WorldWideScience

Sample records for technologies fluidized-bed combustion

  1. Pressurized circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez-Malebran, S.; Anglesea, W.T. [Fluent Europe Limited, Sheffield (United Kingdom)

    1998-12-31

    This report describes how the FLUENT computations fluid dynamics code has been provided with a granular (gas-solids), multiphase flow-modelling capability in order to simulate the operation of a circulating fluidized bed combustion chamber. The new multiphase module solves the conservation equations for each phase on an Eulerian basis and it currently enables gas phase reactions and interphase heat and momentum transfer to be modelled. Because of fundng restrictions, the module has not yet been provided with a general capability for modelling interphase mass transfer and therefore approximations have to be made when simulating coal combustion. Having developed the code and carried out basic testing, it has been used to simulate one set of conditions in the circulating fluidized bed combustion test facility operated by RWE Energie AG at Niederaussem Germany. Considering the simplifications made in this simulation, the level of agreement between the code results and the available measurements and observations is very encouraging. 18 refs., 5 figs., 2 tabs.

  2. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  3. Clean coal technologies handbook: fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    The term fluidisation is used to describe a type or mode of contact between fluids and granular solids, in such a way that solid particles appear as suspended in the moving fluid. The fluid moves vertically upwards through the bed formed by the particles. The reason to use the word fluidisation is that, when a solid particles bed is treated in the above mentioned way, it acquires an aspect very similar to that of a boiling liquid, and it has properties similar to those of a liquid. Thus, a bed in such conditions is called fluidised bed; the name fluidisation is reserved to the operation required to reach such state. This contacting method shows a number of fetaures which make it very useful to carry on many important processes in the fields of Chemical Engineering and Extractive Metallurgy; for that reason it has been studied very deeply in the last year, on the theoretical aspect and on its practical applications as well. Going back in time to the origin of the fluidisation, as it is known at present, we find that is started to develop at the beginning of the 1940's. The first application of fluidisation is described by Agricola in his famous book De re metallica, which must have been written in XVI the century. In this book there is the mention of the concentration of metallic ores by means of an expansion of the bed produced by a vertical upwards water flow which passes through the layer of rough mineral. From the beginning of its development, fluidisation has had many applications, such as water clarification, pulverised coal gasification, catalytic cracking chemical processes, drying of pulverulent materials and incineration of solid residues, among others. Until the end of 1950 the application was not used to coal combustion; it has strongly development after the energy crisis. Starting in the 1970's a great effort at world level is being made to develop the technology of Fluidised Bed Combustion (FBC), pushed on by two main reasons.: 1) Reduction

  4. Technical evaluation: pressurized fluidized-bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  5. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  6. Fluidized bed combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kullendorff, A.; Wikner, J.

    1985-03-25

    The chamber is confined in a pressure vessel. The lower part of the chamber has tilted parallel gutters up to the height of the fluidized bed. The slope of the gutter walls is 5 degrees-15 degrees and the top area of the gutters is 1.3 to 3 times larger than their bottom.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  8. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S.; Toyoda, S. [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  9. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  10. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  11. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  12. Atmospheric fluidized bed combustion advanced concept system

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  13. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Science.gov (United States)

    Balicki, Adrian; Bartela, Łukasz

    2014-06-01

    Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of `zeroemission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  14. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  15. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  16. Integrated approach in fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bruyet, B.; Gautrin, M. [CERCHAR, Mazingarbe (France)

    1998-12-31

    Atmospheric fluidized bed technology for combustion is frequently found in different advanced power and steam generation systems, because the fluidization provides operating conditions which are favourable for pollutant control and also offers the possibility to utilise a wide range of fuels. The main objective of the study was to contribute to the development of a methodology for an easier global approach of the implementation of atmospheric fluidized bed reactors and upstream elements associated with taking into account the characteristics of fuels and sorbents, the requirements on gaseous pollutants and on solid by-products utilisation. Previous tests done in CERCHAR`s facilities were scrutinised, additional tests at laboratory and pilot level were carried out, some industrial plants were considered. Several fuels were considered (brown coals, coals, slurry,...), with a special attention to Gottelborn reference coal and Rheinbraun lignite. Experimental results and tentative conclusions viz. fuel characterization, batch fluidization set-up, 1 MW atmospheric fluidized bed pilot, ash utilisation/disposal, methodology and management of preliminary testing are presented. 12 refs., 18 figs., 13 tabs.

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  18. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  19. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  20. A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology.

    Science.gov (United States)

    Desai, Dilip L; Anthony, Edward J; Wang, Jinsheng

    2007-08-01

    Destruction of polychlorinated biphenyls (PCBs) in contaminated soils and wastes using circulating fluidized bed combustion (CFBC) technology was studied using a pilot plant and simulated waste material. The results show that the technology is effective and particularly promising for treatment of PCB-containing materials like the toxic sludge from a large contaminated site. Destruction of the toxics in the gas phase appears to be very fast, and over 99.9999% destruction and removal efficiency can be achieved in the temperature range 875-880 degrees C. Heat transfer in the fluidized bed also appears adequate. Toxic residues in treated soil can be reduced to very low levels. Rate-controlling factors of the decontamination process are analyzed, and key issues for determination of the process conditions are discussed.

  1. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  2. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  3. Fluidized bed combustion of pesticide-manufacture liquid wastes

    Directory of Open Access Journals (Sweden)

    SAŠA MILETIĆ

    2010-04-01

    Full Text Available Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in density at 800–950 °C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900 °C.

  4. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  5. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  6. Internal Combustion Engines as Fluidized Bed Reactors

    Science.gov (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  7. Atmospheric fluidized bed combustion advanced concept system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  8. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  9. Pressurized circulating fluidized bed combustion technology (PCFBC). Experimental, theoretical and computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boemer, A.; Haiying Qi; Renz, U. [RWTH Aachen, Aachen (Germany). Lehrstuhl fuer Waermeuebertragung und Klimatechnik

    1998-12-31

    Together with the partners from FLUENT Europe Ltd. (FLUENT-group) the RWTH-group developed a computer-code to simulate Pressurized Circulating Fluidized Beds. The contribution of the RWTH-group was to develop physical and mathematical submodels, and to test the interplay of these models in the code. The results were compared with own measurements, with data from literature, and with experiments performed by the partners of TU Delft (TUD-group). 34 refs., 15 figs., 4 tabs.

  10. Flow visualizing study of fluidized bed for incineration and/or coal combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Mamoru [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-02-01

    A simulated fluidized-bed heat exchanger was visualized using a neutron radiography system. The void fraction distribution and its fluctuation were obtained by means of an image processing technique. On the basis of the processed image, the mechanism of a large particle movement and the flow pattern in the tube bank immersed in the bed were investigated. Observed flow pattern in the tube bank indicated an importance of the tube arrangement on the void fraction fluctuation and thus the heat transfer around tubes. (author)

  11. Flow visualizing study of fluidized bed for incineration and/or coal combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Mamoru [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-02-01

    A simulated fluidized-bed heat exchanger was visualized using a neutron radiography system. The void fraction distribution and its fluctuation were obtained by means of an image processing technique. On the basis of the processed image, the mechanism of a large particle movement and the flow pattern in the tube bank immersed in the bed were investigated. Observed flow pattern in the tube bank indicated an importance of the tube arrangement on the void fraction fluctuation and thus the heat transfer around tubes. (author)

  12. Combined-cycle power stations using ``clean-coal-technologies``: Thermodynamic analysis of full gasification vs. fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1994-12-31

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  13. Combined-cycle power stations using clean-coal technologies: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, G.; Chiesa, P. [Politecnico di Milano, Milan (Italy). Dept. of Energetics; DeVita, L. [Eniricerche, Milan (Italy)

    1996-10-01

    A novel class of power plants for clean conversion of coal into power has been recently proposed, based on the concept of partial coal gasification and fluidized-bed combustion of unconverted char from gasification. This paper focuses on the thermodynamic aspects of these plants, in comparison with full gasification cycles, assessing their performance on the basis of a common advanced power plant technology level. Several plant configurations are considered, including pressurized or atmospheric fluidized-bed, air- or steam-cooled, with different carbon conversion in the gasifier. The calculation method, used for reproducing plant energy balances and for performance prediction, is described in the paper. A complete second-law analysis is carried out, pointing out the efficiency loss breakdown for both technologies. Results show that partial gasification plants can achieve efficiencies consistently higher than IGCC, depending on plant configuration and carbon conversion, making this solution a viable and attractive option for efficient coal utilization.

  14. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  15. Fluidized-bed calciner with combustion nozzle and shroud

    Science.gov (United States)

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  16. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    Science.gov (United States)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  17. Characteristics of oily sludge combustion in circulating fluidized beds.

    Science.gov (United States)

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  18. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  19. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  20. Development of second-generation pressurized fluidized bed combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  1. Atmospheric fluidized bed combustion (AFBC) plants: A performance benchmarking study

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J. A.; Beavers, H.; Bonk, D. [West Virginia University, College of Business and Economics, Division of Business Administration, Morgantown, WV (United States)

    2004-03-31

    Data from a fluidized bed boiler survey distributed during the spring of 2000 to gather data for developing atmospheric fluidized bed combustion (AFCB) performance benchmarks are analyzed. The survey was sent to members of the Council of Industrial Boiler Owners; 35 surveys were usable for analysis. A total of 18 benchmarks were considered. While the results were not such as to permit a definitive set of conclusions, the survey was successful in providing practical information to assist plant owners, operators and developers to understand their operations and to assess potential solutions or to establish preventative maintenance programs. 36 refs., 2 tabs.

  2. Metallic species derived from fluidized bed coal combustion. [59 references

    Energy Technology Data Exchange (ETDEWEB)

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  3. Fluidized-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Kudjoi, A.; Heinolainen, A.; Hippinen, I.; Lu, Y. [Helsinki University of Technology, Espoo (Finland). Lab. of Energy Economics and Power Plant Engineering

    1998-12-31

    Hybrid combined cycle processes have been presented as possibilities for power generation in the future. In the processes based on partial gasification of coal, the solid materials removed from a gasifier (i.e. fly ash and bed char) contain unburned fuel, which is burned either in an atmospheric or a pressurised fluidised-bed. Pressurised fluidised-bed (PFB) combustion of gasification residues were studied experimentally by Helsinki University of Technology. The gasification residues, i.e. cyclone fines and bed chars, came from pilot scale PFB gasification tests of bituminous coals. The combustion efficiency was high in cyclone fines combustion. The calcium sulphide oxidised effectively to calcium sulphate in the combustion of cyclone fines. In bed char combustion the residual sulphide contents in solids after combustion were still relatively high. In general, sulphur dioxide emissions in residue combustion were low. The recarbonation of calcium oxide was observed in bed char combustion. Fuel-N conversion to NO{sub x} during bed char combustion and in most of the test runs with cyclone fines was higher than in bituminous coal combustion. In bed char combustion the conversion was significantly higher than in cyclone fines combustion. NO{sub x} emissions increased with increasing excess air for both residues, as was expected. In bed char combustion the highest NO{sub x} emissions were measured at higher pressure. Calculated mass reactivity values of equal particle size of all bed chars studied had similar trends with burnout. The biggest particles had the lowest reactivity values throughout the combustion, while reactivity for finer particles was at considerably higher level and sharply increases with burnout. In the constant combustion conditions used in the tests, no significant differences were observed in rate-controlling mechanisms for bed char fractions studied. 25 refs., 13 figs., 15 tab.

  4. DEVELOPMENT POTENTIALS AND RESEARCH NEEDS IN CIRCULATING FLUIDIZED BED COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2003-01-01

    First a report about present status of circulating fluidized bed reactors for coal and multi-fuel combustion in power plants is given. Thereafter the development potentials and research needs for further improvement of CFB combustors operating with finely grained bed materials are discussed and recommendations for direction of further research and development work are presented.

  5. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.

    1984-03-01

    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  6. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  7. Concepts of Emission Reduction in Fluidized Bed Combustion of Biomass

    Directory of Open Access Journals (Sweden)

    Amon Purgar

    2012-01-01

    Full Text Available A status report on fluidized bed technology in Austria is under preparation, in response to the Fluidized Bed Conversion multi-lateral technology initiative of the International Energy Agency. This status report focuses on the current operation of fluidized bed combustors. Combustors have been installed in the following industrial sectors: pulp and paper, biomass heat and power plants, waste-to-energy plants, and communal sewage sludge treatment plants. There are also some small demonstration plants. These plants all have in common that they treat renewable fuel types. In many cases, only bio-fuels are treated. Besides the ability to burn a wide range of low-grade and difficult fuels, fluidized bed combustors have the advantages of low NOX emissions and the possibility of in-process capture of SO2. Various emission reduction concepts for fluidized bed combustors that are typical for their industrial sector are discussed. The discussion of these concepts focuses on NOX, SO2 and dust.

  8. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  9. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical stud

  10. Investigation on Agropellet Combustion in the Fluidized Bed

    Science.gov (United States)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  11. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  12. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  13. Olive cake combustion in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Topal, H.; Durmaz, A. [Gazi Univ, Ankara (Turkey). Dept. of Mechanical Engineering; Atimtay, A.T. [Middle East Technical Univ., Ankara (Turkey). Dept. of Environmental Engineering

    2002-07-01

    This paper presents the results of a study in which an environmentally sound technology was developed for biomass usage for energy production in Turkey. A circulating fluidized bed of 125 mm diameter and 1,800 mm height was used to determine the combustion characteristics of olive cake (OC) produced in Turkey. Olive cake, an olive oil milling waste product, is available in large amounts at a very low cost. Efficient use of OC in energy production solves the problem of waste management and contributes to meeting targets of the Kyoto Protocol. In this study, olive cake alone and olive cake plus lignite mixtures were burned in separate experiments and in various ratios. A new feeding mechanism was developed to feed the olive cake to the bed. On-line concentrations of oxygen, sulphur dioxide, carbon dioxide, carbon monoxide, nitrogen oxides and total hydrocarbons were measured in the flue gas along with temperature distribution in the bed. Emissions were compared with national standards and combustion efficiency of the olive cake plus lignite coal mixtures and olive cake alone were calculated. The optimum operating parameters were described. OC burned with 94 to 98.5 per cent efficiency. The combustion efficiency increased with increased excess air ratio because volatiles released from the fuel were burned more completely. 3 refs., 5 tabs., 6 figs.

  14. COMPUTATIONALLY INTELLIGENT MODELLING AND CONTROL OF FLUIDIZED BED COMBUSTION PROCESS

    Directory of Open Access Journals (Sweden)

    Ivan T Ćirić

    2011-01-01

    Full Text Available In this paper modelling and control approaches for fluidized bed combustion process have been considered, that are based on the use of computational intelligence. Proposed adaptive neuro-fuzzy-genetic modelling and intelligent control strategies provide for efficient combining of available expert knowledge with experimental data. Firstly, based on the qualitative information on the desulphurization process, models of the SO2 emission in fluidized bed combustion have been developed, which provides for economical and efficient reduction of SO2 in FBC by estimation of optimal process parameters and by design of intelligent control systems based on defined emission models. Also, efficient fuzzy nonlinear FBC process modelling strategy by combining several linearized combustion models has been presented. Finally, fuzzy and conventional process control systems for fuel flow and primary air flow regulation based on developed models and optimized by genetic algorithms have also been developed. Obtained results indicate that computationally intelligent approach can be successfully applied for modelling and control of complex fluidized bed combustion process.

  15. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  16. Combustion Model FOr Staged Circulating Fluidized Bed BOiler

    Institute of Scientific and Technical Information of China (English)

    FandJianhua; LuQinggang; 等

    1997-01-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion,which takes fluid dynamics,combustion,heat transfer,pollutants formation and retention,into account was developed in the institute of Engineering Thermophysics(IET)recently.The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure.The chemical species CO,CO2,H2,H2O,CH4,O2 and N2 were considered in the reaction process.The mathematical model consisted of sub-modeles of fluid namics,coal heterogeneous and gas homogeneous chemical reactions.heat transfer,particle fragmentation and attrition,mass and energy balance tec.The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data.The main submodels and simulation results are given in this paoper.

  17. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.

    2004-01-01

    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  18. Staged fluidized-bed combustion and filter system

    Science.gov (United States)

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  19. State of the art of pressurized fluidized bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.

    1980-09-01

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  20. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  1. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  2. Oxy-combustion of biomass in a circulating fluidized bed

    Science.gov (United States)

    Kosowska-Golachowska, Monika; Kijo-Kleczkowska, Agnieszka; Luckos, Adam; Wolski, Krzysztof; Musiał, Tomasz

    2016-03-01

    The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis) burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB). Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA). The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate) in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.

  3. Oxy-combustion of biomass in a circulating fluidized bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2016-03-01

    Full Text Available The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB. Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA. The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.

  4. Agricultural uses of alkaline fluidized bed combustion ash: case studies

    Energy Technology Data Exchange (ETDEWEB)

    Stout, W.L.; Daily, M.R.; Nickeson, T.L.; Svendson, R.L.; Thompson, G.P. [USDA-ARS, University Park, PA (United States)

    1997-06-01

    Successful programmes were developed by Ahlstrom Development Ash Corporation and Air Products and Chemical for using fluidized bed combustion ash as a substitute for agricultural lime on dairy farms in northern New York state and on fruit and nut crops in the San Joaquin Valley of California. The companies developed these programmes by utilizing the methodology developed through USDA-ARS research and working closely with agricultural consultants and regulatory agencies to ensure that the ash applications were both agronomically and environmentally sound. 1 ref.

  5. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  6. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... identified. Laboratory measurements showed that 50 % of the fuel-N stays in the char after devolatilization and in the model it is assumed that this is oxidized to NO during char combustion. A significant amount of NO, 10-18 % of the fuel-N, was formed by oxidation of NH3 catalyzed by bed material...

  7. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available Presently, there is no detailed review that summarizes the current knowledge status on oxy-fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy...

  8. New environment-compatible heat-power plant Moabit with circulating fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bade, H.; Kuenisch, H.J.

    1987-06-09

    The authors report on the optimal utilisation of a city location for generating power and heat in a heat-power plant using circulating atmospheric fluidized-bed combustion. Because fluidized-bed combustion eliminates the need for secondary flue gas scrubbing equipment, the construction is highly compact. Also, this type of plant produces no waste water, so there is no disposal problem. Taking all aspects into consideration, circulating fluidized-bed combustion is especially interesting for heat-power plants in municipal areas with electrical block outputs of between 100 and 200 MW.

  9. Combustion of low grade fractions of Lubnica coal in fluidized bed

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2012-01-01

    Full Text Available In this paper a method of examination of fuel suitability for fluidized bed combustion is presented. The research of combustion characteristics of low grade fractions of Lubnica brown coal in the fluidized bed by the aforementioned methodology has been carried out on a laboratory semi-industrial apparatus of 200 kWt. Description of the experimental fluidized bed combustion facility is given, as well as experimental results, with the focus on furnace temperature distribution, in order to determine the location of the zone of intensive combustion. Based on investigation results, which are focused on combustion quality (combustion completion as well as on satisfying the environmental protection criteria, it can be stated that the investigated coal is suitable for burning in bubbling, as well as in circulating fluidized bed.

  10. Description of emission control using fluidized-bed, heat-exchange technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  11. Characterization of fuels for atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S. (Oak Ridge National Lab., TN (USA)); Rowley, D.R.; Perna, M.A. (Babcock and Wilcox Co., Alliance, OH (USA). Research Center); Stallings, J.W. (Electric Power Research Inst., Palo Alto, CA (USA)); Divilio, R.J. (Combustion Systems, Inc., Silver Spring, MD (USA))

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  12. Research on the utilization of circulating fluidized bed combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, P.; Weis, P. (EAB Energie-Anlagen Berlin GmbH, Berlin (Germany, F.R.))

    1989-09-01

    Power plant residues from the Moabit, Berlin, Power Plant, which is currently under construction (circulating fluidized bed), must be utilized in accordance with the notice of consent. In order to meet this condition, extensive investigations are being carried out during the design and planning stage. In addition to preliminary tests in a fluidized bed pilot plant, representative circulating fluidized bed ash testing experience has been accumulated in a major test in an operating plant. The paper presents the results of the first physical construction material investigations together with possible solutions for applications at the Berlin West site. 2 refs., 11 figs., 1 tab.

  13. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti

    2004-01-01

    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  14. Volatiles combustion in fluidized beds. [Quarterly] technical progress report, 4 December 1994--4 March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass II, R.A.; Mansker, L.D.; Hesketh, R.P.

    1995-08-01

    The goal of this project is to investigate the conditions in which volatiles will bum within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 December, 1994 through, 3 March 1995 is presented in this technical progress report. The research consists of the application of a detailed chemical kinetics model for propane combustion and planned improvements in the experimental system.

  15. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  16. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  17. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.

    Science.gov (United States)

    Bahillo, A; Armesto, L; Cabanillas, A; Otero, J

    2004-01-01

    Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.

  18. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  19. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    Science.gov (United States)

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  20. Support studies in fluidized-bed combustion. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Lenc, J.F.; Shearer, J.A.; Smith, G.W.; Swift, W.M.; Teats, F.G.; Turner, C.B.; Jonke, A.A.

    1979-01-01

    This work supports the development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas control of SO/sub 2/ and trace pollutant emissions, and other aspects of fluidized-bed coal combustion. This report presents information on: (1) the removal of particulate emissions from pressurized fluidized-bed combustion flue gas using a commercially available high-efficiency cyclone (TAN-JET), and (2) the results of laboratory and process development unit studies to determine the effects of CaCl/sub 2/, Na/sub 2/CO/sub 3/, NaCl, and H/sub 2/O treatments on increasing the utilization of limestone.

  1. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  2. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio Agricultural Research and Development Center, OH (United States); Webner, R.L. [Will-Burt Co., Orrville, OH (United States)

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  3. Environmentally friendly use of manure by means of fluidized-bed combustion. Umweltfreundliche Guelleverwendung mittels Wirbelbettfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Igelbuescher, H.; Gresch, H.; Dewert, H.

    1988-01-28

    According to the invention, it is proposed to spray a fluidized-bed combustion plant, which is operated with coal, for example, and which releases NO{sub x} as well as SO{sub 2} and dust, with manure. These measures according to the invention achieve that: 1. The manure is burnt in an environmentally friendly way, as the fluidized bed, with the addition of lime and a subsequent cloth filter, which is precoated with hydrated lime and filter ash, separates the dry substances of the manure on the filter, which are released by combustion in the form of ash, without causing a smell. 2. It was found that the manure causes a reduction of NO{sub x} in the fluidized bed. (orig./RB).

  4. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  5. Fluidized bed combustion and its application to refused fuels. Combustion en leche fluido y su aplicacion a combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Euba, J.

    1994-01-01

    As a consequence of the energetic crisis produced in th 70's it was proposed to find new power supplies and it also was the start of the use of traditional energy, which up to that date had not been profitable. At the same time, the worry about the pollutant emissions to the environment was increasing and finally it was approved a new legislation on atmosphere pollution, which is the Directive of the European community Council of 24th November 1988. Under these circumstances there are very important the new technologies for the supply of residual combustion with low values of pollution, where it is very important the combustion in fluidized bed. (Author)

  6. Support studies in fluidized-bed combustion. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Vogel, G.J.; Lee, S.H.D.

    1977-01-01

    This work supports the development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and bench-scale (process development) studies are aimed at providing needed information on limestone utilization, control of emission of alkali metal compounds and SO/sub 2/ during combustion, particulate loadings of flue gas, and other aspects of fluidized-bed coal combustion. Characterization of a variety of limestones and dolomites from various parts of the United States for suitability for use in fluidized-bed combustors for SO/sub 2/ emission control is also being done. Reducing the volume of solid wastes to reduce their environmental impact is a major goal. The development of methods for controlling the composition of hot flue gas so that it is a suitable feed gas for gas turbines is another major aim. These studies are designed to supply data and new concepts essential for the timely application of fluidized-bed combustion units to public utility and industrial systems.

  7. Fluidized bed combustion of high ash Singareni coal

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K.; Biswas, R.R.; Mukherjee, S.K.; Talapatra, P.C.; Roy, R.U.; Rao, S.K.; Sen, M.M.

    1986-04-01

    Fluid bed combustion is comparatively a new technology for efficient combustion of high ash coals, which constitute the bulk of Indian coal resources. A 2-tonne equivalent steam per hour fluid bed combustion boiler was installed at the CPRI for experimentation with Indian coals and this paper discusses the salient features of tests conducted in the unit with minus 6 mm high ash Singareni coal of Andhra Pradesh. Data on combustion, heat transfer and heat utilization characteristics of the boiler under varying operating conditions show that high ash Singareni coal slacks can be burnt efficiently with high thermal efficiency, combustion efficiency and heat transfer rates from bed to surface in direct contact in a fluid bed combustion boiler. 3 refs., 5 figs., 4 tabs.

  8. Combustion of bark and wood waste in the fluidized bed boiler

    Science.gov (United States)

    Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.

    2016-11-01

    In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

  9. Comprehensive Mathematical Model for Coal Combustion in a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    金晓钟; 吕俊复; 杨海瑞; 刘青; 岳光溪; 冯俊凯

    2001-01-01

    Char combustion is on a special reducing condition in the dense bed of a circulating fluidized bedcombustor. Experimental findings were used to develop a comprehensive mathematical model to simulate thehydrodynamic and combustion processes in a circulating fluidized bed combustor. In the model, gas-solidinteraction was used to account for the mass transfer between the bubble phase and the emulsion phase in thedense bed, which contributes to the reducing atmosphere in the dense bed. A core-annular structure wasassumed in the dilute area rather than a one-dimensional model. The submodels were combined to build thecomprehensive model to analyze the combustion in a circulating fluidized bed combustor and the effect ofoperating parameters on the coal combustion. The model predictions agree well with experimental results.

  10. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  11. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  12. Support studies in fluidized-bed combustion. Quarterly report, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Vogel, G.J.; Lee, S.H.D.

    1978-01-01

    This work supports the development of atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, control of emission of alkali metal compounds and SO/sub 2/ during combustion, particulate loadings of flue gas, and other aspects of fluidized-bed coal combustion. This report presents information on: the SO/sub 2/ reactivities and thus the limestone requirements of sixty different limestones, the morphology of a few selected stones, the effect of water in the gaseous mixture on the SO/sub 2/ reactivities of three limestones, the effect of combustion conditions on the attrition of limestones, the effect of temperature on SO/sub 2/ retention by limestone in a carbon burnup cell, the effect of CaCl/sub 2/ and MgCl/sub 2/ additives on the SO/sub 2/ capacity of limestones, the use of diatomaceous earth and activated bauxite to remove alkali metal compounds from simulated combustion gas mixtures, selection of laser spectroscopy methods to be evaluated for the measurement of gaseous alkali metal species in hot flue gases, the application of acoustic dust conditioning to flue gas cleaning, and the conceptual design of a granular-bed filter for cleaning of flue gas in a 200-MWe fluidized-bed combustion facility.

  13. Effects of fluidized bed combustion residue on pecan seedling growth and nutrient content. [Carya illinoensis

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.H.; White, A.W. Jr.; Bennett, O.L.

    1985-01-01

    Fluidized bed combustion residue from a calcitic limestone source (FBCRC), a by-product of scrubbing SO/sub 2/ from fossil fuel fired boilers using the FBC technique was evaluated as a source of calcium for pecan (Carya illinoensis (Wang.) K. Koch) seedlings. Fluidized bed combustion residue produced following injection of calcitic limestone into the combustion chamber was more effective in neutralizing soil acidity and increasing extractable soil Ca levels than agricultural calcitic limestone. The Ca concentration in the pecan leaves was increased linearly by Ca rates for both 12- and 24-week growth periods, but stem and petiole Ca concentration was increased linearly for the second 12-week growth period. Macronutrient concentrations were affected by Ca rates for both 12- and 24-week growth periods, but no effect was observed with Ca source. The primary difference was between the control and all other Ca rates.

  14. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  15. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  16. Calcium sulphoaluminate cement made from fluidized bed combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, G.; Marroccoli, M.; Montagnaro, F.; Valenti, G.L.

    2000-07-01

    Wastes generated in a bench-scale atmospheric fluidized bed combustor, using two different coals (one from Poland and one from South Africa) and a high-lime limestone sorbent, were employed as raw materials for the synthesis of calcium sulphoaluminate (4 CaO{sub 3} Al{sub 2}O{sub 3}.SO{sub 3})-based cements, which can be utilized for a wide range of applications. Raw mixes containing the bed material were heated in an electric oven in the temperature range 1000-1200{degree}C. The best results in terms of reactants conversion and selectivity towards 4 CaO{sub 2} Al{sub 2}O{sub 3}.SO{sub 3} were obtained at 1200{degree}C with the addition of an external source of alumina which was required to avoid melting phenomena or integrate the Al{sub 2}O{sub 3} content necessary for the 4CaO{sub 3}.Al{sub 2}O{sub 3}-SO{sub 3} formation. 7 refs., 7 tabs.

  17. Support studies in fluidized-bed combustion. Quarterly report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Vogel, G.J.; Lee, S.H.D.

