WorldWideScience

Sample records for technologies field scale

  1. Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields

    Science.gov (United States)

    Bilgin, Aysegül; Balbag, Mustafa Zafer

    2016-01-01

    This study has developed "Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields". Exploratory factor analysis of the scale has been conducted based on the data collected from 200 science and technology teachers across Turkey. The scale has been observed through varimax rotation method,…

  2. A design study for a medium-scale field demonstration of the viscous barrier technology

    International Nuclear Information System (INIS)

    Moridis, G.; Yen, P.; Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K.

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory's new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier

  3. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  4. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  5. Scaled CMOS Technology Reliability Users Guide

    Science.gov (United States)

    White, Mark

    2010-01-01

    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is

  6. Field transportable beta spectrometer. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations

  7. Bench-scale/field-scale interpretations: Session overview

    International Nuclear Information System (INIS)

    Cunningham, A.B.; Peyton, B.M.

    1995-04-01

    In situ bioremediation involves complex interactions between biological, chemical, and physical processes and requires integration of phenomena operating at scales ranging from that of a microbial cell (10 -6 ) to that of a remediation site (10 to 1000 m). Laboratory investigations of biodegradation are usually performed at a relatively small scale, governed by convenience, cost, and expedience. However, extending the results from a laboratory-scale experimental system to the design and operation of a field-scale system introduces (1) additional mass transport mechanisms and limitations; (2) the presence of multiple phases, contants, and competing microorganisms (3) spatial geologic heterogeneities; and (4) subsurface environmental factors that may inhibit bacterial growth such as temperature, pH, nutrient, or redox conditions. Field bioremediation rates may be limited by the availability of one of the necessary constituents for biotransformation: substrate, contaminant, electron acceptor, nutrients, or microorganisms capable of degrading the target compound. The factor that limits the rate of bioremediation may not be the same in the laboratory as it is in the field, thereby leading, to development of unsuccessful remediation strategies

  8. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  9. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  10. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    International Nuclear Information System (INIS)

    Jackson, R.E.; Fountain, J.C.

    1994-01-01

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well

  11. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    Science.gov (United States)

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2018-07-24

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

  12. Investigation of an innovative technology for oil-field brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D; Dalmacija, B; Hain, Z; Karlovic, E; Maric, S; Uzelac, N [Inst. of Chemistry, Faculty of Sciences, V. Vlahovica 2 (YU)

    1989-01-01

    Various aspects of an innovative technology for oil field brine treatment were investigated on a laboratory scale. The both free and dispersed oily matter were separated by gravitation and sedimentation. Apart from the physico-chemical oil removal process, special attention was paid to different variants of improved microbiological treatment: dilution with fresh water and application of powdered activated carbon (PAC). Advanced treatment was carried out on granular biological activated carbon (GBAC). A technological scheme for complete treatment was proposed. (author).

  13. Reflections on the political economy of large-scale technology using the example of German fast-breeder development

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    Proceeding from Anglo-Saxon opinions which, from a liberal point of view, criticize the German practice of research policy - state centres of large-scale research and state subventions for research and development in industry - to be inefficient, the author empirically verified these statements taking the German fast breeder project as an example. If the case of the German fast breeder can be generalized, this had consequences for the research political practice and for other technologies. Supporters as well as opponents of large-scale technology today proceed from the assumption that almost every technology can be made commercially viable when using sufficient amounts of money and persons. This is a migth which owes its existence to the technical success of great projects in non-commercial fields. The German fast breeder project confirms the opinion that the recipes for success of these non-commercial projects cannot be applied to the field of commercial technology. The results of this study suggest that practice and theory of technology policy can be misdirected if they are uncritically oriented according to the form of state intervention so far used in large-scale technology. (orig./HSCH) [de

  14. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  15. Breakdown coefficients and scaling properties of rain fields

    Directory of Open Access Journals (Sweden)

    D. Harris

    1998-01-01

    Full Text Available The theory of scale similarity and breakdown coefficients is applied here to intermittent rainfall data consisting of time series and spatial rain fields. The probability distributions (pdf of the logarithm of the breakdown coefficients are the principal descriptor used. Rain fields are distinguished as being either multiscaling or multiaffine depending on whether the pdfs of breakdown coefficients are scale similar or scale dependent, respectively. Parameter  estimation techniques are developed which are applicable to both multiscaling and multiaffine fields. The scale parameter (width, σ, of the pdfs of the log-breakdown coefficients is a measure of the intermittency of a field. For multiaffine fields, this scale parameter is found to increase with scale in a power-law fashion consistent with a bounded-cascade picture of rainfall modelling. The resulting power-law exponent, H, is indicative of the smoothness of the field. Some details of breakdown coefficient analysis are addressed and a theoretical link between this analysis and moment scaling analysis is also presented. Breakdown coefficient properties of cascades are also investigated in the context of parameter estimation for modelling purposes.

  16. Field demonstration of technologies for delineating uranium contaminated soils

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Cunnane, J.C.; Schwing, J.; Lee, S.Y.; Perry, D.L.; Morris, D.E.

    1993-01-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Restoration Management Corporation (FERMCO), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort is the evaluation of field screening tools capable of acquiring high resolution information on the distribution of uranium contamination in surface soils in a cost-and-time efficient manner. Consistent with this need, four field screening technologies have been demonstrated at two hazardous waste sites at the FERMCO. The four technologies tested are wide-area gamma spectroscopy, beta scintillation counting, laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES), and long-range alpha detection (LRAD). One of the important findings of this demonstration was just how difficult it is to compare data collected by means of multiple independent measurement techniques. Difficulties are attributed to differences in measurement scale, differences in the basic physics upon which the various measurement schemes are predicated, and differences in the general performance of detector instrumentation. It follows that optimal deployment of these techniques requires the development of an approach for accounting for the intrinsic differences noted above. As such, emphasis is given in this paper to the development of a methodology for integrating these techniques for use in site characterization programs as well as the development of a framework for interpreting the collected data. The methodology described here also has general application to other field-based screening technologies and soil sampling programs

  17. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  18. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  19. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  20. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  1. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  2. Numerically modelling the large scale coronal magnetic field

    Science.gov (United States)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  3. SEWGS Technology is Now Ready for Scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D.; Van Selow, E.; Cobden, P. [Energy research Centre of the Netherlands ECN (Netherlands); Manzolini, G.; Macchi, E.; Gazzani, M. [Politecnico di Milano PTM, Dipartimento di Energia (Italy); Blom, R.; Henriksen, P.P. [SINTEF, Trondheim (Norway); Beavis, R. [BP Alternative Energy (United Kingdom); Wright, A. [Air products PLC (United Kingdom)

    2013-07-01

    In the FP7 project CAESAR, Air Products, BP, ECN, SINTEF and Politecnico di Milano worked together in the further development of the SEWGS process with the objective to reduce the energy penalty and the costs per ton of CO2 avoided to less than 25 euro through optimization of sorbent materials, reactor and process design and smart integration of the SEWGS unit in a combined cycle power plant. The most promising applications for the SEWGS technology are IGCC power plants and in combined cycles power plants fuelled with blast furnace top gas. Extensive sorbent development work resulted in a new sorbent called ALKASORB+ with a high capacity resulting in cost of CO2 avoided for the IGCC application of 23 euro. This is a reduction of almost 40% compared to the Selexol capture case. Since ALKASORB+ requires much less steam in the regeneration, the specific primary energy consumption is reduced to 44% below the specific energy consumption for the Selexol (2.08 versus 3.71 MJLHV/kgCO2). From a technical point of view SEWGS is ready to move to the next development level, which is a pilot plant installation with a capacity of 35 ton CO2 per day. This is over 500 times larger than the current ECN's multi column SEWGS installation, but still 50 times smaller than an envisaged commercial scale installation. The pilot plant will prove the technology under field conditions and at a sufficiently large scale to enable further up-scaling, delivering both the basic design and investment costs of a full scale SEWGS demonstration plant.

  4. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  5. Chiral battery, scaling laws and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  6. Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Liana O. Anderson

    2012-05-01

    Full Text Available Amazonian forests are extremely heterogeneous at different spatial scales. This review intends to present the large-scale patterns of the ecosystem properties of Amazonia, and focuses on two parts of the main components of the net primary production: the long-lived carbon pools (wood and short-lived pools (leaves. First, the focus is on forest biophysical properties, and secondly, on the macro-scale leaf phenological patterns of these forests, looking at field measurements and bringing into discussion the recent findings derived from remote sensing dataset. Finally, I discuss the results of the three major droughts that hit Amazonia in the last 15 years. The panorama that emerges from this review suggests that slow growing forests in central and eastern Amazonia, where soils are poorer, have significantly higher above ground biomass and higher wood density, trees are higher and present lower proportions of large-leaved species than stands in northwest and southwest Amazonia. However, the opposite pattern is observed in relation to forest productivity and dynamism, which is higher in western Amazonia than in central and eastern forests. The spatial patterns on leaf phenology across Amazonia are less marked. Field data from different forest formations showed that new leaf production can be unrelated to climate seasonality, timed with radiation, timed with rainfall and/or river levels. Oppositely, satellite images exhibited a large-scale synchronized peak in new leaf production during the dry season. Satellite data and field measurements bring contrasting results for the 2005 drought. Discussions on data processing and filtering, aerosols effects and a combined analysis with field and satellite images are presented. It is suggested that to improve the understanding of the large-scale patterns on Amazonian forests, integrative analyses that combine new technologies in remote sensing and long-term field ecological data are imperative.

  7. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  8. Mapping the (R-)Evolution of Technological Fields

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Hain, Daniel S.

    2014-01-01

    The aim of this paper was to provide a framework and novel methodology geared towards mapping technological change in complex interdependent systems by using large amounts of unstructured data from various recent on- and offline sources. Combining techniques from the fields of natural language...... processing and network analysis, we are able to identify technological fields as overlapping communities of knowledge fragments. Over time persistence of these fragments allows to observe how these fields evolve into trajectories, which may change, split, merge and finally disappear. As empirical example we...... use the broad area of Technological Singularity, an umbrella term for different technologies ranging from neuroscience to machine learning and bioengineering, which are seen as main contributors to the development of artificial intelligence and human enhancement technologies. Using a socially enhanced...

