging on the seasonal thermocline.

  7. Prospects for generating electricity by large onshore and offshore wind farms

    Science.gov (United States)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m‑2, whereas in offshore regions with very strong winds it exceeds 3 W m‑2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  8. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  9. Integrating large-scale data and RNA technology to protect crops from fungal pathogens

    Directory of Open Access Journals (Sweden)

    Ian Joseph Girard

    2016-05-01

    Full Text Available With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  10. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  11. Contribution of energy storage for large-scale integration of variable generation

    Energy Technology Data Exchange (ETDEWEB)

    Estanqueiro, Ana [National Laboratory for Energy and Geology (LNEG), Lisbon (Portugal); Aardal, Atle Rygg [SINTEF, Trondheim (Norway); O' Dwyer, Ciara [University College Dublin (UCD) (Ireland)] [and others

    2012-07-01

    The amount of wind power and other time-variable non-dispatchable renewable energy sources (VRES) such as photovoltaics (PV) is rapidly increasing in the world. Several power systems in Europe are already facing a very high penetration from variable renewables which is posing concerns on the operational stability limits that are being surpassed for extreme RES generation conditions. Most transmission system operators are defining VRES limits of penetration, thus, requiring the renewable energy excess to be curtailed, exported or stored. Energy storage may play a relevant role in maximizing the long term penetration of VRES if used as a technical mean to regulate the daily, weekly and annual profiles of variable generation (VG). This paper reviews the storage technologies that are available and may be used on a power system scale and performs a cost/benefit analysis discussing their advantages and disadvantages for the integration of fast-growing renewables, such as wind power and PV. (orig.)

  12. HiQuant: Rapid Postquantification Analysis of Large-Scale MS-Generated Proteomics Data.

    Science.gov (United States)

    Bryan, Kenneth; Jarboui, Mohamed-Ali; Raso, Cinzia; Bernal-Llinares, Manuel; McCann, Brendan; Rauch, Jens; Boldt, Karsten; Lynn, David J

    2016-06-01

    Recent advances in mass-spectrometry-based proteomics are now facilitating ambitious large-scale investigations of the spatial and temporal dynamics of the proteome; however, the increasing size and complexity of these data sets is overwhelming current downstream computational methods, specifically those that support the postquantification analysis pipeline. Here we present HiQuant, a novel application that enables the design and execution of a postquantification workflow, including common data-processing steps, such as assay normalization and grouping, and experimental replicate quality control and statistical analysis. HiQuant also enables the interpretation of results generated from large-scale data sets by supporting interactive heatmap analysis and also the direct export to Cytoscape and Gephi, two leading network analysis platforms. HiQuant may be run via a user-friendly graphical interface and also supports complete one-touch automation via a command-line mode. We evaluate HiQuant's performance by analyzing a large-scale, complex interactome mapping data set and demonstrate a 200-fold improvement in the execution time over current methods. We also demonstrate HiQuant's general utility by analyzing proteome-wide quantification data generated from both a large-scale public tyrosine kinase siRNA knock-down study and an in-house investigation into the temporal dynamics of the KSR1 and KSR2 interactomes. Download HiQuant, sample data sets, and supporting documentation at http://hiquant.primesdb.eu .

  13. Memory Effects in Turbulent Dynamo Generation and Propagation of Large Scale Magnetic Field

    CERN Document Server

    Fedotov, S; Zubarev, A; Fedotov, Sergei; Ivanov, Alexey; Zubarev, Andrey

    2001-01-01

    We are concerned with large scale magnetic field dynamo generation and propagation of magnetic fronts in turbulent electrically conducting fluids. An effective equation for the large scale magnetic field is developed here that takes into account the finite correlation times of the turbulent flow. This equation involves the memory integrals corresponding to the dynamo source term describing the alpha-effect and turbulent transport of magnetic field. We find that the memory effects can drastically change the dynamo growth rate, in particular, non-local turbulent transport might increase the growth rate several times compared to the conventional gradient transport expression. Moreover, the integral turbulent transport term leads to a large decrease of the speed of magnetic front propagation.

  14. Measurement and prediction of broadband noise from large horizontal axis wind turbine generators

    Science.gov (United States)

    Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.

    1995-01-01

    A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.

  15. Science drivers and requirements for an Advanced Technology Large Aperture Space Telescope (ATLAST): Implications for technology development and synergies with other future facilities

    CERN Document Server

    Postman, Marc; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R Michael; Stahl, H Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Rémi; Hyde, Tupper; 10.1117/12.857044

    2010-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astronphysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 {\\mu}m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 {\\mu}m to 2.4 {\\mu}m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  16. A Review of Factors Influencing the Cost Development of Electricity Generation Technologies

    Directory of Open Access Journals (Sweden)

    Sascha Samadi

    2016-11-01

    Full Text Available This article reviews the literature on the past cost dynamics of various renewable, fossil fuel and nuclear electricity generation technologies. It identifies 10 different factors which have played key roles in influencing past cost developments according to the literature. These 10 factors are: deployment-induced learning, research, development and demonstration (RD&D-induced learning, knowledge spillovers from other technologies, upsizing, economies of manufacturing scale, economies of project scale, changes in material and labour costs, changes in fuel costs, regulatory changes, and limits to the availability of suitable sites. The article summarises the relevant literature findings for each of these 10 factors and provides an overview indicating which factors have impacted on which generation technologies. The article also discusses the insights gained from the review for a better understanding of possible future cost developments of electricity generation technologies. Finally, future research needs, which may support a better understanding of past and future cost developments, are identified.

  17. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.

    Science.gov (United States)

    Rule, Bridget M; Worth, Zeb J; Boyle, Carol A

    2009-08-15

    In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied.

  18. Information Technology Applications on Human Resources Management Functions in Large U.S. Metropolitan Areas

    Science.gov (United States)

    Alsawafy, Qais Abdulkadum Kahalf

    2013-01-01

    The existing bond between human resources (HR) that team up in a business enterprise and the "real medium" information technology (IT) itself appears in the moment that the relationship is generated independently of the kind of enterprise and the relationship established between them. In today's competitive business world, companies who…

  19. Information Technology Applications on Human Resources Management Functions in Large U.S. Metropolitan Areas

    Science.gov (United States)

    Alsawafy, Qais Abdulkadum Kahalf

    2013-01-01

    The existing bond between human resources (HR) that team up in a business enterprise and the "real medium" information technology (IT) itself appears in the moment that the relationship is generated independently of the kind of enterprise and the relationship established between them. In today's competitive business world, companies who…

  20. Generation of large-scale maps of science and associated indicators.

    Energy Technology Data Exchange (ETDEWEB)

    Klavans, Richard (SciTech Strategies, Inc., Berwyn, PA); Boyack, Kevin W.

    2005-12-01

    Over the past several years, techniques have been developed for clustering very large segments of the technical literature using sources such as Thomson ISI's Science Citation Index. The primary objective of this work has been to develop indicators of potential impact at the paper level to enhance planning and evaluation of research. These indicators can also be aggregated at different levels to enable profiling of departments, institutions, agencies, etc. Results of this work are presented as maps of science and technology with various overlays corresponding to the indicators associated with a particular search or question.

  1. Ionospheric plasma disturbances generated by naturally occurring large-scale anomalous heat sources

    Science.gov (United States)

    Pradipta, Rezy; Lee, Min-Chang; Coster, Anthea J.; Tepley, Craig A.; Sulzer, Michael P.; Gonzalez, Sixto A.

    2017-04-01

    We report the findings from our investigation on the possibility of large-scale anomalous thermal gradients to generate acoustic-gravity waves (AGWs) and traveling ionospheric disturbances (TIDs). In particular, here we consider the case of summer 2006 North American heat wave event as a concrete example of such large-scale natural thermal gradients. This special scenario of AGW/TID generation was formulated based on the results of our experiments at the Arecibo Observatory in July 2006, followed by a systematic monitoring/surveillance of total electron content (TEC) fluctuations over North America in 2005-2007 using the MIT Haystack Observatory's Madrigal database. The data from our Arecibo experiments indicate a continual occurrence of intense AGW/TID over the Caribbean on 21-24 July 2006, and the Madrigal TEC data analysis shows that the overall level of TID activity over North America had increased by ∼0.2 TECU during the summer 2006 heat wave event. Our proposed scenario is in agreement with these empirical observations, and is generally consistent with a number of past ionospheric HF heating experiments related to AGW/TID generation.

  2. A top-down model to generate ensembles of runoff from a large number of hillslopes

    Directory of Open Access Journals (Sweden)

    P. R. Furey

    2013-09-01

    Full Text Available We hypothesize that total hillslope water loss for a rainfall–runoff event is inversely related to a function of a lognormal random variable, based on basin- and point-scale observations taken from the 21 km2 Goodwin Creek Experimental Watershed (GCEW in Mississippi, USA. A top-down approach is used to develop a new runoff generation model both to test our physical-statistical hypothesis and to provide a method of generating ensembles of runoff from a large number of hillslopes in a basin. The model is based on the assumption that the probability distributions of a runoff/loss ratio have a space–time rescaling property. We test this assumption using streamflow and rainfall data from GCEW. For over 100 rainfall–runoff events, we find that the spatial probability distributions of a runoff/loss ratio can be rescaled to a new distribution that is common to all events. We interpret random within-event differences in runoff/loss ratios in the model to arise from soil moisture spatial variability. Observations of water loss during events in GCEW support this interpretation. Our model preserves water balance in a mean statistical sense and supports our hypothesis. As an example, we use the model to generate ensembles of runoff at a large number of hillslopes for a rainfall–runoff event in GCEW.

  3. A top-down model to generate ensembles of runoff from a large number of hillslopes

    Science.gov (United States)

    Furey, P. R.; Gupta, V. K.; Troutman, B. M.

    2013-09-01

    We hypothesize that total hillslope water loss for a rainfall-runoff event is inversely related to a function of a lognormal random variable, based on basin- and point-scale observations taken from the 21 km2 Goodwin Creek Experimental Watershed (GCEW) in Mississippi, USA. A top-down approach is used to develop a new runoff generation model both to test our physical-statistical hypothesis and to provide a method of generating ensembles of runoff from a large number of hillslopes in a basin. The model is based on the assumption that the probability distributions of a runoff/loss ratio have a space-time rescaling property. We test this assumption using streamflow and rainfall data from GCEW. For over 100 rainfall-runoff events, we find that the spatial probability distributions of a runoff/loss ratio can be rescaled to a new distribution that is common to all events. We interpret random within-event differences in runoff/loss ratios in the model to arise from soil moisture spatial variability. Observations of water loss during events in GCEW support this interpretation. Our model preserves water balance in a mean statistical sense and supports our hypothesis. As an example, we use the model to generate ensembles of runoff at a large number of hillslopes for a rainfall-runoff event in GCEW.

  4. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    Energy Technology Data Exchange (ETDEWEB)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L. [and others

    1997-03-05

    The Department of Energy`s (DOE) Office of Science and Technology Decontamination and Decommissioning (D&D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D&D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D&D Focus Area`s approach to verifying the benefits of the improved D&D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD`s awarded by the D&D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP`s selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP`s Plant 1 D&D Project which was an ongoing D&D Project for which a firm fixed price contract had been issued to the D&D Contractor. Thus, interferences with the baseline D&D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D&D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of {open_quotes}winners.{close_quotes} All demonstrated, technologies will be evaluated for incorporation into the FEMP`s baseline D&D strategy.