    1978-01-01

    This work supports the development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, control of emission of alkali metal compounds and SO/sub 2/T/sub 2/ during combustion, particulate loadings of flue gas, and other aspects of fluidized-bed coal combustion. These studies are designed to supply data and new concepts essential for the timely application of fluidized-bed combustion units to public utility and industrial systems. This report presents information on: the use of oil shales for SO/sub 2/ emission control in FBCs, enhancement of limestone reactivity by heat treatment, enhancement of limestone sulfation by use of chemical additives, corrosion of alloys in FBCs with salt added, removal of gaseous NaCl and KCl from hot gases by use of solid sorbents, studies of trace pollutant levels from PFBC and regenerator, and studies of an L valve for the control of the flow of solids.

  18. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    Science.gov (United States)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  19. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  20. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  1. Fluidized-bed reactor model with generalized particle balances. Part 2. Coal combustion application

    Energy Technology Data Exchange (ETDEWEB)

    Overturf, B.W.; Reklaitis, G.V.

    1983-09-01

    In the second part, the model is applied to the study of an atmospheric fluidized-bed coal combustor. Case studies are investigated to show the effects of a number of parameters. Proper representation of the grid region and use of actual feed distributions are shown to be essential to the prediction of combustor performance. Better particle elutriation and single-particle combustion sub-models are found to be key requirements for improved combustor modelling.

  2. Numerical simulation of coal combustion in circulating fluidized beds; Junkan ryudoso ni okeru sekitan nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, H. [Technical University Hamburg, Hamburg (Germany); Suzuki, Y.; Hatano, H. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-09-25

    A numerical simulator has been developed, using a one-dimensional heterogeneous reaction model, for circulating fluidized bed combustors. The model is based on the Johnson`s method for modeling circulating fluidized bed combustors operating at low gas velocity, and involves kinetic models of combustion process and fluidization mechanisms in circulating fluidized bed risers. In order to determine rate parameters for coal combustion, Chinese coal is combusted by a circulating fluidized bed combustor of quartz, installed at the National Institute for Resources and Environment. The simulation after parameter-fitting indicates that char produced from coal shows a medium activity for NO reduction and very low activity for N2O reduction. It is also found that reduction of No by CO is very important. The simulator satisfactorily gives gas concentration at the combustor outlet and axial distributions of the vapor component concentrations. 19 refs., 11 figs., 5 tabs.

  3. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBPS) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBPS. The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBPS are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O2, CO, SO2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O2 and CO2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to

  4. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  5. Carbon attrition during the circulating fluidized bed combustion of a waste-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arena, U. [Consiglio Nazionale delle Ricerche, Naples (Italy). Inst. for Combustion Research; Naples Univ. (Italy). Dept. of Environmental Sciences; Mastellone, M.L. [Naples Univ. Federico II (Italy). Dept. of Chemical Engineering

    1999-07-01

    A biomass obtained as residue from food manufacturing of pine nuts was batchwise fed in a laboratory scale circulating fluidized bed combustor. The apparatus was operated under both inert and oxidizing conditions in order to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping from the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed combustor in order to point out peculiarities of attrition in the two apparatus. Results were compared with those obtained by burning in the same combustor a bituminous coal and a packaging-derived fuel, obtained from monomaterial collections of polyethylene terephtalate bottles. A different attrition phenomenology was found for each fuel and its peculiar features were taken into account. (orig.)

  6. Feasibility of Combustion of Petroleum Coke in 230t/h Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    HAN Dong-tai; SONG Zheng-chang; XU Tao

    2003-01-01

    In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion,thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.

  7. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  8. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed...... are subjected to some uncertainty, and a sensitivity analysis of the predicted NO emission was carried out. The analysis showed that the predicted NO emission is sensitive to both hydrodynamic and combustion-related parameters. The most important hydrodynamic parameters were the minimum fluidization velocity......, the gas interchange coefficient, the bubble size and the bubble rise velocity. The most important combustion parameters were the rate of CO and CH4 combustion and the fraction of CO produced from char combustion. By using a rate of production analysis, the important reactions in the NO model were...

  9. A novel vortex-fluidized bed combustor with two combustion chambers for rice-husk fuel

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T.

    2004-11-01

    Full Text Available A novel vortexing-fluidized bed combustor (VFBC using rice-husk as fuel was developed and presented. The combined characteristics of vortex combustion and fluidized bed combustion are the main features of the VFBC, which was designed to achieve high thermal capacity (MWth m-3, high thermal efficiency and low diameter to height ratio. The VFBC comprises a vertical cylinder chamber and a conical base, which provides a bed for incompletely combusted fuel. The overall dimensions are 1.10 m in height and 0.40 m in diameter. To evaluate combustor performance, the specific feed rate of fuel and mass flow rates of the primary, secondary, and tertiary air were varied independently of one another. The combustion appeared into two zones characterized by different combustion behaviors, i.e. 1 vortext combustion above the vortex ring and 2 fluidized bed combustion below the vortex ring. The fluidized bed zone has uniform temperature distributions across the cross-section of the combustor. The swirling of air above the vortex ringand the vortex ring itself played important roles in preventing the escape of combustion particulates. Bottomash appeared as fine black and grey particles of ash, which ranged in size from 200 to 600 µm. Fluidizationcould be initiated without the assistance of any inert material mixed into the bed. The experimental resultsindicated that thermal efficiency did not depend on the secondary or tertiary airflows, but was significantlyinfluenced by the excess air resulting from the combined total of the three airflows. The introduction of thetertiary airflow helped maintaining the temperature inside the combustor within acceptable levels. According to experimental conditions, i.e. a specific feed rate of 240 kg h-1m-3 and excess air (157%, it was found that the VFBC could achieve an exit gas temperature of 1060ºC, thermal efficiency of 95%, and thermal capacity of 0.91 MWth m-3. The amounts of CO2, CO, and O2 gases emitted were directly

  10. Combustion of coked sand in a two-stage fluidized bed system

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Seader, J.D. (University of Utah, Salt Lake City, UT (USA). Dept. of Chemical Engineering)

    1992-02-01

    An advanced multiple-stage fluidized bed reactor system has been devised for the energy-efficient extraction and conversion, from tar sand, of bitumen into synthetic crude oil. The reactor consists of four fluidized beds arranged as stages in series with respect to flow of sand. In the first stage, tar sands are heated, causing the bitumen to pyrolyse into coke, which is deposited on the sand, and gas, which is mostly condensed into oil. The coke is partially combusted with air or enriched oxygen in the second stage, which is thermally coupled to the first stage by multiple vertical heat pipes. Combustion is completed adiabatically in the third stage and heat recovery from the sand is carried out in the fourth stage. By conducting the coke combustion in two stages in this manner, the overall reactor residence time to produce clean sand is greatly reduced from that for a single combustion stage. Laboratory experimental studies have confirmed the ability to operate and control the two thermally coupled stages. The two-phase bubbling bed model of Grace, amended to account for bubble growth in the axial direction, has been adopted to model the mass transfer and fluid mechanics of the fluidized beds. The model for the first and second combustion stages is complete. Predictions for exit reactor conditions at various operating conditions are in reasonable agreement with experimental observations. The operating parameters have been found to exert a much greater influence on the predictions of the model than do the values of the physical parameters, indicating a desirable degree of reactor stability. Extension of the model to the pyrolysis and heat recovery stages will permit the optimization of the reactor configuration and operating conditions. 26 refs., 6 figs.

  11. Fluidized bed combustion research and development in Sweden: A historical survey

    Directory of Open Access Journals (Sweden)

    Leckner Bo.

    2003-01-01

    Full Text Available A survey is made on research and development related to fluidized bed boilers in Sweden during the past two decades, where several Swedish enterprises took part: Generator, Götaverken, Stal Laval (ABB Carbon and Studsvik. Chalmers University of Technology contributed in the field of research related to emissions, heat transfer and fluid dynamics, and some results from this activity are briefly summarized.

  12. Exploitation of coal residues by their fluidized bed combustion. Aprovechamiento de los residuos de carbon mediante su combustion en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Fuertes, A.B.; Pis, J.J.; Artos, V.; Suarez, A.; Jul, J.J.; Alvarez, F.J.; Canibano, J.G. (CSIC, Oviedo (Spain). Instituto Nacional del Carbon)

    1988-01-01

    The combustion of coal rejects from Modesta washery (HUNOSA, Asturias) was studied in a fluidized bed reactor. The influence of different operational variables (temperature, fluidizing velocity and air excess) on the process efficiency was studied. Likewise, an evaluation of pollutant emissions from the fluidized bed combustion of coal rejects was made. It was concluded that fluidized bed combustion of coal rejects with ash contents of about 70% is possible and can be carried out with a high degree of combustion efficiency and low emissions. 24 refs., 10 figs., 2 tabs.

  13. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1996-03-01

    Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

  14. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    Simulations with a mathematical model of a pressurized bubbling fluidized-bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are reported. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and includes homogeneous....... The sensitivity of the simulated NO emission with respect to hydrodynamic and combustion parameters in the model is investigated and the mechanisms by which the parameters influence the emission of NO is explained. The analysis shows that the most important hydrodynamic parameters are the minimum fluidization...

  15. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  16. The Simulation of Influence of Different Coals on the Circulating Fluidized Bed Boiler's Combustion Performance

    Institute of Scientific and Technical Information of China (English)

    Yumei Yong; Qinggang Lu

    2003-01-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that,different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  17. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  18. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  19. Meat and bone meal as secondary fuel in fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou [National Technical University of Athens, Athens (Greece). Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  20. Combined cycle power plant with circulating fluidized bed combustion. Final report; Kombikraftwerk mit zirkulierender Druckwirbelschicht-Feuerung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    In the frame of this study the concept of a combined cycle power plant with circulating fluidized bed combustion was investigated for the application of national brown coal. The aims of this study which is subsidised by the FMTR are the following: - evaluation of the experiences which have been made so far in the frame of developing circulating fluidized bed combustion; - reaching of reliable statements about the process technology, about technical risks as well as about the time frame and the costs; - developing a task for a possible realisation of a 150 MW{sub el}-pilot plant in the new Laender. The present study shows that combined cycle power plants which are fuelled by brown coal can be realised according to the principle of circulating fluidized bed combustion with a plant net efficiency of 45% for a power of 150 MW{sub el} (pilot plant) and a plant net efficiency clearly above 47% for a power of 500 MW{sub el} (reference power plant). The combination of this efficient combined cycle power plant technology with a simple brown coal gasification module, that is integrated into a combustion reactor will almost certainly lead to plant net efficiencies of 50% and more, especially for ZDSWF plants of the second generation. (orig./GL) [Deutsch] Im Rahmen dieser Studie ist fuer den Einsatz einheimischer Braunkohle das Konzept eines Kombikraftwerkes auf der Basis der zirkulierenden Druckwirbelschichtfeuerung untersucht worden. Ziele dieser mit BMFT-Mitteln gefoerderten Studie sind: - die Bewertung der bisher im Rahmen der Entwicklung von Druckwirbelschichtfeuerungen gesammelten Erfahrungen, - die Gewinnung belastbarer Aussagen zum verfahrenstechnischen Konzept, zu technischen Risiken sowie zum Zeit- und Kostenrahmen sowie - die Ausarbeitung einer Aufgabenstellung fuer die moegliche Realisierung einer 150-MW{sub el}-Pilotanlage in den neuen Bundeslaendern. Die vorliegende Studie zeigt, dass mit Braunkohle befeuerte Kombikraftwerksanlagen nach dem Prinzip der

  1. Evaluation of the status of fluidized-bed combustion in the thermal utilization of waste. Stellenwert der Wirbelschichtverbrennung bei der thermischen Abfallverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Kitzerow, H.G. (ABT Gesellschaft fuer Abfall-Beseitigungs-Technologien mbH, Limburg (Germany)); Hoelter, G. (Hoelter GmbH, Gladbeck (Germany))

    1993-10-01

    Thermal utilization of waste is understood to embrace all applications of refuse incineration across the field of sewage sludge utilization to the energy utilization of residual materials from industrial applications. The demand for small decentralized energy conversion plants is increasing. Fluidized bed combustion offers advantages here. This technology has been tried for many years for relatively homogenous fuels such as coal and sewage sludge in the European area. (orig.)

  2. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine

  3. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  4. Experience gained from mastering practical use of the fluidized bed technology in boilers for industrial and municipal power systems

    Science.gov (United States)

    Shemyakin, V. N.; Karapetov, A. E.

    2012-06-01

    Experience gained from mastering practical use of the technology of low-temperature fluidized bed as applied to the firing of combustible shales, milled peat, and various wood wastes is generalized. The design characteristics of boilers and results from their tests are presented. Special attention is paid to formation of agglomerates from particles of bed material and slag deposits on the nonshielded surfaces of a furnace chamber, problems inherent in the given technology. Methods to control the formation of agglomerates and deposits are considered.

  5. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes.

  6. Proceedings of the 7. international conference on circulating fluidized bed technology. 7. vol. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, J.R. (ed.) [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Zhu, J.; De Lasa, H. [Western Ontario University, London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2002-07-01

    This conference brought together all of the major circulating fluidized bed (CFB) research groups from around the world and provided a major source of information on CFB and related topics. These proceedings focus on applications and fundamentals of CFB technology, including fluid catalytic cracking of hydrocarbons, CFB combustion of coal, calcination, gasification, pyrolysis, roasting of ores, and desulphurization. Several papers discussed the application of computational fluid dynamics to CFB, hydrodynamics, heat transfer and combustion. Discussions also focused on the importance of maintaining safety, providing sufficient heat transfer, and minimizing emissions of particulates and gaseous pollutants. The 9 sessions of the conference were entitled as follows: (1) invited overview papers, (2) downers, (3) heat and mass transfer, (4) hydrodynamics and mixing, (5) computational fluid dynamics and other models, (6) liquid fluidization and three-phase systems, (7) solids separation and return systems, (8) combustion and other gas-solid reactions, and (9) fluid catalytic cracking and other reactions. More than 100 papers were presented at the conference, of which 25 have been indexed separately for inclusion in this database. refs., tabs., figs.

  7. Economically efficient operation of two-stage fluidized-bed combustion systems; Wirtschaftliche Betriebsweise von zweistufigen Wirbelschicht-Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E. [Hoelter-ABT GmbH, Essen (Germany)

    1996-11-01

    Two-stage stationary fluidized-bed combustion is an efficient technology for thermal treatment of residues. This includes, e.g. sorted residues from industrial processes, materials soiled with coatings, varnishes or glues, biomass (wood, straw, hay) and packaging materials. A simple and robust design of the plant with few mobile parts ensures high availability, good performance, and low investment and operation cost. The modular structure contributes to this. (orig.) [Deutsch] Mit der gestuften stationaeren Wirbelschichtverbrennung stellt eine Technologie zur thermischen Verwertung von Reststoffen fuer vielfaeltige Einsatzbereiche zur Verfuegung. Dazu zaehlten zum Beispiel sortenreine Reststoffe aus der Industrieproduktion, durch Beschichtungen, Anstriche oder Klebstoffe verunreinigte Materialien, Biomassen (Holz, Stroh, Heu) und Verpackungsmittelrueckstaende. Ein einfacher und robuster Anlagenaufbau mit wenigen beweglichen Teilen gewaehrleistet eine hohe Betriebssicherheit sowie die Anlagenverfuegbarkeit und verringert gleichzeitig die Investitions- und Betriebskosten. Hierzu traegt auch der Aufbau aus verschiedenen, immer gleichartigen Funktionsmodulen bei. (orig.)

  8. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    Science.gov (United States)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  9. Circulating fluidized bed combustion ash characterization. The case of the Provence 250 MW unit

    Energy Technology Data Exchange (ETDEWEB)

    Lecuyer, I.; Leduc, M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Lefevre, R.; Ausset, P. [Paris-12 Univ., Creteil (France). Lab. Interuniversitaire des Systemes Atmospheriques

    1997-05-01

    The Provence 250 MW Circulating Fluidized Bed Combustion Unit (Gardanne, France) is burning a high sulfur (2 to 4%), high ash content (30%) local lignite. This peculiar fuel already contains about 15% of CaO which allows it to capture the sulfur dioxide in situ without adding any complementary sorbent. The ash chemical composition (bed ash and ESP ash) that reflects the particularities of the coal is presented. SEM and DRX observations confirm the presence of anhydrite CaSO{sub 4}, lime, CaS, quartz and traces of hematite. Most of particles are roughly-shaped but microspheres can also be detected in fly ash. The very high sulfate content may be worrying for the environment in disposals. Hardened samples do not seem to retain compounds from leaching: high quantities of calcium and sulfates are still leached from these crushed samples. (author) 10 refs.

  10. Modified graphical autocatalytic set model of combustion process in circulating fluidized bed boiler

    Science.gov (United States)

    Yusof, Nurul Syazwani; Bakar, Sumarni Abu; Ismail, Razidah

    2014-07-01

    Circulating Fluidized Bed Boiler (CFB) is a device for generating steam by burning fossil fuels in a furnace operating under a special hydrodynamic condition. Autocatalytic Set has provided a graphical model of chemical reactions that occurred during combustion process in CFB. Eight important chemical substances known as species were represented as nodes and catalytic relationships between nodes are represented by the edges in the graph. In this paper, the model is extended and modified by considering other relevant chemical reactions that also exist during the process. Catalytic relationship among the species in the model is discussed. The result reveals that the modified model is able to gives more explanation of the relationship among the species during the process at initial time t.

  11. Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash

    Institute of Scientific and Technical Information of China (English)

    刘泽; 邵宁宁; 秦俊峰; 孔凡龙; 王春雪; 王栋民

    2015-01-01

    A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash (CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different SiO2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 °C were investigated. The specimen with SiO2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 °C.

  12. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    Science.gov (United States)

    Liu, Ze; Shao, Ning-ning; Wang, Dong-min; Qin, Jun-feng; Huang, Tian-yong; Song, Wei; Lin, Mu-xi; Yuan, Jin-sha; Wang, Zhen

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  13. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.

    2010-01-01

    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  14. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Ning-ning Shao; Dong-min Wang; Jun-feng Qin; Tian-yong Huang; Wei Song; Mu-xi Lin; Jin-sha Yuan; Zhen Wang

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri-cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  15. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2017-01-01

    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  16. Modeling the temperature in coal char particle during fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Mirko Komatina; Simeon Oka [University of Belgrade, Belgrade (Serbia)

    2008-05-15

    The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550{sup o}C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710{sup o}C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 53 refs., 6 figs., 2 tabs.

  17. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    Science.gov (United States)

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.

  18. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  19. Recent status of fluidized bed technologies for producing iron input materials for steelmaking

    Institute of Scientific and Technical Information of China (English)

    Johannes Leopold Schenk

    2011-01-01

    Today steel is produced by two steelmaking processes,the basic oxygen furnace and the electric arc furnace. Three types of iron input materials for both processes are liquid hot metal or in solidified form as pig iron,direct reduced iron (DRI) and hot briquetted iron (HBI) as well as steel scrap. Hot metal,pig iron,DRI and HBI are virgin iron materials,which have to be produced from iron ore by the so-called ironmaking technologies.New ironmaking processes based on fluidized bed technology have been developed in the last two decades. The main advantage of these technologies is that fine ore can be directly used in the processes and prior treatment such as sintering or pelletizing can be avoided which is required for the established processes. Theoretical aspects for reduction of fine iron oxides in a fluidized bed reactor system will be explained. The fluidized bed reducing technologies utilized in the most advanced new ironmaking processes for direct use of fine ore,FINMET(R),Circored(R),FINEX(R) and Hlsmelt(R) will be compared.

  20. Development of pressurized fluidized-bed combustion (PFBC) technology for coal-fired combined cycles. Final report; Entwicklung der Druckwirbelschicht-Feuerungstechnik fuer kohlegefeuerte kombinierte Gas-Dampfprozesse. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Terhaag, U.; Verweyen, N.; Goermar, H.; Bu Cheng; Ewes, I.; Braun, A.

    1992-06-01

    Pressurized fluidized combustion is a very essential component for combined cycles with low emissions and high efficiency. The aim of this project was further development of the stationary pressurized fluidized bed combustion technique. In the last two heating periods, a series of experiments was carried out with modifications of the combustion chamber. The results of these runs were compared with numerical simulations. Improved numerical procedures were used to develop a new design of the pressurized combustion chamber. Attention is focused on emission control for the components CO, NO{sub x} and N{sub 2}O. The necessary modifications, however, result in an increase of the prognosted construction costs, so that the project was finished by the end of 1991. (orig.) With 15 refs., 2 tabs., 120 figs. [Deutsch] Im Rahmen fortschrittlicher Kohleumwandlungsprozesse liefert die druckaufgeladene Wirbelschicht einen wesentlichen Beitrag zur Verringerung der Emissionen und zur Erreichung hoher Wirkungsgrade. Die Weiterentwicklung der stationaeren Druckwirbelschicht-Feuerungstechnik war Ziel dieses Forschungsvorhabens. Dazu sind in den Heizperioden 89/90 und 90/91 umfangreiche numerische und experimentelle Untersuchungen durchgefuehrt und ausgewertet worden. Die Auslegungsprogramme sind so modifiziert worden, dass beliebige stationaere Betriebspunkte nachgerechnet werden koennen. Mit Hilfe dieses Werkzeugs ist mit der Auslegung eines Dampferzeugers mit in Hinblick auf Teillastverhalten und Schadstoffemission optimierten Leistungsmerkmalen begonnen worden. Es hat sich dabei gezeigt, dass die notwendigen baulichen Aenderungen an der Anlage der RWTH Aachen zu einer erheblichen Kostensteigerung fuehren wuerden. Aus diesem Grund ist das Projekt vorzeitig zum 31.12.1991 beendet worden. (orig.) With 15 refs., 2 tabs., 120 figs.

  1. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  2. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes

    Science.gov (United States)

    Rink, Karl K.; Kozinski, Janusz A.; Lighty, JoAnn S.; Lu, Quing

    1994-08-01

    Fluidized bed combustion systems have been widely applied in the combustion of solid fossil fuels, particularly by the power generation industry. Recently, attention has shifted from the conventional bubbling fluidized bed (BFB) to circulating fluidized bed (CFB) combustion systems. Inherent advantages of CFB combustion such as uniform temperatures, excellent mixing, high combustion efficiencies, and greater fuel flexibility have generated interest in the feasibility of CFB combustion systems applied to the thermal remediation of contaminated soils and sludges. Because it is often difficult to monitor and analyze the combustion phenomena that occurs within a full scale fluidized bed system, the need exists for smaller scale research facilities which permit detailed measurements of temperature, pressure, and chemical specie profiles. This article describes the design, construction, and operation of a pilot-scale fluidized bed facility developed to investigate the thermal remediation characteristics of contaminated soils and sludges. The refractory-lined reactor measures 8 m in height and has an external diameter of 0.6 m. The facility can be operated as a BFB or CFB using a variety of solid fuels including low calorific or high moisture content materials supplemented by natural gas introduced into the fluidized bed through auxiliary fuel injectors. Maximum firing rate of the fluidized bed is approximately 300 kW. Under normal operating conditions, internal wall temperatures are maintained between 1150 and 1350 K over superficial velocities ranging from 0.5 to 4 m/s. Contaminated material can be continuously fed into the fluidized bed or introduced as a single charge at three different locations. The facility is fully instrumented to allow time-resolved measurements of gaseous pollutant species, gas phase temperatures, and internal pressures. The facility has produced reproducible fluidization results which agree well with the work of other researchers. Minimum

  3. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology

    1997-10-01

    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  4. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  5. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  6. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator

    Institute of Scientific and Technical Information of China (English)

    Feng Duan; Chiensong Chyang; Yucheng Chin; Jim Tso

    2013-01-01

    Rice husk with high volatile content was burned in a pilot scale vortexing fiuidized bed incinerator.The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height.The emission characteristics of CO,NO,and SO2 were studied.The effects of operating parameters,such as primary air flow rate,secondary air flow rate,and excess air ratio on the pollutant emissions were also investigated.The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone.The SO2 concentration in the flue gas decreases with increasing excess air ratio,while the NOx concentration shows reverse trend.The flow rate of secondary air has a significant impact on the CO emission.For a fixed primary air flowrate,CO emission decreases with the secondary air flowrate.For a fixed excess air ratio,CO emission decreases with the ratio of secondary to primary air flow.The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio.The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm,which conform to the EPA regulation of Taiwan.

  7. Effects of NH3 on N2O Formation and Destruction in Fluidized Bed Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    JianWeiYuan; BoFeng; 等

    1994-01-01

    The NH3 oxidation and reduction process are experimentally and kinetically studied in this paper,It is found that NH3 has contributions not only to N2O formation,but also to N2O destruction in certain conditions.The main product of homogeneous NH3 oxidation is found to be NO rather than N2O,but some bed materials and suplhur sorbents have catalytic contributions to N2O formation from NH3 oxidation.In reduction atmosphere,NH3 can promote the KC destruction.It is deduced that the ammonia injection into fluidized bed coal combustion flue gas can decrease both NOx and N2O emissions.The ammonia injection process is kinetically simulated in this study,and the reduction.rates of NOx and N2O are found to depend on temperature,O2 concentration,initial NOx and N2O concentrations,and amount of injected ammonia.

  8. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern.

  9. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.

  10. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  11. Pressurized fluidized-bed power stations. Combined cycle power plants with fluidized-bed combustion, with particular regard to emissions; Druckwirbelschicht-Kraftwerke. Kombikraftwerke mit Druckwirbelschichtfeuerung - Entwicklung fuer Braunkohle unter besonderer Beruecksichtigung des Emissionsverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Chalupnik, R.W.

    1999-07-01

    Investigations were carried out to find whether this technology is suited for lignite. The state of the art of the pressurized fluidized bed technology for coal is presented. The planning of the experimental programme is explained, including unresolved problems of thermal calculation, raw lignite transport characteristics, and emissions. Emissions of atmospheric and pressurized fluidized bed combustion of coal and lignite are compared, and the results of a theoretical investigation of the potential performance are presented. Recommendations are made for further studies, and an outlook is given to future 'second generation' concepts with higher efficiencies resulting from higher gas turbine inlet temperatures. [German] Die vorliegende Arbeit berichtet ueber die Entwicklung der Kombikraftwerkstechnik mit Druckwirbelschichttechnik. Nachdem die bisherigen Aktivitaeten weltweit fast ausschliesslich fuer den Einsatz von Steinkohle betrieben wurden, bestand die Aufgabenstellung in der Erarbeitung von ersten grundlegenden Ergebnissen, aufgrund derer zu beurteilen war, ob die Druckwirbelschichttechnik fuer den Einsatz von Braunkohle geeignet ist. Kapitel 2 stellt den Stand der Technik der Druckwirbelschichtverbrennung fuer Steinkohle dar. In Kapitel 3 wird die Planung des Versuchsprogramms erlaeutert, die sich an den offenen Fragestellungen zu den waermetechnischen Rechnungen, zum Foerderverhalten von Rohbraunkohle und zum Emissionsverhalten orientierte. In der Diskussion der Ergebnisse in Kapitel 4 erfolgt eine Einordnung und Bewertung der ermittelten Emissionswerte im Vergleich zur Wirbelschichtverbrennung unter atmosphaerischen und druckaufgeladenen Bedingungen von Stein- und Braunkohle. In Kapitel 5 schliesslich werden die Ergebnisse einer durchgefuehrten theoretischen Untersuchung zur Ermittlung des Wirkungsgradpotentials dargestellt. Ferner werden Empfehlungen fuer ergaenzende, weiterfuehrende Untersuchungen gegeben. Fuer die langfristige potentielle

  12. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  13. Nitric oxide reduction over biomass and coal chars under fluidized bed combustion conditions: the role of thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Piero Salatino; Anna Di Somma; Roberto Solimene; Riccardo Chirone [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Ingegneria Chimica

    2008-07-01

    The de-NOx potential of biomass-and waste-derived fuels candidate for cofiring with coal is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the extent of thermodeactivation of biogenous fuels, i.e. the loss of reactivity toward the NOx-char reaction as char is annealed for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char. Results are discussed in the light of the potential exploitation of synergistic effects on NOx emission associated with cofiring with coal. 21 refs., 8 figs., 1 tab.