  9. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  10. Technology Comprehension - Scaling Making into a National Discipline

    DEFF Research Database (Denmark)

    Tuhkala, Ari; Nielsen, Nick; Wagner, Marie-Louise

    2018-01-01

    , surveys, and a theme discussion with experienced teachers from the 13 schools. The main takeaways are: First, the teachers did not perceive Technology Comprehension as a distinguished discipline, which calls for more research on how Making is scaled into a national discipline. Second, Technology......We account for the first research results from a government initiated experiment that scales Making to a national discipline. The Ministry of Education, in Denmark, has introduced Technology Comprehension as a new discipline for lower secondary education. Technology Comprehension is first...... Comprehension opens up for interdisciplinary and engaging learning activities, but teachers need scaffolding and support to actualise these opportunities. Third, Technology Comprehension challenges teachers’ existing competencies in relation to the discipline and students’ prerequisites and needs. Teachers need...

  11. FY 1999 New Sunshine Project survey research project - Survey on the long-term energy technology strategy, etc. Fundamental survey to decide on the industrial technology strategy - Technology strategy by field (Aerospace technology field - Airplane technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (koku uchu gijutsu bun'ya (kokuki gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey/study were conducted to contribute to proposing technology strategies such as the analysis of the present state of technical competitive force and the forecast in the airplane technology field. In future airplane industry, to meet the requests/restrictions from the society in the international airplane industry in the recent years, it is predicted that technology innovation will advance centering on the following four fields: next generation airplane technology to enable the innovative cost reduction in development/production, technology to realize the substantial reduction in flight cost of airline, technology to enhance reliability for the next generation flight which meets the multi-frequency flight/increasing demand for small plane, and airplane frontier technology. Moreover, regulations especially on noise, CO2 reduction and NOx reduction are becoming very strict internationally because of the increasing concern about global environmental problems. It is urgently needed to establish technology to cope with these trends. As the comprehensive strategy, the following are considered: development of airframe under the leadership of Japan and securing of the demand, efficient arrangement and operation of large-scale experimental facilities, IT adoption to the airplane industry, organic cooperation by industry/university/government, etc. (NEDO)

  12. Further developments and field deployment of phosphorus functionalized polymeric scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Malcolm J.; Thornton, Alex R.; Wylde, Jonathan J.; Strachan, Catherine J.; Moir, Gordon [Clariant Oil Services, Muttenz (Switzerland); Goulding, John [John Goulding Consultancy, York (United Kingdom)

    2012-07-01

    monomer distribution, it was important to gauge this effect in reservoir analogues. A reservoir rock will act as a large chromatography column, separating out the scale inhibitor according to molecular weight and phosphorus content. That is the larger molecular weights will adhere more strongly than lower molecular weight fractions, whereas polymer chains containing larger phosphorus functionality will adhere to the rock significantly stronger than those without. Thus it is important to understand if there were components containing phosphorus but did not contribute to the inhibition of scale. In order to study these effects the phosphorus functionalized polymers were tested on very clean sandstone core plugs in a core flood rig. Their adsorption/retention characteristics were studied. The scale inhibitor effluent was analyzed by numerous methods and confirmed by inhibition efficiency measurements. Following successful development, one of the phosphorus functionalized polymeric inhibitors was subject to sequential field-trial in a harsh BaSO{sub 4} scaling, highly naturally fractured North Sea carbonate reservoir. As this was the first deployment of this novel technology the scale inhibitor returns and water chemistry were monitored using a number of methods to assess the efficiency of the inhibitor at mitigating the BaSO{sub 4} risk. A number of previous technologies utilizing phosphorus tagging have resulted in false readings due to anomalous phosphorus signals. The results presented in this paper show a step change with the scale inhibitor analysis by both elemental phosphorus (ICP-OES) and polymer methods (cartridge/Hyamine) showing excellent correlation. Indirect analysis of the scale inhibitor performance by elemental Ba{sup 2+} measurement confirmed the results, as there was no drop in Ba{sup 2+} concentration indicating no significant scaling before the re-squeeze operation was conducted. The phosphorus functionalized inhibitor provided superior performance

  13. Temperature/electric field scaling in Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hajjaji, Abdelowahed, E-mail: Hajjaji12@gmail.co [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Guyomar, Daniel; Pruvost, Sebastien [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Touhtouh, Samira [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco); Yuse, Kaori [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Boughaleb, Yahia [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco)

    2010-07-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation ({Delta}{theta}) as an electric field equivalent {Delta}E{sub eq}=({alpha}+2{beta}xP(E,{theta}{sub 0}))x{Delta}{theta}. Consequently, this was also the case for the relationship between the entropy ({Gamma}) and polarization (P). Rhombohedral Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.75}Ti{sub 0.25}O{sub 3} ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d{sub 31}) under an electrical field replacing the temperature variation ({Delta}{theta}) by {Delta}E/({alpha}+2{beta}xp(E,{theta}{sub 0})). Inversely, predictions of the piezoelectric properties (d{sub 31}) as a function of temperature were permitted using purely only electrical measurements.

  14. Temperature/electric field scaling in Ferroelectrics

    International Nuclear Information System (INIS)

    Hajjaji, Abdelowahed; Guyomar, Daniel; Pruvost, Sebastien; Touhtouh, Samira; Yuse, Kaori; Boughaleb, Yahia

    2010-01-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation (Δθ) as an electric field equivalent ΔE eq =(α+2βxP(E,θ 0 ))xΔθ. Consequently, this was also the case for the relationship between the entropy (Γ) and polarization (P). Rhombohedral Pb(Mg 1/3 Nb 2/3 ) 0.75 Ti 0.25 O 3 ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d 31 ) under an electrical field replacing the temperature variation (Δθ) by ΔE/(α+2βxp(E,θ 0 )). Inversely, predictions of the piezoelectric properties (d 31 ) as a function of temperature were permitted using purely only electrical measurements.

  15. The Eni - IFP/Axens GTL technology. From R and D to a successful scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Zennaro, R. [Eni S.p.A., Milan (Italy); Hugues, F. [Institut Francais du Petrole, Lyon (France); Caprani, E. [Axens, Paris (France)

    2006-07-01

    Proven natural gas reserves had reached about 184 Tscm in 2006 to which 36% is stranded gas far from the final market. Fischer Tropsch based GtL options today represent a viable route to develop such remote gas resources into high quality fuels and specialties. Thus opening different markets for the gas historically linked to the oil. Thanks to R and D successful improvements in the field of catalysis and reactor technology coupled with optimized integration and economies of scale have reduced the investment cost for building a Fischer Tropsch GtL complex. Basically all major Oil and Gas companies are involved in proprietary GtL development, and today several industrial projects have been announced. The most advanced is the Oryx project (QP-Sasol) which has been inaugurated the 6{sup th} of June '06 and currently in the starting up phase. Eni and IFP-Axens have developed a proprietary GtL Fischer-Tropsch and Upgrading technology in a close collaboration between the two groups. The Eni/IFP-Axens technology is based on proprietary catalysts and reactor, designed according to scale-up criteria defined in ten years of R and D activity. Unique large scale hydrodynamic facilities (bubble columns, loops) bench-scale dedicated pilot units, as well as large scale Fischer-Tropsch pilot plant, have been developed and operated to minimize reactor and ancillaries scale-up risks. The large scale Fischer-Tropsch pilot plant has been built and operated since 2001. The plant, located within the Eni refinery of Sannazzaro de' Burgondi (Pavia, Italy) is fully integrated to the refinery utilities and network. It reproduces at 20 bpd scale the overall Fischer Tropsch synthesis section: from slurry handling (loading, make-up, withdrawal), to reactor configuration and products separation units. Today the scale-up basis has been completed and the technology is ready for industrial deployment. (orig.)

  16. Current Barriers to Large-scale Interoperability of Traceability Technology in the Seafood Sector.

    Science.gov (United States)

    Hardt, Marah J; Flett, Keith; Howell, Colleen J

    2017-08-01

    Interoperability is a critical component of full-chain digital traceability, but is almost nonexistent in the seafood industry. Using both quantitative and qualitative methodology, this study explores the barriers impeding progress toward large-scale interoperability among digital traceability systems in the seafood sector from the perspectives of seafood companies, technology vendors, and supply chains as a whole. We highlight lessons from recent research and field work focused on implementing traceability across full supply chains and make some recommendations for next steps in terms of overcoming challenges and scaling current efforts. © 2017 Institute of Food Technologists®.

  17. Survey and research for the enhancement of large-scale technology development 1. Japan's large-scale technology development and the effects; Ogata gijutsu kaihatsu suishin no tame no chosa kenkyu. 1. Nippon no daikibo gijutsu kaihatsu to sono koka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A survey is conducted into the effects of projects implemented under the large-scale industrial technology research and development system. In the development of 'ultraperformance computers,' each of the technologies is being widely utilized, and the data service system of Nippon Telegraph and Telephone Public Corporation and the large computer (HITAC8800) owe much for their success to the fruits of the development endeavor. In the development of the 'desulfurization technology,' the fruits are in use by Tokyo Electric Power Co., Inc., and Chubu Electric Power Co., Inc., incorporated into their desulfurization systems. Although there is no practical plant based on the 'great-depth remotely controlled submarine oil drilling rig,' yet oceanic technologies and control methods are being utilized in various fields. The 'seawater desalination and by-product utilization' technologies have enabled the establishment of technologies of the top level in the world thanks to the resultant manufacture of concrete evaporator and related technologies. Eleven plants have been completed utilizing the fruits of the development. In the field of 'electric vehicle,' there is no commercialization in progress due to problems in cost effectiveness though remarkable improvement has been achieved in terms of performance. Technologies about weight reduction, semiconductor devices, battery parts and components, etc., are being utilized in many fields. (NEDO)

  18. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    Science.gov (United States)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  19. Field studies of erosion-control technologies for arid shallow land-burial sites at Los Alamos

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.; DePoorter, G.L.; Hakonson, T.E.; Perkins, B.A.; Foster, G.R.