  5. Large Eddy Simulation of New Vortex Generator Enhancing Heat Exchange of Solar Energy

    Institute of Scientific and Technical Information of China (English)

    WEN Juan; YANG Li; QI Cheng-ying

    2009-01-01

    This paper put forward a new-type vortex generator enhancing heat exchange of solar air-drier and air-heater on the gas side,and investigated the mechanism of heat transfer enhancement and drag reduction by the influence of vortex generators on the coherent structure of turbulent boundary layer.The flow and heat transfer characteristics of rectangle channel with bevel-cut half-elliptical column vortex generators were obtained using large eddy simulation (LES) and the hydromechanics software FLUENT6.3.The instantaneous proper-ties of velocity,temperature and pressure in channel were gained.The coherent structure of turbulent boundary layer flow was showed, and the characteristic of vortex induced by inclined-cut semi-ellipse vortex generator and its influence on turbulent coherent structure were analyzed.And the effect mechanism of turbulent coherent structure on flow field,pressure field and temperature field was discussed.Based on the results,the heat trans-fer coefficient and drag reduction of the new vortex generator with different pitch angles were compared.Some-times.the coherent effects of the increased wall heat transfer and the decreased skin friction do not satisfy theReynolds analogy.The turbulent coherent structure can be controlled through the geometry of the vortex gener-ator.so the heat transfer and drag reduction can also be controlled.Then we can seek suitable form of vortex generator and structure parameters.in order to achieve the enhanced heat transfer and flow of drag reduction in the solar air-heater and solar air-drier.

  6. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  7. Staff Draft Report. Comparative Cost of California Central Station Electricity Generation Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Magdy; Benjamin, Richard

    2003-02-11

    This Energy Commission staff draft report presents preliminary levelized cost estimates for several generic central-station electricity generation technologies. California has traditionally adopted energy policies that balance the goals of supporting economic development, improving environmental quality and promoting resource diversity. In order to be effective, such policies must be based on comprehensive and timely gathering of information. With this goal in mind, the purpose of the report is to provide comparative levelized cost estimates for a set of renewable (e.g., solar) and nonrenewable (e.g., natural gas-fired) central-station electricity generation resources, based on each technology's operation and capital cost. Decision-makers and others can use this information to compare the generic cost to build specific technology. These costs are not site specific. If a developer builds a specific power plant at a specific location, the cost of siting that plant at that specific location must be considered. The Energy Commission staff also identifies the type of fuel used by each technology and a description of the manner in which the technology operates in the generation system. The target audiences of this report are both policy-makers and anyone wishing to understand some of the fundamental attributes that are generally considered when evaluating the cost of building and operating different electricity generation technology resources. These costs do not reflect the total cost to consumers of adding these technologies to a resources portfolio. These technology characterizations do not capture all of the system, environmental or other relevant attributes that would typically be needed by a portfolio manager to conduct a comprehensive ''comparative value analysis''. A portfolio analysis will vary depending on the particular criteria and measurement goals of each study. For example, some form of firm capacity is typically needed with wind

  8. Large-scale, realistic laboratory modeling of M2 internal tide generation at the Luzon Strait

    CERN Document Server

    Mercier, Matthieu J; Helfrich, Karl; Sommeria, Joël; Viboud, Samuel; Didelle, Henri; Saidi, Sasan; Dauxois, Thierry; Peacock, Thomas

    2015-01-01

    The complex double-ridge system in the Luzon Strait in the South China Sea (SCS) is one of the strongest sources of internal tides in the oceans, associated with which are some of the largest amplitude internal solitary waves on record. An issue of debate, however, has been the specific nature of their generation mechanism. To provide insight, we present the results of a large-scale laboratory experiment performed at the Coriolis platform. The experiment was carefully designed so that the relevant dimensionless parameters, which include the excursion parameter, criticality, Rossby, and Froude numbers, closely matched the ocean scenario. The results advocate that a broad and coherent weakly nonlinear, three-dimensional, M2 internal tide that is shaped by the overall geometry of the double-ridge system is radiated into the South China Sea and subsequently steepens, as opposed to being generated by a particular feature or localized region within the ridge system.

  9. Generation of large-scale vortex dislocations in a three-dimensional wake-type flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.

  10. Generational influences in academic emergency medicine: teaching and learning, mentoring, and technology (part I).

    Science.gov (United States)

    Mohr, Nicholas M; Moreno-Walton, Lisa; Mills, Angela M; Brunett, Patrick H; Promes, Susan B

    2011-02-01

    For the first time in history, four generations are working together-traditionalists, baby boomers, generation Xers (Gen Xers), and millennials. Members of each generation carry with them a unique perspective of the world and interact differently with those around them. Through a review of the literature and consensus by modified Delphi methodology of the Society for Academic Emergency Medicine Aging and Generational Issues Task Force, the authors have developed this two-part series to address generational issues present in academic emergency medicine (EM). Understanding generational characteristics and mitigating strategies can help address some common issues encountered in academic EM. Through recognition of the unique characteristics of each of the generations with respect to teaching and learning, mentoring, and technology, academicians have the opportunity to strategically optimize interactions with one another.

  11. Generational Influences in Academic Emergency Medicine: Teaching and Learning, Mentoring, and Technology (Part I)

    Science.gov (United States)

    Mohr, Nicholas M.; Moreno-Walton, Lisa; Mills, Angela M.; Brunett, Patrick H.; Promes, Susan B.

    2010-01-01

    For the first time in history, four generations are working together – Traditionalists, Baby Boomers, Generation Xers, and Millennials. Members of each generation carry with them a unique perspective of the world and interact differently with those around them. Through a review of the literature and consensus by modified Delphi methodology of the Society for Academic Emergency Medicine (SAEM) Aging and Generational Issues Task Force, the authors have developed this two-part series to address generational issues present in academic emergency medicine (EM). Understanding generational characteristics and mitigating strategies can help address some common issues encountered in academic EM. Through recognition of the unique characteristics of each of the generations with respect to teaching and learning, mentoring, and technology, academicians have the opportunity to strategically optimize interactions with one another. PMID:21314779

  12. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  13. Generating the Infrared Spectra of Large Interstellar Molecules with Density Functional Theory

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1999-01-01

    It is now possible to compute IR (infrared) spectra of large molecules with an accuracy of 30 per cm, or better, using density function theory. This is true for cations, anions, and neutrals. Thus it possible to generate synthetic IR spectra that can help interpret experimental spectra and fill in for missing experimental data. These synthetic spectra can be used as input into interstellar models. In addition to IR spectra, it is possible to compute energetic properties to help understand which molecules can be formed in the interstellar environment.

  14. A Method for Generating Super Large Fractal Images useful for Decoration Art

    Institute of Scientific and Technical Information of China (English)

    HuajieLIU; JunLUO

    1996-01-01

    Many authors have reported the techniques to iterate nonlinear equations on complex plane,but generally,the size of image calculated by usual VGA style(640×480) is too small to fit the needs for high quality publications or ecorative patterns.We describe a universal method for generating and storing(in *.GIF format)fractal image large enough as you need,such as an image 5000×5000 256-color(25,000,774 bytes≈23.8MB),which can thoroughly display the intricate beauty of fractals.

  15. Generating the Infrared Spectra of Large Interstellar Molecules with Density Functional Theory

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1999-01-01

    It is now possible to compute IR (infrared) spectra of large molecules with an accuracy of 30 per cm, or better, using density function theory. This is true for cations, anions, and neutrals. Thus it possible to generate synthetic IR spectra that can help interpret experimental spectra and fill in for missing experimental data. These synthetic spectra can be used as input into interstellar models. In addition to IR spectra, it is possible to compute energetic properties to help understand which molecules can be formed in the interstellar environment.

  16. Large Deviation Generating Function for Currents in the Pauli-Fierz Model

    Science.gov (United States)

    de Roeck, Wojciech

    We consider a finite quantum system coupled to quasifree thermal reservoirs at different temperatures. We construct the statistics of energy transport between the reservoirs and we show that the corresponding large deviation generating function exists and it is analytic on a compact set. This result is valid for small coupling and exponentially decaying reservoir correlation functions. Our technique consists of a diagrammatic expansion that uses the Markovian limit of the system as a reference. As a corollary, we derive the Gallavotti-Cohen fluctuation relation for the entropy production.

  17. Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

    2002-02-26

    This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

  18. Prediction of broadband noise from large horizontal axis wind turbine generators

    Science.gov (United States)

    Grosveld, F. W.

    1984-01-01

    A method is presented for predicting the broadband noise spectra of large horizontal axis wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. The predicted frequency spectra are compared with measured data from several machines including the MOD-OA, the MOD-2, the WTS-4 and the U.S. Wind-power Inc. machine. Also included is a broadband noise prediction for the proposed MOD-5B. The significance of the effects of machine size, power output, trailing edge bluntness and distance to the receiver is illustrated. Good agreement is obtained between the predicted and measured far field noise spectra.

  19. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  20. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  1. Small- and large-signal modeling of InP HBTs in transferred-substrate technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2014-01-01

    In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing...

  2. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    NARCIS (Netherlands)

    Botton, A.; Galla, G.; Conesa, A.; Bachem, C.W.B.; Ramina, A.; Barcaccia, G.

    2008-01-01

    Background: After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and

  3. Using Technology To Implement Active Learning in Large Classes. Technical Report.

    Science.gov (United States)

    Gerace, William J.; Dufresne, Robert J.; Leonard, William J.

    An emerging technology, classroom communication systems (CCSs), has the potential to transform the way we teach science in large-lecture settings. CCSs can serve as catalysts for creating a more interactive, student-centered classroom in the lecture hall, thereby allowing students to become more actively involved in constructing and using…

  4. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    NARCIS (Netherlands)

    Botton, A.; Galla, G.; Conesa, A.; Bachem, C.W.B.; Ramina, A.; Barcaccia, G.

    2008-01-01

    Background: After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and

  5. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    DEFF Research Database (Denmark)

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (SGT......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  6. Generating power at high efficiency: combined cycle technology for sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, E.

    2008-04-15

    The book reviews key developments in combined cycle technology; gives examples of plants around the world; and looks at how combined cycle technology can evolve to meet future energy needs. Contents are: Introduction; Brief history of development; Some early schemes; Gas turbine developments; Steam generator concepts; The single shaft block; Repowering steam turbines; Combined heat and power; Gas turbines and coal; and What does the future hold?

  7. Field experiments of NR-PSS for large synchronous generators on a 300MW machine in Baishan Hydro Plant

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; MEI ShengWei; ZHENG ShaoMing

    2007-01-01

    To verify the performance of NR-PSS (Nonlinear Robust Power System Stabilizer) for large synchronous generators, field experiments were carried out on a 300 MW generator in Baishan Hydro Plant of Northeast China Power Grid. The experiment results show that NR-PSS can improve the generator damping and enhance system stability remarkably.

  8. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  9. A Repetitive Nanosecond Pulse Source for Generation of Large Volume Streamer Discharge

    Institute of Scientific and Technical Information of China (English)

    TAO Fengbo; ZHANG Qiaogen; GAO Bo; WANG Hu; LI Zhou

    2008-01-01

    Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse,a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch.By varying both the inter-pulse duration and the pulse frequency,the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure,the gas composition as well as the bias voltage.The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate.The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges.The repetitive nanosecond pulse source is also applied to the generation of large volume,and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.

  10. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    identified as follows: the energy recovery efficiency and the flue gas cleaning system for fossil fuel technologies; the electricity mix used during both the manufacturing and the construction phases for nuclear and renewable technologies; and the type, quality and origin of feedstock, as well as the amount......Electricity generation is a key contributor to global emissions of greenhouse gases (GHG), NOx and SO2 and their related environmental impact. A critical review of 167 case studies involving the life cycle assessment (LCA) of electricity generation based on hard coal, lignite, natural gas, oil...

  11. Automatic generation of large ensembles for air quality forecasting using the Polyphemus system

    Directory of Open Access Journals (Sweden)

    D. Garaud

    2009-07-01

    Full Text Available This paper describes a method to automatically generate a large ensemble of air quality simulations. This is achieved using the Polyphemus system, which is flexible enough to build various different models. The system offers a wide range of options in the construction of a model: many physical parameterizations, several numerical schemes and different input data can be combined. In addition, input data can be perturbed. In this paper, some 30 alternatives are available for the generation of a model. For each alternative, the options are given a probability, based on how reliable they are supposed to be. Each model of the ensemble is defined by randomly selecting one option per alternative. In order to decrease the computational load, as many computations as possible are shared by the models of the ensemble. As an example, an ensemble of 101 photochemical models is generated and run for the year 2001 over Europe. The models' performance is quickly reviewed, and the ensemble structure is analyzed. We found a strong diversity in the results of the models and a wide spread of the ensemble. It is noteworthy that many models turn out to be the best model in some regions and some dates.