  14. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Samuel Bayham

    2017-08-01

    Full Text Available Chemical looping combustion is considered an indirect method of oxidizing a carbonaceous fuel, utilizing a metal oxide oxygen carrier to provide oxygen to the fuel. The advantage is the significantly reduced energy penalty for separating out the CO2 for reuse or sequestration in a carbon-constrained world. One of the major issues with chemical looping combustion is the cost of the oxygen carrier. Hematite ore is a proposed oxygen carrier due to its high strength and resistance to mechanical attrition, but its reactivity is rather poor compared to tailored oxygen carriers. This problem is further exacerbated by methane cracking, the subsequent deposition of carbon and the inability to transfer oxygen at a sufficient rate from the core of the particle to the surface for fuel conversion to CO2. Oxygen needs to be readily available at the surface to prevent methane cracking. The purpose of this work was to demonstrate the use of steam to overcome this issue and improve the conversion of the natural gas to CO2, as well as to provide data for computational fluid dynamics (CFD validation. The steam will gasify the deposited carbon to promote the methane conversion. This work studies the performance of hematite ore with methane and steam mixtures in a 5 cm fluidized bed up to approximately 140 kPa. Results show an increased conversion of methane in the presence of steam (from 20–45% without steam to 60–95% up to a certain point, where performance decreases. Adding steam allows the methane conversion to carbon dioxide to be similar to the overall methane conversion; it also helped to prevent carbon accumulation from occurring on the particle. In general, the addition of steam to the feed gas increased the methane conversion. Furthermore, the addition of steam caused the steam methane reforming reaction to form more hydrogen and carbon monoxide at higher steam and methane concentrations, which was not completely converted at higher concentrations and

  15. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    Science.gov (United States)

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  16. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  17. Assessment of the status of fluidized-bed combustion based on the papers of the Fifth International Conference: methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report constitutes a status assessment of fluidized-bed combustion power-generation technology undertaken as part of an ongoing program sponsored by the US Department of Energy's Division of Environmental Control Technology under the Assistant Secretary for Environment. The study, based on the papers presented at the Fifth International Conference on Fluidized-Bed Combustion in 1977, was prepared by the MITRE Corporation, with support from Argonne National Laboratory. Information abstracted from the papers was categorized according to various technical considerations and summarized. Issues and problems associated with the technology were identified from these summaries. These issues and problems, with any associated information gaps, were ranked in terms of their significance, taking into account the needs of potential users of the technology. The resulting data base is presented in a series of matrices showing concentrations of activity, reported information, issues and problems, and relative significance. Areas in which further investigation is required, as indicated using this methodology, include selection, preparation, feeding, and utilization of fuel and sorbent; disposal of solid wastes; heat transfer; emissions control; optimization of operating parameters and control procedures; corrosion and erosion of construction materials, and equipment configuration.

  18. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  19. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    Science.gov (United States)

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  20. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho

    2012-01-01

    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  1. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    Science.gov (United States)

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  2. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.

    Science.gov (United States)

    Yang, Zixu; Zhang, Shihong; Liu, Lei; Li, Xiangpeng; Chen, Hanping; Yang, Haiping; Wang, Xianhua

    2012-04-01

    Despite its abundant supply, tobacco stem has not been exploited as an energy source in large scale. This study investigates the combustion behaviours of tobacco stem in a thermogravimetric analyser (TGA) and a pilot-scale fluidized bed (FB). Combustion characteristics, including ignition and burnout index, and combustion reaction kinetics were studied. Experiments in the FB investigated the effects of different operating conditions, such as primary air flow, secondary air flow and feeding rates, on the bed temperature profiles and combustion efficiency. Two kinds of bed materials cinder and silica sand were used in FB and the effect of bed materials on agglomeration was studied. The results indicated that tobacco stem combustion worked well in the FB. When operation condition was properly set, the tobacco stem combustion efficiency reached 94%. In addition, compared to silica sand, cinder could inhibit agglomeration during combustion because of its high aluminium content.

  3. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  4. Sustainable generation of bioenergy in fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Elmar

    2010-07-01

    Full text: These days, reflecting a growing demand of heat and power, increasing cost for fossil fuels and more environmental issues (limitation of greenhouse gases, regulations for landfill etc.), the sustainable conversion of renewable fuels to bioenergy is becoming increasingly important. Renewable fuels cover a wide range, from traditional wood, bark, harvesting residues to all kind of sludges, and contain a remarkable calorific value that can easily compete with fossil fuels such as brown coal and lignite. The combustion of these renewable fuels does not create any greenhouse gases. The favourable technology for combusting renewable fuels is the fluidized bed technology, bubbling fluidized bed and circulating fluidized bed, as this system provides maximum fuel flexibility combined with high combustion efficiency and low emissions. Neither a variation of the water content and the heating value nor different sources of the material streams have a negative impact on the combustion. Fluidized bed boilers can switch from one fuel to the other quiet easily and can also be fired with conventional fuels that ensure a smooth and reliable generation of process heat and/or power in any case. The reasons that make fluidized bed boilers the most sustainable combustion technology for renewable fuels are various: The main feature of this technology is the principle of staged combustion of the fuel: The oxygen level in the fluidized bed is limited and hence only a part of the fuel is combusted, whereas the rest of the fuel is gasified. The staged combustion concept results in a homogenous temperature profile of less than 850 deg. C in the furnace and low NO{sub x} emission as a consequence. The turbulences in the furnace result and an efficient combustion that is combined with very low CO and TOC emissions in the flue gas. This paper will describe design features of the latest fluidized bed technology especially suitable for firing renewable fuels, and the research results of

  5. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  6. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion

    DEFF Research Database (Denmark)

    Pazos, Marta; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2010-01-01

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative...

  7. Reactivity of iron oxide with methane in a laboratory fluidized bed : application of chemical-looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cho, P. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Inorganic and Environmental Chemistry; Mattisson, T.; Lyngfelt, A. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    Chemical looping combustion (CLC) is a promising method for separating carbon dioxide from flue gases during combustion. A study was conducted in which cyclic reduction-oxidation experiments were conducted with synthetic oxygen carrier particles under fluidized conditions. Two interconnected fluidized beds were used as reactors in which a metal oxide was used as an oxygen carrier providing oxygen from the combustion air to the fuel. In particular, this study examined the feasibility of using iron oxide as an oxygen carrier in repeated cycles of methane and air at 950 degrees C. The advantage of CLC compared to normal combustion is that carbon dioxide can be separated from the other components of the flue gas, nitrogen and unreacted oxygen. This avoids efficiency losses and the need for costly equipment for carbon dioxide separation. The reduction rates measured in this experiment were lower than in previous tests with fixed beds due to less efficient contact between gas and particles under fluidized bed conditions. High reactivities were still observed, suggesting that the particles should have sufficient reactivity for use in the proposed CLC system. 10 refs., 1 tab., 5 figs.

  8. Reduction and Immobilization of Potassium Permanganate on Iron Oxide Catalyst by Fluidized-Bed Crystallization Technology

    Directory of Open Access Journals (Sweden)

    Guang-Xia Li

    2012-03-01

    Full Text Available A manganese immobilization technology in a fluidized-bed reactor (FBR was developed by using a waste iron oxide (i.e., BT-3 as catalyst which is a by-product from the fluidized-bed Fenton reaction (FBR-Fenton. It was found that BT-3 could easily reduce potassium permanganate (KMnO4 to MnO2. Furthermore, MnO2 could accumulate on the surface of BT-3 catalyst to form a new Fe-Mn oxide. Laboratory experiments were carried out to investigate the KMnO4-reduction mechanism, including the effect of KMnO4 concentration, BT-3 dosage, and operational solution pH. The results showed that the pH solution was a significant factor in the reduction of KMnO4. At the optimum level, pHf 6, KMnO4 was virtually reduced in 10 min. A pseudo-first order reaction was employed to describe the reduction rate of KMnO4.

  9. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    OpenAIRE

    2015-01-01

    This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12...

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  11. Combustion of gases released from peat or biomass in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-01

    Temperature and gas concentration experiments have been conducted to determine at what temperature carbon monoxide, methane and propane begin to react within the particulate phase of a bubbling fluidized bed. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 50 mm surrounded by an electric heater. Two different natural quartz sands were used (d{sub p} =0.35 mm and 0.6 mm). The bed height used varied between 100 and 260 mm (in unfluidized state). A porous plate distributor, made of kaowool, was used to avoid jets appearing at the distributor. The bed was operated at incipient fluidization (u = 5.9-9 cm/s). The bed temperatures used ranged from 600 deg C to 850 deg C. It was found that carbon monoxide, methane and propane react inside a fluidized bed, but often other conditions than temperature have a considerable effect on the rate of the reaction. The critical temperature was found to be 650 deg C for propane and carbon monoxide and 700 deg C for methane. With under-stoichiometric mixture of carbon monoxide and air the heat release can be over 2.5 MW/m{sup 3} when bed temperature is 650 deg C. According to these experiments it is obvious that the reaction mechanism for carbon monoxide oxidation inside a fluidized bed differs greatly from that of gas phase only. The results of our more than 1300 test runs show clearly the varying effects of the different bed materials. Even with the same bed material totally different results can be obtained. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies was conducted with both fresh bed particles and used bed particles. Also the effect of commonly used ingredients, like limestone and dolomite, was tested. A global model for carbon monoxide oxidation inside a fluidized bed was introduced. The model was tested against measured data from the laboratory-scale fluidized bed test rig. (Abstract Truncated)

  12. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    Science.gov (United States)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  13. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  14. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  15. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  16. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  17. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.

    Science.gov (United States)

    Akpulat, Onur; Varol, Murat; Atimtay, Aysel T

    2010-08-01

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O(2), CO, SO(2) and NO(x) were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO(2) and NO(x) emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  18. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  19. Studies on nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurized fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yong

    1998-09-01

    This thesis describes the experimental studies of nitrogen oxide (NO, NO{sub 2}, N{sub 2}O) emissions in pressurized fluidized bed combustion (PFBC). In the first part of the thesis the background and the objectives of this study are introduced. The second part summarizes the fundamental knowledge about the formation and destruction of nitrogen oxides in coal combustion, particularly in the conditions of PFBC. The instrumentation of test facilities, measurement and data analysis is described in the third part. Then the most important experimental results follow in the next parts. The forth part describes the results from a PFBC test rig and an empirical modelling for predicting the emissions of NO{sub x} and N{sub 2}O. Finally, the fundamental work on coal combustion and fuel nitrogen conversion in a PFBC batch reactor is presented. These studies clearly confirm the potential of PFBC technology in the control nitrogen of oxide emissions. The research in the test rig was concentrated on determining the effects of process parameters on the emissions of nitrogen oxides with different fuels. Another objective was to examine the reduction of nitrogen oxides with the control methods in PFBC conditions, including ammonia injection and air staging combustion for reducing NO, and high temperature operations for reducing N{sub 2}0. The results indicate that pressurized operation suppresses the conversion of fuel-N to nitrogen oxides and favors with employing the reduction methods for further nitrogen oxide reduction, for instance the temperature window of NO reduction with ammonia injection has been found to be widened to even lower temperature range. Maximum reductions of 80-85 % with ammonia injection and 75-80 % with air staging combustion were achieved in the conditions examined. Considerably low emissions of N{sub 2}O (<7 ppm) were obtained in the tests of N{sub 2}O control, and thermal decomposition proved to be the laming pathway of N{sub 2}O destruction in PFBC. In

  20. Temperatures of coal particle during devolatilization in fluidized bed combustion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Komatina, M.; Manovic, V.; Saljnikov, A. [University of Belgrade, Belgrade (Serbia). Faculty of Mechanical Engineering

    2006-11-15

    The purpose of this study was to investigate the thermal behavior of coal during devolatilization in fluidized bed. Temperatures in the center of single coal particle were measured by thermocouple. Two coals were tested (brown coal Bogovina and lignite Kosovo), using dry coal particle, shaped into spherical form of diameters 7 and 10 mm, in temperature range from 300 to 850{sup o}C. Unsteady behavior of coal particle during heating and devolatilization in fluidized bed was described by a model that takes into account heat transfer between bed and particle surface, heat transfer through particle and an endothermic chemical reaction of first-order. Based on the mathematical model analysis and compared with experimental results, values of heat conductivity {lambda}{sub C} and heat capacity (C-p) of coal were determined. The best agreement was obtained for constant thermal properties, for brown coal {lambda}{sub C} = 0.20 W/mK and C{sub p} = 1200 J/kgK and for lignite {lambda}{sub C} = 0.17 W/mK and C-p = 1100 J/kgK.

  1. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  2. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  3. Air Distributor Designs for Fluidized Bed Combustors: A Review

    Directory of Open Access Journals (Sweden)

    A. Shukrie

    2016-06-01

    Full Text Available Fluidized bed combustion (FBC has been recognized as one of the suitable technologies for converting a wide variety of biomass fuels into energy. One of the key factors affecting the successful operation of fluidized bed combustion is its distributor plate design. Therefore, the main purpose of this article is to provide a critical overview of the published studies that are relevant to the characteristics of different fluidized bed air distributor designs. The review of available works display that the type of distributor design significantly affects the operation of the fluidized bed i.e., performance characteristics, fluidization quality, air flow dynamics, solid pattern and mixing caused by the direction of air flow through the distributors. Overall it is observed that high pressure drop across the distributor is one of the major draw backs of the current distributor designs. However, fluidization was stable in a fluidized bed operated at a low perforation ratio distributor due to the pressure drop across the distributor, adequate to provide uniform gas distribution. The swirling motion produced by the inclined injection of gas promotes lateral dispersion and significantly improves fluidization quality. Lastly, the research gaps are highlighted for future improvement consideration on the development of efficient distributor designs.

  4. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  5. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  6. Experimental Study of Stabilized Soil Utilizing Circulating Fluidized Bed Combustion Desulfurization Ash with Carbide Slag and Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Dezhi Shao

    2015-01-01

    Full Text Available This paper discusses the feasibility of preparing soil stabilizer which is circulating fluidized bed combustion ash-based, supplemented with carbide slag and desulfurization gypsum, composed entirely of complete industrial wastes. The results show that CFBC ash has better pozzolanic activity than fly ash. When stabilizer total content is 10% and the ratio of CFBC ash : carbide slag : desulfurization gypsum is 7.2 : 1.8 : 1, compressive strength of stabilized soil can reach the maximum of 2.12 MPa at the age of 28 d of curing. Stabilizer can meet the strength requirements of cement-soil mixing pile composite foundation and cement-soil mixing pile waterproof curtain.

  7. Fluidized beds and their application to hazardous wastes incineration. Lecho fluidizado y su aplicacion a la incineracion de residuos peligrosos

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, J.F.; Franco, M.

    1993-01-01

    The fluidized bed combustion technology and its application to sludge and hazardous wastes incineration are analyzed. A review on specific advantages of this technology including those related to investment costs, operation and maintenance, as well as operation flexibility are given.

  8. The combined heating and power station of Moabit. Circulating fluidized-bed combustion for better air in Berlin; Das Heizkraftwerk Moabit. Zirkulierende Wirbelschichtfeuerung fuer bessere Luft in Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Bade, H.

    1993-08-01

    One main focus of the comprehensive environmental protection programme of the BEWAG (Berliner Kraft- und Licht Aktiengesellschaft) in order to reduce the emissions of the power stations was the modernisation of the combined heating and power station of Moabit. One heating block that had been erected in the middle of the fifties was replaced by a modern plant with the new technique of circulating fluidized bed combustion. The tradition of using the oldest power station of Berlin as a testing field for new directional technologies was carried on. Hence a new power station was erected that did not achieve the reduction of emissions by an additionally connected flue gas dust collector plant but by an environmentally harmless fuel engineering. Since the plant works according to the method of a combined heat and power generation the fuel utilisation is considerably higher than in the case of a pure current generation. The 100-MW heating and power station block with the circulating fluidized bed combustion is the largest plant of this kind in Germany at the present. (orig./KO). [Deutsch] Ein Schwerpunkt des umfassenden Umweltschutzprogrammes der BEWAG zur Senkung der Emissionen der Kraftwerke war die Modernisierung des Heizkraftwerkes Moabit. Als Ersatz fuer einen aus der Mitte der fuenfziger Jahre stammenden Block wurde hier mit der neuen Technik der zirkulierenden Wirbelschichtfeuerung (ZWS) eine moderne Anlage errichtet. Der Tradition des aeltesten Kraftwerkes Berlins als Versuchsfeld fuer neue richtungsweisende Techniken folgend entstand ein Kraftwerk, in dem die Emissionsreduzierung nicht durch nachgeschaltete Rauchgasreinigungsanlagen, sondern durch eine besonders umweltschonende Feuerungstechnik erreicht wurde. Da die Anlage nach dem Prinzip der Kraft-Waerme-Kopplung arbeitet, ist auch die Brennstoffausnutzung bedeutend hoeher als bei reiner Stromerzeugung. Der 100-MW-Heizkraftwerksblock mit ZWS-Feuerung ist die gegenwaertig groesste Anlage dieser Art in

  9. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    Science.gov (United States)

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions.

  10. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO Power Engineering, Vantaa (Finland); Kauppinen, E.; Latva-Somppi, J.; Kurkela, J. [VTT Chemical Technology, Espoo (Finland); Partanen, J. [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  11. NO{sub x} formation and destruction in circulating fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Munts, V.A.; Lecomtseva, U.G.; Baskakov, A.P.; Putrick, S.B. [Ural State Technical Univ., Ekaterinburg (Russian Federation)

    2002-07-01

    In general, nitrogen oxides are formed in circulating fluidized bed combustors (CFBC) because of fuels that contain nitrogen. This paper describes how nitrogen oxide (NO{sub x}) is formed during the coal burning process. Two consecutive reactions occur. The first is the homogeneous oxidation of nitrogen-containing volatiles followed by the heterogeneous oxidation of char-bound nitrogen on the char surface. Kinetic constants of the oxidation reaction for nitrogen-containing volatile species were also determined for nitrogen contained in a coke residue. The rate of NO{sub x} reduction on the surface of char particles was also measured to calculate NO{sub x} concentrations in CFBC. It was determined that the estimated fraction of char-bound nitrogen converted into NO{sub x}, depends on the nitrogen content of the fuel and on the ratio of rate constants of nitrogen and carbon oxidation. 10 refs., 1 tab., 4 figs.

  12. A circulating fluidized bed combustor system with inherent CO{sub 2} separation : application of chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Lyngfelt, A.; Mattisson, T.; Johnsson, F. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    This paper presents a method to achieve carbon dioxide-free combustion while still using fossil fuels as the energy source. The method is based on separation and disposal of carbon dioxide from combustion. Chemical looping combustion (CLC) uses metal oxide particles to transfer oxygen from air to a gaseous fuel. The gaseous fuel is combusted with inherent separation of carbon dioxide (a greenhouse gas) from the flue gas. A bubbling bed below the downcomer in the circulating fluidized bed acts as a fuel reactor where oxygen is transferred from the metal oxide to the fuel. The riser acts as the air reactor where the oxygen from the air oxidizes the previously reduced metal oxide. The fuel and combustion air are not in direct contact. The conceptual design of the pressurized CLC system was examined in order to map suitable conditions for the riser and to achieve sufficient net solids flux between the reactors and the bed mass in the riser. A range of possible operating conditions were suggested. The operating conditions depend on the reaction properties of the oxygen carriers. 16 refs., 1 tab., 8 figs.

  13. Co-firing of pine chips with Turkish lignites in 750kWth circulating fluidized bed combustion system.

    Science.gov (United States)

    Atimtay, Aysel T; Kayahan, Ufuk; Unlu, Alper; Engin, Berrin; Varol, Murat; Olgun, Hayati; Atakul, Husnu

    2017-01-01

    Two Turkish lignites which have different sulfur levels (2-2.9% dry) and ash levels (17-25% dry) were combusted with a Turkish forest red pine chips in a 750kW-thermal capacity circulating fluidized bed combustor (CFBC) system. The combustion temperature was held at 850±50°C. Flue gas emissions were measured by Gasmet DX-4000 flue gas analyzer. Two lignites were combusted alone, and then limestone was added to lignites to reduce SO2 emissions. Ca/S=3 was used. 30% percent of red pine chips were added to the lignites for co-firing experiments without limestone in order to see the biomass effects. The results showed that with limestone addition SO2 concentration was reduced below the limit values for all lignites. CO emissions are high at low excess air ratios, gets lower as the excess air ratio increases. During co-firing experiments the temperature in the freeboard was 100-150°C higher as compared to coal combustion experiments.

  14. Status of the fluidized bed unit

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  15. Application of fluidized-bed technology to the recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.; Evans, A.R.

    1979-08-01

    The fluidized-bed, waste-heat boiler (FBWHB) may represent a significant opportunity for industrial energy conservation. The applications of FBWHBs to the recovery of heat from waste streams are examined. Compared to other waste-heat recovery units, FBWHBs can transfer more heat per unit volume and are physically smaller - an important consideration for retrofit and construction costs. A detailed discussion of fluidized beds, including their application in waste-heat recovery and the factors affecting FBWHB design is presented. Design methodology is discussed along with a preliminary engineering design for recovering heat from a waste-gas stream, a typical FBWHB application.

  16. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  17. Dioxins/furans emissions from fluidized bed combustion of salt-laden hog fuel.

    Science.gov (United States)

    Preto, Fernando; McCleave, Robert; McLaughlin, Dan; Wang, Jinsheng

    2005-02-01

    Polychlorinated dibenzodioxins/furans (PCDD/F) were formed in substantial quantities in a pilot-scale fluidized bed combustor burning salt-laden waste wood, a common fuel for Canadian coastal pulp and paper mills. Formation of PCDD/F increased with increasing chloride content in the feed, and appeared to correlate with the chlorine content in the fly ash. It took a very long time for the ash chlorine content to stabilize, suggesting that chlorine transferred slowly from the flue gas to the ash. The baghouse may contribute largely to formation of the PCDD/F, owing to its temperature range and the potentially long residence time for ash particles. Controlling the baghouse temperature to reduce the PCDD/F formation in the baghouse should be effective in reducing the total emission level. While sulphur addition was found to reduce the emission level by as much as 90%, the emission level was still above the regulated level for the mills burning salt-laden wood under the conditions of the present study. No relation between the emission level and CO concentration in the flue gas was observed.

  18. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  19. HTR combustion head end comparison of the shaft furnace and fluidized bed processes

    Energy Technology Data Exchange (ETDEWEB)

    Boehnert, R.; Kaiser, G.; Pirk, H.; Tillessen, U.

    1975-01-15

    Two methods are described for the combustion of the graphite of HTR fuel elements, a sufficient description of the principles being given to permit an understanding of the processes. The present state of the technology of the two processes is then compared on the basis of the results obtained at Gulf General Atomic. Finally, the possibilities of further development are examined using a pilot plant designed to deliver a reactor power of 7000 MWe as the basis. The present report is a collection of facts. It contains neither an evaluation nor a recommendation. A summarized comparison of the state of the technology and the possibilities of development is given in tabular form.

  20. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  1. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  2. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    Science.gov (United States)

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems.

  3. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution.

  4. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.

    Science.gov (United States)

    Toraman, Oner Yusuf; Topal, Hüseyin; Bayat, Oktay; Atimtay, Aysel T

    2004-01-01

    In this study, a circulating fluidized bed (CFB) of 125 mm diameter and 1800mm height was used to find the combustion characteristics of sewage sludge (SS) produced in Turkey. Sludge + olive cake, and sludge + lignite coal mixtures were burned separately. Various sludge-to-lignite coal and sludge-to-olive cake ratios (5/95, 10/90, 15/85, 20/80) were tried. On-line concentrations of major components (O2, SO2, CO2, CO, NOx, CmHn) were measured in the flue gas, as well as temperature and pressure distributions along the bed. Combustion efficiencies of sludge + olive cake and sludge + lignite coal mixtures were calculated, and the optimum conditions for operating parameters were discussed. The results have shown that the combustion mainly takes place in the upper regions of the main column where the temperature reaches 900 degrees C. SS + Coal burn in the CFB with an efficiency of 95.14% to 96.18%, which is considered to be quite good. When burning sludge mixed with olive cake, appreciable amounts of CO and unburned hydrocarbons are formed and the combustion efficiency drops to 92.93%. CO and CmHn emissions are lower when lignite coal is mixed with various amounts of SS than the emissions when the coal is burned alone. As the %SS is increased in the fuel mixture, the SO2 emission decreases. NOx emissions are slightly higher. When burning sludge mixed with olive cake, SO2 and NOx emissions are slightly higher. CO and CmHn emissions decrease sharply when SS is mixed with 5%wt. olive cake. With increasing sludge ratio these emissions increase due to the unburned hydrocarbons. As a result of this study, it is believed that SS can be burned effectively in a CFBC together with other fuels, especially with olive cake (OC). OC will be a good additive fuel for the combustion of lower quality fuels.

  5. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  6. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62

  7. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  8. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng

    2011-01-01

    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  9. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.

    Science.gov (United States)

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie

    2009-05-01

    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash.

  10. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  11. Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.

    Science.gov (United States)

    Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2012-06-01

    The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM.

  12. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  13. Utilization of coal ash from fluidized-bed combustion boilers as road base material. Ryudosho boiler sekitan nenshobai no robanzai eno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Shibata, Y.; Takada, T.; Yamamuro, H. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the technological development to utilize coal ash from the fluidized-bed combustion boiler as a road base material. In case of mass production by low pressure press forming, the following hardening conditions are reported to be appropriate for kneading the ash only with water, curing it with steam and obtaining the higher compressive strength of thus hardened ash than 150kgf/cm[sup 2]: the boiler operational condition is to be adjusted so that the CaO content and char content may exceed 10% and fall bellow 20%, respectively of the coal ash. The kneading water rate is to be set around the plastic limit of coal ash. The duration of precuring and main precuring is to be 6 to 10h, at 30[degree]C and 10 to 15h at 60[degree]C, respectively. Explained is the result of mass production test with kneader, plastic former and crusher of the same structure as the presumed actual ones, and assessment test (laboratory test and field test on the road pavement) on the hardened and crushed ash with the compressive strength of 170kgf/cm[sup 2] as a pavement material. The present report also reports the operational start of a demonstration plant for the base material production. 5 refs., 11 figs., 2 tabs.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  15. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  16. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  17. Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Nigde University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 51100 Nigde (Turkey)

    2010-04-15

    In this study, the combustion efficiency and the emission performance of biomass fired CFBs are tested via a previously published 2D model [Gungor A. Two-dimensional biomass combustion modeling of CFB. Fuel 2008; 87: 1453-1468.] against two published comprehensive data sets. The model efficiently simulates the outcome with respect to the excess air values, which is the main parameter that is verified. The combustion efficiency of OC changes between 82.25 and 98.66% as the excess air increases from 10 to 116% with the maximum error of about 8.59%. The rice husk combustion efficiency changes between 98.05 and 97.56% as the bed operational velocity increases from 1.2 to 1.5 m s{sup -1} with the maximum error of about 7.60%. CO and NO{sub x} emissions increase with increasing bed operational velocity. Increasing excess air results in slightly higher levels of NO{sub x} emission. A significant amount of combustion occurs in the upper zone due to the high volatile content of the biomass fuels. (author)

  18. Advanced air staging techniques to improve fuel flexibility, reliability and emissions in fluidized bed co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aamand, Lars-Erik; Leckner, Bo [Chalmers Technical Univ., Goeteborg (Sweden); Luecke, Karsten; Werther, Joachim [Technical Univ. of Hamburg-Harburg (Germany)

    2001-12-01

    A joint research project between the Technical University of Hamburg-Harburg and Chalmers Technical University. For operation under co-combustion the following results should be considered: The high ash content of the sewage sludge results in significantly increased ash flows. Although high alkali metal concentrations are found in the sewage sludge ash, no critical concentrations were reached and tendencies to fouling were not observed. The trace metal input rises with increased sludge fraction. However, emissions of metal compounds were well below legal limits. The trace metals tend to accumulate on the fly ash. In general, very low fuel nitrogen conversions to NO and N{sub 2}O of 2 - 4 % are achievable. With coal as a base fuel alternative air staging with secondary air supply after solids separation attains even lower NO emissions than normal staging without strongly affecting CO and SO{sub 2} emissions. Alternative staging also reduces N{sub 2}O emissions. An optimum for the excess air ratio in the riser of 1.05 was found for a total excess air ratio of 1.2. The higher the volatile content of the fuel is, the less effective the NO reduction due to air staging becomes. The measurements suggest that the optimum gas residence time regarding the emissions in CFB combustors is around 6 to 7 s. These times are achieved in commercial scale plants due to their large cyclones that perhaps partly can replace a large afterburner chamber. The circulating fluidized bed boiler can be operated in a very flexible way with various fuel mixtures up to an energy fraction of sludge of 25% without exceeding legal emission limits.

  19. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  20. Fluidized bed calciner apparatus

    Science.gov (United States)

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  1. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  2. Experimental Study and Modelling of Char Combustion under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; ManfredC.Wirsum; 等

    1998-01-01

    The combustion behavior of chars from two Chinese coals has been investigated in a laboratory scale bubbling fludized bed system in Siegen University,Germany,Experimental equipment and method are introduced.The shrinking-core model and the “shrinking-particl” model were employed to evaluate the kinetic parameters.The results indicated that the char conversion process of these two coals can be well described by the two models.