    1983-01-01

    The field research program involving corrective measures technologies for arid shallow land-burial sites is described. Research performed for a portion of this task, the identification, evaluation, and modeling of erosion control technologies, is presented in detail. In a joint study with USDA-ARS, soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with data from undisturbed soil surfaces with natural plant cover. The distribution of soil particles in the runoff was measured for inclusion in CREAMS (a field scale model for Chemicals, Runoff and Erosion from Agricultural Management Systems). Neutron moisture gauge data collected beneath the erosion plots are presented to show the seasonal effects of the erosion control technologies on the subsurface component of water balance. 12 references, 4 figures, 4 tables

  20. Large scale photovoltaic field trials. Second technical report: monitoring phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This report provides an update on the Large-Scale Building Integrated Photovoltaic Field Trials (LS-BIPV FT) programme commissioned by the Department of Trade and Industry (Department for Business, Enterprise and Industry; BERR). It provides detailed profiles of the 12 projects making up this programme, which is part of the UK programme on photovoltaics and has run in parallel with the Domestic Field Trial. These field trials aim to record the experience and use the lessons learnt to raise awareness of, and confidence in, the technology and increase UK capabilities. The projects involved: the visitor centre at the Gaia Energy Centre in Cornwall; a community church hall in London; council offices in West Oxfordshire; a sports science centre at Gloucester University; the visitor centre at Cotswold Water Park; the headquarters of the Insolvency Service; a Welsh Development Agency building; an athletics centre in Birmingham; a research facility at the University of East Anglia; a primary school in Belfast; and Barnstable civic centre in Devon. The report describes the aims of the field trials, monitoring issues, performance, observations and trends, lessons learnt and the results of occupancy surveys.

  1. Survey and research on how large-scale technological development should be in the future; Kongo no ogata gijutsu kaihatsu no hoko ni tsuite no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Tasks to be subjected to research and development under the large-scale industrial technology research and development system are discussed. Mentioned in the fields of resources and foods are a submarine metal sulfide mining system, a submarine oil development system for ice-covered sea areas, an all-weather type useful vegetable automatic production system, etc. Mentioned in the fields of social development, security, and disaster prevention are a construction work robot, shelter system technologies, disaster control technologies in case of mega-scale disasters, etc. Mentioned in the fields of health, welfare, and education are biomimetics, biosystems, cancer diagnosis and treatment systems, etc. Mentioned in the field of commodity distribution, service, and software are a computer security system, an unmanned collection and distribution system, etc. Mentioned in the field of process conversion are aluminum refining, synzyme technologies for precise synthesis, etc. Mentioned in the field of data processing are optical computers, bioelectronics, etc. Various tasks are pointed out also in the fields of aviation, space, ocean, and machining. (NEDO)

  2. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  3. SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS

    International Nuclear Information System (INIS)

    WEI, J.; PAPAPHILIPPOU, Y.; TALMAN, R.

    2000-01-01

    A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry

  4. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  5. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  6. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  7. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  8. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Fermilab

    2007-01-01

    Fermilab is working on the development of Nb 3 Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb 3 Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models

  9. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  10. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  11. SUPERFUND TREATABILITY CLEARINGHOUSE: FULL SCALE ROTARY KILN INCINERATOR FIELD TRIAL: PHASE I, VERIFICATION TRIAL BURN ON DIOXIN/HERBICIDE ORANGE CONTAMINATED SOIL

    Science.gov (United States)

    This treatability study reports on the results of one of a series of field trials using various remedial action technologies that may be capable of restoring Herbicide Orange (HO)XDioxin contaminated sites. A full-scale field trial using a rotary kiln incinerator capable of pro...

  12. Preferential transport of isoproturon at a plot scale and a field scale tile-drained site

    Science.gov (United States)

    Zehe, Erwin; Flühler, Hannes

    2001-06-01

    Irrigation experiments using the tracers Brilliant Blue (BB) and Bromide (Br) were conducted on three plots of 1.4×1.4 m 2 (plot scale) and a field scale subsurface drained test site (900 m 2) to clarify mechanisms causing rapid transport of surface applied Isoproturon (IPU) during preferential flow events. One of the small plots (site 10) and the field scale test site are located on the same field. One day after irrigation of the plot scale sites the Br and IPU concentration in two vertical soil profiles as well as the macroporousity on separate profiles and hydraulic properties of single macropores were determined. During irrigation of the field scale test site discharge, soil moisture as well as the concentration of IPU and Br in the drainage outlet were measured. Preferential flow in deep penetrating earthworm burrows caused a fast breakthrough of IPU and Br into the tile drain (1.2 m depth) at the field scale site as well as leaching of IPU into the subsoil (>0.8 m) at site 10. The results suggest a hierarchy of preconditions for the occurrence of preferential flow events of which a sufficient number of deep penetrating macropores interconnected to the soil surface seems to be the most important one. Moreover there is evidence that facilitated transport of IPU attached to mobile soil particles occurred during the preferential flow events at the field scale site and site 10. The susceptibility for preferential flow as well as the susceptibility for facilitated transport appear to be intrinsic properties of the investigated soil.

  13. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  14. Soil treatment technologies: Comparison of field experiences

    International Nuclear Information System (INIS)

    Hodges, H.I.; Jackson, D.W.; Kline, K.

    1992-01-01

    A number of on-site soil treatment technologies are available for closure of oil-field waste pits, leaking underground storage tank (LUST) sites, and general hydrocarbon contamination. This paper will contrast Separation Systems Consultants, Inc.'s (SSCI's) field experiences with the following soil restoration techniques: (1) Land Treatment using indigenous microbes; (2) Land Farming using commercial microbes; (3) Low Temperature Thermal Treatment; (4) Solidification. The technologies will be contrasted in terms of regulatory constraints and requirements, key set-up and maintenance consideration, selection factors. Included in the regulatory contrast is the authors' perception of regulatory attitudes toward the techniques. Because this paper is based on actual field experience and projects, the practical aspects of making the technologies work is emphasized

  15. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  16. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  17. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    Science.gov (United States)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  18. Electric field scales at quasi-perpendicular shocks

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2004-07-01

    Full Text Available This paper investigates the short scale structures that are observed in the electric field during crossings of the quasi-perpendicular bow shock using data from the Cluster satellites. These structures exhibit large amplitudes, as high as 70 m Vm-1 and so make a significant contribution to the overall change in potential at the shock front. It is shown that the scale size of these short-lived electric field structures is of the order of a few cpe. The relationships between the scale size and the upstream Mach number and θBn are studied. It is found that the scale size of these structures decreases with increasing plasma β and as θBn→90°. The amplitude of the spikes remains fairly constant with increasing Ma and appears to increase as θBn→90°.

  19. Water scaling in the North Sea oil and gas fields and scale prediction: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, M

    1997-12-31

    Water-scaling is a common and major production chemistry problem in the North Sea oil and gas fields and scale prediction has been an important means to assess the potential and extent of scale deposition. This paper presents an overview of sulphate and carbonate scaling problems in the North Sea and a review of several widely used and commercially available scale prediction software. In the paper, the water chemistries and scale types and severities are discussed relative of the geographical distribution of the fields in the North Sea. The theories behind scale prediction are then briefly described. Five scale or geochemical models are presented and various definitions of saturation index are compared and correlated. Views are the expressed on how to predict scale precipitation under some extreme conditions such as that encountered in HPHT reservoirs. 15 refs., 7 figs., 9 tabs.

  20. On Scale and Fields

    DEFF Research Database (Denmark)

    Kadish, David

    2017-01-01

    This paper explores thematic parallels between artistic and agricultural practices in the postwar period to establish a link to media art and cultural practices that are currently emerging in urban agriculture. Industrial agriculture has roots in the post-WWII abundance of mechanical and chemical...... equipment and research. These systems are highly mechanically efficient. With minimal physical labour, they extract ever staggering crop yields from ever poorer soils in shifting climatic conditions. However, the fact of mechanical efficiency is used to mask a set of problems with industrial......-scale agricultural systems that range from spreading pests and diseases to poor global distribution of concentrated regional food wealth. That the conversion of vegetatively diverse farmland into monochromatic fields was popularized at the same time as the arrival of colour field paintings like Barnett Newman...

  1. On the scaling limits in the Euclidean (quantum) field theory

    International Nuclear Information System (INIS)

    Gielerak, R.

    1983-01-01

    The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)

  2. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    International Nuclear Information System (INIS)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-01-01

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  3. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    Energy Technology Data Exchange (ETDEWEB)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-04-19

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  4. Particles and scaling for lattice fields and Ising models

    International Nuclear Information System (INIS)

    Glimm, J.; Jaffe, A.

    1976-01-01

    The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de

  5. Two-Field Analysis of No-Scale Supergravity Inflation

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A

    2015-01-01

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary K\\"ahler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index $n_s$ and the tensor-to-scalar ratio $r$, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflation model with a quadratic potential are capable of reducing $r$ to very small values $\\ll 0.1$. We also calculate the non-Gaussianity measure $f_{\\rm NL}$, finding that is well below the current experimental sensitivity.

  6. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  7. Health Information Technology Usability Evaluation Scale (Health-ITUES) for Usability Assessment of Mobile Health Technology: Validation Study.

    Science.gov (United States)

    Schnall, Rebecca; Cho, Hwayoung; Liu, Jianfang

    2018-01-05

    Mobile technology has become a ubiquitous technology and can be particularly useful in the delivery of health interventions. This technology can allow us to deliver interventions to scale, cover broad geographic areas, and deliver technologies in highly tailored ways based on the preferences or characteristics of users. The broad use of mobile technologies supports the need for usability assessments of these tools. Although there have been a number of usability assessment instruments developed, none have been validated for use with mobile technologies. The goal of this work was to validate the Health Information Technology Usability Evaluation Scale (Health-ITUES), a customizable usability assessment instrument in a sample of community-dwelling adults who were testing the use of a new mobile health (mHealth) technology. A sample of 92 community-dwelling adults living with HIV used a new mobile app for symptom self-management and completed the Health-ITUES to assess the usability of the app. They also completed the Post-Study System Usability Questionnaire (PSSUQ), a widely used and well-validated usability assessment tool. Correlations between these scales and each of the subscales were assessed. The subscales of the Health-ITUES showed high internal consistency reliability (Cronbach alpha=.85-.92). Each of the Health-ITUES subscales and the overall scale was moderately to strongly correlated with the PSSUQ scales (r=.46-.70), demonstrating the criterion validity of the Health-ITUES. The Health-ITUES has demonstrated reliability and validity for use in assessing the usability of mHealth technologies in community-dwelling adults living with a chronic illness. ©Rebecca Schnall, Hwayoung Cho, Jianfang Liu. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 05.01.2018.