  12. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  13. Current State of Development of Electricity-Generating Technologies: A Literature Review

    Directory of Open Access Journals (Sweden)

    Manfred Lenzen

    2010-03-01

    Full Text Available Electricity is perhaps the most versatile energy carrier in modern economies, and it is therefore fundamentally linked to human and economic development. Electricity growth has outpaced that of any other fuel, leading to ever-increasing shares in the overall mix. This trend is expected to continue throughout the following decades, as large—especially rural—segments of the world population in developing countries start to climb the “energy ladder” and become connected to power grids. Electricity therefore deserves particular attention with regard to its contribution to global greenhouse gas emissions, which is reflected in the ongoing development of low-carbon technologies for power generation. The focus of this updated review of electricity-generating technologies is twofold: (a to provide more technical information than is usually found in global assessments on critical technical aspects, such as variability of wind power, and (b to capture the most recent findings from the international literature. This report covers eight technologies. Seven of these are generating technologies: hydro-, nuclear, wind, photovoltaic, concentrating solar, geothermal and biomass power. The remaining technology is carbon capture and storage. This selection is fairly representative for technologies that are important in terms of their potential capacity to contribute to a low-carbon world economy.

  14. CRISPR transcript processing: a mechanism for generating a large number of small interfering RNAs

    Directory of Open Access Journals (Sweden)

    Djordjevic Marko

    2012-07-01

    Full Text Available Abstract Background CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated sequences is a recently discovered prokaryotic defense system against foreign DNA, including viruses and plasmids. CRISPR cassette is transcribed as a continuous transcript (pre-crRNA, which is processed by Cas proteins into small RNA molecules (crRNAs that are responsible for defense against invading viruses. Experiments in E. coli report that overexpression of cas genes generates a large number of crRNAs, from only few pre-crRNAs. Results We here develop a minimal model of CRISPR processing, which we parameterize based on available experimental data. From the model, we show that the system can generate a large amount of crRNAs, based on only a small decrease in the amount of pre-crRNAs. The relationship between the decrease of pre-crRNAs and the increase of crRNAs corresponds to strong linear amplification. Interestingly, this strong amplification crucially depends on fast non-specific degradation of pre-crRNA by an unidentified nuclease. We show that overexpression of cas genes above a certain level does not result in further increase of crRNA, but that this saturation can be relieved if the rate of CRISPR transcription is increased. We furthermore show that a small increase of CRISPR transcription rate can substantially decrease the extent of cas gene activation necessary to achieve a desired amount of crRNA. Conclusions The simple mathematical model developed here is able to explain existing experimental observations on CRISPR transcript processing in Escherichia coli. The model shows that a competition between specific pre-crRNA processing and non-specific degradation determines the steady-state levels of crRNA and is responsible for strong linear amplification of crRNAs when cas genes are overexpressed. The model further shows how disappearance of only a few pre-crRNA molecules normally present in the cell can lead to a large (two

  15. Z-DNA-forming sequences generate large-scale deletions in mammalian cells.

    Science.gov (United States)

    Wang, Guliang; Christensen, Laura A; Vasquez, Karen M

    2006-02-21

    Spontaneous chromosomal breakages frequently occur at genomic hot spots in the absence of DNA damage and can result in translocation-related human disease. Chromosomal breakpoints are often mapped near purine-pyrimidine Z-DNA-forming sequences in human tumors. However, it is not known whether Z-DNA plays a role in the generation of these chromosomal breakages. Here, we show that Z-DNA-forming sequences induce high levels of genetic instability in both bacterial and mammalian cells. In mammalian cells, the Z-DNA-forming sequences induce double-strand breaks nearby, resulting in large-scale deletions in 95% of the mutants. These Z-DNA-induced double-strand breaks in mammalian cells are not confined to a specific sequence but rather are dispersed over a 400-bp region, consistent with chromosomal breakpoints in human diseases. This observation is in contrast to the mutations generated in Escherichia coli that are predominantly small deletions within the repeats. We found that the frequency of small deletions is increased by replication in mammalian cell extracts. Surprisingly, the large-scale deletions generated in mammalian cells are, at least in part, replication-independent and are likely initiated by repair processing cleavages surrounding the Z-DNA-forming sequence. These results reveal that mammalian cells process Z-DNA-forming sequences in a strikingly different fashion from that used by bacteria. Our data suggest that Z-DNA-forming sequences may be causative factors for gene translocations found in leukemias and lymphomas and that certain cellular conditions such as active transcription may increase the risk of Z-DNA-related genetic instability.

  16. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  17. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores

    Science.gov (United States)

    Liu, Zhen; Qiao, Kai; Tian, Lei; Zhang, Quan; Liu, Zi-Yong; Li, Fu-Li

    2015-01-01

    Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum lyc::int(72). The lower final cell density and faster cell density decrease rate of C. acetobutylicum ATCC 824 than those of C. acetobutylicum lyc::int(72) indicates that CA_C0554 was an important but not the sole autolysin-coding gene responding for the large-scale autolysis. Similar glucose utilization and solvents production but obvious lower cell density of C. acetobutylicum ATCC 824 comparing to C. acetobutylicum lyc::int(72) suggests that lysed C. acetobutylicum ATCC 824 cells were metabolic inactive. On the contrary, the spore density of C. acetobutylicum ATCC 824 is 26.1% higher than that of C. acetobutylicum lyc::int(72) in the final culture broth of batch fermentation. We speculated that spontaneous autolysis of metabolic-inactive cells provided nutrients for the sporulating cells. The present study suggests that one important biological role of spontaneous large-scale autolysis in C. acetobutylicum ATCC 824 batch fermentation is contributing to generation of more spores during sporulation. PMID:26441884

  18. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores.

    Science.gov (United States)

    Liu, Zhen; Qiao, Kai; Tian, Lei; Zhang, Quan; Liu, Zi-Yong; Li, Fu-Li

    2015-01-01

    Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum lyc::int(72). The lower final cell density and faster cell density decrease rate of C. acetobutylicum ATCC 824 than those of C. acetobutylicum lyc::int(72) indicates that CA_C0554 was an important but not the sole autolysin-coding gene responding for the large-scale autolysis. Similar glucose utilization and solvents production but obvious lower cell density of C. acetobutylicum ATCC 824 comparing to C. acetobutylicum lyc::int(72) suggests that lysed C. acetobutylicum ATCC 824 cells were metabolic inactive. On the contrary, the spore density of C. acetobutylicum ATCC 824 is 26.1% higher than that of C. acetobutylicum lyc::int(72) in the final culture broth of batch fermentation. We speculated that spontaneous autolysis of metabolic-inactive cells provided nutrients for the sporulating cells. The present study suggests that one important biological role of spontaneous large-scale autolysis in C. acetobutylicum ATCC 824 batch fermentation is contributing to generation of more spores during sporulation.

  19. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores

    Directory of Open Access Journals (Sweden)

    Zhen eLiu

    2015-09-01

    Full Text Available Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum lyc::int(72. The lower final cell density and faster cell density decrease rate of C. acetobutylicum ATCC 824 than those of C. acetobutylicum lyc::int(72 indicates that CA_C0554 was an important but not the sole autolysin-coding gene responding for the large-scale autolysis. Similar glucose utilization and solvents production but obvious lower cell density of C. acetobutylicum ATCC 824 comparing to C. acetobutylicum lyc::int(72 suggests that lysed C. acetobutylicum ATCC 824 cells were metabolic inactive. On the contrary, the spore density of C. acetobutylicum ATCC 824 is 26.1% higher than that of C. acetobutylicum lyc::int(72 in the final culture broth of batch fermentation. We speculated that spontaneous autolysis of metabolic-inactive cells provided nutrients for the sporulating cells. The present study suggests that one important biological role of spontaneous large-scale autolysis in C. acetobutylicum ATCC 824 batch fermentation is contributing to generation of more spores during sporulation.

  20. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Science.gov (United States)

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.

  1. Large-scale integrated super-computing platform for next generation virtual drug discovery.

    Science.gov (United States)

    Mitchell, Wayne; Matsumoto, Shunji

    2011-08-01

    Traditional drug discovery starts by experimentally screening chemical libraries to find hit compounds that bind to protein targets, modulating their activity. Subsequent rounds of iterative chemical derivitization and rescreening are conducted to enhance the potency, selectivity, and pharmacological properties of hit compounds. Although computational docking of ligands to targets has been used to augment the empirical discovery process, its historical effectiveness has been limited because of the poor correlation of ligand dock scores and experimentally determined binding constants. Recent progress in super-computing, coupled to theoretical insights, allows the calculation of the Gibbs free energy, and therefore accurate binding constants, for usually large ligand-receptor systems. This advance extends the potential of virtual drug discovery. A specific embodiment of the technology, integrating de novo, abstract fragment based drug design, sophisticated molecular simulation, and the ability to calculate thermodynamic binding constants with unprecedented accuracy, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    Science.gov (United States)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable

  3. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  4. On the generation and evolution of numerically simulated large-amplitude internal gravity wave packets

    Science.gov (United States)

    Abdilghanie, Ammar M.; Diamessis, Peter J.

    2012-01-01

    Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed

  5. RESOURCE SAVING TECHNOLOGICAL PROCESS OF LARGE-SIZE DIE THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    L. A. Glazkov

    2009-01-01

    Full Text Available The given paper presents a development of a technological process pertaining to hardening large-size parts made of die steel. The proposed process applies a water-air mixture instead of a conventional hardening medium that is industrial oil.While developing this new technological process it has been necessary to solve the following problems: reduction of thermal treatment duration, reduction of power resource expense (natural gas and mineral oil, elimination of fire danger and increase of process ecological efficiency. 

  6. Ten key considerations for the successful implementation and adoption of large-scale health information technology.

    Science.gov (United States)

    Cresswell, Kathrin M; Bates, David W; Sheikh, Aziz

    2013-06-01

    The implementation of health information technology interventions is at the forefront of most policy agendas internationally. However, such undertakings are often far from straightforward as they require complex strategic planning accompanying the systemic organizational changes associated with such programs. Building on our experiences of designing and evaluating the implementation of large-scale health information technology interventions in the USA and the UK, we highlight key lessons learned in the hope of informing the on-going international efforts of policymakers, health directorates, healthcare management, and senior clinicians.

  7. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  8. Technology Challenges and Opportunities for Very Large In-Space Structural Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2009-01-01

    Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.

  9. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  10. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  11. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Science.gov (United States)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  12. THE APPLICATION OF STATISTICAL PARAMETERS OF PHASE RESOLVED PD DISTRIBUTION TO AGING EXTENT ASSESSMENT OF LARGE GENERATOR INSULATION

    Institute of Scientific and Technical Information of China (English)

    谢恒堃; 乐波; 孙翔; 宋建成

    2003-01-01

    Objective To investigate the characteristic parameters employed to describe the aging extent of stator insulation of large generator and study the aging laws. Methods Multi-stress aging tests of model generator stator bar specimens were performed and PD measurements were conducted using digital PD detector with frequency range from 40*!kHz to 400*!kHz at different aging stage. Results From the test results of model specimens it was found that the skewness of phase resolved PD distribution might be taken as the characterization parameters for aging extent assessment of generator insulation. Furthermore, the measurement results of actual generator stator bars showed that the method based on statistical parameters of PD distributions are prospective for aging extent assessment and residual lifetime estimation of large generator insulation. Conclusion Statistical parameters of phase resolved PD distribution was proposed for aging extent assessment of large generator insulation.

  13. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  14. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  15. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  16. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newmark, Robin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hallett, K. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  17. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    Science.gov (United States)

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  18. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( technologies.

  19. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...

  20. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  1. Next-generation pulse oximetry. Focusing on Masimo's signal extraction technology.