  3. Ash formation, transformations and deposition during fluidized bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.; Lind, T.; Kurkela, J.; Latva-Somppi, J.; Lyyraenen, J.; Valmari, T. [VTT Chemical Technology, Espoo (Finland). Aerosol Technology Group

    1998-12-31

    In this work, ash formation and transformations as well as bed agglomeration and fly ash deposition onto the heat exchanger tubes during fluidised bed combustion and gasification were studied using experimental methods and chemical equilibrium calculations. The fuels were coal and pulp and paper mill sludges as well as different wood-based waste materials. The volatilized heavy metal behaviour during pressurized combustion and gasification was studied using chemical equilibrium calculations. The classification of trace elements into four groups presented in this report matched well with the former studies. The release of ash-forming compounds during pyrolysis was studied experimentally in a heated grid reactor. Very small fractions of Si, Al, Fe, Ca, Mg, Na, and K were released from the biomass fuels, peat, and coals during pyrolysis at 900 deg C. Bottom ash during combustion of biomass fuels was found to be formed from bed material and ash-forming compounds. Ash-forming compounds were found to adhere to the bed material by two mechanisms: (i) by deposition of the non-volatile ash compounds as particles onto the bed particle surface, and (ii) by chemical reactions of the volatile ash compounds, e.g., K and Pb, with the bed particles. The size distributions of the fly ash particles were bimodal. The fine mode particles (Dp < 1 {mu}m) were formed by nucleation of the volatilised refractory oxides, e.g., SiO{sub 2}. The nucleated particles grew further by coagulation and condensation of the volatile ash compounds. The coarse fly ash fraction (Dp > 1 {mu}m) was formed from the non-volatile ash compounds, e.g., Ca and Si. The coarse mode particles were agglomerated and irregular in shape. During sludge combustion, the fly ash was mostly in the supermicron size range. This is beneficial for conventional flue gas cleaning devices that are most effective in this particle size. This is especially true for paper mill sludges, producing negligible concentrations of submicron

  4. Study on Concrete Pavement Materials Using Fluidized Bed Combustion Coal Ashes%燃煤固硫灰渣混凝土路面材料研究

    Institute of Scientific and Technical Information of China (English)

    黄煜镔; 钱觉时; 张建业; 党玉栋

    2011-01-01

    Using local industrial solid waste to reduce the building cost of rural road is very important. With the experimental study on cementitious system mixed with fluidized bed combustion coal ashes, the results show that; fluidized bed combustion coal ashes have a significant pozzolanic activity due to the characteristic of porous surface and low degree of anionic polymerization, and these ashes can be organized a cementitious systems with alkali and sulfate activator,in which the fluidized bed combustion coal ashes could be up to 70%. Mixing cement and increasing the amount of sulfate-activating agent can improve the early performance of the system significantly. Especially,the dosage of sodium sulfate must be more than 1. 5%. The properties of concrete mixed with fluidized bed combustion coal ashes are suitable in terms of strength and brittleness which make it be used in the rural road successfully.%降低农村公路造价具有重要的现实意义,利用地方工业固体废弃物是一种途径.通过对燃煤固硫灰渣胶凝系统的试验研究,结果表明:燃煤固硫灰渣表面疏松和阴离子聚合度低的特征,使其具有显著的火山灰效应,可与碱、硫酸盐激发剂组成胶凝系统,其中固硫灰渣占70%以上;掺加水泥和增大硫酸盐激发剂掺量能显著改善系统早期性能,硫酸盐掺量宜大于1.5%;燃煤固硫灰渣混凝土具有较好的强度性能和材料韧性,在农村公路中应用具有现实可行性.

  5. Regenerative Portland cement sorbents for fluidized-bed combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, A S; Sethi, D; Steinberg, M

    1980-01-01

    Portland cements are commercially available construction materials that contain high concentrations of calcium silicates. The silicates are highly reactive towards SO/sub 2/ at temperatures and pressures encountered in atmospheric and pressurized FBC's. Of the Portland cements tested, PC III appears to have the highest sulfation capacity when sulfated by SO/sub 2/ at FBC conditions. A thermodynamic analysis of the sulfation of calcium silicates indicates that they are capable of reducing the concentration of SO/sub 2/ in FBC combustion gases to within the current EPA emission limits. The optimum temperature for sulfation of 16/20 mesh PC III pellets is about 1000/sup 0/C in comparison to about 875/sup 0/ for natural limestones. The higher observed optimum temperature is an advantage because combustion and power cycle efficiencies tend to increase as bed temperature increases. The reactions for regenerating sulfated calcium silicates are similar to those for regenerating calcium sulfate. However, the equilibrium partial pressures of SO/sub 2/ in the reductive decomposition of sulfated silicates are much higher than for sulfate lime. This implies that higher SO/sub 2/ concentrations will be attainable in the regenerator off-gas which will result in more economical conversion of SO/sub 2/ to sulfur or sulfuric acid. The sulfation capacity and regeneration efficiency of PC III pellets do not deteriorate with repeated sulfation/regeneration cycling. This indicates that PC III pellets are suitable for use in regenerative systems. The sulfation capacity of PC III is independent of pressure up to at least 10 atm.

  6. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    Energy Technology Data Exchange (ETDEWEB)

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of

  7. [Intermediate experiment and mechanism analysis of flue gas desulfurization technology by circulating fluidized bed].

    Science.gov (United States)

    Zhao, Xudong; Wu, Shaohua; Ma, Chunyuan; Qin, Yukun

    2002-03-01

    A new Circulating Fluidized Bed was designed for intermediate experiment of flue gas desulphurization, in which the flue gas flow rate was 3500 m3/h. By using it, the basic experiments were carried out to study the influence of Ca/S and supersaturated temperature on desulphurization efficiency and the effect of the recycling solid particle in the sulfur removal column on desulphurization performance. The results showed when Ca/S = 1.2, the desulphurization efficiency was increased by 15% through the recycle of solid particle; the gas velocity inside the bed could be designed higher. The mechanism analysis were also studied and the method to increase effective resident time was introduced.

  8. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    Energy Technology Data Exchange (ETDEWEB)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  9. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  10. CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C

    2008-07-31

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate

  11. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)

    1996-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  12. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    Science.gov (United States)

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and

  13. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  14. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  15. Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review

    Directory of Open Access Journals (Sweden)

    Adrian H.M. Verkooijen

    2011-03-01

    Full Text Available Biomass is one of the renewable and potentially sustainable energy sources and has many possible applications varying from heat generation to the production of advanced secondary energy carriers. The latter option would allow mobile services like the transportation sector to reduce its dependency on the fossil fuel supply. This article reviews the state-of-the-art of the fluidization technology applied for the gasification of biomass aimed at the production of gas for subsequent synthesis of the liquid energy carriers via, e.g., the Fischer-Tropsch process. It discusses the advantages of the gasification technology over combustion, considers the size of the conversion plant in view of the local biomass availability, assesses the pros and cons of different gasifier types in view of the application of the product gas. Subsequently the article focuses on the fluidized bed technology to discuss the main process parameters and their influence on the product composition and the operability of the gasifier. Finally a synthesis process (FT is introduced shortly to illustrate the necessary gas cleaning steps in view of the purity requirements for the FT feed gas.

  16. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  17. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  18. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  19. Large fluidized bed combustion power plant unit for the supply of electricity and heat for Berlin. Pt. 1. Groesster Wirbelschicht-Kraftwerksblock zur Strom- und Fernwaermeversorgung fuer Berlin. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Abroell, G. (ABB Kraftwerke AG, Mannheim (Germany)); Bade, H. (Berliner Kraft- und Licht (BEWAG)-AG, Berlin (Germany)); Bietz, K.H. (Lurgi GmbH, Frankfurt am Main (Germany)); Jahn, P. (EAB Energie-Anlagen Berlin GmbH (Germany))

    1991-11-01

    The Berlin Power and Light Company (Bewag) has decided to install, on the inner city site of Moabit, for the supply of electricity and district heating, a new unit with circulation atmospheric fluidized bed combustion. The plant will be designed for a thermal capacity of 240 MW. The basis for this decision, and also the technical implementation, will be made public. (orig.).

  20. Large fluidized bed combustion power plant unit for the supply of electricity and heat for Berlin. Pt. 2. Groesster Wirbelschicht-Kraftwerksblock zur Strom- und Fernwaermeversorgung fuer Berlin. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abroell, G. (ABB Kraftwerke AG, Mannheim (Germany)); Bade, H. (Berliner Kraft- und Licht (BEWAG)-AG, Berlin (Germany)); Bietz, K.H. (Lurgi GmbH, Frankfurt am Main (Germany)); Jahn, P. (EAB Energie-Anlagen Berlin GmbH (Germany))

    1991-12-01

    The Berlin Power and Light Company (Bewag) has decided to install, on the inner city site of Moabit, for the supply of electricity and district heating, a new unit with circulation atmospheric fluidized bed combustion. The plant will be designed for a thermal capacity of 240 MW. The bases for this decision, and also the technical implementation, will be made public. (orig.).

  1. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  2. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  3. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1996-03-01

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite, sulfided in the fluidized-bed reactor during last quarter, were analyzed. The extent of sulfidation in these samples was in the range of 20 to 50%, which represent carbonizer discharge material at different operating conditions. The high pressure thermogravimetric analyzer (BPTGA) unit has been modified and a new pressure control system was installed to eliminate pressure fluctuation during the sulfation tests.

  4. Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-03-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

  5. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-06-01

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  6. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.; Wangerow, J.R. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  7. Materials problems in fluidized-bed combustion systems: effect of process variables on in-bed corrosion. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.J.; Rogers, E.A.; LaNauze, R.D.

    1980-08-01

    The influence of operating conditions in a coal fired fluidized bed combustor on the rate of fireside corrosion of air cooled heat exchanger tubes, with metal temperatures in the range 540/sup 0/C to 900/sup 0/C, has been investigated. Four 250 hour tests were carried out on a 0.3 m square atmospheric pressure fluidized bed combustor operating with a fluidizing velocity of 0.9 ms/sup -1/, 10 to 20% excess air and bed temperatures of 850/sup 0/C and 900/sup 0/C. The feed coal was Illinois No. 6 which was used both with and without the addition of limestones to suppress the emission of sulfur oxides. A test without the addition of limestone showed very little corrosive attack of any metal components. Tests with the addition of limestone showed a range of corrosive attack. In general, where different alloy types were exposed at the same metal temperature, the iron based austenitic steels showed a better corrosion resistance than the nickel based alloys. This result strongly supports the model for the corrosion which has been developed as a result of the earlier investigations. This model postulates that local regions of low oxygen activity exist in the system, and, in the presence of calcium sulfate, these result in the generation of high local sulfur activities. The combination of low oxygen and high sulfur activities leads to sulfidation of sensitive alloys.

  8. NO{sub x} formation and reduction during combustion of wet sewage sludge in the circulating fluidized bed -- Measurements and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Philippek, C.; Knoebig, T.; Schoenfelder, H.; Werther, J. [Technical Univ. Hamburg-Harburg, Hamburg (Germany)

    1997-12-31

    Mechanically dewatered municipal sewage sludge with a water content between 70 and 80 wt% was incinerated in a pilot-scale circulating fluidized bed (CFB). The combustion chamber had a total height of 15 m and a circular cross-section of 0.1 m diameter. In order to compensate for heat losses, the combustor was electrically heated from the outside. The combustion temperature of 850 C could thus be maintained along the whole length of the riser. Axial concentration profiles of the gaseous species O{sub 2}, CO{sub 2}, NO, N{sub 2}O, NH{sub 3} and organic carbon measured as CH{sub 4} were recorded for a variety of operating conditions. Since a major part of the investigation was devoted to the elucidation of the mechanisms of NO{sub x} formation and reduction in the case of combustion of wet sewage sludge, the combustor was also used for reaction kinetic studies whereby different gases, e.g., CO, NH{sub 3}, NO and N{sub 2}O were injected into the combustor which was during these experiments fluidized with nitrogen. The kinetic studies lead to a simplified kinetic scheme for NO{sub x} formation and reduction under conditions of sludge combustion. The combustor model divides the combustion chamber into four stages, i.e., a bottom zone, a splash-zone, an upper dilute zone and an exit zone. The bottom zone is modeled as a bubbling fluidized bed, whereas for the upper dilute zone a two-phase structure with an upflowing dilute suspension phase and a downflowing dense phase is assumed. This model is combined with a combustion model and the NO{sub x} formation and reduction model to form the CFB sludge combustor model. The calculations yield axial distributions of the different gaseous species which are shown to be fairly good agreement with the measurements. The model is able to explain the effects of different operating variables on the NO{sub x} emissions. IN particular, the model is able to explain why two-stage combustion, which in the case of coal combustion is

  9. Study on mercury migration in a circulating fluidized bed combustion boiler%循环流化床燃煤锅炉中的汞迁移研究

    Institute of Scientific and Technical Information of China (English)

    武成利; 曹晏; 李寒旭; 潘伟平

    2012-01-01

    采用美国环保署颁布的吸附剂吸附汞采样方法30B(USEPA 40 CFR Part 60 30B)采集燃煤烟气中汞.选择一循环流化床燃煤机组进行现场采样,吸附剂吸附烟囱处烟气中的汞、入炉煤样、锅炉底灰、静电除尘器飞灰等样品同时采集.对该机组中汞质量平衡率进行衡算,通过汞质量平衡率说明了汞采样方法的准确性和有效性.评价了汞在飞灰、底灰和烟气中的分布,循环流化床锅炉底灰中对脱汞的贡献率仅0.55%,飞灰脱除汞的效率高达83.37%,剩余的16.08%的汞排放入大气环境,表明循环流化床机组是有效控制汞的清洁煤燃烧技术.%Mercury concentrations in the flue gas at the stack were measured using a sorbent trap method as per United States Environmental Protection Agency Method 30B (I. E. , USEPA 40 CFR Part 60 30B), and the sampling method has merits of convenient setup, simply operation and fast analysis. Field tests were conducted at a unit of the Circulating Fluidized Bed Combustion (CFBC). During the course of sampling the mercury in the flue gas, coal samples, bottom ash and fly ash were collected and analyzed. Rates of mercury material balance though the unit were calculated, and correctness and validity of mercury sampling method were certified. Mercury distributions in fly ash, bottom ash and flue gas were evaluated, and the results showed that firstly bottom ash of CFBC removed only 0. 55% of total mercury, secondly removal efficiency of fly ash reaching 83. 37% , in the end 16.08% of total mercury was emitted to the air. The determined data of mercury emissions show that the CFBC is a clean coal combustion technology of effectively removing mercury.

  10. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  11. Fluidized bed gasification of the fuel fraction of municipal solid wastes; Gasificacion en lecho fluidizado de la fraccion combustible de los residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.; Baldasano, J. M.; Gasso, S. [Universidad Politecnica de Cataluna. Barcelona (Spain)

    1998-12-31

    In this paper, the results obtained in the application of the fluidized-bed gasification to the treatment of solid waste with high heating value. These wastes could be valuable materials in thermo conversion processes such as gasification. The combustible fraction of municipal solid waste (MSW) composed of paper, cardboard, plastics (PET,PVC), referred as refuse derived fuel (RDF), has been considered in this work. The experimental facility consists of an air-blown gasifier operating at atmospheric pressure with a capacity of 50 kg/h. The results obtained show that the gasification of RDF allows to produce a gas with a high heating value (HHV) of 7.8 Mj/Mn3 and recovering more than 80% of the initial HHV of the waste in the cold gas. Solid residue produced in the gasification process is lower than 10% of the initial waste. (Author)

  12. Second-generation pressurized fluidized-bed combustion plant: Conceptual design and optimization of a second-generation PFB combustion plant. Phase 2, Annual report, October 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Domeracki, W.; Newby, R.; Rehmat, A.; Horazak, D.

    1992-10-01

    After many years of experimental testing and development work, coal-fired pressurized fluidized bed (PFB) combustion combined-cycle power plants are moving toward reality. Under the US Department of Energy`s Clean Coal Technology Program, a 70-MWe PFB combustion retrofit, utilizing a 1525{degrees}F gas turbine inlet temperature, has been built and operated as a demonstration plant at the American Electric Power Company`s Tidd Plant in Brilliant, Ohio. As PFB combustion technology moves closer and closer to commercialization, interest is turning toward the development of an even more efficient and more cost-effective PFB combustion plant. The targeted goals of this ``second-generation`` plant are a 45-percent efficiency and a cost of electricity (COE) that is at least 20 percent lower than the COE of a conventional pulverized-coal (PC)-fired plant with stack gas scrubbing. In addition, plant emissions should be within New Source Performance Standards (NSPS) and the plant should have high availability, be able to burn different ranks of coal, and incorporate modular construction technologies. In response to this need, a team of companies led by Foster Wheeler Development Corporation (FWDC). The key components in the proposed second-generation plant are the carbonizer, CPFBC, ceramic cross-flow filter, and topping combustor. Unfortunately, none of these components has been operated at proposed plant operating conditions, and experimental tests must be conducted to explore/determine their performance throughout the proposed plant operating envelope. The major thrust of Phase 2 is to design, construct, test, and evaluate the performance of the key components of the proposed plant.

  13. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    Science.gov (United States)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  14. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal.

    Science.gov (United States)

    Zhang, Gang; Hai, Jing; Cheng, Jiang; Cai, Zhiqi; Ren, Mingzhong; Zhang, Sukun; Zhang, Jieru

    2013-01-01

    The emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals were evaluated during co-combustion of sewage sludge with coal from a circulating fluidized bed incinerator. The stack gas, slag and fly ash samples were sampled and analyzed. The gas-cleaning system consisted of electrostatic precipitators and a semi-dry scrubber. Results showed that the stack gas and fly ash exhibited mean dioxin levels of 9.4 pg I-TEQ/Nm3 and 11.65 pg I-TEQ/g, respectively, and showed great similarities in congener profiles. By contrast, the slag presented a mean dioxin level of 0.15 pg I-TEQ/g and a remarkable difference in congener profiles compared with those of the stack gas and fly ash. Co-combusting sewage sludge with coal was able to reduce PCDD/Fs emissions significantly in comparison with sewage sludge mono-combustion. The leaching levels of Hg, Pb, Cd, Ni, Cr, Cu, and As in the fly ash and slag were much lower than the limits of the environmental protection standard in China. These suggest that the co-combustion of sewage sludge and coal is an advisable treatment method from an environmental perspective.

  15. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  16. Investigations into the effects of the hybrid concepts on the performance of a pressurized fluidized bed combustion system; Untersuchungen zum Einfluss des Hybridkonzeptes auf den Betrieb einer Druckwirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1998-12-31

    Pressurized fluidized bed combustion has particular advantages as compared to conventional firing systems e.g. in-situ pollutant removal, high thermal efficiencies even in intermediate power ranges, and small reactor sizes. The widespread use of PFBC depends on rising the gasturbine inlet temperature in order to increase efficiencies. In a staged combustion process, which is a kind of a hybrid system, coal is burned substoichometrically in a pressuried fluidized bed producing a low calorific value gas. After hot gas cleanup (<700 C) the gas is afterburned allowing for gasturbine inlet temperatures of more than 1 200 C. At the IVD-PFBC test facility experiments were carried out with regard to composition of the produced gas, carbon-conversion and sulphur capture at various temperatures, pressures and air ratios. The results were compared to chemical equilibrium calculations. Based on experimental data the increase of thermal efficiency through staged combustion was studied using a process simulation program. In comparison with a standard combined cycle with a lignite fired PFBC, staged combustion led to an increase in thermal efficiency of up to 4,5% at equivalent operation conditions (thermal capacity, steam quality). (orig.) [Deutsch] Druckwirbelschichtfeuerungen (DWSF) weisen gegenueber konventionellen Feuerungen einige Vorteile auf wie z.B. in situ Schadstoffminderung, hohe thermische Wirkungsgrade auch im mittleren Leistungsbereich und geringes Bauvolumen. Die weitere Verbreitung der DWSF wird jedoch massgeblich davon abhaengen, inwieweit sich durch Erhoehung der Gasturbinen-Eintrittstemperatur ein weiteres Wirkungsgradpotential erschliessen laesst. Bei der gestuften Verbrennung, einem sog. Hybridprozess, wird Kohle in der Wirbelbrennkammer teiloxidiert. Das entstehende Schwachgas wird anschliessend gereinigt und in einer Nachbrennkammer vollstaendig umgesetzt, so dass Gasturbinen-Eintrittstemperaturen ueber 1 200 C erreicht werden koennen. An der IVD

  17. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  18. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1995-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors. In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen, calcium sulfide and calcium carbonate will be determined by conducting tests in a pressurized thermogravimetric analyzer unit. The sulfate tests conducted during this quarter, focused on the determination of the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen. The test parameters included CO{sub 2} and O{sub 2} concentrations, reaction temperature and pressure, as well as the sorbent particle size. The results obtained during this quarter suggest that the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen is very fast at temperatures above 850 C which rapidly increases with increasing temperature, achieving more than 85% conversion in less than a few minutes. The reaction appears to continue to completion, however, above 85% conversion, the rate of reaction appears to be low, requiring long residence time to reach complete conversion.

  19. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  20. Application and research status of fluidized bed biomass gasification technologies%生物质流化床气化技术应用研究现状

    Institute of Scientific and Technical Information of China (English)

    孟凡彬; 刘建冲; 王贵路; 李晓伟; 张大雷

    2011-01-01

    According to the product s of biomass gasification, the purposes of biomass gasification could be classified into hydrogen production,power generation and synthetic liquid fuel This article introduced the features of hydrogen production from biomass steam gasification technology, catalytic gasification technology and supercritical water gasification technology, analyzed the technological and economic feasibility of fluidized bed biomass gasification and summarized the research status of fluidized bed biomass gasification to liquid fuel technology.It points out that the main bottleneck of biomass fluidized bed gasification technology is to change the stoichiometric ratio, to remove tar and to clean the produced synthesis gas It is surely that the oriented gasification will be the main tendency in the future.%按所得产品不同,可将生物质气化技术分为制氢、发电和合成液体燃料3大类.文章介绍了生物质流化床水蒸气气化制氢、催化气化制氢和超临界水气化制氢的工艺特点;分析了生物质流化床气化发电的技术、经济可行性;简述了生物质流化床气化合成液体燃料的研究现状;指出气化产出气化学当量比调变、焦油去除问题和合成气净化是生物质流化床气化技术应用的主要瓶颈,认为定向气化是今后研究的主要方向.

  1. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  2. Combustion and adjustmen of North pot GB-75/5.29-M type circulating fluidized bed boiler%北锅GB-75/5.29-M型循环流化床锅炉的燃烧和调整

    Institute of Scientific and Technical Information of China (English)

    赵解放

    2012-01-01

      In the article, design parameters、the combustion adjustment and so on, on circulating fluidized bed boiler were introduced, the corresponding measures were taken, the performance of the boiler were effectively improved.%  介绍循环流化床锅炉的设计参数、燃烧调整等,采取的相应措施,有效改进了锅炉的运行性能。

  3. Phase-Plane Invariant Analysis of Pressure Fluctuations in Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoliang; HE Rong; Toshiyuki Suda; Junichi Sato

    2007-01-01

    Partial agglomeration is a major problem in fluidized beds. A chaotic analytical method based on the phase-plane invariant of the pressure fluctuations in the fluidized beds has been used to warn of agglomeration at an early stage. Cold tests (no combustion) and hot tests (combustion) in fluidized beds show that the phase-plane invariant of the pressure fluctuations can distinguish the dynamic behavior of fluidized beds with different flow rates in cold tests. With combustion, when the flow rate was kept constant, agglomeration was detected very early by looking at the phase-plane invariant. The phase-plane invariant can be used to distinguish changes in fluidized beds due to changes in the flow rate, agglomeration, or various other factors. Therefore, this reliable agglomeration early warning system can be used for better control of circulating fluidized beds.

  4. Prevention of Bed Agglomeration Problems in a Fluidized Bed Boiler by Finding the Trigging Value of Sewage Sludge Dosage Added to Combustion of Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kajsa; Gervind, Pernilla

    2009-07-01

    Agglomeration of bed sand is a common problem during combustion of biofuels with high ash content in fluidized bed boilers. Former studies have shown that co-combustion of biofuels with sewage sludge increases the agglomeration temperature. Sewage sludge has a low heating value and high ash content. It would therefore be better to use sludge as an additive to the combustion than as a co-combusted biofuel. In this study the trigging value of sludge addition to the combustion of some biofuel was investigated. The effect of adding sludge with different precipitation chemicals, iron sulphate and aluminium sulphate, was investigated. The biofuels used for the experiments were bark, refused derived fuel (RDF) and a mixture of wood and straw, 75/25 % on energy basis. All experiments were carried out in a laboratory scale fluidized bed reactor. Analyses of chemical composition of bed sand and SEM/EDX analyses were performed after the combustion. Eventually agglomeration tests were performed in order to find the agglomeration temperature of the samples. Some of the samples sintered during the combustion and were not tested for the agglomeration temperature. SEM/EDX showed that all samples of bed sand contained sand particles with more or less coatings. In some cases the coatings seemed to consist of one dense inner layer and one more porous outer layer. From SEM/EDX and chemical composition analyses it was found that the total amount of phosphorous in the bed sand samples was increased with an increased addition of sludge in all experiments. The concentration of phosphorous was especially higher in the outer layers/coatings. It was also found that elements from the sludge seem to get caught by a sticky layer at the bed sand surface and form a non-sticky or less sticky layer that prevents agglomeration. The total amount of aluminium was increased with an increased addition of sludge for the wood/straw samples, while it increased with an increased amount of combusted fuel for

  5. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  6. Limestone fragmentation and attrition during fluidized bed oxyfiring

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Piero Salatino [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2010-04-15

    Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface. 13 refs., 8 figs.

  7. Dry NO/sub x/ separation, preferably for fluidized bed combustion plant. Trockentechnische NO/sub x/-Abscheidung vorzugsweise fuer Wirbelbett-Feuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Igelbuescher, H.; Gresch, H.; Dewert, H.

    1987-05-14

    The main patent application P 3534228.5 describes how, preferably in fluidized bed combustion plant, porous free-flying bodies are added in the gas flow above the flames in a boiler, where these free-flying bodies form a regular contact mist wall in the waste gas and, provided with means of reduction, cause NO/sub x/ reduction. Surprisingly, it has now been found that the desired effect can be considerably improved if the porous free-flying bodies contain means of absorption and/or reduction and/or are immersed in these, depending on the SO/sub 2/ and NO/sub x/ loading of the stack gas. It is advantageous if the free-flying bodies for NO/sub x/ reduction are soaked and/or surrounded by ammonium salts. For SO/sub 2/ and NO/sub x/ separation, the free-flying bodies are soaked in and/or surrounded by lime hydrate and ammonium salts.

  8. Properties of circulating fluidized bed combustion ashes road base materials%固硫灰路面基层材料的性能

    Institute of Scientific and Technical Information of China (English)

    尹元坤; 卢忠远; 李军; 牛云辉

    2012-01-01

    Circulating fluidized bed combustion ashes (FBCF) were used as road base materials. The properties of original and pretreated FBCF road base materials were studied. And the influence of heavy metal of FBCF on the soil was also researched through leaching experiments. Results show that high volume stability, low inflation rates and the better road performance were obtained when pretreated FBCF was used. In addition, FBCF road base materials have lower heavy metal leaching rate, which in line with environmental protection require- ments.%以固硫灰作为路面基层材料,研究了固硫灰原灰和经预处理固硫灰路面基层材料的最佳含水量、最大干密度、体积安定性、膨胀率和强度等性能。同时,通过重金属浸出实验评估了固硫灰对土壤环境的影响。结果表明,经预处理固硫灰路面基层材料体积安定性好,膨胀率低,性能良好;此外,固硫灰重金属浸出率低,符合环保要求。

  9. Pore Structure Analysis of Seaweed Particles After Fluidized Bed Combustion%海藻颗粒流化床燃烧后灰孔隙结构分析

    Institute of Scientific and Technical Information of China (English)

    徐姗楠; 王爽; 王谦; 姜秀民; 吉恒松

    2015-01-01

    In this work , the combustion of two kinds of seaweed(Enteromorpha clathrata and Sargassum natans)particles was studied on a bench scale fluidized bed. Enteromorpha clathrata particles burred continuously and stably at 770,℃ and no slagging was found. But a serious slagging phenomenon was found during the combustion of Sargassum natans,which showed that Sargassum natans particles were not suited for the fluidized bed combustion. Enteromorpha clathrata and its bottom ash were collected for pore structure analysis. The pore structure of seaweed and its ash samples was analyzed by applying mercury intrusion method and N2 adsorption-desorption method. The experimental result of applying mercury intrusion showed that the pore size distribution of original sample mostly ranged from 2.56,μm to 3.61,μm,and that of ash mainly ranged from 11.89,μm to 12.8,μm. The number of porosity,pore volume and specific surface area increased after combustion. The porosity increased from 21.01%to 49.74%. The nitrogen adsorption experiment was conducted to analyze both the original sample and the ash so as to understand the change of nano-scale pore structure in the combustion process. The specific surface area of sample was abtained by applying the BET(Brunauer-Emmett-Teller)equation using the linear part(0.05

    combustion. The original sample of Enteromorpha clathrata is relatively smoother than that of EN ash due to its biological materials. The ash with porous structure can be used for

  10. The effect of working parameters and the properties of coal on emission in pressurized fluidized bed combustion; Der Einfluss von Betriebsparametern und Kohleeigenschaften auf die Emissionen bei der Druckwirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Bonn, B.; Baumann, H.