  8. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  9. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  10. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  11. IAEA programme in the field of radiation technology

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-01-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e - /X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on 'Emerging Applications of Radiation Technology for the 21st Century' at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: 'Advances in Radiation Chemistry of Polymers' (Notre Dame, USA

  12. IAEA programme in the field of radiation technology

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  13. Experimental signature of scaling violation implied by field theories

    International Nuclear Information System (INIS)

    Tung, W.

    1975-01-01

    Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated

  14. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  15. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  16. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  17. Small-Scale Waste-to-Energy Technology for Contingency Bases

    Science.gov (United States)

    2012-05-24

    Maintenance, Operator Skill Level Requires Waste Sorting/Pre-processing Scaling and Capacity Issues Technology Readiness Issues Composting Useful By-Product...combustion temperature possible with this technology. These variables are important for improved tar conversion, increased tolerance for high moisture

  18. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Science.gov (United States)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  19. Digital maintenance field technology for the maintenance of nuclear power plant

    International Nuclear Information System (INIS)

    Sato, Tomomasa; Asama, Hajime; Kita, Nobuyuki; Numano, Masayoshi

    2002-01-01

    This paper proposes a concept of 'Digital Maintenance Field Technology', which enables human beings and working robots making fully use of the necessary information for maintenance activity not only in any location of the maintenance field (seamless in location) but also in any moment from the past to the future (seamless in time) and in any format in presenting to human (seamless in semantics). The paper points out the following three essential components of the technology: 1) 'Digital Field Construction Technology', 2) 'Digital Field Archival Technology' and 3) 'Digital Field Presentation Technology'. The necessary capabilities are extracted and our approaches and state of the art of realizing these capabilities are introduced in addition to present the state of the art of home application example. The future extension is also illustrated. (author)

  20. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Science.gov (United States)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  1. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2009-01-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ 0 . Using the gravitoelectromagnetic inflationary formalism with A 0 =0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  2. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  3. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  4. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: membiela@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-04-20

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant {lambda}{sub 0}. Using the gravitoelectromagnetic inflationary formalism with A{sub 0}=0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  5. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  6. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  7. Field-programmable custom computing technology architectures, tools, and applications

    CERN Document Server

    Luk, Wayne; Pocek, Ken

    2000-01-01

    Field-Programmable Custom Computing Technology: Architectures, Tools, and Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In seven selected chapters, the book describes the latest advances in architectures, design methods, and applications of field-programmable devices for high-performance reconfigurable systems. The contributors to this work were selected from the leading researchers and practitioners in the field. It will be valuable to anyone working or researching in the field of custom computing technology. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  8. Parsec-scale Obscuring Accretion Disk with Large-scale Magnetic Field in AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnitsyn, A.; Kallman, T. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD, 20771 (United States)

    2017-06-10

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  9. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  10. Adapted Technology for Small-scale Manufacture of Caerphilly-Type ...

    African Journals Online (AJOL)

    Adapted Technology for Small-scale Manufacture of Caerphilly-Type Cheese from Cow's Milk in the Western Highlands Region of Cameroon. ... The production of the cheese should be encouraged at the household level. The Journal of Food Technology in Africa Volume 5 Number 4 (October - December 2000), pp. 120- ...

  11. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Hoggett, Richard

    2014-01-01

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  12. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  13. Scaled lattice fermion fields, stability bounds, and regularity

    Science.gov (United States)

    O'Carroll, Michael; Faria da Veiga, Paulo A.

    2018-02-01

    We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free

  14. Silicon microelectronic field-emissive devices for advanced display technology

    Science.gov (United States)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  15. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  16. Magnetic field applications in modern technology and medicine

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1985-05-01

    A brief summary is given of several major applications of magnetism. A description of the range of magnetic field intensities to which humans are exposed in technologies that utilize large stationary magnetic fields is given. 12 refs., 8 figs., 3 tabs

  17. STAGE TECHNOLOGY FOR OBTAINIGN AN ECONOMIC WHITE WINE TO AN INDUSTRIAL SCALE

    Directory of Open Access Journals (Sweden)

    Juan Esteban Miño Valdés

    2015-07-01

    Full Text Available The purpose of this work was to develop a sustainable technology to produce economical white wine, industrial scale, not viniferous grapes grown in Misiones. This technological project started at laboratory scale, it continued in a pilot plant and planned to an industrial scale. It was considered as productive unit 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: the development of dry white wine at laboratory scale, the evaluation of the variables of the process in the vilification, the Mathematical modeling of alcoholic fermentation in winemaking conditions, the assessment of the fitness of wines for human consumption, the establishment of a technological process for winemaking in a pilot plant, the evaluation in pilot plant of the technological process established, the calculation and selection of industrial equipment and finally, the costs estimation and profitability of the industrial technological process. A technology for a production capacity of 5,834 L day-1, with dynamic economic indicators was reached whose values were 6,602,666 net present value of U$D, an internal rate of return of 60 % for a period of payback a value net of three years to date.

  18. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D. [Champion Technologies, Inc., Houston, TX (United States); Setia, D.E.A. [FMT Production Duri P.T. Caltex Pacific Indonesia (Indonesia); Hinrichsen, C.J. [Texaco Panama, Bellaire, TX (United States); Sujana, W. [P.T. Champion Kumia Djaja Technologies, Jakarta (Indonesia)

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  19. The deployment of information systems and information technology in field hospitals.

    Science.gov (United States)

    Crowe, Ian R J; Naguib, Raouf N G

    2010-01-01

    Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.

  20. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    Science.gov (United States)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  1. Prediction and optimisation of Pb/Zn/Fe sulphide scales in gas production fields

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Sarah; Orski, Karine; Menezes, Carlos; Heath, Steve; MacPherson, Calum; Simpson, Caroline; Graham, Gordon

    2006-03-15

    Lead, zinc and iron sulphide scales are known to be a particular issue with gas production fields, particularly those producing from HP/HT reservoirs. However the prediction of sulphide scale and the methodologies available for their laboratory assessment are not as well developed as those for the more conventional sulphate and carbonate scales. This work examines a particular sulphide scaling regime from a North Sea high temperature gas condensate production field containing only 0.8ppm of sulphide ions. Sulphide scales were identified in the production system which was shown to be a mixture of lead and zinc sulphide, primarily lead sulphide. This formed as a result of cooling during production resulting in the over saturation of these minerals. This paper describes scale prediction and modified laboratory test protocols used to re-create the scales formed in the field prior to chemical performance testing. From the brine composition, scale prediction identified that the major scales that could be formed were calcium carbonate, iron carbonate, iron sulphide, lead sulphide and zinc sulphide. In addition, modification of the brine compositions led to prediction of primarily one scale or the other. Given the predicted over saturation of various minerals, preliminary laboratory tests were therefore conducted in order to ensure that the scale formed under laboratory conditions was representative of the field scale. Laboratory protocols were therefore developed to ensure that the scales formed in fully anaerobic dynamic performance tests and static performance tests were similar to those encountered in the field. The paper compares results from field analysis, scale predictions and laboratory scale formation tests using newly developed test protocols and shows differences between prediction and laboratory data. The paper therefore demonstrates the importance of ensuring that the correct scale is formed under laboratory test conditions and also indicates some potential

  2. Students attendance monitoring using near field communication technology

    OpenAIRE

    Stakėnas, Tautvydas

    2017-01-01

    Today, near field communication technology (NFC) is one of the most popular automatic identification technologies. There is a lot of research and development in this area trying to make as much use of this technology as possible, and in coming years many new applications and research areas will continue to appear. In this paper the author examines NFC technology application for student’s attendance monitoring. In the first part of the thesis NFC uses, application methods and security levels a...

  3. Disruption of circumstellar discs by large-scale stellar magnetic fields

    Science.gov (United States)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  4. Microbiological effectiveness of household water treatment technologies under field use conditions in rural Tanzania.

    Science.gov (United States)

    Mohamed, Hussein; Clasen, Thomas; Njee, Robert Mussa; Malebo, Hamisi M; Mbuligwe, Stephen; Brown, Joe

    2016-01-01

    To assess the microbiological effectiveness of several household water treatment and safe storage (HWTS) options in situ in Tanzania, before consideration for national scale-up of HWTS. Participating households received supplies and instructions for practicing six HWTS methods on a rotating 5-week basis. We analysed 1202 paired samples (source and treated) of drinking water from 390 households, across all technologies. Samples were analysed for thermotolerant (TTC) coliforms, an indicator of faecal contamination, to measure effectiveness of treatment in situ. All HWTS methods improved microbial water quality, with reductions in TTC of 99.3% for boiling, 99.4% for Waterguard ™ brand sodium hypochlorite solution, 99.5% for a ceramic pot filter, 99.5% for Aquatab ® sodium dichloroisocyanurate (NaDCC) tablets, 99.6% for P&G Purifier of Water ™ flocculent/disinfectant sachets, and 99.7% for a ceramic siphon filter. Microbiological performance was relatively high compared with other field studies and differences in microbial reductions between technologies were not statistically significant. Given that microbiological performance across technologies was comparable, decisions regarding scale-up should be based on other factors, including uptake in the target population and correct, consistent, and sustained use over time. © 2015 John Wiley & Sons Ltd.

  5. Near Field Communication: Technology and Market Trends

    Directory of Open Access Journals (Sweden)

    Gabriella Arcese

    2014-09-01

    Full Text Available Among the different hi-tech content domains, the telecommunications industry is one of the most relevant, in particular for the Italian economy. Moreover, Near Field Communication (NFC represents an example of innovative production and a technological introduction in the telecommunications context. It has a threefold function: card emulator, peer-to-peer communication and digital content access, and it could be pervasively integrated in many different domains, especially in the mobile payment one. The increasing attention on NFC technology from the academic community has improved an analysis on the changes and the development perspective about mobile payments. It has considered the work done by the GSMA (Global System for Mobile Communications Association and the NFC Forum in recent years. This study starts from an analysis of the scientific contributions to Near Field Communication and how the main researches on this topic were conceived. Our focus is on the diffusion rates, the adoption rates and the technology life cycle. After that, we analyze the technical-economical elements of NFC. Finally, this work presents the state of art of the improvements to this technology with a deeper focus on NFC technologies applied to the tourism industry. In this way, we have done a case analysis that shows some of the NFC existent applications linked to each stage of the tourism value chain.