    Science.gov (United States)

    2000-10-01

    Pulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn of dangerous saturation levels. But conventional pulse oximetry has some inherent limitations. For example, it has difficulty monitoring patients who are moving or who have poor perfusion; it is also subject to interference from certain visible and infrared light sources. Over the past several years, a number of companies have developed advanced signal-processing techniques that allow pulse oximeters to overcome many of these limitations. We refer to such new technologies as next-generation pulse oximetry. In this Evaluation, we focus on the first next-generation technology to have reached the market: Masimo Corporation's Signal Extraction Technology (SET). We designed our study of Masimo SET to address the main question that needs to be asked of any next-generation technology: How well does it compare to conventional pulse oximetry? Specifically, how well does it perform when a patient is moving or being moved, when a patient is poorly perfused, or when certain types of light strike the sensor while it is attached to or detached from the patient? We also examined one type of sensor used with this product, comparing it to conventional tape-on sensors for comfort and durability. Several other next-generation pulse-oximeter products have become available since we began this study. We are currently evaluating these products and will publish our findings in the near future. A list of the products, including a brief description of each, is included in this article. Pulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn against dangerous saturation levels. These monitors are often vital in helping to ensure patient safety, especially for critically ill patients, pediatric patients, and neonates. But conventional pulse oximetry has some inherent limitations--most significantly, it has difficulty monitoring patients who are moving or who have

  2. Hybrid column generation and large neighborhood search for the dial-a-ride problem

    Science.gov (United States)

    Parragh, Sophie N.; Schmid, Verena

    2013-01-01

    Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature. PMID:23471127

  3. Hybrid column generation and large neighborhood search for the dial-a-ride problem.

    Science.gov (United States)

    Parragh, Sophie N; Schmid, Verena

    2013-01-01

    Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature.

  4. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  5. EIRP Characterization of Electrically Large Wireless Equipment with Integrated Signal Generator in a Compact Environment

    Directory of Open Access Journals (Sweden)

    Soon-Soo Oh

    2015-01-01

    Full Text Available We describe a measurement technique to characterize the equivalent isotropically radiated power (EIRP of electrically large wireless equipment in a compact environment. A modified phase-measurement method was proposed and, thus, the separation of the signal generator and radiating element was not required during the measurement. A Fresnel-to-far-field transformation was used for the fast measurement time in a compact anechoic chamber. An experimental verification of the method was carried out in a compact anechoic chamber, where the source-detector separation was approximately 1/5 of the far-field distance. The measured magnitude and phase pattern exhibited only a small error. The EIRP obtained using a Fresnel-to-far-field transformation was compared with a reference value, and the error was within 0.5 dB.

  6. Collision Avoidance in Next-generation Fiber Positioner Robotic System for Large Survey Spectrograph

    CERN Document Server

    Makarem, Laleh; Gillet, Denis; Bleuler, Hannes; Bouri, Mohamed; Jenni, Laurent; Prada, Francisco; Sanchez, Justo

    2013-01-01

    Some of the next generation massive spectroscopic survey projects, such as DESI and PFS, plan to use thousands of fiber positioner robots packed at a focal plane to quickly move in parallel the fiber-ends from the previous to the next target points. The most direct trajectories are prone to collision that could damage the robots and impact the survey operation. We thus present here a motion planning method based on a novel decentralized navigation function for collision-free coordination of fiber positioners. The navigation function takes into account the configuration of positioners as well as the actuator constraints. We provide details for the proof of convergence and collision avoidance. Decentralization results in linear complexity for the motion planning as well as dependency of motion duration with respect to the number of positioners. Therefore the coordination method is scalable for large-scale spectrograph robots. The short in-motion duration of positioner robots (~2.5 seconds using typical actuator...

  7. Large eddy simulations of flow instabilities in a stirred tank generate by a Rushton turbine

    DEFF Research Database (Denmark)

    Fan, Jianhua; Wang, Yundong; Fei, Weiyang

    2007-01-01

    The aim of this paper is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES) and simulation using the k-ε turbulent model. A sliding mesh method was used for the coupling between the rotating...... that CFD simulations using k-ε model and LES approach agreed well with the DPIV measurement. Fluctuations of the radial and axial velocity were well predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies were observed in the impeller region, while low...... computational time and computer memories. The results of the present work give better understanding to the mixing mechanisms in the mechanically agitated tank....

  8. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  9. Next Generation Very Large Array Memo No. 6, Science Working Group 1: The Cradle of Life

    CERN Document Server

    Isella, Andrea; Moullet, Arielle; Galván-Madrid, Roberto; Johnstone, Doug; Ricci, Luca; Tobin, John; Testi, Leonardo; Beltran, Maite; Lazio, Joseph; Siemion, Andrew; Liu, Hauyu Baobab; Du, Fujun; Öberg, Karin I; Bergin, Ted; Caselli, Paola; Bourke, Tyler; Carilli, Chris; Perez, Laura; Butler, Bryan; de Pater, Imke; Qi, Chunhua; Hofstadter, Mark; Moreno, Raphael; Alexander, David; Williams, Jonathan; Goldsmith, Paul; Wyatt, Mark; Loinard, Laurent; Di Francesco, James; Wilner, David; Schilke, Peter; Ginsburg, Adam; Sánchez-Monge, Álvaro; Zhang, Qizhou; Beuther, Henrik

    2015-01-01

    This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of gian...

  10. Optimum siting and sizing of a large distributed generator in a mesh connected system

    Energy Technology Data Exchange (ETDEWEB)

    Elnashar, Mohab M.; El Shatshat, Ramadan; Salama, Magdy M.A. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario (Canada)

    2010-06-15

    This paper proposes a new approach to optimally determine the appropriate size and location of the distributed generator (DG) in a large mesh connected system. This paper presents a visual optimization approach in which the planner plays an important role in determining the optimal siting and sizing of the DG through the choice of the appropriate weight factors of the parameters included in the optimization technique according to the system deficiencies. Losses, voltage profile and short circuit level are used in the algorithm to determine the optimum sizes and locations of the DG. The short circuit level parameter is introduced to represent the protective device requirements in the selection of the size and location of the DG. The proposed technique has been tested on the IEEE 24 - bus mesh connected test system. The obtained results showed clearly that the optimal size and location can be simply determined through the proposed approach. (author)

  11. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts

    Science.gov (United States)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky

    2012-01-01

    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low

  12. Applications and case studies of the next-generation sequencing technologies in food, nutrition and agriculture.

    Science.gov (United States)

    Liu, George E

    2009-01-01

    The next-generation sequencing technologies are able to produce millions of short sequence reads in a high-throughput, cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. Here, I survey their major applications ranging from whole-genome sequencing and resequencing, single nucleotide polymorphism (SNP) and structural variation discovery, to mRNA and noncoding RNA profiling and protein-nucleic acid interaction assay. These case studies in structural, functional and comparative genomics, metagenomics, and epigenomics are providing a more complete picture of the genome structures and functions. In the near future, we will witness broad impacts of these next-generation sequencing technologies for solving the complex biological problems in food, nutrition and agriculture. In this article, recent patents based information is also included.

  13. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  14. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  15. Effect of problem solving support and cognitive style on idea generation: Implications for Technology-Enhanced-Learning

    NARCIS (Netherlands)

    Stoyanov, Slavi; Kirschner, Paul A.

    2008-01-01

    Stoyanov, S., & Kirschner, P. (2007). Effect of problem solving support and cognitive style on idea generation: Implications for Technology-Enhanced-Learning. Journal of Research on Technology in Education, 40(1), 49-63.

  16. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

    Science.gov (United States)

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-01

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

  17. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia

    Science.gov (United States)

    Wolanski, E.; Colin, P.; Naithani, J.; Deleersnijder, E.; Golbuu, Y.

    2004-08-01

    Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50-100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.

  18. A Simulink Library of cryogenic components to automatically generate control schemes for large Cryorefrigerators

    Science.gov (United States)

    Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel

    2015-12-01

    In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.

  19. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts

    Institute of Scientific and Technical Information of China (English)

    He HAO; Wei-zhong FEI; Dong-min MIAO; Meng-jia JIN; Jian-xin SHEN

    2016-01-01

    In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used fi rst to improve the torque characteristics using two-dimensional fi nite element analysis (FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The infl uences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.

  20. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    Science.gov (United States)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  1. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Y. E-mail: yolanda.lechon@ciemat.es; Cabal, H.; Saez, R.M.; Hallberg, B.; Aquilonius, K.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power.

  2. Application of Program Generation Technology in Solving Heat and Flow Problems

    Institute of Scientific and Technical Information of China (English)

    Shui Wan; Bangxian Wu; Ningning Chen

    2007-01-01

    Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.

  3. Comparative analysis on technologies between Chinese and American large-sized oil companies based on patentometrics

    Directory of Open Access Journals (Sweden)

    Zhao Qu

    2014-01-01

    Full Text Available Patent information is critical and important object to reflect differences in technology capacity; the paper makes statistical analysis on structural elements of five large-sized oil companies from America and China as collected in Derwent Innovations Index, and compare technical similarities and differences between such companies′ patents with visualization tools, by further research on academic classes, Derwent Class Code and co-occurrence of Manual Code. It is shown from the researches that Chinese enterprises is advantaged in growth in number of patents and cooperation rate, but their patents are characterized by poor influence, less relevance and connection between various disciplines, as well as relatively backward development of patented technology. Finally, according to current status of patents of Chinese and American oil companies, the paper proposes a series of recommendations and countermeasures for improvement in patents quality and future expansion in patented technology by Chinese oil companies.

  4. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  5. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  6. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  7. Time Domain Science and Fundamental Physics with the Next-generation Very Large Array

    Science.gov (United States)

    Demorest, Paul; Bower, Geoffrey C.; ngVLA Time Domain/Physics Science Working Group

    2017-01-01

    The Next-generation Very Large Array (ngVLA) is a design concept for a future large-area radio telescope under development by the NRAO and interested members of the scientific community. The approximate ngVLA specifications call for a frequency range of ~1--116 GHz, ten times the effective collecting area and moderately increased field of view versus the current VLA, and an array configuration consisting of a dense (~km-scale) array core with some baselines extending out to hundreds of km. This instrument will enable new discoveries in many diverse areas of research relevant to modern astronomy; our group has explored the impact the ngVLA will have in time domain astronomy and fundamental physics.Here we present several key science topics considered as part of this work. These include: Searching for and timing radio pulsars at the galactic center -- the frequency coverage and sensitivity of the ngVLA will allow detection of highly-scattered pulsars near Sgr A*. Monitoring these sources will permit unprecedented tests of general relativity. Detecting and characterizing explosive transient sources -- electromagnetic observations of gravitational-wave sources provide complementary information to the GW signals themselves. Observations across the wide frequency range spanned by the ngVLA are critical for energy calorimetry of these events. Finally, with sufficient long-baseline coverage, novel astrometric approaches to cosmology become possible, by watching the expansion of the universe in real time through correlated proper motions of many extragalactic radio sources.

  8. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron; Bullmore, Edward T

    2014-10-05

    Rich clubs arise when nodes that are 'rich' in connections also form an elite, densely connected 'club'. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour.

  9. Next Generation Very Large Array Memo No. 5: Science Working Groups -- Project Overview

    CERN Document Server

    Carilli, C L; Ott, J; Beasley, A; Isella, A; Murphy, E; Leroy, A; Casey, C; Moullet, A; Lacy, M; Hodge, J; Bower, G; Demorest, P; Hull, C; Hughes, M; di Francesco, J; Narayanan, D; Kent, B; Clark, B; Butler, B

    2015-01-01

    We summarize the design, capabilities, and some of the priority science goals of a next generation Very Large Array (ngVLA). The ngVLA is an interferometric array with 10x larger effective collecting area and 10x higher spatial resolution than the current VLA and the Atacama Large Millimeter Array (ALMA), optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA opens a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcecond resolution, as well as unprecedented broad band continuum polarimetric imaging of non-thermal processes. The continuum resolution will reach 9mas at 1cm, with a brightness temperature sensitivity of 6K in 1 hour. For spectral lines, the array at 1" resolution will reach 0.3K surface brightness sensitivity at 1cm and 10 km/s spectral resolution in 1 hour. These capabilities are the only means with which to answer a broad range of critical scientific questions in modern astronomy, including direct imaging of plane...

  10. Technology for large space systems: A bibliography with indexes (supplement 22)

    Science.gov (United States)

    1990-01-01

    This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.

  11. Generating descriptive visual words and visual phrases for large-scale image applications.

    Science.gov (United States)

    Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen

    2011-09-01

    Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.