    1993-12-31

    The aim of a research project at the Deutsche Monta Technologie-Research and Testing Company (DMT-FP) is, among others, to determine the effects of working conditions on the emission of harmful substances of a pressurized fluidized bed combustion by experimental investigations. The investigations described here were carried out on a stationary pressurized fluidized bed reactor on the technical scale. A first comparison of the results achieved in this reactor with those on a pressurized fluidized bed pilot plant show that the level of emission differs only slightly, taking into account the somewhat different combustion conditions. (orig./IHL) [Deutsch] Das Ziel eines Forschungsprojektes bei der Deutschen Monta Technologie - Gesellschaft fuer Forschung und Pruefung mbH (DMT-FP), ist unter anderem, durch experimentelle Untersuchungen die Wirkungen von Betriebsbedingungen auf die Schadstoffemissionen einer Druckwirbelschichtfeuerung zu ermitteln. Die im folgenden beschriebenen Untersuchungen wurden in einem stationaeren Druckwirbelschichtreaktor im Technikums-Massstab durchgefuehrt. Ein erster Vergleich der in diesem Reaktor erzielten Ergebnisse mit denen einer Druckwirbelschicht-Pilotanlage zeigte, dass die Hoehe der Emissionen - unter Beruecksichtigung der etwas unterschiedlichen Feuerungsbedingungen - nur wenig voneinander abwichen. (orig./IHL)

  11. Application of Selective Non-catalytic Reduction Denitration Technology in Circulating Fluidized Bed Boiler%选择性非催化还原脱硝技术在循环流化床锅炉中的应用

    Institute of Scientific and Technical Information of China (English)

    柳振

    2016-01-01

    针对中国石化上海石油化工股份有限公司(以下简称上海石化)620 t/h循环流化床锅炉效率偏低及氮氧化物排放质量浓度不能达到环保排放标准的现状,在炉内燃烧脱硝技术的基础上,通过实施锅炉尾部烟气脱硝改造,采用当前先进的选择性非催化还原(SNCR)脱硝技术,进一步提该锅炉的脱硝水平。同时通过设计、模拟和应用的对比研究,总结出SNCR脱硝技术在循环流化床锅炉上使用的适应性和进一步提高效率的必要性。%In view that the productivity and concentration of NOx emission of the 620 t/h circulating fluidized bed boiler in SINOPEC Shanghai Petrochemical Co.,Ltd.(hereinafter referred to as SPC ) cannotmeet the environmental protection emission standards,the denitration performance of the boiler was improved though denitration process transformation of increasing the boiler flue gas,adopting the state-of-the-art selective non -catalytic reduction (SNCR ) technology on the basis of thedenitration technologyof in -boiler combustion.Meanwhile,through study of the technology in 7#boiler of Thermal Power Station of SPC,the adaptability of SNCR denitration technology in circulating fluidized bed boiler and the necessity of further improving efficiency were summarized.

  12. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine. The Gantt Chart on the following page details progress by task.

  13. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion -- FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  14. Modelling and simulation of a circulating fluidized-bed steam generator as an aid for process analysis and automation. Modellierung und Simulation eines ZWS-Dampferzeugers als Hilfsmittel zur Prozessanalyse und -automatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Karbach, A.; Peters, R.; Schaub, G. (Lurgi GmbH, Frankfurt am Main (Germany, F.R.))

    1990-04-01

    This book deals with the development and application of mathematical model for the simulation of a steam generator with fluidized-bed combustion (coal combustion in the circulating fluidized-bed combustion). (orig./EF).

  15. Syngas combustor for fluidized bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Brushwood, J.

    1999-07-01

    The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

  16. SIMULATION OF PARTICLE COATING IN THE SUPERCRITICAL FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Carsten; Vogt; Ernst-Ulrich; Hartge; Joachim; Werther; Gerd; Brunner

    2005-01-01

    Fluidized bed technology using supercritical carbon dioxide both as a fluidizing gas and as a solvent for the coating material makes possible the production of thin, uniform and solvent-free coatings. But operation at low fluidizing velocities, which is favorable to facilitate gas cleaning under the high pressure conditions, may lead to uneven distribution of the coating in the fluidized bed and to unstable operation due to agglomeration. Therefore a model has been developed which describes local fluid dynamics within the high pressure fluidized bed. Based on this model, the coating process is described and the distribution of the coating inside the fluidized bed is calculated. Furthermore a submodel for the calculation of local concentrations of liquid paraffin has been set up, which may be used as a basis for the prediction of agglomeration and thus stability of operation.

  17. Developments in fluidized bed conversion of solid fuels

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2016-01-01

    Full Text Available A summary is given on the development of fluidized bed conversion (combustion and gasification of solid fuels. First, gasification is mentioned, following the line of development from the Winkler gasifier to recent designs. The combustors were initially bubbling beds, which were found unsuitable for combustion of coal because of various drawbacks, but they proved more useful for biomass where these drawbacks were absent. Instead, circulating fluidized bed boilers became the most important coal converters, whose design now is quite mature, and presently the increments in size and efficiency are the most important development tasks. The new modifications of these conversion devices are related to CO2 capture. Proposed methods with this purpose, involving fluidized bed, are single-reactor systems like oxy-fuel combustion, and dual-reactor systems, including also indirect biomass gasifiers.

  18. Study on high belite cement clinker calcination with ashes from circulating fluidized bed combustion%固硫灰制备高贝利特水泥

    Institute of Scientific and Technical Information of China (English)

    吕淑珍; 陈雪梅; 卢忠远; 彭艳华

    2011-01-01

    In order to explore new utilizing approach of ashes from circulating fluidized bed combustion(CFBC ashes for short), high belite cement is prepared by using CFBC ashes to substitute partial raw materials. Calcining temperature and mineral composition of clinker are analyzed by thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) respectively, and the physical mechanical properties of clinker are tested. The results show that the main minerals of high belite cement clinker are C2S,C4A3S,G2AF and CaSO4;compression strength of 3 days is more than 30 Mpa.and that of 28 days is more than 80 Mpa while incorporation of proper amount of gypsum.%为了探索固硫灰新的利用途径,利用固硫灰替代部分原料制备高贝利特水泥,采用TG-DTA综合热分析法、XRD射线衍射等方法分别确定了生料的煅烧温度和熟料的矿物组成,并对水泥的物理力学性能进行了检测.研究表明,制备的高贝利特水泥主要矿物组成是C2S、C4A3(S)、C2AF和CaSO4;掺入适量的石膏后,其3d抗压强度达到30 MPa以上,28 d抗压强度达到80 MPa以上.

  19. Circulating fluidized bed combustion fly ash based mineraladmixturesused in concrete%固硫灰作矿物掺和料制备混凝土研究

    Institute of Scientific and Technical Information of China (English)

    莫兆庭

    2015-01-01

    Circulating fluidized bed combustion (CFBC) fly ash was the waste that discharged by circulating fluidized bed boiler, which contained certain amount of chainotte minerals. The chemical compositions and physical properties of CFBC fly ashwere distinct with ordinary fly ash, which were suited to be used in construction materials.However, CFBC fly ash has its own special nature, such as self-hardening, pozzolanic activity and expansion characteristics, which restrict the utilization in building materials. In this paper,the physical and chemical properties of CFBC fly ash were characterized by SEM, particle size analysis,etc. And the activity index of CFBCand composite system contained CFBC fly ash, ordinary fly ash and slag were measured. The utilization of CFBC fly ash in concrete has also been discussed. Results showed that the activity index of CFBC fly ash increased with decreasing of the particle size of CFBC fly ash. The activity index would be decreased when ordinary fly ash and slag were mixed. The CFBC fly ash could be used to prepare concrete. And the properties of the prepared concrete would be improved with addition of CFBC fly ash in certain content range.%固硫灰是循环流化床烧煤技术所产生的废弃物,含有部分烧粘土质矿物,与普通粉煤灰相比其化学组成和性质有一定差异,经过一定加工和配料可以做建筑材料的原材料。但因为固硫灰有其自身特殊性质,如自硬性、火山灰活性和膨胀性等特点,因此在建筑材料领域应用受到一定限制。本文利用SEM微观分析、粒径分析等手段研究了固硫灰的物化特性,同时对固硫灰、粉煤灰、矿粉的活性指数进行分析,并将固硫灰作为矿物掺合料制备混凝土。实验结果表明:固硫灰活性随着粒径减小而增加,与粉煤灰和矿粉复掺会降低体系的活性指数;可以利用固硫灰做矿物掺合料制备混凝土,且其掺量在一定范围内对改善

  20. Analysis of sewage sludge ashes from air and oxy-fuel combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Magdziarz Aneta

    2016-01-01

    Full Text Available The ashes from sewage sludge combustion in air versus O2/CO2 atmospheres with oxygen concentrations in the range of 21–40% vol. at temperature of 850°C in a 12 kW bench-scale CFB combustor were characterised. The chemical and phase composition of ashes were studied by XRF and XRD. The morphology of studied ashes were examined by SEM method. The slagging and fouling indices were calculated to study the deposition tendencies of ash. The thermal behaviour of ashes was studied by TG-DSC techniques, focusing on the mass loss and thermic effects with the increasing of temperature up to 1200°C.

  1. Materials problems in fluidized-bed combustion systems. Appendix 2. Test specimen preparation, handling, and posttest evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.; Holder, J.C.; Minchener, A.J.; Page, A.J.; La Nauze, R.D.

    1980-05-01

    Appendix 2 presents the metallographic data compiled by the National Coal Board, Coal Research Establishment, on materials tested for the Electric Power Research Institute Contract R P 388-1 with Combustion Systems Ltd., UK. Two 1000 h tests were carried out to investigate the corrosion performance of boiler and gas turbine alloys exposed in and above a fluidised bed coal combustor. Details are given of the preparation, handling, and examination procedures. Results of metallographic examination and chemical analyses on the samples examined by CRE are provided. This appendix does not attempt to draw any conclusions from the data: such conclusions appear in the main report. Description of the tests and plant performance data are given in Appendix 1 of this report.

  2. Viability study for application of combined reheater cycle (CRC) to fluidized bed combustion plants; Estudio de Viabilidad para la Aplicacion del Ciclo de Recalentamiento Combinado (CRC) a Plantas de Combustion de Lecho Fuido Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Basically, the project try to analyze the application viability of a first reheating in steam cycles of little power plants, useful mainly for biomass and wastes, in our case with coal blends; and a second reheating of the steam in conventional and fluidized bed combustion plants. Using in both cases the thermic energy of the exhaust gases from one gas turbine. The advantages of the CRC cycle are: (1) Reduction of the moisture in the turbine, increasing the energy efficiency and blade protection. (2) To take advantage of the waste gas energy from the gas turbine in optimum way. (3) Great operation flexibility under good efficiency results. In general, the system can use the synergy between gas, coal and waste energies with the highest global efficiency. (Author)

  3. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

  4. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  5. Characterization of limestone reactivity with SO{sub 2} and sulfur capture modelling under fluidized bed combustion conditions; Bestaemning av kalkstensreaktivitet med avseende paa SO{sub 2} och modellering av avsvavling foer foerbraenning i fluidiserad baedd

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T. [Chalmers Univ. of Technology and Univ. of Goeteborg, Goeteborg (Sweden). Dept. of Inorganic Chemistry; Lyngfelt, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1996-12-01

    During combustion of fossil fuels, SO{sub 2} is released to the atmosphere. Because of environmental concern with acid rain, the capture of SO{sub 2} is a very important process. Fluidized bed combustion (FBC) is a combustion method where limestone may be added to the furnace chamber to capture SO{sub 2} as the stable product CaSO{sub 4}. In the present work a relatively simple laboratory method has been developed for characterizing limestone reactivity with SO{sub 2}. The reactivity data from such investigations are used, together with residence time and particle size distribution, in a sulfur capture model for fluidized bed boilers that predicts the sulfur capture as a function of the Ca/S molar ratio. In addition, the model predicts the conversion of CaO to CaSO{sub 4} for all particle sizes present in a boiler. The model was developed and verified using data from two boilers, a 12 and a 40 MW circulating fluidized bed boiler, and showed reasonable agreement for both boilers. In addition to the development of a sulfur capture model, the effects of SO{sub 2} and CO{sub 2} concentrations, particle size, temperature variations, and reducing conditions on the sulfation reaction was studied using a fixed-bed quartz reactor. The sulfation reaction was also studied for long periods of time, up to 60 hours. This was done because of the long residence times of certain particle sizes that may exist in a fluidized bed boiler. From the parameter study it was found that particle size and variations between oxidizing and reducing conditions had a large effect on the sulfation behaviour. The investigation of long sulfation times showed that the reaction continued even at high degrees of conversion, although at a very slow rate. CO{sub 2} concentration had a moderate effect on the sulfation reaction while temperature variations showed no effect on the final conversion between CaO and CaSO{sub 4}. 29 refs, 25 figs, 4 tabs

  6. 300 MW circulating fluidized bed boiler combustion control algorithms%300MW循环流化床锅炉燃烧控制算法研究

    Institute of Scientific and Technical Information of China (English)

    熊彬; 潘维加

    2013-01-01

      Circulating fluidized bed boiler is a distribution parameters,nonlinear,time varying delay, multivariate tight coupling of the controlled object,the conventional control method,it is hard to obtain the ideal control effect..Combined with a domestic 300 Mw circulating fluidized bed boiler,analysis of the circulating fluidized bed boiler control characteristics and control methods,combined with circulating fluidized bed boiler dynamic mathematical model,and puts forward some self-organizing fuzzy neural network of CFB system control method,and the adaptive particle swarm algorithm to optimize the simulation results. The control system can effectively solve the circulating fluidized bed boiler control of the difficulties, has obtained the satisfactory control effect.Finally,the development direction of circulating fluidized bed boiler is discussed and forecast.%  循环流化床锅炉是一个分布参数、非线性、时变、大滞后、多变量紧密耦合的被控对象,常规控制方法难以取得理想的控制效果。结合国内某300 Mw循环流化床锅炉,分析循环流化床锅炉的控制特点和控制方法,结合循环流化床锅炉动态数学模型,提出自组织模糊神经网络的CFB系统控制方法,并用自适应粒子群算法对仿真结果进行优化。该控制系统有效地解决了循环流化床锅炉控制中的难点问题,取得了满意的控制效果。最后对循环流化床锅炉的发展方向进行了探讨和预测。

  7. Simultaneous SO sub 2 and NO sub x dry absorption, preferably after coal-fired boilers, particularly fluidized bed combustion and clouds of fly dust

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Igelbuescher, H.; Gresch, H.; Dewert, H.

    1987-06-11

    Optimum desulfurization of the stack gas is achieved, according to the invention, by blowing in burnt lime or dolomite lime particles with a pore diameter of 10 nm (not 100 nm as previously) at 350 to 450C. For fluidized bed or coal-fired plants one can perhaps mix the solid means of desulfurization with ammonium salts in the dust cloud area, in order to reduce the nitrogen oxide.

  8. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  9. Study on solidification and stabilization technique by steam treatment of the coal ash from fluidized-bed combustion boilers; Ryudoso sekitanbai no joki shori ni yoru koka / anteika gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1998-08-20

    In fluidized-bed coal combustion boiler supporting one end of boilers for power generation and process heating, coal ash comprised of the products of ash of coal and lime stone used for desulfurizer was used for raw material. The fluidized-bed combustion boiler really working at present is of normal pressure (AFBC) type due to bubbling or cycling system, and pressure type of the bubbling system (PFBC) due to high pressure of about 1.0 MPa is promoted development for a next generation type power generation. Then, by using the coal ash obtained from the AFBC boiler with different kind of coal, volume of boiler, and so on (AFBC ash) and the coal ash obtained from the PFBC boiler under actual proof operation, a study on properties of coal, lime stone and solids after steam treatment of mixture with water (kind/volume, strength and elution of hazard heavy metals of hydrates) were conducted to investigate to use for civil engineering materials such as road materials, filling back materials, and so forth. 16 refs., 13 figs., 2 tabs.

  10. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  11. Heat flux distribution on circulating fluidized bed boiler water wall

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The future of circulating fluidized bed (CFB)combustion technology is in raising the steam parameters to supercritical levels.Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers.In the present paper,the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube.Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size,tube dimension and water temperature.The results are useful in supercritical pressure CFB boiler design.

  12. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Richardson, T.L. [Environmental Protection Agency, Cincinnati, OH (United States)

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  13. Ash problem at wood fired fluidized bed plants; Askproblem vid skogsbraensleeldning i fluidbaedd

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Soeren; Nystroem, Olle; Axby, Fredrik [Sycon Energikonsult AB, Malmoe (Sweden); Andersson, Christer; Kling, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-03-01

    Several ash related problems occurs during conversion from fossil fuels to bio fuels. The most frequent and expensive problem is agglomeration of bed material (in fluidized beds) and fouling on superheating surfaces. The last problem leads to corrosion problem and decreased transfer of heat. This project is the first part of a proposed project focussed on fluidized bed combustion (FB), because FB have become the dominating technology for combustion of biofuels. The project includes this first update of what has been done by different research institutes since 1997 and results of questionnaire on operating problems to owners of fluidized bed plants. A couple of pilot studies and different thermodynamical studies of bed agglomeration with biofuel combustion have been done during the latest years. There are no published reports where the results from agglomeration tests in pilot scale are verified in full scale plants. No project was found which deals with the fouling problem in the cyclone in a circulating fluidized bed. The knowledge of the mechanisms of deposits growth on heat surfaces is incomplete and more research has to be done of what can prevent the deposit growth. Experience from full scale plants shows that the deposits on heat surfaces grows during a period and after that it falls of the heating surface. There is little knowledge of which ash and flue gas conditions that affects these conditions for bio fuel. The operational experience with wood fuels in circulating fluidized beds is that the main problem with bed material is in the inlet and outlet of the cyclone. A total desulfonated of the bed occurs only when there has been other disturbances or because of operator mistakes. There are a number of things which seem to influence on the deposit problems: (1) Boilers with long residence time have less problem than boilers with short residence time. (2) Fuel size. No plant owner have continuos analysis of the fuel size, but combustion with problem have a

  14. Fluidized bed gasification of industrial solid recovered fuels.

    Science.gov (United States)

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration.

  15. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  16. Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2013-01-01

    Full Text Available The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB, primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent’s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour, bed particles and water, have been carried out. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in the fluidized bed

  17. Circulating pressurized fluidized bed. Trial operation, phase 1c. Final report; Zirkulierende Druckwirbelschicht. Versuchsbetrieb, Phase 1c. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Krein, J.; Schmitt, J.; Wedel, G. von; Winkler, K.

    1993-09-01

    Since March `89, the Deutsche Babcock Energie und Umwelttechnik AG have been operating a 15 MW{sub th} experimental pressurized fluidized bed facility. The plant was first designed as a stationary pressurized fluidized bed and was optimized and tested in a 2000-h period of trial operation. In view of the good results of the plant and the technical superiority of the circulating fluidized bed technology, the experimental facility was converted into a circulating pressurized fluidized bed system. The reconstruction work was started in February `91, and from October `91 onwards the circulating pressurized fluidized bed system was optimized and tested in a 900-h trial operation period. This report explains the concept of circulating pressurized fluidized bed technology as applied by the Deutsche Babcock Energie und Umwelttechnik AG and presents the results of circulating trial operation. The results of circulating and stationary fluidized bed trial operation are compared. This comparison is particularly significant as all marginal systems of the plant, i.e. for combustion air supply, flue gas discharge, coal supply and ash removal, have remained unmodified during the reconstruction phase. (orig.) [Deutsch] Seit Maerz `89 betreibt die Deutsche Babcock Energie und Umwelttechnik AG eine 15 MW{sub th} Druckwirbelschicht Versuchsanlage. In einer ersten Versuchsphase wurde die Anlage als stationaere Druckwirbelschicht konzipiert und in einem 2000-stuendigen Versuchsbetrieb optimiert und getestet. Ausgehend von den guten Ergebnissen aus dem stationaeren, druckaufgeladenen Versuchsbetrieb und in Anbetracht der aus dem atmosphaerischen Bereich bekannten Vorteile der zirkulierenden gegenueber der stationaeren Wirbelschicht wurde die Versuchsanlage ab Februar `91 in eine zirkulierende Druckwirbelschicht umgebaut. Ab Oktober `91 wurde die zirkulierende Druckwirbelschicht in einem 900-stuendigen Versuchsbetrieb optimiert und getestet. In diesem Bericht wird das von der Deutsche

  18. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

  19. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

  20. Utilization of coal ash from fluidized-bed combustion boilers as road base material; Sekitandaki ryudoso boiler kara no sekitanbai no robanzai to shite no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kozasa, K. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-03-01

    Coal ash from the fluidized bed boiler is evaluated for its properties as is, as solidified or granulated, and as the roadbed material. The coal ash tested in the experiment is a mixture of ash from the fluidized bed boiler bottom, ash from the cyclone separator, and ash from the bag filter. In the manufacture of solid or granulated bodies, coal ashes are kneaded in water whose amount puts the mixture near the plasticization limit, are pressed in a low-pressure press and made into solid bodies by a 15-hour curing in 60degC saturated steam, and the solid bodies are crushed into solid granules. A content release test is conducted about the release of dangerous substances, and road paving experiments are conducted to learn the workability and serviceability of the granulated material as a road paving material. A study of the experimental results discloses what is mentioned below. Coal ash containing 10-20vol% of CaO and 15vol% or less of unburnt carbon turns into a high-strength solid after curing in saturated steam whose temperature is not higher than 60degC. The granulated solid satisfies the standards that an upper subbase material is expected to satisfy. It also meets the environmental standards in a release content test for soil set forth by Environment Agency notification No.46. 8 refs., 8 figs., 4 tabs.

  1. Novel designs of fluidized bed combustors for low pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Bleek, C.M. van den [Delft Univ. of Technology (Netherlands). Dept. of Chemical Engineering; Dam-Johansen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1995-12-31

    It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the char combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.

  2. Investigations for the minimization of nitrogen oxide and carbon monoxide emissions of an atmospheric stationary fluidized-bed combustion process by primary measures; Untersuchungen zur Minimierung der Stickoxid- und Kohlenmonoxidemissionen einer atmosphaerischen, stationaeren Wirbelschichtfeuerung durch Primaermassnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, G.

    1993-12-31

    The emissions of gaseous pollutants, particularly CO and NO{sub x} emissions, are to be reduced by up to 50% compared to the requirements of the current TA-Luft (air pollution abatement regulation). For this purpose apart from the bases of emission behaviour of fluidized bed combustion also the effects of special equipment for gradual air supply and measures which increase the temperature in the free space were investigated. Moreover the influence of different coal qualities on the pollutant concentration in the exhaust gas was evaluated. (orig.) [Deutsch] Die Emission an gasfoermigen Schadstoffen sind, insbesondere hinsichtlich der CO- und der NO{sub x}-Emission, um bis zu 50% gegenueber den Anforderungen der derzeit gueltigen TA-Luft zu vermindern. Dazu wurden neben den Grundsaetzen des Emissionsverhaltens der WSF auch die Einfluesse spezieller Vorrichtungen zur Stufenluftzufuhr und Massnahmen, die einer Temperaturerhoehung im Freiraum dienen, untersucht. Weiterhin wurde der Einfluss diverser Kohlequalitaeten auf die Schadstoffkonzentration im Rauchgas ermittelt. (orig.)

  3. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  4. Agglomeration-Free Distributor for Fluidized Beds

    Science.gov (United States)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  5. Method of reducing CO in combustion plant, particularly in fluidized bed combustion plant. Verfahren zur Reduzierung von CO bei Verbrennungsanlagen, insbesondere bei Wirbelbettfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Igelbuescher, H.; Gresch, H.; Dewert, H.

    1989-05-10

    The invention describes a method of reducing the development of CO in combustion plant, particularly fluidised combustion plant, characterised in that the air is introduced in a heated condition at the points where increased CO concentrations are measured, the air being heated in tube bundles, these tube bundles being formed in such a manner as to cause an impact precipitative effect in the form of an impact precipitative arrangement at the proportioned fuel input of fluidised bed combustion plant.

  6. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)

    1997-01-01

    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  7. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  8. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  9. 影响循环流化床锅炉燃烧热效率的因素和提高途径%Factors Affecting Combustion Thermal Efficiency of Circulating Fluidized Bed Boiler and Ways to Improve

    Institute of Scientific and Technical Information of China (English)

    李敬珂

    2015-01-01

    In order to find out ways and measures to improve combustion thermal efficiency of boiler,combustion adjustment test for circulating fluidized bed boiler is carried out,factors affecting combustion thermal efficiency of boiler, including oxygen content in flue gases, bed pressure differential,bed temperature,operating load,carbon content in cinder and so on,are analyzed and summed-up.With test data,ways to improve combustion thermal efficiency of boiler,countermeasures and suggestions are proposed.%为找出提高锅炉燃烧热效率的途径和措施,对循环流化床锅炉进行了燃烧调整试验,分析并总结了烟气氧含量、床层压差、床层温度、运行负荷、煤灰中的碳含量等因素对锅炉燃烧热效率的影响。通过试验数据,提出了提高锅炉燃烧热效率的途径、改进措施和建议。

  10. Numerical Simulation of Physical and Chemical Processes in Fluidized Bed

    Science.gov (United States)

    Baturin, D. A.; Gil, A. V.

    2015-10-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.

  11. Joule II - Programme. Clean coal technology R & D. 2nd phase. Volume III. Atmospheric combustion of pulverized coal and coal based blends for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    Topics covered in this Joule II clean coal technology publication include: coal preparation and blending; cocombustion of coal with biomass and wastes; flame modelling; NO{sub x} abatement by combustion control and staging; coal quality and NO{sub x} emissions; coal combustion properties; and fluidized bed combustion of coal. All papers have been abstracted separately.

  12. Velocity Fluctuations in Gas-Fluidized Beds

    Science.gov (United States)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  13. Generation and reduction of nitrogen oxides in firing different kinds of fuel in a circulating fluidized bed

    Science.gov (United States)

    Munts, V. A.; Munts, Yu. G.; Baskakov, A. P.; Proshin, A. S.

    2013-11-01

    The processes through which nitrogen oxides are generated and reduced in the course of firing different kinds of fuel in a circulating fluidized bed are addressed. All experimental studies were carried by the authors on their own laboratory installations. To construct a model simulating the generation of nitrogen oxides, the fuel combustion process in a fluidized bed was subdivided into two stages: combustion of volatiles and combustion of coke residue. The processes through which nitrogen oxides are generated and reduced under the conditions of firing fuel with shortage of oxygen (which is one of efficient methods for reducing nitrogen oxide emissions in firing fuel in a fluidized bed) are considered.

  14. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  15. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    Science.gov (United States)

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition.

  16. Materials problems in fluidized-bed combustion systems. Appendix 3. Evaluation of boiler alloy specimens at Foster Wheeler Development Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, G.V.; Apblett, A.R. Jr.

    1980-05-01

    This report summarizes the results of the Foster Wheeler Development Corporation (FWDC) portion of a metallurgical investigation conducted to assess the corrosion behavior of various ferritic, austenitic, and nickel-base alloys which were exposed in a coal-burning fluidized bed test facility at nominal temperatures of 1000/sup 0/F, 1200/sup 0/F, 1400/sup 0/F, 1550/sup 0/F, and 1650/sup 0/F for 1000 and 2000 hour test exposure periods. The alloys included Corten, 2-1/4Cr-1Mo, 9Cr-1Mo, 405 SS, E-Brite 26-1, 310 SS, 329 SS, 347 SS, 22-13-5, 21-6-9, Incoloy 800, Manaurite 36X, Inconel 690, and RA 333. The investigation included material precharacterization studies and post-test metallurgical evaluations involving deposit/scale thickness measurements, selective chemical/microprobe analyses, specimen surface recession measurements, determination of depths of dealloying and corrosive constituent penetrations, grain-size determinations, hardness surveys, macro and microscopic examinations and study/recording of microstructural changes resulting as a consequence of test exposure.

  17. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    Science.gov (United States)

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  18. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  19. Hydrodynamique, transfert de chaleur et combustion de gaz naturel en lit fluidisé circulant Hydrodynamics, Heat Transfer and Combustion of Natural Gas in a Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Feugier A.