  6. Application and comparison of the SCS-CN-based rainfall-runoff model in meso-scale watershed and field scale

    Science.gov (United States)

    Luo, L.; Wang, Z.

    2010-12-01

    Soil Conservation Service Curve Number (SCS-CN) based hydrologic model, has widely been used for agricultural watersheds in recent years. However, there will be relative error when applying it due to differentiation of geographical and climatological conditions. This paper introduces a more adaptable and propagable model based on the modified SCS-CN method, which specializes into two different scale cases of research regions. Combining the typical conditions of the Zhanghe irrigation district in southern part of China, such as hydrometeorologic conditions and surface conditions, SCS-CN based models were established. The Xinbu-Qiao River basin (area =1207 km2) and the Tuanlin runoff test area (area =2.87 km2)were taken as the study areas of basin scale and field scale in Zhanghe irrigation district. Applications were extended from ordinary meso-scale watershed to field scale in Zhanghe paddy field-dominated irrigated . Based on actual measurement data of land use, soil classification, hydrology and meteorology, quantitative evaluation and modifications for two coefficients, i.e. preceding loss and runoff curve, were proposed with corresponding models, table of CN values for different landuse and AMC(antecedent moisture condition) grading standard fitting for research cases were proposed. The simulation precision was increased by putting forward a 12h unit hydrograph of the field area, and 12h unit hydrograph were simplified. Comparison between different scales show that it’s more effectively to use SCS-CN model on field scale after parameters calibrated in basin scale These results can help discovering the rainfall-runoff rule in the district. Differences of established SCS-CN model's parameters between the two study regions are also considered. Varied forms of landuse and impacts of human activities were the important factors which can impact the rainfall-runoff relations in Zhanghe irrigation district.

  7. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  8. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  9. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  10. Cost function estimates, scale economies and technological progress in the Turkish electricity generation sector

    International Nuclear Information System (INIS)

    Ali Akkemik, K.

    2009-01-01

    Turkish electricity sector has undergone significant institutional changes since 1984. The recent developments since 2001 including the setting up of a regulatory agency to undertake the regulation of the sector and increasing participation of private investors in the field of electricity generation are of special interest. This paper estimates cost functions and investigates the degree of scale economies, overinvestment, and technological progress in the Turkish electricity generation sector for the period 1984-2006 using long-run and short-run translog cost functions. Estimations were done for six groups of firms, public and private. The results indicate existence of scale economies throughout the period of analysis, hence declining long-run average costs. The paper finds empirical support for the Averch-Johnson effect until 2001, i.e., firms overinvested in an environment where there are excess returns to capital. But this effect was reduced largely after 2002. Technological progress deteriorated slightly from 1984-1993 to 1994-2001 but improved after 2002. Overall, the paper found that regulation of the market under the newly established regulating agency after 2002 was effective and there are potential gains from such regulation. (author)

  11. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  12. Exploring International Multicultural Field Experiences in Educational Technology

    Science.gov (United States)

    Wilder, Hilary; Ferris, Sharmila Pixy; An, Heejung

    2010-01-01

    Purpose: The purpose of this paper is to explore an online field experience between technology facilitator candidates in the USA and K-12 teachers in Namibia, to improve candidates' understanding of diversity and equity issues in the successful incorporation of information and communication technologies (ICT) in teaching and learning.…

  13. MODELING THE SUN’S SMALL-SCALE GLOBAL PHOTOSPHERIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, K. A. [Division of Computing and Mathematics, Abertay University, Kydd Building, Dundee, Bell Street, DD1 1HG, Scotland (United Kingdom); Mackay, D. H., E-mail: k.meyer@abertay.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland (United Kingdom)

    2016-10-20

    We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R {sub ⊙}, around 10–100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.

  14. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  15. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  16. Ever-present threats from information technology: the Cyber-Paranoia and Fear Scale

    Directory of Open Access Journals (Sweden)

    Oliver John Mason

    2014-11-01

    Full Text Available Delusions involving technology, and specifically the internet, are increasingly common, and fear-reality statistics suggest computer-related fears are very widespread. These fears form a continuum from the widely understandable and realistic to the unrealistic, and frankly paranoid. The present study investigated the validity of this construct in a non-clinical population by constructing a novel self-report measure. The new Cyber-Paranoia and Fear Scale aims to measure the perception of information technology-related threats originating from or enabled by computers, smartphones, social networks and digital surveillance. Psychometric properties of the new Cyber-Paranoia and Fear Scale are reported alongside an established measure of suspiciousness and paranoia in 181 participants including a sub-group of fifty information technology professionals. Exploratory factor analysis suggested the presence of two, related, dimensions that we term Cyber-Fear and Cyber-Paranoia. Both sub-scales were internally consistent and produced a normal distribution of scores. The relationships of the sub-scales with age, gender, trait paranoia, digital literacy and digital inclusion are supportive of construct validity. The distinctiveness of ‘cyber-paranoia’ from general trait paranoia appears to mirror the clinical distinctiveness of ‘internet’ and other technology fuelled delusions. Knowledge provision to increase technological proficiency and awareness may bring about a reduction in cyber-paranoia.

  17. Ever-present threats from information technology: the Cyber-Paranoia and Fear Scale.

    Science.gov (United States)

    Mason, Oliver J; Stevenson, Caroline; Freedman, Fleur

    2014-01-01

    Delusions involving technology, and specifically the internet, are increasingly common, and fear-reality statistics suggest computer-related fears are very widespread. These fears form a continuum from the widely understandable and realistic to the unrealistic, and frankly paranoid. The present study investigated the validity of this construct in a non-clinical population by constructing a novel self-report measure. The new Cyber-Paranoia and Fear Scale aims to measure the perception of information technology-related threats originating from or enabled by computers, smartphones, social networks, and digital surveillance. Psychometric properties of the new Cyber-Paranoia and Fear Scale are reported alongside an established measure of suspiciousness and paranoia in 181 participants including a sub-group of fifty information technology professionals. Exploratory factor analysis suggested the presence of two, related, dimensions that we term cyber-paranoia and cyber-fear. Both sub-scales were internally consistent and produced a normal distribution of scores. The relationships of the sub-scales with age, gender, trait paranoia, digital literacy, and digital inclusion are supportive of construct validity. The distinctiveness of 'cyber-paranoia' from general trait paranoia appears to mirror the clinical distinctiveness of 'internet' and other technology-fuelled delusions. Knowledge provision to increase technological proficiency and awareness may bring about a reduction in cyber-paranoia.

  18. A field-scale test of in situ chemical oxidation through recirculation

    International Nuclear Information System (INIS)

    West, O.R.; Cline, S.R.; Holden, W.L.; Gardner, F.G.; Schlosser, B.M.; Siegrist, R.L.; Houk, T.C.

    1998-01-01

    In situ chemical oxidation is a developing class of remediation technologies in which organic contaminants are degraded in place by powerful oxidants. Successful implementation of this technology requires an effective means for dispersing the oxidant to contaminated regions in the subsurface. An oxidant delivery technique has been developed wherein the treatment solution is made by adding an oxidant to extracted groundwater. The oxidant-laden groundwater is then injected and recirculated into a contaminated aquifer through multiple horizontal and/or vertical wells. This technique, referred to as in situ chemical oxidation through recirculation (ISCOR), can be applied to saturated and hydraulically conductive formations and used with relatively stable oxidants such as potassium permanganate (KMnO 4 ). A field-scale test of ISCOR was conducted at a site (Portsmouth Gaseous Diffusion Plant) where groundwater in a 5-ft thick silty gravel aquifer is contaminated with trichloroethylene (TCE) at levels that indicate the presence of residual dense non-aqueous phase liquids (DNAPLs). The field test was implemented using a pair of parallel horizontal wells with 200-ft screened sections. For approximately one month, groundwater was extracted from one horizontal well, dosed with crystalline KMnO 4 , and re-injected into the other horizontal well 90 ft away. Post-treatment characterization showed that ISCOR was effective at removing TCE in the saturated region. Lateral and vertical heterogeneities within the treatment zone impacted the uniform delivery of the oxidant solution. However, TCE was not detected in groundwater samples collected from monitoring wells and soil samples from borings in locations where the oxidant had permeated

  19. EDUCATIONAL TECHNOLOGY IN PRACTICE Research and Practical Case Studies from the Field

    Directory of Open Access Journals (Sweden)

    Reviewed by Ozden SAHIN-IZMIRLI

    2010-10-01

    Full Text Available The book starts with an explanation of the reason why the terms found in the book are sometimes used in place of each other. The editors stated that when technological tools are used to establish an effective and productive study process in education, the concept of learning technology is used instead of educational technology. The editors of the book considers the field as complex and vague in terms of the fact that the meanings of the concepts are close to each other in the field of educational technology and that the field provides an opportunity for inter-disciplinary studies. However, according to the editors, this vagueness and complexity shows the superiority of the field. This superiority is explained with the fact that the field of educational technology requires upper-level skills of problem solving and critical thinking and that it presents a multi-dimensional and inter-disciplinary study field. The book was edited by Wanjira Kinuthia and Steward Marshall. Wanjira Kinuthia, an assistant professor at Georgia State University, works in the Department of Middle-Secondary Education and Instructional Technology. Steward Marshall, a professor at the University of the West Indies, is the director of the Distance Education Centre. The book includes five sections and 21 chapters. These sections are “Materials, Methods, and Modalities”, “Technology Implementation and Integration Issues”, “Student Engagement and Learning”, “Building Capacity”, “Using Technology for Performance Improvement and Productivity Enhancement”.

  20. New tuberculosis technologies: challenges for retooling and scale-up.

    Science.gov (United States)

    Pai, M; Palamountain, K M

    2012-10-01

    The availability of new tools does not mean that they will be adopted, used correctly, scaled up or have public health impact. Experience to date with new diagnostics suggests that many national tuberculosis programmes (NTPs) in high-burden countries are reluctant to adopt and scale up new tools, even when these are backed by evidence and global policy recommendations. We suggest that there are several common barriers to effective national adoption and scale-up of new technologies: global policy recommendations that do not provide sufficient information for scale-up, complex decision-making processes and weak political commitment at the country level, limited engagement of and support to NTP managers, high cost of tools and poor fit with user needs, unregulated markets and inadequate business models, limited capacity for laboratory strengthening and implementation research, and insufficient advocacy and donor support. Overcoming these barriers will require enhanced country-level advocacy, resources, technical assistance and political commitment. Some of the BRICS (Brazil, Russia, India, China, South Africa) countries are emerging as early adopters of policies and technologies, and are increasing their investments in TB control. They may provide the first opportunities to fully assess the public health impact of new tools.