  12. Technology Development for Large Radio Arrays at the Jet Propulsion Laboratory

    Science.gov (United States)

    Jones, Dayton L.; Preston, R.; Navarro, R.; Wagstaff, K.; Mattmann, C.; D'Addario, L.; Thompson, D.; Majid, W.; Lazio, J.

    2011-05-01

    Future radio arrays are likely to include far more antennas than current arrays, ultimately culminating in the Square Kilometre Array. During the past 1.5 years JPL personnel have been working on technologies to address the challenges of such large arrays, including lower power digital signal processing, real-time data adaptive algorithms, and large-scale data archiving and mining. Power consumption by digital electronics may be a dominant component of the operating costs of large arrays. The choice of architecture for cross-correlation of thousands of antennas can have an orders-of-magnitude impact on power consumption. A power efficient architecture for a very-large-N array has been found. A second area of development at JPL is adaptive algorithms to perform real-time processing of data in high volume data flows, when storage of raw data for later processing is not an option. Algorithms to enable real-time detection of fast radio transients are being tested on the VLBA, and will be deployed as part of the CRAFT collaboration on ASKAP and potentially at other observatories. Finally, large radio arrays will produce extremely large data archives. We are working on applying a scalable framework for managing and mining large data archives to radio array needs. This framework is JPL's open source Process Control System, initially built for archiving data from NASA Earth Science missions and now used in a number of applications outside of astronomy. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  13. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The national Wood Energy Technology Programme was carried out by Tekes during the period 1999- 2003 to develop efficient technology for large- scale production of forest chips from small- sized trees and logging residues. This is the final report of the programme, and it outlines the general development of forest chip procurement and use during the programme period. In 2002, a sub-programme was established to address small-scale production and use of wood fuels. This sub-programme will continue to the end of 2004, and it is not reported here. The programme was coordinated by VTT Processes. As of January 2004, the programme consisted of 44 public research projects, 46 industrial or product development projects, and 29 demonstration projects. Altogether, 27 research organizations and 53 enterprises participated. The total cost of the programme was 42 M euro of which 13 M euro was provided by Tekes. The Ministry of Trade and Industry provided investment aid for the new technology employed in the demonstration projects. When the programme was launched at the end of the 1990s, the major barriers to the use of forest chips were high cost of production, shortage of reliable chip procurement organizations, and the unsatisfactory quality of fuel. Accordingly, the programme focused largely on these problems. In addition, upgrading of the fuel properties of bark was also studied. The production of forest chips must be adapted to the existing operating environment and infrastructure. In Finland, these are charaterized by rich bio-mass potential, a sophisticated and efficient organization for the procurement of industrial timber, a large capacity of heating and CHP plants to use wood fuels, the possibility to co-fire wood and peat, and the unreserved acceptance of society at large. A goal of Finnish energy and climate strategies is to use 5 million m3 (0.9 Mtoe) chips annually by 2010. The Wood Energy Technology Programme was an important link in the long chain of activities

  14. Technological solutions of decentralized generation of hydroelectricity for those demands that cannot be attended by conventional electric with centralized generation

    Energy Technology Data Exchange (ETDEWEB)

    Signoretti, Valdir Tesche; Veras, Carlos Alberto Gurgel Rudi; Els, Henri Van [Universidade de Brasilia, Brasilia, DF (Brazil). Faculdade de Tecnologia. Dept. de Engenharia Mecanica], e-mail: gurgel@unb.br

    2010-07-01

    A source of energy stable and reliable and of acceptable cost is a basic requisite for the development of a given region can give-if full. Access to energy is important basis of human existence, essential to the satisfaction of basic needs such as food, clothing, and housing and also of mobility and communication. However, the dependency world burning of fossil fuels for energy generation and supply of a demand constantly increasing, both in industrialized countries and those in development, already threatening the ecological stability of the Earth. At the same time, conflicts by distribution of the last reserves these resources non-renewable threaten significantly to civil society. Adding to the breakneck speed in which humanity consumes the energetic sources and the obvious devastation of nature has an unequal distribution in consumption and access to energy. Renewable sources and energy efficiency are viable and necessary, especially because they can be the key to reduce wastefulness and extend the access to energy. In this way, there is a significant influence on economic and social inclusion of population excluded, generating employment and income with costs local and global environmental reduced compared to traditional forms and unsustainable generation and use of energy. This work is a study involving issues related to rural electrification from hydroelectricity, especially related to those isolated communities of the Amazon region that are lacking this form of energy, presented a general review since the origins of hydroelectricity in Brazil, as well as a national panorama electric exclusion as well as a scenario Amazon's supply of electricity. Finally presenting-if the main technologies available for hydroelectric generation for these isolated communities. (author)

  15. Directions in US Air Force space power energy generation and distribution technology

    Science.gov (United States)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  16. Fast connection of large-diameter PE pipes. A new generation of heating coil welding technologies. A technical comparison between the new wedge-shaped joint and the conventional cylindrical foint for PE pipes d 1000 and larger; PE-Grossrohre im Handumdrehen verbinden. Eine neue Generation der Heizwendelschweisstechnik. Ein technischer Vergleich zwischen der neuen Keilmuffe und der herkoemmlichen zylindrischen Muffe fuer PE-Rohre d 1000 und groesser

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Robert [FRIATEC AG, Mannheim (Germany)

    2011-07-01

    Wedge-shape joints are a revolution in large-diameter pipe connection. Fitting is simplified considerably as compared to conventional cylindrical joints. Reproducible high-quality connections are achieved at only a fraction of the time formerly required. Assembly follows clear and simple rules. Anybody who can assemble a flange will be able to cope with the tightening system of the wedge-shaped joint.

  17. Optical coordinate scanners applied for the inspection of large scale housings produced in foundry technology

    Directory of Open Access Journals (Sweden)

    M. Grzelka

    2010-01-01

    Full Text Available The paper presents possibilities of the dimensional and geometry measurement of the large scale casting details with a coordinate measuring technique. In particular, the analysis has been devoted to the measurement strategy in case of the measurement of large scale detail (larger than 1000 mm made in foundry technology, with the 3D optical scanner. The attention was paid on the possibility created by the advanced software attached to the scanner for measurement data processing. Preparation to the geometrical accuracy analysis of the measured objects consisted of the identification of particular geometrical features based on the large number of probing points, as well as the creation of the coordinate systems derived from the best-fitting algorithms which calculate the inscribed or circumscribed geometrical elements. Analysis of accuracy in every probing point has been performed through the comparison of their coordinates with nominal values set by 3D model. Application of the 3D optical coordinate scanner with advanced measurement software for the manufacturing accuracy inspection is very useful in case of large scale details produced with foundry technologies and allows to carry out full accuracy analysis of the examined detail.

  18. 5G- FUTURE GENERATION TECHNOLOGIES OF WIRELESS COMMUNICATION “REVOLUTION 2020”

    Directory of Open Access Journals (Sweden)

    Manjurul H. Khan

    2015-05-01

    Full Text Available This paper is focused on the specification of future generations of wireless mobile communication networks. The paper throws light on the evolution and development of various generations of mobile wireless technology along with their significance and advantages of one over the other. 5G technologies will change the way most high-bandwidth users access their phones. With 5G people will experience a level of call volume and data transmission never experienced before. 5G technology is offering the services in different fields like Documentation, supporting electronic transactions (e-Payments, e-transactions etc. As the customer becomes more and more aware of the mobile phone technology, he or she will look for a decent package all together, including all the advanced features a cellular phone can have. The 5G design is based on user-centric mobile environment with many wireless and mobile technologies on the ground. WWWW that is World Wide Wireless Web allows complete wireless communication with almost no limitation, Multi-Media Newspapers, watch TV programs with the clarity as to that of an HD TV.

  19. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  20. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    Science.gov (United States)

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  1. Photomask displacement technology for continuous profile generation by mask aligner lithography

    Science.gov (United States)

    Weichelt, Tina; Kinder, Robert; Zeitner, Uwe D.

    2016-12-01

    Mask aligner lithography is one of the most widely used technologies for micro-optical elements fabrication. It offers a high throughput with high-yield processing. With different resolution enhancement technologies shadow printing is a mature alternative to the more expensive projection or electron-beam lithography. We are presenting a novel mask aligner tool that allows shifting the photomask with high accuracy between sequential exposure shots. It offers possibilities such as double patterning or gray tone lithography by applying different light doses at different locations. Within this publication, we show the first results for high resolution blazed grating structures generated in photoresist by multiple exposures using a conventional binary photomask.

  2. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  3. Interfacing Detectors and Collecting Data for Large-Scale Experiments in High Energy Physics Using COTS Technology

    CERN Document Server

    Schumacher, Jorn; Wandelli, Wainer

    Data-acquisition systems for high-energy physics experiments like the ATLAS experiment at the European particle-physics research institute CERN are used to record experimental physics data and are essential for the effective operation of an experiment. Located in underground facilities with limited space, power, cooling, and exposed to ionizing radiation and strong magnetic fields, data-acquisition systems have unique requirements and are challenging to design and build. Traditionally, these systems have been composed of custom-designed electronic components to be able to cope with the large data volumes that high-energy physics experiments generate and at the same time meet technological and environmental requirements. Custom-designed electronics is costly to develop, effortful to maintain and typically not very flexible. This thesis explores an alternative architecture for data-acquisition systems based on commercial off-the-shelf (COTS) components. A COTS-based data distribution device called FELIX that w...

  4. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    Science.gov (United States)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  5. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)

    2015-12-10

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  6. BLAST-TNG: A Next Generation Balloon-borne Large Aperture Submillimeter Polarimeter

    Science.gov (United States)

    Fissel, Laura M.; Ade, Peter; Angilè, Francesco E.; Campbell Ashton, Peter; Austermann, Jason Edward; Billings, Tashalee; Che, George; Cho, Hsiao-Mei; Cunningham, Maria R.; Davis, Kristina; Devlin, Mark J.; Dicker, Simon; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; gao, jiansong; Gordon, Sam; Groppi, Christopher E.; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Jones, Paul; Klein, Jeffrey; li, dale; Li, Zhi-Yun; lourie, nathan; Lowe, Ian; Mani, Hamdi; Martin, Peter G.; Mauskopf, Philip; McKenney, Christopher; Nati, Federico; Novak, Giles; Pascale, Enzo; pisano, giampaolo; Pereira Santos, Fábio; Scott, Douglas; Sinclair, Adrian; Diego Diego Soler, Juan; tucker, carole; Underhill, Matthew; Vissers, Michael; Williams, Paul

    2017-01-01

    Measurements of polarized thermal dust emission can be used to map magnetic fields in the interstellar medium. Recently, BLASTPol, the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, has published the most detailed map ever made of a giant molecular cloud forming high-mass stars. I will present an overview of The Next Generation BLAST polarimeter (BLAST-TNG), the successor telescope to BLASTPol, which maps linearly polarized dust emission at 250, 350 and 500 μm. BLAST-TNG utilizes a 2.5-meter carbon-fiber primary mirror that illuminates focal plane arrays containing over 3,000 microwave kinetic inductance detectors. This new polarimeter has an order of magnitude increase in mapping speed and resolution compared to BLASTPol and we expect to make over 500,000 measurements of magnetic field orientation per flight. BLAST-TNG will have the sensitivity to map entire molecular cloud complexes as well as regions of diffuse high Galactic latitude dust. It also has the resolution (FWHM = 25’’ at 250 μm) necessary to trace magnetic fields in prestellar cores and dense filaments. BLAST-TNG will thus provide a crucial link between the low resolution Planck all-sky maps and the detailed but narrow field of view polarimetry capabilities of ALMA. For our first Antarctic flight in December 2017 we are putting out a call for shared-risk proposals to fill 25% of the available science time. In addition, BLAST-TNG data will be publicly released within a year of the publication of our first look papers, leaving a large legacy data set for the study of the role played by magnetic fields in the star formation process and the properties of interstellar dust.

  7. Identification of Genetic Alterations, as Causative Genetic Defects in Long QT Syndrome, Using Next Generation Sequencing Technology.