    2006-11-01

    Full Text Available L'hydrodynamique, les transferts de chaleur et la combustion du gaz naturel ont été étudiés dans un réacteur à lit circulant de 15 cm de diamètre et de 7 m de haut. Ce réacteur peut opérer avec des vitesses de gaz allant jusqu'à 15 m/s, jusqu'à des températures de 880-900°C et avec des débits de solides compris entre 0 et 15t/h. Les charges utilisées sont des sables de granulométrie allant de 95 à 625 microns. Le profil de concentration en solides dans le réacteur est déterminé à partir du profil de pression. Une corrélation reliant la vitesse de glissement des particules aux principaux paramètres opératoires, rend compte de façon très satisfaisante de l'ensemble des résultats expérimentaux. La mise en place d'un échangeur en paroi dans la partie supérieure du réacteur a permis la détermination de coefficients d'échange thermique. Ces derniers sont essentiellement fonction de la, concentration en particules au droit de l'échangeur et de la granulométrie des particules. Des valeurs allant jusqu'à 200 W/m2 K peuvent, être obtenues. Enfin, la combustion du méthane s'avère très sensible à la présence de particules dans le réacteur. Ces particules ont un effet inhibiteur. Hydrodynamics, heat transfer and combustion of natural gas have been investigated in a circulating-bed reactor 15 cm in diameter and 7 m high. This reactor can operate with gas velocities up to 15 m/s, at temperature up to 880-900°C and with solids flow rates of between 0 and 15 t/h. The solids used are sands with a particle size ranging from 95 to 625 microns. The solids concentration profile in the reactor is determined from the pressure profile. A correlation linking the slippage velocity of particles to the principal operating parameters very satisfactorily takes into consideration the overall experimental results. The installation of a wall heat exchanger in the upper part of the reactor enabled the heat exchange coefficients to be

  20. Hydrodynamics of gas-solids downflow fluidized bed (downer) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.

    1999-07-01

    This study presents a semi-empirical model for the hydrodynamic flow structure in a circulating fluidized bed downer reactor. Circulating fluidized bed, or riser reactors are used in the petroleum industry for many applications including catalytic cracking, polyethylene production, calcination operations and combustion of a variety of fuels. The work in this thesis involved the development of a circulating fluidized bed riser and downer system that enables hydrodynamic studies to be carried out. The system was designed to incorporate both a riser and a downer in the same circulating operation, making it possible to conduct experimental studies on the riser and the downer separately or simultaneously. The hydrodynamics of the gas-solids downflow fluidized bed reactor were studied in a 9.3 m tall and 0.1 m i.d. circulating fluidized bed downer reactor using fluidized cracking catalyst (FCC) particles. In order to characterize the gas-solids flow structures, the following three parameters were measured: the radial distributions of the local solids holdups, the local particle velocities, and the pressure gradients along the downer column. The hydrodynamics in the co-current downflow reactor was also studied under a wide range of operating conditions. The gas-solids flow structure under zero superficial gas velocity conditions was characterized by measuring the radial distribution of the local solids holdups and particle velocities along the downer column with the superficial gas velocity set to zero. The results indicate that two basic flow regimes exist in the FCC downer system depending on the superficial gas velocity. The downer reactor was shown to have a more uniform radial flow structure compared to the riser. It also has a more uniform radial distribution of solids holdup and particle velocity as well as solids flux in both the development and fully developed zones. The highly uniform radial flow structure provides a nearly ideal plug flow condition in the

  1. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  2. Drying with a pulsed-fluidized bed, a new technology which reduces the costs of drying; Le sechoir a lit fluidise pulse, une nouvelle technologie qui diminue les couts de sechage

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.G.; Kudra, T.; Platon, R. [Natural Resources Canada, Varennes, PQ (Canada). Energy Diversification Research Laboratory

    1999-09-01

    Drying refers to the removal of water from solid materials and tends to cover processes such as filtration, heat removal of humidity and even sublimation. It is probably the most energy intensive operation in industry, consuming nearly 8.4% of all the energy used by Canadian industry. This datum applies to a vast gamut of technologies and techniques for drying products in the form of solid particles, pastes, slurries or solutions. The CANMET Energy Diversification Laboratory developed a new type of dryer for the dewatering of solid particles: the pulsed-fluidized bed dryer. The new technology is described as well as its performance and advantages. In the course of the last four years, the laboratory transferred Polish technology and modified it for high temperature operation. The laboratory obtained a patent for the modified technology and negotiated a licence with Barr-Rosin Inc. for the manufacturing and commercialization of pulsed-fluidized bed dryers. Given the numerous advantages of the technology, and economic and technical planning, the laboratory foresees a vast gamut of uses for the future. 3 refs.

  3. 运行参数对粉煤流化床(PC-FB)燃烧效率的影响%The Effect of Operation Parameters on the Combustion Efficiency of a Pulverized-coal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 金保升; 徐益谦

    2001-01-01

    With the help of a pulverized-coal fluidized bed (PC-FB) test rig with 0.3 MW heat input test data were obtained of the PC-FB combustion efficiency under various operation parameters. A detailed discussion and study was conducted focusing on the mechanism of influence of these operation parameters on PC-FB combustion efficiency. The study results indicate that the combustion efficiency of the PC-FB can be as high as 98% - 99%, comparable with that of a pulverized-coal furnace. The authors also pointed out for the first time in the present study that under a certain set of conditions it is possible to realize a low-temperature high-efficiency combustion of the pulverized-coal. These conditions include, among others, a rational matching of the following items: combustion temperature, particle residence time, flame turbulence and in-furnace oxygen concentration and particle concentration%在一座0.3 MW热输入的PC-FBC试验台上进行了试验研究,获得了不同操作参数下PC-FB燃烧效率的试验数据,详细讨论了这些参数对PC-FB燃烧效率的影响规律。研究结果表明,粉煤流化床的燃烧效率最高达98%~99%,可与煤粉炉相媲美。本试验研究亦首次提出,只要燃烧温度、颗粒停留时间、火焰湍流度(3T)及炉内氧浓度、颗粒浓度(2C)合理匹配,就能够实现煤粉的低温高效燃烧。

  4. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  5. Desulfurization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Salo, K.; Abbasian, J. (Enviropower Inc., Espoo (Finland))

    1994-01-01

    Integrated gasification combined cycle (IGCC) power generation processes are considered to be among the most attractive technologies for the 21st century. In such processes, solid fuels such as coal are gasified at pressure and the fuel gas is cleaned and combusted in the gas turbine. The gas cleanup is necessary not only for the protection of the gas turbine hardware, but also to comply with environmental regulations. In the so-called 'simplified' IGCC process, the fuel gas is cleaned at high temperature and pressure to improve the overall cycle efficiency. The hot gas cleanup system includes a high-temperature, high-pressure desulfurization unit and particulate removal system. The former comprises two fluidized bed reactors utilizing regenerable zinc titanate sorbents capable of removing the sulfur gases (primarily H[sub 2]S) to below 50 ppmv. The latter employs rigid ceramic filter elements operating at up to 700[degree]C and 20 bar and is capable of reducing the 'fines' concentration to an acceptable level for a gas turbine. Novel regenerable zinc titanate sorbents suitable for fluidized-bed application have been tested. The sulfur capture and attrition characteristics of these sorbents have been evaluated in extensive testing in a bench-scale fluidized-bed reactor operating at high pressure and temperature conditions expected in IGCC operation. Two different gas mixtures representing air-blown gasifier exit gas with and without in-situ desulfurization with Ca-based sorbents have been used. H[sub 2]S removal efficiencies of higher than 99% at acceptable levels of sorbent conversion have been achieved in all these experiments with minimal sorbent deterioration. 4 refs., 7 figs., 1 tab.

  6. Two-phase flow in a swirling circulating fluidized bed (SCFB) coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; Govind, R. (Cincinnati Univ., OH (USA). Dept. of Chemical and Nuclear Engineering)

    1988-01-01

    Coal combustors are difficult to model accurately due to their inherent complexities of coal devolatization, char combustion and volatile combustion with simultaneous momentum, heat and mass transfer effects. A fluidized bed which takes the advantages of tangential injection of secondary air, termed as Swirling Circulating Fluidized Bed is being developed at the University of Cincinnati. Preliminary experimental studies on coal combustion using the pilot plant and hydrodynamics using a cold model have been conducted. The system has also been simulated. Results of these studies are presented in this paper. Results on three dimensional behavior of the fluid-particle system in the SCFB are presented.

  7. Experimental Study on Coal Multi-generation in Dual Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    Fan Xiaoxu; Lu Qinggang; Na Yongjie; Liu Qi

    2007-01-01

    An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves:one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm3. The tar yield in this work is 1.5%, much lower than that of pyrolysis.Carbon conversion efficiency to fuel gas and flue gas is about 90%.

  8. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  9. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  10. Experiments on effects of coal particle ash content on ash formation during fluidized bed combustion%流化床燃烧中煤含灰量对灰渣形成特性的影响

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 徐志; 刘彦鹏; 骆仲泱; 倪明江

    2012-01-01

    为了研究煤颗粒灰质量分数对煤在流化床燃烧过程中灰渣形成特性的影响,在一台小型流化床反应炉上进行煤的灰质量分数对灰渣形成特性的实验.按煤颗粒的灰质量分数,把义马烟煤分为6个颗粒组,并选用各颗粒组的3个粒径范围的煤颗粒进行燃烧实验,研究煤颗粒的灰质量分数对底渣质量分数、底渣与飞灰中的碳量质量分数和粒径分布的影响.结果表明,随着煤颗粒灰质量分数的增加,燃烧形成的底渣质量分数增加,而煤颗粒的燃尽率和飞灰中的碳质量分数都降低.在粒径和燃烧时间相同的条件下,随着颗粒灰质量分数的增加,底渣中留在本粒径档的颗粒质量分数明显增加,而细颗粒的质量分数明显减少.而颗粒灰质量分数对飞灰的粒径分布没有明显的影响.%To investigate the influences of coal particle ash content on the ash formation behaviors during fluidized bed combustion, experiments were conducted on a bench-scale fluidized bed combustor. Yima bituminous coal samples were divided into 6 ranks with different ash content. For every rank of coal sample, 3 size ranges were used in the experiments. The results show that the mass fraction of the bottom residue increases with the ash content of the coal particles, while the burnout of coal particles and the carbon content of the fly ash decrease with the ash content of coal particles. The mass fraction of the bottom residues which have the same size range as the initial size range of the coal particles increases with the ash content. While the ash content of coal particles has no obvious influence on the size distribution of the fly ash.

  11. Design and simulation of a circulating fluidized bed to clean the products of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa Neto, Moises; Carvalho, Yuri de Araujo [Dept. de Engenharia Mecanica. Faculdade de Tecnologia. Universidade de Brasilia, DF (Brazil); Oliveira, Taygoara Felamingo de; Barcelos, Manuel [Faculdade do Gama. Universidade de Brasilia, Gama, DF (Brazil)], e-mail: taygoara@unb.br

    2010-07-01

    The main goal of this work is to design a workbench circulating fluidized bed to study the cracking of tar in gases from the processes of biomass gasification. For this, a design methodology based on analytical results and empirical correlations for fluidized beds was employed. In parallel, a numerical code of open source technology (MFIX) for the solution of the transport equations of the multiphase flow in the column of a fluidized bed was used to give support to the choice of the design elements. The whole project of the workbench fluidized bed was completely developed, whose operation parameters such as bed geometry, gas velocity, circulating ratio and void fraction characterize a fast fluidization process. A preliminary mesh convergence study was executed with the numerical tool, that was validated comparing with analytical results. Among the most important results, the code computed the predicted value for the minimum fluidization. (author)

  12. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  13. Circulating fluidized bed coal-saving optimization control method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tengfei; Li, Dewei; Xi, Yugeng; Zhou, Wu [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Ministry of Education, Shanghai (China). Key Lab. of System Control and Information Processing; Yin, Debin [Shanghai Xinhua Control Technology (Group) Co., Ltd., Shanghai (China)

    2013-07-01

    The circulating fluidized bed boiler is widely used in thermal power plants. With the proposal of energy-saving emission reduction, how to reduce coal consumption while ensure the output steam quality at the same time has become an important topic. This paper combines the technology of RTO (real-time optimization) and zone control in DMC (dynamic matrix control) to achieve this goal. The proposed method adds the coal consumption into the objective function of DMC controller and the operation point of the boiler is permitted to change within a zone which can be set according to the actual requirements of the circulating fluidized bed boiler. The zone control in DMC provides the freedom to reduce the coal consumption and achieves the economic optimal target. Compared to the simple use of constrained DMC control, the proposed method is verified to be remarkable coal-saving by the case study of a 150 t/h boiler of a power plant in Sichuan.

  14. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  16. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  17. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  18. Wear prediction in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, E.J. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  19. Water softening by induced crystallization in fluidized bed.

    Science.gov (United States)

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process.

  20. Internal circulating fluidized bed incineration system and design algorithm.

    Science.gov (United States)

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful.

  1. Internal circulating fluidized bed system and design algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The internal circulating fluidized bed (ICFB) system ischaracterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste(MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system issuccessful.

  2. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  3. Flow Pattern Identification of Fluidized Beds Using ECT

    Institute of Scientific and Technical Information of China (English)

    S. Liu; W.Q. Yang; H. Wang; G. Yan; Z. Pan

    2001-01-01

    Electrical capacitance tomography (ECT) was applied in measuring solids distribution in square circulating fluidized beds. The fluidization conditions varied from bubbling fluidized bed to circulating fluidized bed. In the whole range of fluidization conditions, ECT was able to instantaneously provide the solids concentration and voids distributions in the fluidized beds. According to the acquired data from ECT and reconstructed image,different fluidization regimes can also be identified.

  4. Heat and Mass Transfer Enforcement of Vibrating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    ChuZhide; YangJunhong; 等

    1994-01-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad,elaborates the vibration properties of vibrating fluidized bed.the fluidizing velocity and pressure drop of the bed layer,it also deduces the non-steady state drying dynamic equations of vibrating fluidized bed,analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  5. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  6. Preparation of circulating fluidized bed combustion fly ash-based cementitious materials with carbide slag%利用电石渣改性固硫灰制备胶凝材料的研究

    Institute of Scientific and Technical Information of China (English)

    霍琳; 李军; 卢忠远

    2012-01-01

    基于固硫灰自身的火山灰活性和自硬性,提出用钙质激发剂激发固硫灰活性制备固硫灰基胶凝材料.实验研究表明在激发剂的作用下,掺入偏高岭土后胶凝材料强度提高80%以上.用内掺50%偏高岭土的固硫灰,采用电石渣或熟石灰复合水玻璃作为激发剂制备胶凝材料都在体系的碱含量为30%,水玻璃的模数为2.0,养护温度为60℃时强度达到最大,两种激发剂对强度的影响差异不大,而采用电石渣作为激发剂更节约成本,更具优势.%Based on the pozzolanic activity and self-hardening property of circulating fluidized bed combustion (CFBC) fly ash, this paper proposes to prepare CFBC fly ash-based cementitious materials by stimulating the CFBC fly ash with calcium activator. Experimental studies have shown thai the strength of the cementitious materials mixed with metakaolin in the role of the activator increased by more than 80%.The cementitious material prepared with CFBC fly ash and 50% metakaolin and activated by carbide slag or lime mixed with water glass solution can achieve optimal strength on following conditions: alkali content was 30% , modulus of water glass was 2.0, and curing under 60℃,. The two activators had no significant impact on the strength, while taking carbide slag as activator was more sensible than taking lime since it was industrial waste.

  7. Modeling on the Combustion System of Large-Scale Circulating Fluidized Bed Boiler%大型循环流化床锅炉燃烧系统数学模拟

    Institute of Scientific and Technical Information of China (English)

    徐志; 王勤辉; 骆仲泱; 倪明江

    2011-01-01

    数学模型是研究和发展大型循环流化床锅炉的重要方法.在浙江大学提出的适用于中小型循环流化床锅炉的整体数学模型的基础上,建立了适用于大型循环流化床锅炉的数学模型.模型采用了基于环-核结构的流体动力学模型,并考虑了宽筛分燃料颗粒所经历的破碎、燃烧等过程.模拟了国内一台300MWe循环流化床锅炉,模拟计算结果与锅炉的运行测量值基本吻合.%Mathematical model is an important method in the study and the development of large-scale circulating fluidized bed (CFB) boiler. On the basis of the overall mathematical model for the medium and small scale CFB boiler, a mathematical model for large-scale CFB boiler is developed. In the modeling, the CFB riser is divided in two regions: the bottom zone in turbulent fluidization regime and the upper zone with core-annulus solids flow structure. The model takes into account the fragmentation and combustion process of the widely sized particles. The model results are in good agreement with the operational data of a 300 MWe CFB boiler.

  8. Ash behaviour in fluidized bed gasification and combustion: release of harmful trace elements and the behavior of alkalis; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa: Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.; Valmari, T. [VTT Chemical Technology, Espoo (Finland)

    1997-10-01

    During 1996 the behaviour of alkaline metals (K and Na) during circulating fluidized bed combustion of forest residue was studied in a real-scale plant using aerosol measurement instruments (filters, impactor, DMA). Prior to heat exchangers (850 deg C) the ash mass-concentration was 1.0 - 1.3 g/Nm{sup 3} with 1 % of ash forming constituents as vapours. At least 98 % of sulphur, over 90 % of sodium and over 80 % of potassium were found in particulate phase prior to heat exchangers. On the other hand, at least 80 % of the chlorine was in vapour phase. 98 % of the ash was in coarse (> 0.3 {mu}m) particles. Coarse ash particles had an irregular surface structure often consisting of fine primary particles. The remaining 2 % was observed in fine particles of about 0.1 {mu}m. Both rounded and cornered (suggesting crystal structure) fine particles were found. The fine particles were composed of alkali chlorides and sulphates, mainly of KCl. About 80 % of the ash on mass basis was deposited onto heat exchanger surfaces when soot-blowing was not carried out. Practically all of the particles larger than 10 {mu}m were deposited. The deposition was less significant for smaller particles. The fine particle concentration before and after the heat exchangers was the same within the experimental inaccuracy. The deposited fraction of potassium, sodium and sulphur was about the same than that of the total ash: However, the deposition of chlorine was much lower since the chlorine content was low in the coarse particles that were deposited most effectively. (orig.)

  9. Desulfurization in Reducing Atomosphere and Ammonia Injection Denitrification in a Coal—Fired Fluidized Bed COmbustor with FLy—Ash Recycle

    Institute of Scientific and Technical Information of China (English)

    ZhongZhaoping; ZhengHaiyun

    1997-01-01

    With the rising of IGCC and the second generation PFBC-CC,and with the development of tech-nology of staged combustion to lower emission of NOx,the desulfurization efficiency under reducing atmosphere is raised.In this paper,with the application of the fly-ash recycle and two-stage combustion technologies in a fluidized bed combustor,the desulfurization test under reducing atmosphere is described.Meanwhile,ammonia injection test was also conducted.Results show that desulfurization under reducing atmosphere has higher efficiency,and amoonia injection denitrification effect is very perfect.

  10. 21 CFR 890.5160 - Air-fluidized bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food... DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a) Identification. An air-fluidized bed is a device employing the circulation of filtered air through...

  11. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    Science.gov (United States)

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  12. 流化床燃烧超低浓度煤层气的轴向气体分布%Axial Gas Profile During Ultra-Low Concentration Coal Bed Methane Combustion in a Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    张力; 杨仲卿; 唐强

    2012-01-01

    The ultra-low concentration coal bed methane is difficult to utilize due to its low methane content and fluctuated concentration. The combustion characteristic of ultra-low concentration coal bed methane in a fluidized bed was studied experimentally and numerically. The axial profiles of combustion products were obtained. The effects of inlet methane concentration, bed temperature and fluidized velocity on axial profile were analyzed. The results show that the dimensionless methane concentration decreases with the bed height and reaches a minimum at the bed surface. Then, the value increases abruptly and goes steadily. The CO concentration is less than 20 mL/ma in all experiments. The dimensionless methane concentration at the same bed height decreases with decreasing inlet methane concentration, rising bed temperature and reducing fluidized velocity. Combustion mainly occurred in dense phase, and moved towards lower part of bed with decreasing inlet methane concentration, rising bed temperature and reducing fluidized velocity.%超低浓度煤层气由于甲烷含量低、浓度变化大而较难加以利用。采用实验和数值模拟的方法,研究了超低浓度煤层气在流化床中燃烧特性,得到燃烧产物的轴向分布规律,分析了进气浓度、床层温度、流化风速等因素对甲烷浓度轴向分布的影响。研究结果表明:随着床层高度的增加,无量纲甲烷浓度逐渐减小,在床层表面达到最小值,然后突然增加,随后达到稳定。实验范围内,CO浓度均小于20mL/m3。减小进气浓度、增加床层温度、降低流化风速都会使相同床层高度处的无量纲甲烷浓度减小。燃烧反应主要发生在密相区,随着进气浓度的减小、床层温度的增加、流化风速的降低,反应区域逐渐向床层下部移动。

  13. Experimental and Numerical Study on Ultra-Low Concentration Coal Bed Methane Combustion in a Fluidized Bed%超低浓度煤层气在流化床中燃烧的实验和数值研究

    Institute of Scientific and Technical Information of China (English)

    杨仲卿; 张力; 唐强; 蒲舸

    2011-01-01

    超低浓度煤层气由于甲烷含量低、浓度变化大而较难加以利用。采用实验和数值模拟的方法,研究了超低浓度煤层气在流化床中的燃烧,分析了床层温度、甲烷体积浓度,流化风速对甲烷燃烧效率的影响,并用数学模型预测了甲烷沿床层高度方向的分布。研究表明,数学模型和实验数据吻合较好。床层温度是煤层气燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加。燃烧反应主要发生在乳化相,且主要集中在床层的下部。甲烷的转化率随着流化风速和煤层气中甲烷浓度的增加而减少。在床层温度为650℃时,甲烷浓度低于1%的煤层气的甲烷转化率均大于93%。增加床层高度可使甲烷完全转化。%The ultra-low concentration coal bed methane is difficult to utilize due to its low methane content and fluctuated concentration. Coal bed methane combustion in a fluidized bed was studied experimentally and numerically. The effects of bed temperature, methane volumetric concentration and fluidized velocity on methane conversion were analyzed. The methane profile along bed height was predicted with the mathematical model. The results show that the model compares reasonably well with experimental data. Bed temperature is a major factor on combustion. And the methane conversion increases with the rising bed temperature. The combustion reaction is mainly occurred in the emulsion phase and at lower part of the bed. The methane conversion decreases with the increasing fluidized velocity and inlet methane concentration. When the bed temperature is 650℃ and methane concentration is less than 1%, the conversion is greater than 93%. More methane can be consumed when the bed height is increasing.

  14. Combustion gas from biomass - innovative plant concepts on the basis of circulating fluidized bed gasification; Brenngas aus Biomasse - innovative Anlagenkonzepte auf Basis der Zirkulierenden Wirbelschichtvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-09-01

    The contribution describes the applications of the Lurgi-ZWS gas generator. There are three main fields of application: Direct feeding of combustion gas, e.g. into a rotary kiln, as a substitute for coal or oil, without either dust filtering or gas purification. - Feeding of the combustion gas into the steam generator of a coal power plant after dust filtering and, if necessar, filtering of NH{sub 3} or H{sub 2}S. - Combustion in a gas turbine or gas engine after gas purification according to specifications. The applications are described for several exemplary projects. (orig./SR) [Deutsch] Im folgenden wird ueber die Anwendung des Lurgi-ZWS-Gaserzeugers berichtet. Nach heutiger Sicht stehen drei Anwendungsgebiete im Vordergrund: - direkte Einspeisung des Brenngases in z.B. einen Zementdrehrohrofen zur Substitution von Kohle oder Oel, ohne Entstaubung und Gasreinigung. - Einspeisung des Brenngases nach Entstaubung und gegebenenfalls Entfernung weiterer Komponenten wie NH{sub 3} oder H{sub 2}S in den Dampferzeuger eines Kohlekraftwerkes - Einsatz des Brenngases in einer Gasturbine oder Gasmotor nach spezifikationsgerechter Gasreinigung. Die aufgefuehrten Einsatzmoeglichkeiten werden am Beispiel von Projekten beschrieben. (orig./SR)

  15. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim;

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed...

  16. Largest fluidized bed power plant unit for power and district heat supply for Berlin (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Abroell, G.; Bade, H.; Bietz, K.H.; Jahn, P. (ABB Kraftwerke AG, Mannheim (Germany))

    1991-11-01

    The Berlin Power and Light Company (Bewag) has decided to install, on the inner city site of Moabit, for the supply of electricity and district heating, a new unit with circulating atmospheric fluidized bed combustion. The plant will be designed for a thermal capacity of 240 MW. The basis for this decision, and also the technical implementation, will be made public.

  17. The dynamics of large particles in a four-compartment interconnected fluidized bed

    NARCIS (Netherlands)

    Snieders, FF; Hoffmann, AC; Cheesman, D; Yates, JG; Stein, M; Seville, JPK

    1999-01-01

    In order to investigate the potential of a four-compartment interconnected fluidized bed for the combustion of biomass, the behaviour of cylindrical pellets in a bed material of glass ballotini was characterized as a function of the operational parameters. This involved (a) studying the distribution

  18. Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents

    NARCIS (Netherlands)

    Veneman, R.; Li, Z.; Hogendoorn, J.A.; Kersten, S.R.A.; Brilman, D.W.F.

    2012-01-01

    In this work, supported amine sorbents were prepared by physical impregnation of silica and polymethylmethacrylate (PMMA) with tetraethylenepentamine (TEPA) and studied for post-combustion CO2 capture purposes in a lab scale circulating fluidized bed (CFB) reactor. Sorbent amine loading and support

  19. Devolatilization and ignition of coal particles in a two-dimensional fluidized bed

    NARCIS (Netherlands)

    Prins, W.; Siemons, R.; Swaaij, van W.P.M.

    1989-01-01

    In a two-dimensional (15 × 200 × 400 mm) high-temperature fluidized bed, devolatilization ignition and combustion phenomena of single coal particles have been studied. The particles, with diameters of 4–9 mm, were selected from three coal types of widely different rank: brown coal, bituminous coal,

  20. Particle Pressures in Fluidized Beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  1. Particle pressures in fluidized beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  2. Control of fluidized bed tea drying

    NARCIS (Netherlands)

    Temple, S.J.

    2000-01-01

    Tea is a product made from the leaf of the tea bush by several processes, including drying. The drying stage is the most energy intensive, and has tight performance criteria. This project investigated the options for the control of a fluidized bed tea dryer. The work included establishing some of th

  3. Agglomeration in fluidized beds: detection and counteraction

    NARCIS (Netherlands)

    Bartels. M.

    2008-01-01

    Fluidized beds comprise a quantity of solid particles that is suspended by an upward flowing gas. They are used for a variety of processes in the chemical industry, such as catalytic reactions, drying, coating and energy conversion. A major problem in industrial practice is the occurrence of unwante

  4. Multiscale modeling of gas-fluidized beds

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Ye, M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.

    2006-01-01

    Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this

  5. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  6. Multiscale modeling of gas-fluidized beds

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.

    2006-01-01

    Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this rea

  7. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  8. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R.; Patrikainen, T.; Heikkinen, R.; Tiainen, M.; Virtanen, M. [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  9. 循环流化床高浓度富氧燃烧试验研究%Experimental Study on Oxy-fuel Combustion With High Oxygen Concentration in a Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    谭力; 李诗媛; 李伟; 寿恩广; 吕清刚

    2014-01-01

    In order to investigate the effects of combustion temperature and atmosphere on the combustion stability, CO2 concentration and gaseous pollutants emissions in flue gas, in a 0.1 MW circulating fluidized bed (CFB) oxy-fuel combustion facility, oxy-combustion experiments with Datong coal were carried out at O2/CO2 and O2/ recycled flue gas (RFG) atmosphere with high oxygen concentration. The test results show that when the oxygen concentration of the primary air ranges from 49.6%to 55.2%and that of the secondary air is in the range from 45.3%to 51.7%, the CFB oxy-fuel combustion facility maintains stably at O2/RFG atmosphere. In flue gas, CO2 concentration can reach above 90%, SO2 concentration is 87 to 197 mg/MJ, N2O concentration is 48 to 78 mg/MJ, and NO concentration is only 19 to 44 mg/MJ. Compared with the result of O2/CO2 combustion, the concentration of CO and SO2 increases to a certain degree, while N2O concentration decreases obviously, and NO concentration basically remains the same.%#在0.1 MW循环流化床富氧燃烧试验系统上,进行了大同烟煤在O2/再循环烟气(RFG)和O2/CO2配气下的高浓度富氧燃烧试验,研究燃烧温度和气氛对燃烧稳定性、烟气中CO2浓度和气体污染物排放的影响。研究结果表明,O2/RFG气氛下,在一次风氧气浓度为49.6%~55.2%、二次风氧气浓度为45.3%~51.7%范围内,循环流化床能够稳定运行,烟气中CO2浓度达到90%以上,SO2浓度为87~197 mg/MJ,N2O浓度为48~78 mg/MJ,NO仅为19~44 mg/MJ。与O2/CO2配气燃烧相比,O2/RFG燃烧时除NO浓度基本不变外,CO与SO2浓度均有一定程度的增加,而N2O浓度则明显降低。

  10. Two-dimensional model for circulating fluidized-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, H.; Kruse, M.; Werther, J. [Technical Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Chemical Engineering

    1996-07-01

    Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.