  1. Applications of three-dimensional printing technology in the cardiovascular field.

    Science.gov (United States)

    Shi, Di; Liu, Kai; Zhang, Xin; Liao, Hang; Chen, Xiaoping

    2015-10-01

    Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

  2. Research field of fire technology in Finland

    Science.gov (United States)

    Loikkanen, P.; Holm, C.

    1987-02-01

    The goal of the study is to give an overview of the whole diversified research field of fire technology and its problems. For this reason the research subjects have been grouped so that the responsibilities of different authorities, the legislation and specifications, various fields of technology, areas of industry, and groups of products could all be found as clearly as possible. The field has been divided into nine sub-areas. They are: general grounds, fire physics and chemistry, structural fire prevention, textiles and furnishings, devices for heating and other use, detection, fire fighting and rescue, quality control, and special problems. The sub-areas have been divided into 34 main subjects and these, excluding those of special problems, further into as many as 117 subject groups. Characteristics and problems of the sub-areas and the main subjects have been described. The subject groups have been characterized by key words and concepts which outline the projects. No concrete research projects and programs have, however, been directly suggested because their extent and contents depend essentially on financing and other available resources.

  3. Report on the FY 1999 survey on long-term energy technology strategy/basic survey for working out industrial technology strategy. Part 1. Technology strategy by field - material technology field (fine ceramics technology field); 1999 nendo choki energy gijutsu senryaku ni kansuru chosa. 1. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (zairyo gijutsu bun'ya (fine ceramics gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results of the survey of the fine ceramics technology field relating to the FY 1999 long-term energy technology strategy. The fine ceramics industry is a new industry for which the future development is expected. It has far-reaching effects on other industries. Japan has the advantage over other countries. As subjects to remarkably develop the industry, needed are the long-term basic preparation which promotes technology innovation such as the promotion of the fundamental/creative R and D, construction of an industry/university liaison system, and arrangement of the intellectual base. Preparation of the competitive environment and promotion of policies paying attention to the market are needed which make the development under the private control by creative study/corporate activities possible. Also important are the demonstration of leadership and secure international competitive force in the light of Japan's international position. For the private-control development, the role and course of various groups should be made clear from a long-term aspect. It is desirable that university/government will newly develop innovative technology, and industry will make the present technology force more developmental and competitive. Support from the nation is requested for researches large in scale. (NEDO)

  4. Meaningful Field Trip in Education of Renewable Energy Technologies

    Directory of Open Access Journals (Sweden)

    Hasan Said Tortop

    2013-06-01

    Full Text Available Renewable energy sources, in terms of countries‟ obtaining their energy needs from clean and without harming the environment is becoming increasingly important. This situation also requires improving the quality of science education will be given in this field. In this activity, in a field trip to the center for the renewable energy resources technologies, the application of learning cycle model appropriate for constructivist approach is shown. In the example of solar chimney activity according to 5E model, in elaboration step, students, by using their imagination and creativity, put out recommendations and new designs for the efficiency of the application of solar chimney. It is quite important for educators to follow what kind of acquisitions that students will gain and what kind of changes will occur in their perceptions and attitudes towards renewable energy technologies thanks to this activity. Related documents are in attachments. This activity has been very helpful in the education of young scientists on the field of renewable energy sources technologies.

  5. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.

  6. Laboratory and Field Investigations of Small Crater Repair Technologies

    National Research Council Canada - National Science Library

    Priddy, Lucy P; Tingle, Jeb S; McCaffrey, Timothy J; Rollings, Ray S

    2007-01-01

    .... This airfield damage repair (ADR) investigation consisted of laboratory testing of selected crater fill and capping materials, as well as full-scale field testing of small crater repairs to evaluate field mixing methods, installation...

  7. Scaling Up Improved Legume Technologies in Tanzania (CIFSRF ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The project team will train at least 30 hub agro dealers on the technologies so they can instruct a larger number of smaller-scale agro dealers operating across the target regions. Research partners ... Addressing Africa's unmet need for family planning by intensifying sexual and reproductive and adolescent health research.

  8. Report on the surveys in fiscal 1999. Surveys on foundations for establishing industrial technology strategies (Strategies by fields - Bio technology field); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu gijutsu senryaku (Bio technology bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to deal with strengthening of competitive power in the bio-technological field and social requirements thereon, it was intended to establish target setting, ways to achieve the objectives, and technological strategies including extraction of policy problems, by combining the wisdom possessed by industries, governmental organizations, and academic world. Section 1 describes the result of the surveys on establishing technological strategies by fields. America tackles importantly with matters related to life science. Japan is strong in fermentation technologies, bio-reactors, and enzyme engineering. Japan stands nearly equal, or is slightly inferior to America in clone livestocks and bio-sensors. Japan's competitiveness is very low in such advanced technology fields as gene therapies, gene combined agricultural products, bio-agricultural chemicals, gene exploration technologies, and gene diagnosis. Section 2 describes technological strategies in four fields. To explain, the improvement in foundations to raise efficiencies in research and development and industrialization processes, strategies to place importance on such industrial fields as realizing 'wishes of people for happiness of diversified nature', the improvement of the environment in which people and societies can enjoy benefits brought about by growth of the industries, and structuring of institutions to promote industrialization of bio-technologies for the nation as a whole. (NEDO)

  9. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  10. The Media and Technology Usage and Attitudes Scale: An empirical investigation

    Science.gov (United States)

    Rosen, L.D.; Whaling, K.; Carrier, L.M.; Cheever, N.A.; Rokkum, J.

    2015-01-01

    Current approaches to measuring people’s everyday usage of technology-based media and other computer-related activities have proved to be problematic as they use varied outcome measures, fail to measure behavior in a broad range of technology-related domains and do not take into account recently developed types of technology including smartphones. In the present study, a wide variety of items, covering a range of up-to-date technology and media usage behaviors. Sixty-six items concerning technology and media usage, along with 18 additional items assessing attitudes toward technology, were administered to two independent samples of individuals, comprising 942 participants. Factor analyses were used to create 11 usage subscales representing smartphone usage, general social media usage, Internet searching, e-mailing, media sharing, text messaging, video gaming, online friendships, Facebook friendships, phone calling, and watching television in addition to four attitude-based subscales: positive attitudes, negative attitudes, technological anxiety/dependence, and attitudes toward task-switching. All subscales showed strong reliabilities and relationships between the subscales and pre-existing measures of daily media usage and Internet addiction were as predicted. Given the reliability and validity results, the new Media and Technology Usage and Attitudes Scale was suggested as a method of measuring media and technology involvement across a variety of types of research studies either as a single 60-item scale or any subset of the 15 subscales. PMID:25722534

  11. The Media and Technology Usage and Attitudes Scale: An empirical investigation.

    Science.gov (United States)

    Rosen, L D; Whaling, K; Carrier, L M; Cheever, N A; Rokkum, J

    2013-11-01

    Current approaches to measuring people's everyday usage of technology-based media and other computer-related activities have proved to be problematic as they use varied outcome measures, fail to measure behavior in a broad range of technology-related domains and do not take into account recently developed types of technology including smartphones. In the present study, a wide variety of items, covering a range of up-to-date technology and media usage behaviors. Sixty-six items concerning technology and media usage, along with 18 additional items assessing attitudes toward technology, were administered to two independent samples of individuals, comprising 942 participants. Factor analyses were used to create 11 usage subscales representing smartphone usage, general social media usage, Internet searching, e-mailing, media sharing, text messaging, video gaming, online friendships, Facebook friendships, phone calling, and watching television in addition to four attitude-based subscales: positive attitudes, negative attitudes, technological anxiety/dependence, and attitudes toward task-switching. All subscales showed strong reliabilities and relationships between the subscales and pre-existing measures of daily media usage and Internet addiction were as predicted. Given the reliability and validity results, the new Media and Technology Usage and Attitudes Scale was suggested as a method of measuring media and technology involvement across a variety of types of research studies either as a single 60-item scale or any subset of the 15 subscales.

  12. Toward a model for field-testing patient decision-support technologies: a qualitative field-testing study.

    NARCIS (Netherlands)

    Evans, R.; Elwyn, G.; Edwards, A.; Watson, E.; Austoker, J.; Grol, R.P.T.M.

    2007-01-01

    BACKGROUND: Field-testing is a quality assurance criterion in the development of patient decision-support technologies (PDSTs), as identified in the consensus statement of the International Patient Decision Aids Standards Collaboration. We incorporated field-testing into the development of a

  13. Density limit and cross-field edge transport scaling in Alcator C-Mod

    International Nuclear Information System (INIS)

    LaBombard, B.; Greenwald, M.; Hughes, J.W.; Lipschultz, B.; Mossessian, D.; Terry, J.L.; Boivin, R.L.; Carreras, B.A.; Pitcher, C.S.; Zweben, S.J.

    2003-01-01

    Recent experiments in Alcator C-Mod have uncovered a direct link between the character and scaling of cross-field particle transport in the edge plasma and the density limit, n G . As n-bar e /n G is increased from low values to values approaching ∼1, an ordered progression in the cross-field edge transport physics occurs: first benign cross-field heat convection, then cross-field heat convection impacting the scrape-off layer (SOL) power loss channels and reducing the separatrix electron temperature, and finally 'bursty' transport (normally associated with the far SOL) invading into closed flux surface regions and carrying a convective power loss that impacts the power balance of the discharge. These observations suggest that SOL transport and its scaling with plasma conditions plays a key role in setting the empirically observed density limit scaling law. (author)

  14. Field-aligned currents' scale analysis performed with the Swarm constellation

    DEFF Research Database (Denmark)

    Lühr, Hermann; Park, Jaeheung; Gjerløv, Jesper Wittendorff

    2015-01-01

    We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfve´n waves...

  15. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  16. Biosensors in the small scale: methods and technology trends.