    Directory of Open Access Journals (Sweden)

    Oscar Campuzano

    Full Text Available Long QT Syndrome is an inherited channelopathy leading to sudden cardiac death due to ventricular arrhythmias. Despite that several genes have been associated with the disease, nearly 20% of cases remain without an identified genetic cause. Other genetic alterations such as copy number variations have been recently related to Long QT Syndrome. Our aim was to take advantage of current genetic technologies in a family affected by Long QT Syndrome in order to identify the cause of the disease.Complete clinical evaluation was performed in all family members. In the index case, a Next Generation Sequencing custom-built panel, including 55 sudden cardiac death-related genes, was used both for detection of sequence and copy number variants. Next Generation Sequencing variants were confirmed by Sanger method. Copy number variations variants were confirmed by Multiplex Ligation dependent Probe Amplification method and at the mRNA level. Confirmed variants and copy number variations identified in the index case were also analyzed in relatives.In the index case, Next Generation Sequencing revealed a novel variant in TTN and a large deletion in KCNQ1, involving exons 7 and 8. Both variants were confirmed by alternative techniques. The mother and the brother of the index case were also affected by Long QT Syndrome, and family cosegregation was observed for the KCNQ1 deletion, but not for the TTN variant.Next Generation Sequencing technology allows a comprehensive genetic analysis of arrhythmogenic diseases. We report a copy number variation identified using Next Generation Sequencing analysis in Long QT Syndrome. Clinical and familiar correlation is crucial to elucidate the role of genetic variants identified to distinguish the pathogenic ones from genetic noise.

  8. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    Science.gov (United States)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  9. Advanced technology in the generation of ozone; Tecnologia avanzada en la generacion de ozono

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Constant technological improvement is not alien to any area: for this reason, a series of essays have been carried out with the object of improving the lamps applied for the generation of ozone. Here, glass dielectrics have been replaced by dielectrics without glass, with the idea of choosing the optimal properties of the dielectric, improving tube construction geometries by way of the segmentation and serial connection of the dielectrics. Operating this way, the best results have been achieved in terms of energy consumption, ozone concentration, unitary generation capacity, equipment cost, and operational flexibility. (Author) 7 refs.

  10. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [VTT Processes, Espoo (Finland)

    2003-07-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of

  11. Diversity and Inclusion in Information Technology from an Age Perspective: Motivating and Managing Information Technology Professionals across Multiple Generations in the Workforce

    Science.gov (United States)

    Kenan-Smalls, Yottie Marie

    2011-01-01

    The purpose of this quantitative study was to investigate diversity and inclusion from an age perspective among information technology (IT) professionals that were categorized as 4 different generations in the workforce today: Traditionalists, Baby Boomers, Generation X, and Generation Y. At the same time, this study sought to examine motivational…

  12. Diversity and Inclusion in Information Technology from an Age Perspective: Motivating and Managing Information Technology Professionals across Multiple Generations in the Workforce

    Science.gov (United States)

    Kenan-Smalls, Yottie Marie

    2011-01-01

    The purpose of this quantitative study was to investigate diversity and inclusion from an age perspective among information technology (IT) professionals that were categorized as 4 different generations in the workforce today: Traditionalists, Baby Boomers, Generation X, and Generation Y. At the same time, this study sought to examine motivational…

  13. Studies on Effective Utilization of SOFC Exhaust Heat Using Thermoelectric Power Generation Technology

    Science.gov (United States)

    Terayama, Takeshi; Nagata, Susumu; Tanaka, Yohei; Momma, Akihiko; Kato, Tohru; Kunii, Masaru; Yamamoto, Atsushi

    2013-07-01

    Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.

  14. Reward preferences for generations in selected Information and Communication Technology companies

    Directory of Open Access Journals (Sweden)

    Annetjie Moore

    2012-01-01

    Full Text Available Orientation: Previous research suggests that different generations have different reward preferences based on differences in values, frames of reference and life goals. Research purpose: The focus of this study was to determine whether different generations prefer different rewards in the Information and Communication Technology (ICT industry in South Africa.Motivation for the study: The rationale for this study was to obtain a better understanding of the reward preferences of Veterans, Baby Boomers, Generation X and Generation Y in the ICT industry.Research design, approach and method: The research was a quantitative, cross-sectional, correlational design. Participants from two ICT companies completed a structured electronic survey. One hundred and sixty four valid responses were received. A Cronbach’s alpha of 0.821 indicates that the survey was reliable.Main findings: Contrary to previous research, the results show that generations do not display different reward preferences.Practical/managerial implications: It would be more beneficial to use individual interrelationship factors to develop a reward strategy than generations.Contribution/value-add: The research has added insight and value to reward preferences for generations in the ICT sector.

  15. Antenna Optics and Receiver Concept for the Next Generation Very Large Array

    Science.gov (United States)

    McKinnon, Mark M.; Srikanth, Sivasankaran; Grammer, Wes; Pospieszalski, Marian; Sturgis, Silver

    2017-01-01

    The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and 10 times higher spatial resolution than the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require about 300 antennas of nominally 18m diameter on baselines of 300km. Options for the optical configuration of the antennas and possible receiver configurations to cover the ngVLA frequency range are presented. The options for the antenna optics take into account performance, cost, receiver accessibility for maintenance purposes, and receiver distribution in the focal plane. Both on-axis and off-axis configurations are considered. The off-axis design has the advantages of higher gain, low near-in sidelobes, lower antenna temperature, and reduced standing waves. The main advantage of the on-axis configuration is its lower cost. The trade-off between subreflector opening angle and feed size is presented. The performance of different dual-offset reflector geometries is summarized. The ngVLA receivers will be cryogenically-cooled with cryostats integrating multiple receiver bands for reduced maintenance and operating costs. The total number of bands required depends on their fractional bandwidth: maximizing this reduces the band count and number of cryostats, but with a penalty in sensitivity. For the higher frequencies, waveguide-bandwidth receivers are proposed to cover 11-50 GHz and 70-116 GHz in four separate bands, possibly integrated into a single cryostat. Corrugated conical feeds will be used, providing good aperture efficiency and symmetric, uniform beam shape. For 1.2-11 GHz, waveguide-bandwidth receivers are not practical due to the large number of receiver/feed combinations needed to cover the ~9:1 frequency range. Also, the large size of the feeds and polarizers mandates individual cryostats for each band. A possible compromise is two 3:1-bandwidth receivers with smooth

  16. Applications of large-area nanopatterning to energy generation and storage devices

    Science.gov (United States)

    Mills, Eric N.

    This dissertation encompasses the creation and testing of nanostructured, electrochemically-active energy generation and storage devices, and development of the associated fabrication techniques. The fabricated devices include nanopatterned, plasmonically-active, TiO2+Au thin films for Photocatalytic Water Splitting (PCW), TiO2-based Dye-Sensitized Solar Cells (DSSCs) incorporating nanopatterned, plasmonically-active metallic front electrodes, and Si nanopillar anodes for Li-ion batteries. Techniques were also developed for encapsulation and removal of wet-etched Si nanowires from their mother substrates. TiO2 was the first material to be widely used for PCW. Its use is hampered by its large bandgap (~3.2eV), and poor recombination lifetimes. Au nanoparticles (NPs) have been previously used to improve recombination lifetimes in TiO2 by separating photogenerated carriers near the NP edges, and to increase photocurrents by injecting plasmonically-excited hot electrons into the TiO2 conduction band. Using nanostructured TiO 2+Au electrodes, we aim to increase the PCW efficiency of TiO2 -based electrodes. Dye-sensitized solar cells (DSSCs) employ visible-absorbing dyes anchored to a high-surface-area semiconducting scaffold. The front transparent conducting electrode (TCE) is typically ITO, a scarce and expensive material. We aim to increase the efficiency of thin-film DSSCs and eliminate the use of ITO by using a metallic subwavelength array (MESH) of nanoholes as the front TCE. Silicon holds promise as a high-capacity anode material for Li-ion batteries, as it can store ~10x the Li of graphite, the current leading anode material (3569 vs. 372 mAh/g). However, Si undergoes dramatic (>300%) volume expansion upon "lithiation", pulverizing any structure with non-nanoscopic dimensions (>250nm). We created large-area arrays of "nanopillars" with sub-100nm diameters, using roll-to-roll-compatible flexible-mold NIL on commercially-available metal substrates. Ordered

  17. Incremental N-mode SVD for large-scale multilinear generative models.

    Science.gov (United States)

    Lee, Minsik; Choi, Chong-Ho

    2014-10-01

    Tensor decomposition is frequently used in image processing and machine learning for its ability to express higher order characteristics of data. Among tensor decomposition methods, N-mode singular value decomposition (SVD) is widely used owing to its simplicity. However, the data dimension often becomes too large to perform N-mode SVD directly due to memory limitation. An incremental method to N-mode SVD can be used to resolve this issue, but existing approaches only provide a result, which is just enough to solve discriminative problems, not the full factorization result. In this paper, we present a complete derivation of the incremental N-mode SVD, which can be applied to generative models, accompanied by a technique that can reduce the computational cost by reordering calculations. The proposed incremental N-mode SVD can also be used effectively to update the current result of N-mode SVD when new training data is received. The proposed method provides a very good approximation of N -mode SVD for the experimental data, and requires much less computation in updating a multilinear model.

  18. Soft technologies as generating satisfaction in users of a Family Health Unit

    Directory of Open Access Journals (Sweden)

    Sonia Mara Neves Ferri

    2007-01-01

    Full Text Available This study had the purpose to evaluate the quality of the health service provided at a Family Health Unit (FHU, with emphasis on user satisfaction, based on soft technologies. Furthermore, this study also aimed to analyze the aspects of health care that generated user satisfaction or dissatisfaction regarding attachment, accountability, providing solutions, expectations, relationship, comfort, and access, and to identify recommendations for local interventions. The authors made a general characterization of the population seen at the studied service, and then selected the subjects. The study used a qualitative approach. Data were collected in semi-structured interviews, and ordered using the Collective Subject Discourse (CSD method. The analysis reveals the importance that service users assign to the soft technologies, but also shows the need to reduce the waiting time for medical consultations and referrals, and to obtain access to medication and dental care at the same location. These factors generated great dissatisfaction among users.

  19. Computer-generated slides: outdated technology or state-of-the-art presentation style?

    Science.gov (United States)

    Hinds, K F

    1998-01-01

    With the explosion of computerization, it appears that the business community is switching to computer-based presentations, projecting onto a screen directly from a computer, instead of the old standard of presenting with slides. However, the dental profession has been slow to follow. Although some speakers have switched to computer-based presentations, slides are still the standard in 1998. With the advent of numerous new computer software programs, clinicians are now able to generate highly sophisticated slides, that can be an equally powerful medium to communicate with the audience. Unfortunately, many clinicians are not taking advantage of the benefits of this technology. This article explains the simplicity of generating professional, high quality slides, reviews the major programs and equipment available to accomplish this task, and previews the multitude of applications this technology offers to practitioners as well as educators.

  20. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    Science.gov (United States)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  1. Next Generation of Advanced Laser Fluorescence Technology for Characterization of Natural Aquatic Environments

    Science.gov (United States)

    2011-09-01

    described in a manuscript to be sumbitted in Oct. 2011 for peer review publication in the Journal of Plankton Reseach (Chekalyuk et al. 2011). 3...pollution, fisheries, coastal management, etc., which may ultimately help to inprove the quality of life. Science Education and Communication The...potential future impact of developing the next generation on the ALF technology will include introduction of the the new scientific data and

  2. Prosumer Preferences Regarding the Adoption of Micro‐Generation Technologies: Empirical Evidence for German Homeowners

    OpenAIRE

    Oberst, Christian; Madlener, Reinhard

    2015-01-01

    This paper investigates the preferences of homeowners in Germany regarding the adoption of renewable energy‐based micro‐generation technologies using data from a survey with a discrete choice experiment. In the German policy debate, private households, in their possible joint roles as electricity producers and consumers, are discussed as potential key actors for the transition of the energy system towards a decentralized energy market based on renewable energies. In our study, we address the ...