  11. 磨细固硫灰渣作为混合材对水泥性能的影响%Performance of Cement Blending Pulverized Ash and Slag from Fluidized Bed Combustion

    Institute of Scientific and Technical Information of China (English)

    牛茂威; 谢小莉; 林洲; 张克; 钱觉时

    2013-01-01

    Fluidized bed combustion (FBC) ash and slag with higher anhydrite and f-CaO may cause poor volume stability used as cement mixing materials. By controlling the dosage of the FBC ash and slag, grinding them to different fineness, the standard consistency requirement, linear expansion rate and mortar strength of the cement blended FBC ash and slag were tested, and compared with the ordinary Portland cement. Results show that increasing the fineness of FBC ash and slag, especially for the ash, could reduce the standard consistency requirement of the cement and delay the setting time. Variation in fineness of FBC ash and slag has no significant influence on the shrinkage in air curing, and higher fineness would accelerate the early expansion in moisture curing, which is within a safe range. The increase of the fineness of FBC ash and slag promotes remarkably the strength of the cement. It is suggested that milling is beneficial to utilization of the FBC ash and slag in cement.%  流化床固硫灰渣含有较高无水石膏和f-CaO,作为水泥混合材利用时会存在体积稳定性问题。在控制固硫灰渣掺量前提下,将固硫灰渣粉磨至不同细度,测试了掺加固硫灰渣的水泥标准稠度需水量、线性膨胀率和胶砂强度,并与普通硅酸盐水泥进行对比。结果表明,提高固硫灰渣细度,特别是固硫灰细度,能使水泥标准稠度需水量减少;固硫灰渣细度提高,水泥凝结时间有所延长;自然养护条件下,固硫灰渣细度变化对水泥收缩没有明显影响,潮湿养护下,磨细固硫灰渣早期能够释放较多膨胀,但处于可控范围;固硫灰渣细度增加,水泥强度明显提高。磨细有利于固硫灰渣作为水泥混合材利用。

  12. Rapid ignition of fluidized bed boiler

    Science.gov (United States)

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  13. 双流化床生物质气化炉研究进展%Research progress of dual fluidized bed biomass gasifier

    Institute of Scientific and Technical Information of China (English)

    王晓明; 肖显斌; 刘吉; 陈旭娇; 覃吴; 董长青; 李文艳

    2015-01-01

    生物质是重要的清洁可再生能源,双流化床生物质气化技术是将低品位的生物质能转化成高品位氢能的重要途径。本文阐明了双流化床气化过程的基本原理,从燃气中氢气浓度、焦油含量和装置热效率等角度,介绍了双流化床生物质气化技术的早期探索和发展现状,对目前几种典型双流化床生物质气化炉的炉型设计及相关试验研究进行了分析和总结。指出内循环双流化床气化炉结构虽然简单紧凑,但是难以避免气化室和燃烧室之间的气体串混问题;而外循环流化床通过外置返料器很好地解决了气体串混问题。分析了不同气化室优化设计方案对提升燃气品质的理论依据及其优缺点。最后对双流化床生物质气化技术的发展进行了总结和展望,指出双流化床生物质气化制氢具有非常广阔的工业化应用和发展前景。%Biomass is an important part of clean and renewable energy sources. Dual fluidized bed biomass gasification is an important technology that transforms low-quality biomass into high-quality hydrogen. This paper illustrates the basic principles of the dual fluidized bed gasification process,and summarizes the early exploration and development status of the dual fluidized bed biomass gasification technology from the perspective of hydrogen concentration,tar content and device thermal efficiency. The furnace design and related experimental studies of several typical dual fluidized bed biomass gasifiers are analyzed and summarized. Internal circulating dual fluidized bed gasification furnace has simple and compact structure,but it is difficult to prevent gas leakage between gasification chamber and combustion chamber. External circulating dual fluidized bed with external recycle device resolves the problem of gas leakage. The theoretical basis,advantages and disadvantages of different optimized gasification chamber designs are analyzed. The

  14. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  15. Cluster Dynamics in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  16. Pressure fluctuations in gas fluidized beds

    OpenAIRE

    Leckner Bo.; Palchonok Genadij I.; Johnsson Filip

    2002-01-01

    The pressure fluctuations in a fluidized bed are a result of the actions of the bubbles. However, the bubbles may be influenced by the air supply system and by the pressure drop of the air distributor. These interactions are treated for low as well as for high velocity beds by means of a simple model of the principal frequency of the pressure fluctuations. The model includes the interaction with the air supply system and describes qualitatively two important bubbling regimes: the single bubbl...

  17. Biological denitrification in a fluidized bed.

    Science.gov (United States)

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  18. BNNT Growth in a Fluidized Bed Reactor

    Science.gov (United States)

    2016-06-24

    fluidized bed and plasma assisted nanotube synthesis for the growth of boron nitride nanotubes (BNNT). Within this context, we established new...bed and plasma assisted nanotube synthesis for the growth of boron nitride nanotubes (BNNT). Within this context, we established new laboratories to...the path of using plasma assistance to growth BNNT in a manner similar to that of researchers at the Canadian Research Council. With our combined

  19. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review

    Energy Technology Data Exchange (ETDEWEB)

    Alauddin, Zainal Alimuddin Bin Zainal; Lahijani, Pooya [School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Mohammadi, Maedeh; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-12-15

    A literature review on gasification of lignocellulosic biomass in various types of fluidized bed gasifiers is presented. The effect of several process parameters such as catalytic bed material, bed temperature and gasifying agent on the performance of the gasifier and quality of the producer gas is discussed. Based on the priorities of researchers, the optimum values of various desired outputs in the gasification process including improved producer gas composition, enhanced LHV, less tar and char content, high gas yield and enhanced carbon conversion and cold gas efficiency have been reported. The characteristics and performance of different fluidized bed gasifiers were assessed and the obtained results from the literature have been extensively reviewed. Survey of literature revealed that several industrial biomass gasification plants using fluidized beds are currently conducting in various countries. However, more research and development of technology should be devoted to this field to enhance the economical feasibility of this process for future exploitations. (author)

  20. Single-stage fluidized-bed gasification

    Science.gov (United States)

    Lau, F. S.; Rue, D. M.; Weil, S. A.; Punwani, D. V.

    1982-04-01

    The single-stage fluidized-bed gasification process, in addition to being a simple system, maximizes gas production and allows the economic exploitation of small peat deposits. The objective of this gasification project is to conduct experiments in order to obtain data for designing a single-stage fluidized-bed gasifier, and to evaluate the economics of converting peat to synthesis gas and to SNG by this process. An existing high-temperature and high-pressure process development unit (PDU) was modified to permit the direct feeding of peat to the fluidized bed. Peat flows by gravity from the feed hopper through a 6-inch line to the screw-feeder conveyor. From there, it is fed to the bottom tee section of the reactor and transported into the gasification zone. Oxygen and steam are fed through a distributing ring into the reactor. Gasification reactions occur in the annulus formed by the reactor tube and a central standpipe. Peat ash is discharged from the reactor by overflowing into the standpipe and is collected in a solids receiver.

  1. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  2. Pilot fluidized bed combustor system applied to thermal energy production from light hydrocarbons - part I: description and hydrodynamics analysis; Sistema combustor piloto a leito fluidizado para producao de energia termica a partir de hidrocarbonetos leves. Parte I: descricao e analise hidrodinamica do sistema

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro P. de; Souza Junior, Francisco de Assis; Alves, Stella M.A.; Estevao, Paulo [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lucena, Sergio; Souza, Phillipi R. de O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Controle e Otimizacao de Processos; Santos, Douglas A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2008-07-01

    During the last years, the employment of light hydrocarbons in combustion systems for power generation has been announced by Brazilian Government's like a great bet for diversification the energetic matrix in spite of the provisional crisis. As consequence, high demand and growing R and D investments caused immediate reflexes in all economical and industrial sectors of the Natural Gas chain, mainly considering the gas from Campos, Santos and Espirito Santo offshore fields offered to the market. Regarding this, Northeast Region of Brazil shows itself to be attentive to the energy market tendencies and to environmental sector, creating conditions for developing new technologies and applications for the gas consumption. Among the possible applications of the gas consumption, the fluidized bed combustion systems are highlighted, like a real alternative for energy applying of the hydrocarbons produced, considering a good safety range to effective environmental demands. Thereby, the present work aimed to perform the description of a pilot fluidized bed combustor system with sand using light hydrocarbons - specifically, natural gas and LPG. Thereby, said pilot fluidized bed combustor operates isothermically without developing flames and/or hot spots. Besides the exposed, a hydrodynamic analysis of the system was made, identifying variables and parameters onto fluidized bed combustion process. (author.

  3. Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor

    Science.gov (United States)

    Soria-Hoyo, C.; Valverde, J. M.; van Ommen, J. R.; Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Sayagués, M. J.

    2015-02-01

    CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO2 solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO2 nanoparticles.

  4. Low Density Dry Coal Beneficiation Using an Air Dense Medium Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-fu; ZHU Jian-feng; FAN Mao-ming; ZHAO Yue-min; TAO Xiu-xiang

    2007-01-01

    For the production of low ash content clean coal, separation at low density is required for some raw coals. Based on analyzing the fluidizing characteristics of magnetic pearls with a specific size distribution and formation mechanism of a microbubble fluidized bed, optimal technological and operating parameters suitable for low density coal separation were determined. The experimental results show that an air dense medium fluidized bed with low density can be formed using magnetic pearls as medium solids, which can efficiently beneficiate coal of 6-50 mm size with a probable error Ep value of 0.05 at a separating density of 1.44 g/cm3.

  5. Fluidized Bed Asbestos Sampler Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Barry H. O' Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  6. Measurements of gas velocity in the freeboard of a pressurized fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Verloop, W.C. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hagen, T.H.J.J. van der [Interfaculty Reactor Inst., Dept. of Reactor Physics, Univ. of Technology, Delft (Netherlands); Boersma, D. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands)

    1992-12-31

    The processes in the freeboard of a fluidized bed combustor have an important impact on both the elutriation of fly ash particles and the emission of noxious gases. The main features have been studied for already several decades. In order to understand the phenomena more thoroughly, the details have to be studied. This paper presents the results of measurements of the gas velocity at different locations in the freeboard. Experiments were performed in the pressurized fluidized bed combustor of the Delft University of Technology, The Netherlands, at 8 bar and a freeboard temperature of 850 C. The measuring method used the temperature flucutations naturally present in the combustion process which were recorded by axially displaced thermocouples. By means of mathematical correlation of the recorded signals, the local gas velocity is calculated. The resulting radial velocity profiles of the upper part of the freeboard are very similar to one-phase turbulent pipe flow profiles. Deviations from the expected axial symmetrical velocity profile which were measured at the lowest level are described to the non-axial symmetrical bed behaviour. (orig.) [Deutsch] Die Vorgaenge im Freiraum ueber Wirbelbettverbrennungssysteme spielen eine bedeutende Rolle bei der Entstehung und der Minimierung von festen und gasfoermigen Emissionen. Obwohl in diesem Zusammenhang schon seit langem wesentlichste Kenngroessen des Freiraums Gegenstand von Untersuchungen sind, beduerfen Einzelheiten der Gas- und Partikelstroemung noch weiterhin detaillierter Erfassung. Hierzu werden Daten der Geschwindigkeitsverteilung benoetigt, deren Ermittlung mit konventionellen Messtechniken, insbesondere in Druckwirbelschichtfeuerungen, technisch problematisch ist. In dem Vortrag wird ueber eine Messmethode zur Geschwindigkeitsbestimmung berichtet, bei der feuerungsseitige Temperaturschwankungen ueber in Stroemungsrichtung versetzte Thermoelemente aufgenommen und mathematisch korreliert werden. Diese Methode wurde

  7. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project of circulating fluidized bed boiler (Jinzhou Coal-Thermal Power Corporation); 1997 nendo seika hokokusho (kankyo chowagata sekitan riyo system donyu shien jigyo). Junkan ryudosho boiler ni kakawaru jissho jigyo (Jinzhou netsuden sokoji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To verify the clean coal technology to be diffused in China and consolidate its diffusion basis, demonstration project of circulating fluidized bed boiler was conducted through the cooperation with China which is positive in its introduction. This report describes its characteristics. Coal and limestone are supplied in a lower part of combustion chamber, and are mixed with circulating ash by fluidized air for combustion. Densely fluidized bed the same as the bubbling fluidized bed is formed in the lower part of combustion chamber, which provides excellent stability in ignition and combustion. Particles including ash, char and limestone formed during the combustion are discharged into the cyclone through the convection heat transfer part at the outlet of combustion chamber with the combustion gas flow. Since the gas temperature is lowered to 400 to 500degC at the convection heat transfer part, troubles of the ash circulating system can be prevented. The combustion gas separated from ash at the cyclone is discharged through the heat exchanger and precipitator, and the collected ash is returned to the lower part of combustion chamber. In FY 1997, design, fabrication, procurement/inspection, field survey/meeting, survey of visitors/meeting, and education were carried out. 4 figs., 4 tabs.

  8. Fluidized Bed Sputtering for Particle and Powder Metallization

    Science.gov (United States)

    2013-04-01

    Fluidized Bed Sputtering for Particle and Powder Metallization by Daniel M. Baechle, J. Derek Demaree, James K. Hirvonen, and Eric D...5069 ARL-TR-6435 April 2013 Fluidized Bed Sputtering for Particle and Powder Metallization Daniel M. Baechle, J. Derek Demaree, James K...YYYY) April 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) June 2008–June 2012 4. TITLE AND SUBTITLE Fluidized Bed Sputtering for

  9. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  10. Direct Utilization of Circulating Fluidized Bed Combustion Ash of Distilled Spirits Lees as Fertilizer%白酒糟循环流化床燃烧灰直接肥料化利用

    Institute of Scientific and Technical Information of China (English)

    宋扬; 汪印; 姚常斌; 张玉明; 王昶; 易彬; 杨俊; 许光文

    2011-01-01

    研究了白酒糟循环流化床燃烧灰直接作为肥料的可能性和效果,以其为肥料种植油菜,考察了油菜在5种土壤中发芽和生长情况.结果表明,白酒糟燃烧灰对不同生长阶段的油菜有不同影响,对壤质土中的油菜发芽有抑制作用,但能明显改善粘性土壤中油菜的生长环境,油菜的净增量和产量都有明显增加.白酒糟燃烧灰还能提高酸性土壤pH值,使土壤环境向中性(pH 6.97~7.74)变,有利于腐殖酸分解和植物生长.土壤与白酒糟燃烧灰质量比为5:1时,与原土相比,泸州国窖红土壤、泸州青稞土壤及富阳土壤中油菜净增量分别为80.1%,80.9%,163.6%,表明利用白酒糟燃烧灰作为植物生长肥料是可行的.%The feasibility of utilizing the circulating fluidized bed combustion ash of distilled spirits lees as fertilizer was investigated. The rape culture experiment was carried out in 5 different kinds of soils, and the rape growth states in the germination and growth stages were measured to evaluate the effect of adding ash to the soils as fertilizer. The results show that the ash exhibited different effects on the rape growth in different culture stages. There was an antibiastic effect on the rape growth in the germination stage in a loamy soil, but the rape growth was much improved when adding the ash to a clayey soil. The latter led the mature rape to having obviously increased net height and weight. The ash could change the pH value of acid soil into neutral state, facilitating the humic acid decomposition and plant growth. Comparing the soils at soil:ash=5:l(ω) with original soil, the increased amplitudes of net height of rape in Guojiaohong Turang, Qingke Turang and Fuyang Turang were 80.1%, 80.9% and 163.6%, respectively. As consequence, it was feasible and effective to use directly the combustion ash of distilled spirits lees as fertilizer.

  11. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  12. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  13. Devolatilization of wood and wastes in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Barea, Alberto; Nilsson, Susanna; Vidal Barrero, Fernando; Campoy, Manuel

    2010-11-15

    Experiments were carried out in a laboratory fluidized bed (FB) to characterize the devolatilization behavior of wood and various wastes at temperatures applicable to FB gasification and combustion, i.e. 750-900 C. The fuels tested were pellets made of wood, meat and bone meal, and compost (from municipal solid wastes), as well as dried granulates of sewage sludge (DSS). Determination of yields of char, condensate and light gas, as well as the composition of the gas and the time of devolatilization during the pyrolysis of single fuel batches was made. A simple model was developed to analyze the mode of conversion of a single wood pellet and DSS granulate, giving insight on the controlling mechanisms during devolatilization. The devolatilization kinetics of DSS was determined by tests using fine granulates. The model was successfully applied to simulate the conversion of large DSS granulates and wood pellets under the whole range of temperatures analyzed. (author)

  14. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  15. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xu, Guangwen [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Suda, Toshiyuki [Research Laboratory, IHI Corporation, Ltd., Yokohama (Japan); Murakami, Takahiro [National Institute of Advanced Science and Technology, Tsukuba (Japan)

    2010-08-15

    Biomass containing water of 30-65 wt.% and rich in cellulose, such as various grounds of drinking materials and the lees of spirit and vinegar, is not suitable for biological digestion, and the thermal conversion approach has to be applied to its conversion into bioenergy. The authors have recently worked on converting such biomass into middle heating-value gas via dual fluidized bed gasification (DFBG) integrated with various process intensification technologies. This article is devoted to highlighting those technical ways, including the choice of the superior technical deployment for a DFBG system, the impregnation of Ca onto fuel in fuel drying, the integration of gas cleaning with fuel gasification via two-stage DFBG (T-DFBG), and the decoupling of fuel drying/pyrolysis and char gasification via the decoupled DFBG (D-DFBG). The attained results demonstrated that the superior deployment of bed combination for the DFBG should be a bubbling/turbulent fluidized bed gasifier integrated with a pneumatic riser combustor. In terms of improving efficiency of fuel conversion into combustible gas and suppressing tar generation during gasification, the impregnation of Ca onto fuel exhibited distinctively high upgrading effect, while both the T-DFBG and D-DFBG were also demonstrated to be effective to a certain degree. (author)

  16. Cold-Flow Circulating Fluidized-Bed Identification

    Energy Technology Data Exchange (ETDEWEB)

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  17. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  18. Thorium utilization program. Quarterly progress report for the period ending November 30, 1975. [Fuel element crushing, solids handling, fluidized bed combustion, aqueous separations, solvent extraction, systems design and drafting, alternative head-end reprocessing, and fuel recycle systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-31

    The development program for HTGR fuel reprocessing continues to emphasize the design and construction of a prototype head-end line. Design work on the multistage crushing system, the primary and secondary fluidized bed burners, the pneumatic transfer systems, and the ancillary fixtures for semiremote assembly and disassembly is essentially complete. Fabrication and receipt of all major components is under way, and auxiliary instrumentation and support systems are being installed. Studies of flow characteristics of granular solids in pneumatic transfer systems are continuing and data are being collected for use in design of systems for solids handling. Experimental work on the 20-cm primary fluidized bed burner verified the fines recycle operating mode in runs of greater than 24 hr. Twelve leaching runs were performed during the quarter using crushed, burned-back TRISO coated ThC/sub 2/ particles and burned-back BISO coated sol gel ThO/sub 2/ particles to examine the effect of varying the Thorex-to-thoria ratio to give product solutions ranging from 0.25M to 1M in thorium. Only minor effects were observed and reference values for facility operations were specified. Two-stage leaching runs with burned-back ThC/sub 2/ indicate there are no measurable differences in total dissolution time as compared to single-stage leaching. Bench-scale tests on oxidation of HTGR fuel boron carbide at 900/sup 0/C indicates that most if not all of the carbide will be converted to boron oxide in the fluidized bed burner. Eight solvent extraction runs were completed during the quarter. These runs represented the first cycle and second uranium cycle of the acid-Thorex flowsheet. A detailed calculation of spent fuel compositions by fuel block and particle type is being performed for better definition of process streams in a fuel reprocessing facility.

  19. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  20. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  1. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    Science.gov (United States)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  2. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  3. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  4. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment].

    Science.gov (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin

    2011-04-01

    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  5. Chaotic Study in a Large Jetting Fluidized Bed with a Vertical Nozzle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Jetting fluidized beds have been widely applied in such processes as catalytic and flame reactions, combustion and gasification of coal, treatment of waste, cleaning of dusty gases, coating and granulation[1-3]. The flow characteristics of jetting fiuidized beds are relevant to the stable gas jet and the high rates of heat transfer and mass transfer, and the fast chemical reaction pro cess near the gas distributor.

  6. The Study of Gas-Dynamic Processes in the Current Boiler Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Baturin Dmitry A.

    2015-01-01

    Full Text Available The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results of the concentration of particulate matter and fields of speeding, as well as a graphical representation of changes in the concentration of particles on the bed height. Simulation performed in Euler - Euler representation on a 2D model.

  7. The Study of Dynamic Processes in the Boiler Furnace with Circulating Fluidized Bed

    OpenAIRE

    Gil A. V.; Baturin D. A.

    2016-01-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out on all volume of the combustion chamber. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian and Lagrange representation on a 3D model.

  8. The Study of Dynamic Processes in the Boiler Furnace with Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Gil A. V.

    2016-01-01

    Full Text Available The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out on all volume of the combustion chamber. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian and Lagrange representation on a 3D model.

  9. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air

  10. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air s

  11. Investigation of dynamic load changes of a combined cycle power plant with circulating pressurized fluidized bed using a simulation model; Untersuchungen zum dynamischen Lastaenderungsverhalten eines Kombi-Kraftwerks mit zirkulierender Druckwirbelschicht mit Hilfe eines Simulationsmodells

    Energy Technology Data Exchange (ETDEWEB)

    Bockamp, S.; Krumm, W.

    2001-07-01

    Fluidized bed combustion technology offers high efficient power plants with low emissions using coal, biomass or waste as fuel input. Mathematical models support the optimisation and design of power plants. The mathematical fluidized bed system model developed at the Institut fuer Energietechnik, Universitaet Siegen, allows the simulation of steady state or dynamic process operation behaviour. This model is used for detailed examining of the overall combined cycle power plant and the interactions between the single components gas turbine, furnace and water-/steam cycle. The described simulation model presented in this paper is applied for the determination of the transient operation behaviour of a combined cycle power plant based on pressurized circulating fluidized bed combustion. The effects of a step function load change on the temperature profile, the emissions and on process reaction of water/steam cycle and on gas turbine is analysed and discussed in detail at different component outlets. (orig.) [German] Das Kombi-Kraftwerk mit zirkulierender Druckwirbelschichtfeuerung stellt ein effizientes und emissionsarmes Konzept dar. Neben den wirbelschichtinhaerenten Eigenschaften wie geringerer Schadstoffbildung durch niedrige Feuerraumtemperaturen und der integrierten Schadstoffreduktion durch die Zugabe von Zuschlagstoffen verspricht die druckaufgeladenen Variante aufgrund der hohen Querschnittsbelastung eine kompakte Bauart sowie einen fuer die Verstromung von Kohlen hohen Wirkungsgrad. Kohle kann mit diesem Verfahren direkt innerhalb eines Gasturbinenprozesses genutzt werden. Mit Hilfe der mathematischen Modellbildung koennen die dynamischen Auswirkungen auf das Gesamtsystem Kombi-Kraftwerk untersucht werden. (orig.)

  12. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  13. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  14. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  15. Performance of a bench-scale fast fluidized bed carbonator

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2014-01-01

    The carbonate looping process is a promising technology for CO2 capture from flue gas. In this process, the CO2 capture efficiency depends on the performance of a carbonator that may be operated as a circulating fluidized bed (CFB). In this paper, the carbonator performance is investigated...... by applying a new experimental method with accurate control of the particle recirculation rate. The experimental results show that the inlet calcium to carbon molar ratio is the main factor on the CO2 capture efficiency in the carbonator, that is, increasing the inlet Ca/C from 4 to 13 results in increasing...... the CO2 capture efficiency from 40 to 85% with limestone having a maximum CO2 capture capacity of only 11.5%. Furthermore, a reactor model for a carbonator is developed based on the Kunii-Levenspiels model. A key parameter in the model is the particle distribution along the height of the reactor, which...

  16. Bubbling fluidized bed boiler for Vanaja power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sormunen, R.; Haermae, P.; Vessonen, K.; Ketomaeki, A. [ed.

    1998-07-01

    At the Vanaja Power Plant, on the outskirts of Haemeenlinna, there have been changes which reflect the central goals in IVO`s product development work. At Vanaja, efficiency is combined with environmental friendliness. In the early 1980s, the plant was modernized to produce district heat in addition to electricity. At that time, along with the new gas turbine at the plant, the main fuel, coal, while remaining the fuel for the old boilers, was replaced by natural gas. This year a new type of bubbling fluidized bed boiler enabling continuous use of peat and trial use of biofuels along with coal was introduced at the plant. In addition to the Nordic countries, this kind of technology is required in central eastern Europe, where modernization of ageing power plants is being planned to achieve the best possible solutions in respect of production and the environment. IVO develops a new repair technique for underwater sites

  17. Gasification process of refuse derived fuel in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, S.; Kinoshita, Y.; Lee, C.W.; Itaya, Y.; Mori, S. [Nagoya Univ., Nagoya (Japan). Dept. of Chemical Engineering

    2002-07-01

    This paper presents a fuel gas production system involving gasification of refuse-derived fuel (RDF) in a circulating fluidized bed (CFB). Although RDF is considered to be a viable source of energy, combustion of RDF has not spread widely because of a lack of conventional incinerators, erosion due to hydrogen chloride, and emissions of dioxin. This paper presents the results of an experimental study of the pyrolysis behaviour of 3 kinds of RDF and the particle motion in a cold model CFB. The objective was to clarify operating parameters for optimum control. It was shown that an increase in combustion temperature improves the yield of the combustible gas components and the energy recycling efficiency from the RDF. The highest heating value of pyrolysis gas was obtained at 873 to 973 degrees K. The gas flow rate in the pneumatic valve of the CFB was an important control factor for the circulation flux and solids holdup in the riser. High holdups were observed when minute silica sand particles were used in the CFB. 15 refs., 1 tab., 8 figs.

  18. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  19. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  20. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1991-12-31

    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  1. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  2. Reforming Analysis of Environmental Protection Technologies in Circulating Fluidized Bed Boiler%环保新标准的循环流化床锅炉改造分析

    Institute of Scientific and Technical Information of China (English)

    马双忱; 张华仙; 朱思洁; 雷雨; 杨静

    2015-01-01

    对循环流化床在脱硝、脱硫和除尘等方面环保技术路线进行了分析,权衡各项技术的利弊及经济因素,结合新颁布的火电厂大气污染物排放标准(GB 13223—2011),做出如下建议:半干旋转喷雾法脱硫工艺( SDA)和SCR结合使用后,氮氧化物的脱除效率可达到95%,循环流化床中高灰分的环境不适合使用SCR, SNCR的脱除效率虽然相对较低,但是通过调整还原剂的停留时间和与烟气的混合程度,脱硝效率可达70%以上,完全可以满足新环保标准的要求;石灰石-石膏湿法脱硫技术成熟,脱硫效率高,负荷适应性好,在循环流化床炉内脱硫的基础上外加该工艺,可以保证足够的脱硫效率;电袋组合式除尘器发挥了两种除尘器的技术优势,可以达到新标准的要求。%In this essay, three environmental protection technical routes, denitrification, desulfurization and dust removal of CFB boilers, were analyzed.Considering the advantages and disadvantages of the techniques, economic factors, and with the purpose of meeting the newly issued Power Plant Air Pollutants Emission Standard (GB13223-2011), this essay suggests the following.The combination of SCR and SDA can increase the NOx removal efficien-cy to 95%.But it does not apply to the environment of high ash content in the circulating fluidized bed.Despite of the low efficiency of the SNCR, denitrification efficiency can be up to 70% with the adjustment of the residence time and the mixing proportion of the flue gas, which can fully meet the new environmental standards.In addition, the limestone-gypsum wet FGD technology, with a high desulfurization efficiency and good load adaptation, is com-paratively mature.If the process is added after circulating fluidized bed desulfurization, adequate removal efficiency can be ensured.The advantages of two kinds of dust remover being considered, the electrostatic bag dust remover

  3. Application and research progress of fluidized bed-chemical vapor deposition technology%流化床-化学气相沉积技术的应用及研究进展

    Institute of Scientific and Technical Information of China (English)

    刘荣正; 刘马林; 邵友林; 刘兵

    2016-01-01

    Fluidized bed-chemical vapor deposition (FB-CVD) is widely used in industrial production owing to the combined advantages of both fluidized bed and chemical vapor deposition. Providing good heat and mass transfer,it can obtain a pure product with uniform deposition. Based on its basic principle,the applications of FB-CVD in areas of particle coating,preparation of one-dimensional nano-materials, polycrystalline silicon,powder synthesis and powder surface modification are reviewed. The progress of process simulation and reactor structure design of FB-CVD is introduced. From the discussion,the scientific connotation of FB-CVD shows multi-scale features,namely material preparation at microscopic level, particle fluidization at mesoscopic level and reactor structure design at macroscopic level. Future development of FB-CVD technology depends on coupling analysis of these three scales,and research should be focused on the effect of interaction between different scales,such as coupling between homogeneous nucleation material/non-homogeneous nucleation in materials preparation and particle fluidization in the reactor.%流化床-化学气相沉积(FB-CVD)技术是一种多学科交叉的材料制备技术,兼有流化床传热传质性能良好以及化学气相沉积均匀、产物单一等优点,在工业生产中有着广泛的应用,但因其属于交叉学科,散见于各种研究,没有进行专门的进展评述。本文拟对 FB-CVD 的工业应用进行专题综述,分析其发展和研究趋势。首先探讨了 FB-CVD 的基本原理,分别综述了其在颗粒包覆、一维纳米材料、多晶硅制备、颗粒表面改性及粉体制备等方面的应用,介绍了 FB-CVD 的过程模拟及反应器结构优化方面的研究进展。通过以上讨论,梳理了FB-CVD研究的科学内涵。可以看出,该过程具有明显的多尺度特征,即材料制备的微观层次、颗粒流化均匀性的介观层次以及反应器结构

  4. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  5. Kinetics of Reduction Reaction in Micro-Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LINYin-he; GUOZhan—cheng; TANGHui—qing; REN Shan; LIJing—wei

    2012-01-01

    Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor volume. In order to understand the dynamic process of the reduction reaction in micro-fluidized bed, a series of kinetic experi- ments were designed. In the micro fluidized bed, the use of shrinking core model describes the dynamic behavior of reduction of iron ore. And the apparent activation energy is calculated in the range of 700--850 ~C while the initial atmosphere is 100% content of CO.

  6. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    , monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.