    Science.gov (United States)

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  17. Technologies and challenges in large-scale phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin Røssel

    2013-01-01

    become the main technique for discovery and characterization of phosphoproteins in a nonhypothesis driven fashion. In this review, we describe methods for state-of-the-art MS-based analysis of protein phosphorylation as well as the strategies employed in large-scale phosphoproteomic experiments...... with focus on the various challenges and limitations this field currently faces....

  18. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  19. Relativistic jets without large-scale magnetic fields

    Science.gov (United States)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  20. Scale transformation and massless limit in neutral-vector field theory. [Gauge transformation unified theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Takahashi, Y; Yokoyama, K

    1975-01-01

    In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.

  1. Fiscal 1999 research report on long-term energy technology strategy. Basic research on industrial technology strategy (Individual technology strategy). Machine industry technology field (Semiconductor equipment); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku) kikai sangyo gijutsu bun'ya (handotai seizo sochi bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 basic research result on industrial technology strategy of a semiconductor equipment field, viewing until 5-10 years after. For the future semiconductor industry, the favorable cycling of creation of new demands through performance improvement, and further technology innovation through market expansion is essential absolutely. Since technology development is followed by investment, not only the performance of each equipment but also the higher productivity and cost balance of the whole factory are essential. Self-intelligent function and networking are thus necessary for the equipment. As measures for environment preservation and energy saving, such innovative technologies are required as recycling, reuse, reaction process improvement and alternative technology. Because of diverse final products and a short life time of products, a large-scale collective investment is becoming difficult. A mini-line sequential investment production system according to demand scales is under investigation. Some issues such as micro-technology, realization of 300mm wafer, modularization, CIM, reliability and standardization are also described. (NEDO)

  2. Large-scale demonstration of D ampersand D technologies

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Black, D.B.; Rose, R.W.

    1997-01-01

    It is becoming increasingly evident that new technologies will need to be utilized for decontamination and decommissioning (D ampersand D) activities in order to assure safe and cost effective operations. The magnitude of the international D ampersand D problem is sufficiently large in anticipated cost (100's of billions of dollars) and in elapsed time (decades), that the utilization of new technologies should lead to substantial improvements in cost and safety performance. Adoption of new technologies in the generally highly contaminated D ampersand D environments requires assurances that the technology will perform as advertised. Such assurances can be obtained from demonstrations of the technology in environments that are similar to the actual environments without being quite as contaminated and hazardous. The Large Scale Demonstration Project (LSDP) concept was designed to provide such a function. The first LSDP funded by the U.S. Department Of Energy's Environmental Management Office (EM) was on the Chicago Pile 5 (CP-5) Reactor at Argonne National Laboratory. The project, conducted by a Strategic Alliance for Environmental Restoration, has completed demonstrations of 10 D ampersand D technologies and is in the process of comparing the performance to baseline technologies. At the conclusion of the project, a catalog of performance comparisons of these technologies will be developed that will be suitable for use by future D ampersand D planners

  3. Anomalous scaling of a scalar field advected by turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  4. Recurrence spectroscopy of atoms in electric fields: Failure of classical scaling laws near bifurcations

    International Nuclear Information System (INIS)

    Shaw, J.A.; Robicheaux, F.

    1998-01-01

    The photoabsorption spectra of atoms in a static external electric field shows modulations from recurrences: electron waves that go out from and return to the vicinity of the atomic core. Closed-orbit theory predicts the amplitudes and phases of these modulations in terms of closed classical orbits. A classical scaling law relates the properties of a closed orbit at one energy and field strength to its properties at another energy and field strength at fixed scaled energy ε=EF -1/2 . The scaling law states that the recurrence strength of orbits along the electric field axis scale as F 1/4 . We show how this law fails near bifurcations when the effective Planck constant ℎ≡ℎF 1/4 increases with increasing field at fixed ε. The recurrences of orbits away from the axis scale as F 1/8 in accordance with the classical prediction. These deviations from the classical scaling law are important in interpreting the recurrence spectra of atoms in current experiments. This leads to an extension of the uniform approximation developed by Gao and Delos [Phys. Rev. A 56, 356 (1997)] to complex momenta. copyright 1998 The American Physical Society

  5. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K. [Energy in the Built Environment and Networks, Petten (Netherlands)

    2007-01-15

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  6. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K.

    2007-01-01

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  7. Development and Validation of Information Technology Mentor Teacher Attitude Scale: A Pilot Study

    Science.gov (United States)

    Saltan, Fatih

    2015-01-01

    The aim of this study development and validation of a teacher attitude scale toward Information Technology Mentor Teachers (ITMT). ITMTs give technological support to other teachers for integration of technology in their lessons. In the literature, many instruments have been developed to measure teachers' attitudes towards the technological tools…

  8. Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements

    Science.gov (United States)

    Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.

    2012-12-01

    The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some

  9. Evaluation of environmental control technologies for magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    The peripheral magnetic fields of several energy-related technologies are calculated, and shielding options are studied for three field intensities as possible exposure levels: 200 G, 10 G, and 0.3 G. Seven fusion reactor designs are studied. For a 200-G field level, shielding is not required. For the 10- and 0.3-G levels, land is the most economical shielding method, with shield coils an acceptable alternative at 0.3 G. Nonnuclear technologies studied are superconducting magnetic energy storage, magnetohydrodynamic (MHD) electric generators, magnetically levitated vehicles, superconducting ac generators, and underground transmission lines. Superconducting ac generators and underground transmission lines require no shielding. The superconducting magnetic energy storage coil requires no shielding for 200 G. Both a shield coil and land are needed to meet 10 G or 0.3 G. The MHD generator needs no shielding to 200 G and 10 G. Land is the most economical means of meeting the 0.3 G level. Most of the magnetically levitated vehicles require no shielding to 200 G. The field on-board can be reduced from 200 to 25 G, depending upon the vehicle design, with shield coils. The use of iron, or another permeable material, is necessary to reduce the field to 10 G or 0.3 G. However, iron introduces too much added weight to allow efficient operation.

  10. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  11. Applied field test procedures on petroleum release sites

    International Nuclear Information System (INIS)

    Gilbert, G.; Nichols, L.

    1995-01-01

    The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones

  12. Full-scale demonstration of EBS construction technology I. Block, pellet and in-situ compaction method

    International Nuclear Information System (INIS)

    Toguri, Satohito; Asano, Hidekazu; Takao, Hajime; Matsuda, Takeshi; Amemiya, Kiyoshi

    2008-01-01

    (i) Bentonite Block: Applicability of manufacturing technology of buffer material was verified by manufacturing of full scale bentonite ring which consists of one-eight (1/8) dividing block (Outside Diameter (OD): 2.220 mm H: 300 mm). Density characteristic, dimension and scale effect, which were considered the tunnel environment under transportation, were evaluated. Vacuum suction technology was selected as handling technology for the ring. Hoisting characteristic of vacuum suction technology was presented through evaluation of the mechanical property of buffer material, the friction between blocks, etc. by using a full-scale bentonite ring (OD 2.200 mm, H 300 mm). And design of bentonite block and emplacement equipment were presented in consideration of manufacturability of the block, stability of handling and improvement of emplacement efficiency. (ii) Bentonite Pellet Filling: Basic characteristics such as water penetration, swelling and thermal conductivity of various kinds of bentonite pellet were collected by laboratory scale tests. Applicability of pellet filling technology was evaluated by horizontal filling test using a simulated full-scale drift tunnel (OD 2.200 mm, L 6 m) . Filling density, grain size distribution, etc. were also measured. (iii) In-Situ Compaction of Bentonite: Dynamic compaction method (heavy weight fall method) was selected as in-situ compaction technology. Compacting examination which used a full scale disposal pit (OD 2.360 mm) was carried out. Basic specification of compacting equipment and applicability of in-situ compaction technology were presented. Density, density distribution of buffer material and energy acted on the wall of the pit, were also measured. (author)

  13. Report on the surveys in fiscal 1999. Surveys on foundations for establishing industrial technology strategies (Strategies by fields - Bio technology field); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu gijutsu senryaku (Bio technology bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to deal with strengthening of competitive power in the bio-technological field and social requirements thereon, it was intended to establish target setting, ways to achieve the objectives, and technological strategies including extraction of policy problems, by combining the wisdom possessed by industries, governmental organizations, and academic world. Section 1 describes the result of the surveys on establishing technological strategies by fields. America tackles importantly with matters related to life science. Japan is strong in fermentation technologies, bio-reactors, and enzyme engineering. Japan stands nearly equal, or is slightly inferior to America in clone livestocks and bio-sensors. Japan's competitiveness is very low in such advanced technology fields as gene therapies, gene combined agricultural products, bio-agricultural chemicals, gene exploration technologies, and gene diagnosis. Section 2 describes technological strategies in four fields. To explain, the improvement in foundations to raise efficiencies in research and development and industrialization processes, strategies to place importance on such industrial fields as realizing 'wishes of people for happiness of diversified nature', the improvement of the environment in which people and societies can enjoy benefits brought about by growth of the industries, and structuring of institutions to promote industrialization of bio-technologies for the nation as a whole. (NEDO)

  14. Micro-scale hydrological field experiments in Romania

    Directory of Open Access Journals (Sweden)

    Minea Gabriel

    2016-02-01

    Full Text Available The paper (communication presents an overview of hydrologic field experiments at micro-scale in Romania. In order to experimentally investigate micro (plot-scale hydrological impact of soil erosion, the National Institute of Hydrology and Water Management founded Voineşti Experimental Basin (VES in 1964 and the Aldeni Experimental Basins (AEB in 1984. AEB and VES are located in the Curvature Subcarpathians. Experimental plots are organized in a double systems and have an area of 80 m2 (runoff plots at AEB and 300 m2 (water balance plots at VES. Land use of plot: first plot ”grass-land” is covered with perennial grass and second plot (control consists in ”bare soil”. Over the latter one, the soil is hoeing, which results in a greater development of infiltration than in the first plot. Experimental investigations at micro-scale are aimed towards determining the parameters of the water balance equation, during natural and artificial rainfalls, researching of flows and soil erosion processes on experimental plots, extrapolating relations involving runoff coefficients from a small scale to medium scale. Nowadays, the latest evolutions in data acquisition and transmission equipment are represented by sensors (such as: sensors to determinate the soil moisture content. Exploitation and dissemination of hydrologic data is accomplished by research themes/projects, year-books of basic data and papers.