  3. Public perceptions of low carbon energy technologies. Results from a Dutch large group workshop

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Van Bree, B.; Feenstra, C.F.J.; Hekkenberg, M. [ECN Policy Studies, Petten (Netherlands)

    2011-06-15

    This report describes the outcomes of a large group workshop held in Utrecht, the Netherlands on 21 May 2011. The workshop aims to learn about Dutch citizens perspectives on climate change and low emission energy technologies and how these perspectives may change after receiving and discussing objective information. This report presents participants environmental profile, stated beliefs, knowledge and attitudes, support for different energy technologies, and environmental behaviours and intentions, derived from questionnaire answers and observations during the day. The report also presents observed changes on the above over the course of the workshop. Whereas the report provides some conclusions and inferences throughout its sections, the focus of the report is on presenting the observations. No overall conclusions are drawn.

  4. Industrial Technology for Unprecented Energy and Luminosity The Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2004-01-01

    With over 3 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, power electronics, with particular emphasis on developments required to meet demanding specifications, and industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the main systems and the progress ...

  5. Technological Stripping and Meaning Production in 'Duchamp’s The Large Glass'

    Directory of Open Access Journals (Sweden)

    Monika Wludzik

    2014-06-01

    Full Text Available The scope of the essay is limited by the ideas behind the mechanisation of desire as conceptualised in The Large Glass by Marcel Duchamp. This glass-based installation depicts a convoluted mechanism, as the full-title of the work suggests, representing The Bride Stripped Bare by her Bachelors, Even. Using tropes and figures from his earlier studies, the artist designed a machine for the production of desire, rendering the unconscious mechanical and dynamic. The paper aims to present selected aspects of the installation, including mechanical reproduction (1, technological fetishism (2, transparency (3, as well as to discuss its significance with reference to Deleuze and Guattari’s concept of the Body without Organs (4. The interpretive force of the machine metaphor in the work of Duchamp is analysed in the context of integrative and non-integrative attitudes to technology.

  6. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  7. LTE Advanced: Necessities and Technological Challenges for 4th Generation Mobile Network

    Directory of Open Access Journals (Sweden)

    Asad Ali Shaikh

    2012-08-01

    Full Text Available The higher peak data rates for portable users are in demand. Audio/Video streaming, online conferences and community media services are fetching the requirement of life. In order to accomplish the absolute amount of data need of users, vigorous and well-organized wireless technology is needed. The solution for future mobile wireless networks which is based on Rel-10 is LTE-Advanced. It is the promising technology for upcoming wireless broadband network based on Rel-8 of Long term Evolution (LTE. This research paper provides a higher level overview of LTE-Advanced, which includes carrier aggregation for well-organized spectrum use, MIMO techniques for numerous signal transmissions and receptions, relaying and heterogeneous consumption strategy. LTE-Advanced scheme will be the Next Generation wireless technology for years to come.

  8. Next-generation sequencing technology for genetics and genomics of sorghum

    DEFF Research Database (Denmark)

    Luo, Hong; Mocoeur, Anne Raymonde Joelle; Jing, Hai-Chun

    2014-01-01

    NGS platforms, comparing their working theories and reveiwing their advantages and disavantages. We also discuss the future of NGS development and point out that single molecular sequencing would push the technology to the next level for biological sciences. Much of the chapter focuses on the use......The invention and application of Next-Generation Sequencing (NGS) technologies have revolutionized the study of genetics and genomics. Much research which would not even be considered are nowdays being excuted in many laboratories as routine. In this chapter, we introduce the currently available...... of NGS technologies in sorghum. Although the acquisition of the first whole-genome sequence in sorghum was carried out primarily using Sanger sequencing, the use of NGS for examining the genome-wide variation was almost synchronized with other work. Interesting genomic variation was found between sweet...

  9. Developments in ITM oxygen technology and applications in electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Richards, R.E.; Stein, V.E.; Bose, A.C.

    2000-07-01

    In partnership with the US Department of Energy (DOE), an Air Products-led team is developing a new technology for air separation--Ion Transport Membrane Oxygen--based on the use of mixed-conducting ceramic membranes that operate at high temperature, typically 800 to 900 C. Integration of ITM Oxygen technology with advanced coal-based electric power generation offers the benefits of further improving system efficiency and oxygen economics, resulting in better environmental performance and lower costs. The ITM Oxygen development project will proceed in three phases. Phase 1, which commended under a DOE Cooperative Agreement in October 1998, is a 3-year effort focusing on construction of a technology development unit (TDU) for process concept validation tests at a capacity of up to 0.1 ton-per-day (TPD) oxygen. After at least one intermediate scaleup, Phase 2 and 3 activities will culminate with scaleup to a 25- to 50-TPD pre-commercial demonstration unit.

  10. The relationship between technology acceptance and frequency of mobile commerce use amongst Generation Y consumers

    Directory of Open Access Journals (Sweden)

    Nobukhosi Dlodlo

    2013-02-01

    Full Text Available Orientation: The South African mobile commerce industry has realised an exponential growth in the past few years, yet the Generation Y market segment has failed to keep pace with this growth.Research purpose: To examine the nature of the relationships that exist between technology acceptance and frequency of mobile commerce usage amongst Generation Y consumers.Motivation for the study: The Generation Y cohort has emerged as an important age-group due to its economic contribution to the economy. It is therefore essential that their attitudes and behaviour continue to receive empirical introspection, particularly since mobile commerce has gathered momentum as an important and arguably, the most popular medium for commercial transactions. In a global space that is technology based, it becomes imperative to investigate the interplay between mobile commerce acceptance dimensions and frequency of use amongst Generation Ys.Research design, approach and method: A survey was conducted with the aid of a structured self-administered questionnaire with a view to collecting primary data from a sample consisting of 204 Generation Y consumers.Main findings: There were positive correlations between frequency of use and five mobile commerce acceptance dimensions. Cronbach Alpha values ranged between 0.714 and 0.898, thereby indicating high internal consistency amongst the subscales as well as within the entire survey instrument. Correlation coefficients ranged between 0.164 and 0.677 at both the p < 0.01 and p < 0.05 significance levels (2-tailed test, indicating very high levels of association amongst the subscales. Predictive validity of the five subscales and the variable frequency of use resulted in positive and statistically-significant results that were established at an adjusted R2 value of 0.674.Practical/managerial implications: Marketers and business practitioners are presented with practical insights into dimensions that enhance frequency of use of

  11. Large-screen display industry: market and technology trends for direct view and projection displays

    Science.gov (United States)

    Castellano, Joseph A.; Mentley, David E.

    1996-03-01

    Large screen information displays are defined as dynamic electronic displays that can be viewed by more than one person and are at least 2-feet wide. These large area displays for public viewing provide convenience, entertainment, security, and efficiency to the viewers. There are numerous uses for large screen information displays including those in advertising, transportation, traffic control, conference room presentations, computer aided design, banking, and military command/control. A noticeable characteristic of the large screen display market is the interchangeability of display types. For any given application, the user can usually choose from at least three alternative technologies, and sometimes from many more. Some display types have features that make them suitable for specific applications due to temperature, brightness, power consumption, or other such characteristic. The overall worldwide unit consumption of large screen information displays of all types and for all applications (excluding consumer TV) will increase from 401,109 units in 1995 to 655,797 units in 2002. On a unit consumption basis, applications in business and education represent the largest share of unit consumption over this time period; in 1995, this application represented 69.7% of the total. The market (value of shipments) will grow from DOL3.1 billion in 1995 to DOL3.9 billion in 2002. The market will be dominated by front LCD projectors and LCD overhead projector plates.

  12. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    Science.gov (United States)

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-06

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.

  13. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa

    Science.gov (United States)

    van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.

    2011-01-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  14. Micro powder injection molding——large scale production technology for micro-sized components

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Micro powder injection molding (μPIM),a miniaturized variant of powder injection molding,has advantages of shape complexity,applicability to many materials and good mechanical properties. Co-injection molding has been realized between met-als and ceramics on micro components,which become the first breakthrough within the PIM field. Combined with the prominent characteristics of high features/cost ratio,micro powder injection molding becomes a potential technique for large scale production of intricate and three-dimensional micro components or micro-structured components in microsystems technology (MST) field.

  15. Micro powder injection molding-large scale production technology for micro-sized components

    Institute of Scientific and Technical Information of China (English)

    YIN HaiQing; JIA ChengChang; QU XuanHui

    2008-01-01

    Micro powder injection molding (μPIM), a miniaturized variant of powder injection molding, has advantages of shape complexity, applicability to many materials and good mechanical properties. Co-injection molding has been realized between metals and ceramics on micro components, which become the first breakthrough within the PIM field. Combined with the prominent characteristics of high features/cost ratio, micro powder injection molding becomes a potential technique for large scale production of intricate and three-dimensional micro components or microstructured components in microsystems technology (MST) field.

  16. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  17. Generating extreme weather event sets from very large ensembles of regional climate models

    Science.gov (United States)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  18. CO{sub 2} mitigation costs of large-scale bioenergy technologies in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L. [Mid-Sweden University, Ostersund (Sweden). Dept. of Natural and Environmental Sciences, Ecotechnology; Madlener, R. [Swiss Federal Institute of Technology, Zurich (Switzerland). CEPE

    2003-11-01

    In this study, we compare and contrast the impact of recent technological developments in large biomass-fired and natural-gas-fired cogeneration and condensing plants in terms of CO{sub 2} mitigation costs and under the conditions of a competitive electricity market. The CO{sub 2} mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to equal the cost of a less carbon extensive system with the cost of a reference system. The results show that CO{sub 2} mitigation costs are lower for biomass systems than for natural gas systems with decarbonization. However, in liberalized energy markets and given the sociopolitical will to implement carbon extensive energy systems, market-based policy measures are still required to make biomass and decarbonization options competitive and thus help them to penetrate the market. This cost of cogeneration plants, however, depends on the evaluation method used. If we account for the limitation of heat sinks by expanding the reference entity to include both heat and power, as is typically recommended in life-cycle analysis, then the biomass-based gasification combined cycle (BIG/CC) technology turns out to be less expensive and to exhibit lower CO{sub 2} mitigation costs than biomass-fired steam turbine plants. However, a heat credit granted to cogeneration systems that is based on avoided cost of separate heat production, puts the steam turbine technology despite its lower system efficiency at an advantage. In contrast, when a crediting method based on avoided electricity production in natural gas fired condensing plants is employed, the BIG/CC technology turns out to be more cost competitive than the steam turbine technology for carbon tax levels beyond about $150/t C. Furthermore, steam turbine plants are able to compete with natural gas fired cogeneration plants at carbon tax levels higher than about $90/tC. (author)

  19. MCNP modeling of a neutron generator and its shielding at Missouri University of Science and Technology

    Science.gov (United States)

    Sharma, Manish K.; Alajo, Ayodeji Babatunde; Liu, Xin

    2014-12-01

    The shielding of a neutron generator producing fast neutrons should be sufficient to limit the dose rates to the prescribed values. A deuterium-deuterium neutron generator has been installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). The generator produces fast neutrons with an approximate energy of 2.5 MeV. The generator is currently shielded with different materials like lead, high-density polyethylene, and borated polyethylene. An MCNP transport simulation has been performed to estimate the dose rates at various places in and around the facility. The simulations incorporated the geometric and composition information of these shielding materials to determine neutron and photon dose rates at three central planes passing through the neutron source. Neutron and photon dose rate contour plots at these planes were provided using a MATLAB program. Furthermore, the maximum dose rates in the vicinity of the facility were used to estimate the annual limit for the generator's hours of operation. A successful operation of this generator will provide a convenient neutron source for basic and applied research at the Nuclear Engineering Department of Missouri S&T.

  20. Generative Technologies for Model Animation in the TopCased Platform

    Science.gov (United States)

    Crégut, Xavier; Combemale, Benoit; Pantel, Marc; Faudoux, Raphaël; Pavei, Jonatas

    Domain Specific Modeling Languages (DSML) are more and more used to handle high level concepts, and thus bring complex software development under control. The increasingly recurring definition of new languages raises the problem of the definition of support tools such as editor, simulator, compiler, etc. In this paper we propose generative technologies that have been designed to ease the development of model animation tools inside the TopCased platform. These tools rely on the automatically generated graphical editors of TopCased and provide additional generators for building model animator graphical interface. We also rely on an architecture for executable metamodel (i.e., the TopCased model execution metamodeling pattern) to bind the behavioral semantics of the modeling language. These tools were designed in a pragmatic manner by abstracting the various model animators that had been hand-coded in the TopCased project, and then validated by refactoring these animators.