  7. Topping combustor status for second-generation pressurized fluidized bed cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Domeracki, W.F.; Dowdy, T.E. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-01-01

    Second-generation Pressurized Fluidized (PFB) combined cycle employ topping combustion to raise the turbine inlet temperature for enhanced cycle efficiency. This concept creates special combustion system requirements that are very different from requirements of conventional gas turbine systems. The topping combustor provides the means for achieving state-of-the-art turbine inlet temperatures and is the main contributor to enhanced plant performance. The objective of this program is to develop a topping combustor that provides low emissions, and is a durable, efficient device exhibiting stable combustion and manageable wall temperature. The combustor will be required to burn a low-Btu syngas under normal coal-fired conditions. However, for start-up and/or carbonizer outage, it may be necessary to fire a clean fuel, such as oil or natural gas. Prior testing has shown the Westinghouse Multi-Annular Swirl Burner (MASB) to have excellent potential for this application. Metal wall temperatures can be maintained at acceptable levels, even though most cooling is done by 1,600 F vitiated air. Good pattern factors and combustion efficiencies have been obtained. Additionally, low conversion rates of fuel bound nitrogen to NO{sub x} have been demonstrated. This paper presents an update of the status of an ongoing topping combustor development and test program for application to Second-Generation Pressurized Fluidized Bed Combined Cycles (PFBCC). The program is sponsored by the Department of Energy`s Morgantown Energy Technology Center (DOE/METC) and will first be applied commercially into the Clean Coal Technology Round V Four Rivers Energy Modernization Project. Phase 1 of the program involved a conceptual and economic study (Robertson et al., 1988); Phase 2 addresses design and subscale testing of components; and Phase 3 will cover pilot plant testing of components integrated into one system.

  8. Integration of concentrated solar power (CSP) and circulating fluidized bed (CFB) power plants - final results of the COMBO-CFB project

    Science.gov (United States)

    Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti

    2017-06-01

    Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.

  9. RESEARCH ON DENSITY STABILITY OF AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    骆振福; 陈清如

    1994-01-01

    In this papcr on thc basis of studying the distribution of fine coal in the dense medium fluidized bed, the optimal size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously accumulate in fluidized bed, thus inevitably reducing the density of the bed. In order to keep bed density stable, the authors adopted such measures as split-flow of used medium and complement of fresh dense medium. The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have established some relative dynamic mathematical models for it.

  10. Collecting aerosol in airflow with a magnetically stabilized fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A magnetically stabilized fluidized bed (MSB) is a highly efficient filter that takes the advantage of both fluidized beds and fixed beds. This paper presents the research to collect aerosol in airflow with a MSB. The filtering model of MSB is established with its parameters including magnetic field intensity,gas superficial velocity, average grain-size, and bed height on thecollection efficiency of MSB. The model is verified by experiments.

  11. Chebyshev super spectral viscosity method for a fluidized bed model

    CERN Document Server

    Sarra, S A

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations.

  12. Flow boiling heat transfer in circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang REN; Jiangdong ZHENG; Sefiane KHELLII; Arumemi-Ikhide MICHAEL

    2009-01-01

    In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boil-ing system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

  13. Fluidized Bed Air-to-Air Heat Pump Evaporator Evaluation.

    Science.gov (United States)

    1983-07-01

    Frost formation of air-to-air heat pump evaporator surfaces reduces unit efficiency and restricts application. The use of a fluidized bed heat...exchanger as an air-to- heat pump evaporator was investigated to determine if frost accumulation could be eliminated. Experimental investigations were...evaluated, with no practical solution being developed. The use of a fluidized bed heat exchanger for air-to-air heat pump evaporators was determined not feasible. (Author)

  14. Directly irradiated fluidized bed reactors for thermochemical processing and energy storage: Application to calcium looping

    Science.gov (United States)

    Tregambi, Claudio; Montagnaro, Fabio; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Directly irradiated fluidized bed reactors are very promising in the context of concentrated solar power applications, as they can be operated at process temperatures high enough to perform thermochemical storage reactions with high energy density. Limestone calcination-carbonation is an appealing reaction for thermochemical storage applications due to the cheapness of the raw material, and the interesting value of the reaction enthalpy at fairly high process temperatures. Moreover, limestone calcination-carbonation is intensively studied in Calcium Looping (CaL) application for post combustion CO2 capture and sequestration. In this work, the dynamics of a directly irradiated 0.1 m ID fluidized bed reactor exposed to a 12 kWel simulated solar furnace is analyzed with specific reference to temperature distribution at the surface and in the bulk of the bed. Simulation of the solar radiation was performed through an array of three short arc Xe-lamps coupled with elliptical reflectors, yielding a peak flux of nearly 3000 kW m-2 and a total power of nearly 3 kW incident on the bed surface. Moreover, the directly irradiated fluidized bed reactor has been used to perform CaL tests by alternating solar-driven limestone calcination and autothermal recarbonation of lime. CaL has been investigated with the twofold perspective of: a) accomplishing energy storage by solar-driven calcination of limestone; b) perform solar-aided CO2 capture from flue gas to be embodied in carbon capture and sequestration schemes.

  15. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    Science.gov (United States)

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.

  16. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  17. Fluidized-bed pyrolysis of waste bamboo

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by a thermogravimetric analyzer. It implied that the reaction began at 190~210 ℃, and the percentage of solid product deceased from about 25% to 17% when temperature ranged from 400 ℃ to 700 ℃. A lab-scale fluidized-bed furnace was setup to research the detailed properties of gaseous, liquid and solid products respectively. When temperature increased from 400 ℃ to 700 ℃, the mass percent of solid product decreased from 27% to 17% approximately, while that of syngas rose up from 19% to 35%. When temperature was about 500℃, the percentage of tar reached the top, about 31%. The mass balance of these experiments was about 93%~95%. It indicated that three reactions involved in the process: pyrolysis of exterior bamboo, pyrolysis of interior bamboo and secondary pyrolysis of heavy tar.

  18. Research of integral parameters for furnaces of a circulating fluidized bed

    Science.gov (United States)

    Gil, Andrey V.; Gil, Alexandra Y.

    2015-01-01

    Modern society poses several energy problems. Improving the efficiency and reliability of power equipment and reduce the impact on the environment. The paper presents the promising technology of superheated steam using different coals. The model of the furnace with a circulating fluidized bed and numerical simulation results of gas dynamic processes using application FIRE 3D. The analysis of aerodynamics and the distribution of the dispersed phase adjustment of the furnace.

  19. Research of integral parameters for furnaces of a circulating fluidized bed

    Directory of Open Access Journals (Sweden)

    Gil Andrey V.

    2015-01-01

    Full Text Available Modern society poses several energy problems. Improving the efficiency and reliability of power equipment and reduce the impact on the environment. The paper presents the promising technology of superheated steam using different coals. The model of the furnace with a circulating fluidized bed and numerical simulation results of gas dynamic processes using application FIRE 3D. The analysis of aerodynamics and the distribution of the dispersed phase adjustment of the furnace.

  20. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  1. Chemical Looping Combustion of Solid Fuels in a Laboratory Fluidized-bed Reactor Combustion de charges solides avec la boucle chimique dans un lit fluidisé de laboratoire

    Directory of Open Access Journals (Sweden)

    Leion H.

    2011-02-01

    Full Text Available When using solid fuel in a chemical looping system, the char fraction of the fuel needs to be gasified before syngas react with the oxygen carrier. This can be done inside the fuel reactor with fuel and oxygen carriers well mixed, and, since this gasification is comparably slow, this will be the time limiting step of such a system. An option is to use an oxygen carrier that is able to release gas-phase oxygen which can react with the fuel by normal combustion giving a significantly faster overall fuel conversion. This last option is generally referred to as Chemical Looping combustion with Oxygen Un-coupling (CLOU. In this work, an overview is given of parameters that affect the fuel conversion in laboratory CLC and CLOU experiments. The main factor determining the fuel conversion, in both CLC and CLOU, is the fuel itself. High-volatile fuels are generally more rapidly converted than low volatile fuels. This difference in fuel conversion rate is more pronounced in CLC than in CLOU. However, the fuel conversion is also, both for CLC and CLOU, increased by increasing temperature. Increased steam and SO2 fraction in the surrounding gas will also enhance the fuel conversion in CLC. CO2 gasification in CLC appears to be very slow in comparison to steam gasification. H2 can inhibit fuel gasification in CLC whereas CO did not seem to have any effect. Possible deactivation of oxygen carriers due to SO2 or ash also has to be considered. Lorsque l’on utilise des combustibles solides dans la boucle chimique (CLC pour Chemical Looping Combustion, il est nécessaire de gazéifier le char avant de faire la combustion du gaz de synthèse au contact du transporteur d’oxygène. Ces réactions peuvent s’effectuer dans le réacteur fuel, dans lequel le combustible et le transporteur d’oxygène sont bien mélangés. Cependant, la gazéification du charbon est lente et reste l’étape limitante du processus de combustion dans ces conditions. Une alternative

  2. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  3. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru; Chen; Lubin; Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  4. Synthesis of a nanosilica supported CO{sub 2} sorbent in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C., E-mail: cshoyo@us.es [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Valverde, J.M. [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Ommen, J.R. van [Department of Chemical Engineering, Delft University of Technology, Product and Process Engineering, Julianalaan 136, 2628 BL Delft (Netherlands); Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Sayagués, M.J. [Instituto de Ciencia de Materiales (CSIC – Universidad de Sevilla), Americo Vespucio 49, 41092 Sevilla (Spain)

    2015-02-15

    Highlights: • CaO coating at atmospheric pressure is applied on silica nanoparticles in a fluidized bed. • Atmospheric pressure would facilitate scaling-up of the process. • The conditions for the coating process at atmospheric pressure are discussed. • The CO{sub 2} sorbent capacity is demonstrated by TGA in carbonation/calcination. • STEM-EDX shows the presence of CaO on the surface of the nanoparticles. - Abstract: CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO{sub 2} solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO{sub 2} nanoparticles.

  5. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.

    Science.gov (United States)

    Tok, Ai Tee; Goh, Xueping; Ng, Wai Kiong; Tan, Reginald B H

    2008-01-01

    The purpose of this research was to analyze and compare the responses of three Process Analytical Technology (PAT) techniques applied simultaneously to monitor a pilot-scale fluidized bed granulation process. Real-time measurements using focused beam reflectance measurement (Lasentec FBRM) and near-infra red spectroscopy (Bruker NIR) were taken by inserting in-line probes into the fluidized bed. Non-intrusive acoustic emission measurements (Physical Acoustic AE) were performed by attaching piezoelectric sensors on the external wall of the fluidized bed. Powder samples were collected at regular intervals during the granulation process and characterized offline using laser diffraction, scanning electron microscopy, stereo-optical microscopy and loss on drying method. PAT data comprising chord length distribution and chord count (from FBRM), absorption spectra (from NIR) and average signal levels and counts (from AE) were compared with the particle properties measured using offline samples. All three PAT techniques were able to detect the three granulation regimes or rate processes (wetting and nucleation, consolidation and growth, breakage) to varying degrees of sensitivity. Being dependent on optical signals, the sensitivities of the FBRM and NIR techniques were susceptible to fouling on probe windows. The AE technique was sensitive to background fluidizing air flows and external interferences. The sensitivity, strengths and weaknesses of the PAT techniques examined may facilitate the selection of suitable PAT tools for process development and scale-up studies.

  6. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Faculty of Engineering and Architecture

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  7. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F.; Gadiou, R.; Prado, G. [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  8. Use of optical probes to characterize bubble behavior in gas-solid fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Mainland, M.E.; Welty, J.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1995-02-01

    Optical probes are used to study gas-solid fluidized-bed hydrodynamics. The probes each consisting of a light source and photodetector separated by a gap are suitable for use at combustion-level temperatures. The methodology to process the signal for calculation of bubble properties such as bubble frequency, local bubble residence time, bubble velocity, pierced length, bubble size, and visible bubble flow is presented. The signal processing technique is independent of bed operating conditions. The probe signal processing methodology is validated by comparing calculated bubble properties based on the probe signal with properties observed on videotapes of a 2-D bed.

  9. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up.

  10. Computer animation of bubbles in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Syamlal, M.; Nicoletti, P. (EG and G Washington Analytical Services Center, Inc., Morgantown, WV (USA)); O' Brien, T.J. (US Dept. of Energy (US))

    1988-01-01

    The objective of this study is to simulate bubble formation in a fluidized bed using a numerical model and to compare the results with a simple theory of bubble formation. The fluidized medium is treated as a mixture of a gas phase and a granular phase characterized by a mean diameter and a density. Mass and momentum balance equations for this two-phase mixture are solved numerically using a modified version of the K-FIX code. The authors conclude that the leakage model captures much of the physics of bubble formation in fluidized beds of large particles. The results of these calculations used to animate bubble formation, using the video-taping facilities of the Pittsburgh Supercomputing Center. This video tape shows time sequences of the simulated void fraction and gas and solid velocities throughout the fluidized bed.

  11. Methods of forming a fluidized bed of circulating particles

    Science.gov (United States)

    Marshall, Douglas W [Blackfoot, ID

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  12. ELECTROSTATIC PHENOMENA IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao T. Bi

    2005-01-01

    Electrostatic charges are generated by particle-wall, particle-particle and particle-gas contacts in gas-solids transport lines and fluidized bed reactors. High particle charge densities can lead to particle agglomeration,particle segregation, fouling of reactor walls and internals, leading to undesirable by-product and premature shut-down of processing equipment. In this paper, the charge generation, dissipation and segregation mechanisms are examined based on literature data and recent experimental findings in our laboratory. The particle-wall contact charging is found to be the dominant charge generation mechanism for gas-solids pneumatic transport lines, while bipolar charging due to intimate particle-particle contact is believed to be the dominant charge generation mechanism in gas fluidized beds. Such a bipolar charging mechanism is also supported by the segregation patterns of charged particles in fluidized beds in which highly charged particles tend to concentrate in the bubble wake and drift region behind rising bubbles.

  13. MODELING NONLINEAR DYNAMICS OF CIRCULATING FLUIDIZED BEDS USING NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wei; Chen; Atsushi; Tsutsumi; Haiyan; Lin; Kentaro; Otawara

    2005-01-01

    In the present work, artificial neural networks (ANNs) were proposed to model nonlinear dynamic behaviors of local voidage fluctuations induced by highly turbulent interactions between the gas and solid phases in circulating fluidized beds. The fluctuations of local voidage were measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed with a riser of 0.10 m in inner diameter and 10 m in height. The ANNs trained with experimental time series were applied to make short-term and long-term predictions of dynamic characteristics in the circulating fluidized bed. An early stop approach was adopted to enhance the long-term prediction capability of ANNs. The performance of the trained ANN was evaluated in terms of time-averaged characteristics, power spectra, cycle number and short-term predictability analysis of time series measured and predicted by the model.

  14. Technology approach to improve the amount of steam of circulating fluidized bed boiler%提高循环流化床锅炉产汽量的技术途径

    Institute of Scientific and Technical Information of China (English)

    赵代林

    2015-01-01

    循环流化床炉属于新型节能先进锅炉,我厂于1996年和2003年安装两台35t/h的循环流化床锅炉,经过几年的运行,锅炉产汽量逐渐降低,特别是煤源发生变化后,锅炉产汽量由25t/h左右降至不足15t/h。本文针对锅炉产汽量低的原因,进行了系统的研究探讨,提出了合理建议,并进行技术改造,应用于生产实际中。%Circulating fluidized bed boiler is a kind of new energy-saving boiler. There were two circulating fluidized bed boiler in our plant. After running for several years,the amount of steam deceased gradually. Especially,the amount of steam was not less than 15t/h from 25 t/h after the change of coal. Combining with this problems,the reasons were diccussed and the suggestions were put forward. The revamping measures were carried on.

  15. Research into Biomass and Waste Gasification in Atmospheric Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Skala, Zdenek; Ochrana, Ladislav; Lisy, Martin; Balas, Marek; Kohout, Premysl; Skoblja, Sergej

    2007-07-01

    Considerable attention is paid in the Czech Republic to renewable energy sources. The largest potential, out of them all, have biomass and waste. The aim therefore is to use them in CHP in smaller units (up to 5MWel). These are the subject of the research summarized in our article. The paper presents results of experimental research into gasification in a 100 kW AFB gasifier situated in Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, and fitted with gas cleaning equipment. Within the research, study was carried out into gas cleaning taking primary measures in the fluidized bed and using hot filter, metal-based catalytic filter, and wet scrubber. Descriptions and diagrams are given of the gasifier and new ways of cleaning. Results include: Impact of various fuels (farming and forest wastes and fast-growing woods and culm plants) on fuel gas quality. Individual kinds of biomass have very different thermal and physical properties; Efficiency of a variety of cleaning methods on content of dust and tars and comparison of these methods; and, Impact of gasifier process parameters on resultant gas quality. (auth)

  16. Feasibility study on pliant media drying using fluidized bed dryer

    Science.gov (United States)

    Zakaria, J. H.; Zaid, M. H. H. M.; Batcha, M. F. M.; Asmuin, N.

    2015-09-01

    The usage of pliant media for blasting in surface preparation has gained substantial interest in various industries, particularly oil and gas. Being a clean technology, this relatively new method of surface preparation has become an alternative to conventional abrasive blasting technique which lowers fugitive emissions from blasting process and hence lowering risk to workers in the industry. Despite proven to be effective and cost efficient, the usage of pliant media in tropical climate poses a new challenge due to the torrential rain in the monsoon season. During rainy and wet conditions, the pliant media was literally soaked and the recovery rate of the pliant media for a continuous blasting becomes retarded. A viable technique for drying of this pliant media has then become imperative. The present study proposes to dry water laden pliant media in a Swirling Fluidized Bed Dryer (SFBD). In this preliminary study, three bed loadings of 1.7, 2.0 and 2.3 kg of pliant media was dried in the SfBd at 80°C, 90°C and 100°C. The experimental works revealed that the SFBD has shown excellent potential to dry the pliant media with a relatively short drying time. The behaviour of moisture ratio and drying rate against time are discussed. The findings conclude that the SFBD is a feasible technique for wet pliant media drying and can be extended for continuous processing system.

  17. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  18. Pneumatic jet-control valve for dual circulating fluidized beds

    Science.gov (United States)

    Jiang, Haibo; Dong, Pengfei; Zhu, Zhiping; Wang, Kun; Zhang, Yukui; Lu, Qinggang

    2015-11-01

    With the rapid development of circulating fluidized bed (CFB) technology in different fields, the disadvantages of conventional non-mechanical valves are becoming more apparent, and they are not suitable to be used in complex CFB systems. In this paper, a novel non-mechanical valve named the jet-control valve is presented which can avoid the fluidization of solid particles. The feasibility and performance characteristics of the new valve are investigated with a cold-model dual CFB. The results show that compared with the conventional non-mechanical valve, the jet-control valve can transfer solid particles steadily over a larger range, prevent artesian flow, and improve the leakage characteristics. The effects of the operating parameters and structural parameters on the minimum aeration velocity, solid flow rate, and maximum solid flow rate are studied. A two-valve model is proposed to explain the transport capacity of the valve for one jet pipe. A semi-theoretical expression is obtained based on the experimental data with a maximum deviation of 30% providing useful guide for scaling-up the design.

  19. Computerized simulation of the dynamic response of a coal-fired power plant with pressurized fluidized bed

    Science.gov (United States)

    Plackmeyer, J.

    1982-07-01

    The simple way of desulfurizing, the efficient combustion of coal, and low carbon monoxide flue gas content of a fluidized bed combustion installation were studied. The dynamic response of a pressurized fluidized bed should also be studied before any construction is started. The physical-mathematical models of all single components were developed and combined in a total computer program. Starting point was the planned pilot plant with gas turbine engine. Various modifications of the purely air cooled plant as well as the extension to a combined cycle with additional steam turbine were considered. Operating cases were simulated: starting up, increasing from partial load to full load and vice versa, shut down and breakdowns. Results show that all operating cases could be brought under control as well as breakdowns. The constructive precautions and correct plant practice are described.

  20. The standard-design gas turbine for use in pressurized fluidized beds; Die Standard-Gasturbine im Druckwirbelschicht-Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlmueller, F. [Siemens AG, Erlangen (Germany). Bereich Energieerzeugung (KWU); Schauenburg, G. [Siemens AG, Muelheim an der Ruhr (Germany). Bereich Energieerzeugung (KWU); Waldinger, D. [Siemens AG, Muelheim an der Ruhr (Germany). Bereich Energieerzeugung (KWU)

    1995-12-01

    Gas turbines are designed for operation with high-calorific, clean fuels. If a competent and reliable hot gas cleaning is available, these machines can be operated also with pressurized fluidized beds as combustion chambers. The necessary modifications for a Siemens V64.3 gasturbine are outlined. The capacity data obtainable with a circulating pressurized fluidized bed as well as important data for part-load operation on combustion of hard coal and brown coal are determined. (orig.) [Deutsch] Gasturbinen sind fuer den Betrieb mit hochkalorigen, sauberen Brennstoffen konzipiert. Ist eine wirksame, zuverlaessige Heissgasreinigung verfuegbar, dann koennen diese Maschinen auch mit Druckwirbelschichten als Brennkammern eingesetzt werden. Fuer eine Siemens V64.3-Gasturbine werden die dazu erforderlichen Modifikationen dargestellt und die mit einer zirkulierenden Druckwirbelschicht erreichbaren Leistungswerte sowie der Verlauf wichtiger Daten im Teillastbetrieb fuer Stein- und Braunkohleverbrennung ermittelt. (orig.)

  1. Gas back-mixing studies in membrane assisted bubbling fluidized beds

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Fluidized beds employing fine powders are finding increased application in the chemical and petrochemical industry because of their excellent mass and heat transfer characteristics. However, in fluidized bed chemical reactors axial gas back mixing can strongly decrease the conversion and

  2. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  3. Fluidized bed membrane reactor for hydrogen production by steam reforming of higher hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rakib, M.A.; Grace, J.R.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Elnashaie, S.S.E.H. [Pennsylvania State Univ., Harrisburg, PA (United States). Environmental and Sustainable Engineering; Bolkan, Y.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2007-07-01

    Hydrogen is an an environment friendly fuel that has many applications such as a carbon-free fuel, and as a fuel for hydrogen fuel cells for automotive and other applications. It can be converted into useful forms of energy in many ways and has been used effectively in a number of internal combustion engine vehicles mixed with natural gas (hythane), and in a growing number of fuel cell vehicles. It can also be combined with oxygen without combustion in an electrochemical reaction to produce direct-current electricity in fuel cells. As the demand of hydrogen is projected to increase, research is being conducted into ways of improving hydrogen production, separation, purification and storage. This paper presented the results of a study that investigated modeling of a fluidized bed membrane reactor for steam reforming of higher hydrocarbons, in order to get the sizing of an experimental reformer setup. In the simulations, n-heptane was used as a model compound to represent steam reforming of naphtha. The reformer was modeled as a bubbling fluidized bed reactor, consisting of two pseudo phases, a dense phase and a bubble phase, both in plug flow. The paper discussed the irreversibility of steam reforming of higher hydrocarbons, kinetic modeling of a fluidized bed membrane reactor, and presented the model assumptions. Model equations for the reaction side and the separator side as well as the interphase mass exchange coefficient were provided. It was concluded that challenges specific to higher hydrocarbons included catalyst deactivation and possible membrane fouling. 26 refs., 1 tab., 9 figs., 1 appendix.

  4. Research on the Gas Reburning in a Circulating Fluidized Bed (CFB System Integrated with Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Changqing Dong

    2012-08-01

    Full Text Available N2O emissions from coal fired fluidized-bed combustion are approximately 30–360 mg/Nm3, much higher than that from pulverized coal combustion (less than 30 mg/Nm3. One approach to reduce the N2O is to reburn the biomass gasification gas in the coal-fired fluidized bed. In this paper, the effects of gasified biomass reburning on the integrated boiler system were investigated by both simulation and experimental methods. The simulation as well as experimental results revealed that the increase of the reburning ratio would decrease the theoretical air volume and boiler efficiency, while it would increase the fuel gas volume, combustion and exhuast gas temperature. The experimental results also indicated that the N2O removal could reach as high as 99% when the heat ratio of biomass gas to coal is 10.5%.

  5. PREDICTION OF FLOW REGIMES IN SPOUT-FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Jiyu Zhang; Fengxiang Tang

    2006-01-01

    Five main flow regimes in spout-fluidized bed were identified in this study, namely, fixed bed, spout with aeration, spout-fluidization, jet in fluidized bed and slugging, together with their corresponding major frequencies translated from pressure signals. The empirical equation A=aBb, in which A=Fr* /(H/Di) and B=(Fr*/(H/D))/(μg/μmf) are respectively the spout-geometry and spout-geometry-fluidization dimensionless numbers, was proposed to distinguish these flow regimes.

  6. DRYING OF GRANULAR MATERIALS IN AGITATED FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental study of the drying characteristics of an agitated fluidized bed dryer is presented and discussed. In the study, the citric acid particles were used as bed material with the diameters ranging from 0.2mm to 1.3mm. The variables affecting apparently the drying rate were found to be the mass flow rate, the inlet air temperature, the rotary speed of agitating mechanism and the particles feed rate. Comparing with other variables considered, mass flow rate was found to have the least important influence on the drying rate. The agitated fluidized bed dryer is suitable to drying agglomerating or sticky materials.

  7. Principles of a novel multistage circulating fluidized bed reactor for biomass gasification

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, Wolter; Drift, van der Bram; Swaaij, van Wim P.M.

    2003-01-01

    In this paper a novel multistage circulating fluidized bed reactor has been introduced. The riser of this multistage circulating fluidized bed consists of several segments (seven in the base-case design) in series each built-up out of two opposite cones. Due to the specific shape, a fluidized bed ar

  8. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  9. Mechanism of film formation during granules capsulation in fluidized bed

    OpenAIRE

    Ostroha, Ruslan; Yukhymenko, Mykola

    2013-01-01

    It is proposed to perform granules capsulation process in the device of fluidized bed. Analysis of different approaches to mathematical description of granules growth kinetics was made. Equation of size determination of received granules in the device is proposed including granules growth rate and changes of density of granules distribution according to sizes in film forming process.

  10. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  11. Propylene polymerization in a circulating slugging fluidized bed reactor

    NARCIS (Netherlands)

    Putten, van Inge Cornelia

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Propert

  12. Acoustic monitoring of a fluidized bed coating process

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Veski, Peep; Pedersen, Joan G.;

    2007-01-01

      The aim of the study was to investigate the potential of acoustic monitoring of a production scale fluidized bed coating process. The correlation between sensor signals and the estimated amount of film applied and percentage release, respectively, were investigated in coating potassium chloride...

  13. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...

  14. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  15. Particle transport in fluidized beds : experiments and stochastic models

    NARCIS (Netherlands)

    Dechsiri, Chutima

    2004-01-01

    Fluidization is a process in which solids are caused to behave like fluid by blowing gas or liquid upwards through the solid-filled reactor. The behavior of a bed of particles within the reactor during the process is very complex and difficult to predict. To make sure that a fluidized bed reactor is

  16. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. (Institute of Gas Technology, Chicago, IL (United States)); Kothari, M.; Hariri, H.; Arastoopour, H. (Illinois Inst. of Tech., Chicago, IL (United States))

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  17. Agglomeration in a fluidized bed using multiple jet streams

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Kothari, M.; Hariri, H.; Arastoopour, H. [Illinois Inst. of Tech., Chicago, IL (United States)

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  18. DESIGN AND APPLICATION OF FLUIDIZED BED PHOTOCATALYTIC REACTOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Photocatalytic degradation of organic pollutant is a new and potential method to transform it to harmless inorganic material, such as CO2 and H2O. So far, most of photocatalytic reactors were cylinder or tabulate photoreactor. The relevant photocatalyst was TiO2 nanometer powder. Although a few investigators had aimed their research field to fluidized bed reactor, their reaction systems were of biphase, such as solid-liquid or solid-gas. Few people focused their research on the triphasic fluidized bed photocatalytic reactor[1]. Compared with traditional photoreactors, a triphasic fluidized bed photoreactor has more advantages[2]: (1) The solid photocatalyst can be separated easily. (2) Its configuration meets the requirement of higher surface area-to-volume ratio of photocatalytic, which is much lower in a fixed bed or a plate photoreactor. (3) The UV light can be used more efficiently. (4) The mass transfer conditions can be controlled and improved easily. (5) It suited to pilot-scale or large-scale operations. For the UV light penetration and photon efficiency should be considered, the photocatalytic reactor differed greatly from a typical fluidized bed reactor.

  19. Fluidization of potato starch in a stirred vibrating fluidized bed

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    1996-01-01

    A novel gas-solid reactor for cohesive C-powders such as potato starch is introduced, designed and characterized, the so-called stirred vibrating fluidized bed. The effects of a sinusoidal vibration of the gas distributor and/or stirring of the bed are investigated. The fluidization index, bed expan

  20. Method for using fast fluidized bed dry bottom coal gasification

    Science.gov (United States)

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  1. Fluidization of potato starch in a stirred vibrating fluidized bed

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    A novel gas-solid reactor for cohesive C-powders such as potato starch is introduced, designed and characterized, the so-called stirred vibrating fluidized bed. The effects of a sinusoidal vibration of the gas distributor and/or stirring of the bed are investigated. The fluidization index, bed

  2. A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea

    Directory of Open Access Journals (Sweden)

    Seehyung Lee

    2012-01-01

    Full Text Available In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea’s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4 and nitrous oxide (N2O in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.

  3. A study on methane and nitrous oxide emissions characteristics from anthracite circulating fluidized bed power plant in Korea.

    Science.gov (United States)

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Jeon, Eui-Chan

    2012-01-01

    In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea's emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH₄) and nitrous oxide (N₂O) in the exhaust gases from circulating fluidized</