  1. Preferance of computer technology for analytical support of large database of medical information systems

    Directory of Open Access Journals (Sweden)

    Biryukov А.P.

    2013-12-01

    Full Text Available Aim: to study the use of intelligent technologies for analytical support of large databases of medical information systems. Material and methods. We used the techniques of object-oriented software design and database design. Results. Based on expert review of models and algorithms for analysis of clinical and epidemiological data and principles of knowledge representation in large-scale health information systems, data mining schema were implemented in the software package of the register of Research Center n.a. A. I. Burnazyan of Russia. Identified areas for effective implementation of abstract data model of EAV and procedures Data Maning for the design of database of biomedical registers. Conclusions. Using intelligent software platform that supports different sets of APIs and object models for different operations in different software environments, allows you to build and maintain an information system through the procedures of data biomedical processing.

  2. Physically based modelling of sediment generation and transport under a large rainfall simulator

    Science.gov (United States)

    Adams, Russell; Elliott, Sandy

    2006-07-01

    A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post-grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill-country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses.

  3. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology

    Science.gov (United States)

    Siegford, Janice M.; Berezowski, John; Biswas, Subir K.; Daigle, Courtney L.; Gebhardt-Henrich, Sabine G.; Hernandez, Carlos E.; Thurner, Stefan; Toscano, Michael J.

    2016-01-01

    Simple Summary Tracking of individual animals within large groups is increasingly possible offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors and track their activities across time and space with minimal intervention and disturbance. We describe several tracking systems that are currently in use for laying hens and review each, highlighting their strengths and weaknesses, as well as environments or conditions for which they may be most suited, and relevant issues to fit the best technology for the intended purpose. Abstract Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns

  4. NR-PSS (Nonlinear Robust Power System Stabilizer) for large synchronous generators and its large disturbance experiments on real time digital simulator

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; ZHENG ShaoMing; MEI ShengWei; WANG Gang; HUANG QiLi

    2008-01-01

    On the foundation of nonlinear robust control and exact generator model, this paper presents a design principle of NR-PSS (Nonlinear Robust Power System Stabilizer) for multi-machine power system, based on which an industrial NR-PSS equipment is developed. For popularizing it, the proposed parameter setting method of NR-PSS is completely the same as the widely used parameter adjustment rule of PSS. By virtue of real time digital simulator (RTDS), large disturbance experiments are carried out to compare the performances between generator excitation system equipped with NR-PSS and PSS in order to verify the correctness of design theory. The results show that compared with classical PSS, the proposed NR-PSS can dramatically improve the generator damping and attenuate the oscillation much faster, enhance the generator damping and raise both the small signal and large disturbance transient stability transmission power limit remarkably. The NR-PSS equipment with independent intellectual property right has been successfully put into operation on a 300 MW generator in Baishan Hydro Plant of Northeast China Grid more than 10 months.

  5. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  6. Game-Theoretic Optimization of Bilateral Contract Transaction for Generation Companies and Large Consumers with Incomplete Information

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-06-01

    Full Text Available Bilateral contract transaction among generation companies and large consumers is attracting much attention in the electricity market. A large consumer can purchase energy from generation companies directly under a bilateral contract, which can guarantee the economic interests of both sides. However, in pursuit of more profit, the competitions in the transaction exist not only between the company side and the consumer side, but also among generation companies. In order to maximize its profit, each company needs to optimize bidding price to attract large consumers. In this paper, a master–slave game is proposed to describe the competitions among generation companies and large consumers. Furthermore, a Bayesian game approach is formulated to describe the competitions among generation companies considering the incomplete information. In the model, the goal of each company is to determine the optimal bidding price with Bayesian game; and based on the bidding price provided by companies and the predicted spot price, large consumers decide their personnel purchase strategy to minimize their cost. Simulation results show that each participant in the transaction can benefit from the proposed game.

  7. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  8. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    Science.gov (United States)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  9. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  10. Developing next-generation telehealth tools and technologies: patients, systems, and data perspectives.

    Science.gov (United States)

    Ackerman, Michael J; Filart, Rosemarie; Burgess, Lawrence P; Lee, Insup; Poropatich, Ronald K

    2010-01-01

    The major goals of telemedicine today are to develop next-generation telehealth tools and technologies to enhance healthcare delivery to medically underserved populations using telecommunication technology, to increase access to medical specialty services while decreasing healthcare costs, and to provide training of healthcare providers, clinical trainees, and students in health-related fields. Key drivers for these tools and technologies are the need and interest to collaborate among telehealth stakeholders, including patients, patient communities, research funders, researchers, healthcare services providers, professional societies, industry, healthcare management/economists, and healthcare policy makers. In the development, marketing, adoption, and implementation of these tools and technologies, communication, training, cultural sensitivity, and end-user customization are critical pieces to the process. Next-generation tools and technologies are vehicles toward personalized medicine, extending the telemedicine model to include cell phones and Internet-based telecommunications tools for remote and home health management with video assessment, remote bedside monitoring, and patient-specific care tools with event logs, patient electronic profile, and physician note-writing capability. Telehealth is ultimately a system of systems in scale and complexity. To cover the full spectrum of dynamic and evolving needs of end-users, we must appreciate system complexity as telehealth moves toward increasing functionality, integration, interoperability, outreach, and quality of service. Toward that end, our group addressed three overarching questions: (1) What are the high-impact topics? (2) What are the barriers to progress? and (3) What roles can the National Institutes of Health and its various institutes and centers play in fostering the future development of telehealth?

  11. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    Science.gov (United States)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  12. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    Science.gov (United States)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  13. Video Lecture Capture Technology Helps Students Study without Affecting Attendance in Large Microbiology Lecture Courses

    Directory of Open Access Journals (Sweden)

    Jennifer Lynn McLean

    2016-12-01

    Full Text Available Recording lectures using video lecture capture software and making them available for students to watch anytime, from anywhere, has become a common practice in many universities across many disciplines. The software has become increasingly easy to use and is commonly provided and maintained by higher education institutions. Several studies have reported that students use lecture capture to enhance their learning and study for assessments, as well as to catch up on material they miss when they cannot attend class due to extenuating circumstances. Furthermore, students with disabilities and students from non-English Speaking Backgrounds (NESB may benefit from being able to watch the video lecture captures at their own pace. Yet, the effect of this technology on class attendance remains a controversial topic and largely unexplored in undergraduate microbiology education. Here, we show that when video lecture captures were available in our large enrollment general microbiology courses, attendance did not decrease. In fact, the majority of students reported that having the videos available did not encourage them to skip class, but rather they used them as a study tool. When we surveyed NESB students and nontraditional students about their attitudes toward this technology, they found it helpful for their learning and for keeping up with the material.

  14. Research on grid connection control technology of double fed wind generator

    Science.gov (United States)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  15. Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall Sundrum single braneworld?

    CERN Document Server

    Choudhury, Sayantan

    2015-01-01

    In this paper my prime objective is to explain the generation of large tensor-to-scalar ratio from the single field sub-Planckian inflationary paradigm within Randall Sundrum (RS) single braneworld scenario in a model independent fashion. By explicit computation I show that the effective field theory prescription of brane inflation within RS single brane setup is consistent with sub-Planckian excursion of the inflaton field, which will further generate large value of tensor-to-scalar ratio, provided the energy density for inflaton degrees of freedom is high enough compared to the brane tension in high energy regime. Finally, I mention the stringent theoretical constraint on positive brane tension, cut-off of the quantum gravity scale and bulk cosmological constant to get sub-Planckian field excursion along with large tensor-to-scalar ratio as recently observed by BICEP2 or at least generates the tensor-to-scalar ratio consistent with the upper bound of Planck.

  16. Estimating Route Choice Models from Stochastically Generated Choice Sets on Large-Scale Networks Correcting for Unequal Sampling Probability

    DEFF Research Database (Denmark)

    Vacca, Alessandro; Prato, Carlo Giacomo; Meloni, Italo

    2015-01-01

    is the dependency of the parameter estimates from the choice set generation technique. Bias introduced in model estimation has been corrected only for the random walk algorithm, which has problematic applicability to large-scale networks. This study proposes a correction term for the sampling probability of routes...... extracted with stochastic route generation. The term is easily applicable to large-scale networks and various environments, given its dependence only on a random number generator and the Dijkstra shortest path algorithm. The implementation for revealed preferences data, which consist of actual route choices...... collected in Cagliari, Italy, shows the feasibility of generating routes stochastically in a high-resolution network and calculating the correction factor. The model estimation with and without correction illustrates how the correction not only improves the goodness of fit but also turns illogical signs...

  17. Next Generation Sequencing and Health Technology Assessment in Autism Spectrum Disorder

    Science.gov (United States)

    Ungar, Wendy J.

    2015-01-01

    Next generation sequencing (NGS) is a new genome-based technology showing great promise in delineating the genetic basis of autism thus facilitating diagnosis and in the future, the selection of treatment. NGS can have a targeted use as well as provide clinically important findings from medically actionable variants regarding the risk of other disorders. As more is learned about the genomic basis of autism, the clinical utility of the risk information will increase. But at what cost? As the medical management that ensues from primary and secondary (incidental) findings grows, there will be increased pressure on sub-specialists with a longer and more circuitous pathway to care. This will result in higher costs to health care systems and to families. Health technology assessment is needed to measure the additional costs associated with NGS compared to standard care and to weigh these costs against additional health benefits. Well-designed data collection systems should be implemented early in clinical translation of this technology to enable assessment of clinical utility and cost-effectiveness and to generate high quality evidence to inform clinical and budget allocation decision-making. PMID:26379724

  18. Social costs of innovative electricity generation technologies in the present and in 2030

    Energy Technology Data Exchange (ETDEWEB)

    Preiss, Philipp; Friedrich, Rainer; Blesl, Markus; Wissel, Steffen; Mayer-Spohn, Oliver; Klotz, Volker [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2008-07-01

    Social costs (costs seen from the perspective of the society) differ from private costs and thus influence the ranking of electricity generating technologies. The resulting social costs data provide a basis for the recommendation to use the potential of nuclear, wind and hydropower as far as possible, however the potential of these technologies is limited. The analysis shows, that the remaining electricity demand in the future still should be met by using lignite and coal. Depending on the stringency of the climate change aims these plants would be equipped with CCS (carbon capture and storage) or not. Only with ambitious climate change aims and if CCS turns out to be less economically or technically feasible, than the import of electricity generated by a solar through systems in Mediterranean countries would become an option. The environmental advantages of PV are too small to compensate the very high investment costs in Germany. The detailed analysis of different contributions to the social costs per kWh shows that the costs of natural gas technologies are dominated by private costs of fuel supply. If we assume 50% higher prices than in the basic assumption this increases social costs up to 30%. (orig.)

  19. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  20. Montney unconventional gas : next generation, an integrated approach to optimizing wellbore completions technology

    Energy Technology Data Exchange (ETDEWEB)

    Tapper, N.; Schnell, R. [Talisman Energy Inc., Calgary, AB (Canada)

    2009-07-01

    The Montney Formation is a prolific tight gas reservoir located in the western Canadian Sedimentary Basin in British Columbia and Alberta. The key to achieving economic success in the Peace River Arch area lies with horizontal wells with multiple fractures. The driver for the next generation of completions involves using various area drilling and completion techniques as a starting point to lower the installation cost without affecting the completion or production results. This presentation discussed unconventional gas in the Montney Formation and a next generation, integrated approach to optimizing wellbore completions technology. In order to address the need to change from cemented liners with pump down plugs and perforations completions, the presentation provided background information on swellable packers that could take the place of cement. Swellpacker completion bottom hole assembly and design considerations were presented. A solution for reducing costs was presented along with 6 case histories. It was concluded that new technology is the key to reducing costs in the Montney. Technology must be thoroughly vetted by drilling and completion experts and properly applied. figs.