  15. Remediation of contaminated soil using heap leach mining technology

    International Nuclear Information System (INIS)

    York, D.A.; Aamodt, P.L.

    1990-01-01

    Los Alamos National Laboratory is evaluating the systems technology for heap treatment of excavated soils to remove and treat hazardous chemical and radioactive wastes. This new technology would be an extrapolation of current heap leach mining technology. The candidate wastes for treatment are those organic or inorganic (including radioactive) compounds that will chemically, physically, or biologically react with selected reagents. The project would start with bench-scale testing, followed by pilot-scale testing, and eventually by field-scale testing. Various reagents would be tried in various combinations and sequences to obtain and optimize the desired treatment results. The field-scale testing would be preceded by site characterization, process design, and equipment selection. The final step in this project is to transfer the systems technology to the private sector, probably to the mining industry. 6 refs., 1 fig

  16. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 426

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Archiable, Robert; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 657

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 897

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  19. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 442

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Archiable, Robert; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) unitizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  20. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 638

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Archiable, Robert; McClung, Christina

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  1. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 857

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Inventory of future power and heat production technologies. Partial report Small-scale technology; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Smaaskalig teknik

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt (Grontmij AB (Sweden))

    2008-12-15

    The following techniques for small-scale production have been selected to be studied more carefully, Fuel cells, Photovoltaics, Organic Rankine Cycle (ORC), and Wave power. Of the four selected technologies, fuel cells, solar cells, ORC are appropriate for use in so-called distributed generation, to be used close to a consumer, and possibly also for the production of electricity. Wave power is more like the wind in nature and is probably better suited to be used by power companies for direct input to the transmission grid. None of these technologies are now competitive against buying electricity from the Swedish grid. However, there are opportunities for all to reduce production costs so that they can become competitive alternatives in the future, depending largely on the general development of electricity prices, taxes, delivery reliability, etc. The four different technologies have different development stages and requirements that affect their possibility for a commercial breakthrough. These technologies will probably not all get a breakthrough in Sweden. Small-scale technologies will in the time period up to 2030 not be able to compete with the large-scale technologies that exist in today's power grid. In the longer term the situation may be different. The power system might be reduced in importance if the small scale technologies become cheap, reliable and easy to use. Electricity can then be produced locally, directly related to user needs

  3. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.

  4. Standardized UXO Technology Demonstration Site. Open Field Scoring Record Number 154

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  5. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 379

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  6. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 354

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Archiable, Robert; McClung, Christina

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  7. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 311

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  8. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 129

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APO Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  9. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 229

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  10. Standardized UXO Technology Demonstration Site, Open Field Scoring Record Number 411

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  11. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 169

    National Research Council Canada - National Science Library

    Overbay, Larry; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  12. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 201

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Fling, Rick; Robitaille, George

    2004-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  13. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 165

    National Research Council Canada - National Science Library

    Overbay, Larry

    2004-01-01

    ...) utilizing the APO Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  14. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 740

    National Research Council Canada - National Science Library

    Overbay, Jr., Larry; Fling, Rick; McClug, Christina; Watts, Kimberly; Banta, Matthew

    2006-01-01

    The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions...

  15. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  16. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 245

    National Research Council Canada - National Science Library

    Overbay, Larry

    2005-01-01

    ... (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 675

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  19. Ultra-Low Power Memory Design in Scaled Technology Nodes

    DEFF Research Database (Denmark)

    Zeinali, Behzad

    that the proposed SRAM reduces access time and leakage current by 40% and 20%, respectively, compared to the standard 8T-SRAM cell without any degradation in read and write margins. The second solution is an asymmetric Schottky barrier device, which can mitigate the read–write conflict of the 6T-SRAM cell in scaled...... technology nodes i.e. sub-50 nm. The 6T-SRAM designed based on the proposed device shows 18% leakage reduction and 54%, 6.6% and 3.1X improvement in read margin, write margin and write time, respectively, compared to the conventional 6T-SRAM cell. To address the standby power issue of SRAMs in scaled...... technology nodes, this thesis also investigates emerging non-volatile spintronics memories. In this respect, STT-MRAMs and SOT-MRAMs are studied and their design challenges are explored. To improve the read performance of STT-MRAMs, a novel non-destructive self-reference sensing scheme is proposed enabling...

  20. Review of AVLIS technology for production-scale LIS systems and construction

    International Nuclear Information System (INIS)

    Davis, J.I.; Moses, E.I.

    1983-12-01

    The use of lasers for uranium and/or plutonium isotope separation is expected to be the first application of lasers utilizing specific atomic processes for large-scale materials processing. Specific accomplishments toward the development of production-scale technology for LIS systems will be presented, along with the status of major construction projects. 24 figures

  1. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  2. Innovative technologies for managing oil field waste

    International Nuclear Information System (INIS)

    Veil, J.A.

    2003-01-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  3. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley; Goodman, Alyssa A.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girart, Josep M. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Cortés, Paulo C. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Lai, Shih-Ping, E-mail: chat.hull@cfa.harvard.edu [Institute of Astronomy and Department of Physics, National Tsing Hua University, 101 Section 2 Kuang Fu Road, 30013 Hsinchu, Taiwan (China)

    2017-06-20

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations with four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.

  4. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  5. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  6. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Wayne Hunter

    Full Text Available The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD, which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi has been used successfully to silence endogenous insect (including honey bee genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania. To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.

  7. Power Scaling of Petroleum Field Sizes and Movie Box Office Earnings.

    Science.gov (United States)

    Haley, J. A.; Barton, C. C.

    2017-12-01

    The size-cumulative frequency distribution of petroleum fields has long been shown to be power scaling, Mandelbrot, 1963, and Barton and Scholz, 1995. The scaling exponents for petroleum field volumes range from 0.8 to 1.08 worldwide and are used to assess the size and number of undiscovered fields. The size-cumulative frequency distribution of movie box office earnings also exhibits a power scaling distribution for domestic, overseas, and worldwide gross box office earnings for the top 668 earning movies released between 1939 and 2016 (http://www.boxofficemojo.com/alltime/). Box office earnings were reported in the dollars-of-the-day and were converted to 2015 U.S. dollars using the U.S. consumer price index (CPI) for domestic and overseas earnings. Because overseas earnings are not reported by country and there is no single inflation index appropriate for all overseas countries. Adjusting the box office earnings using the CPI index has two effects on the power functions fit. The first is that the scaling exponent has a narrow range (2.3 - 2.5) between the three data sets; and second, the scatter of the data points fit by the power function is reduced. The scaling exponents for the adjusted value are; 2.3 for domestic box office earnings, 2.5 for overseas box office earnings, and 2.5 worldwide box office earnings. The smaller the scaling exponent the greater the proportion of all earnings is contributed by a smaller proportion of all the movies: where E = P (a-2)/(a-1) where E is the percentage of earnings, P is the percentage of all movies in the data set. The scaling exponents for box office earnings (2.3 - 2.5) means that approximately 20% of the top earning movies contribute 70-55% of all the earnings for domestic, worldwide earnings respectively.

  8. Robotics and tele-operation technology for applications in nuclear fields

    International Nuclear Information System (INIS)

    Kosuge, Kazuhiro; Hirata, Yasuhisa; Takeo, Koji

    2002-01-01

    In this article, we introduce available robotics and tele-operation technology for applications in Nuclear Fields. First, robotics technology for manipulation of a large object is introduced which has been experimentally applied to ITER Maintenance Robot. Then, transportation technology of a large object by multiple mobile robots is reviewed. At last, recent tele-operation technologies and a prototype tele-operation system, referred to as VISIT (Visual Interface System for Interactive Task-execution), is introduced. Several experimental results are also introduced. (author)

  9. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  10. Small-scale field-aligned currents observed by the AKEBONO (EXOS-D) satellite

    International Nuclear Information System (INIS)

    Fukunishi, H.; Oya, H.; Kokubun, S.; Tohyama, F.; Mukai, T.; Fujii, R.

    1991-01-01

    The EXOS-D fluxgate magnetometer data obtained at 3,000-10,000 km altitude have shown that small-scale field-aligned currents always exist in large-scale region 1, region 2, cusp and polar cap current systems. Assuming that these small-scale field-aligned currents have current sheet structure, the width of current sheet is estimated to be 5-20 km at ionospheric altitude. By comparing the magnetometer data with charged particle and high frequency plasma wave data simultaneously obtained from EXOS-D, it is found that small-scale currents have one-to-one correspondence with localized electron precipitation events characterized by flux enhancement over a wide energy range from 10 eV to several keV and broadband electrostatic bursts occasionally extending above local plasma frequencies or electron cyclotron frequencies

  11. Windows for innovation: a story of two large-scale technologies

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Roth, E.B.

    1982-01-01

    In the report two technologies (communication satellites and light water reactors) are examined to determine the technological, institutional, and economic forces that were at play during their development and implementation. These two technologies embody a wide variety of issues encountered in technology development. Both are large-scale technologies that embody many component technologies; both have profound and widespread social impacts. Communication satellites enabled extensive international communications, and have been instrumental in fostering economic development. Light water reactors have attributes which make them potentially highly beneficial to society; however, they are plagued with potential hazards of considerable magnitude, and their future is being debated in several nations. Both technologies were developed primarily under support from the U.S. government. Although both technologies initially appeared to meet civilian market demands well and promised to enjoy successful periods of implementation, the U.S. nuclear industry may not survive. On the other hand, communication satellites are being implemented at a rate that surpasses the most favorable predictions made in the 1960s

  12. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  13. A review of sensing technologies for small and large-scale touch panels

    Science.gov (United States)

    Akhtar, Humza; Kemao, Qian; Kakarala, Ramakrishna

    2017-06-01

    A touch panel is an input device for human computer interaction. It consists of a network of sensors, a sampling circuit and a micro controller for detecting and locating a touch input. Touch input can come from either finger or stylus depending upon the type of touch technology. These touch panels provide an intuitive and collaborative workspace so that people can perform various tasks with the use of their fingers instead of traditional input devices like keyboard and mouse. Touch sensing technology is not new. At the time of this writing, various technologies are available in the market and this paper reviews the most common ones. We review traditional designs and sensing algorithms for touch technology. We also observe that due to its various strengths, capacitive touch will dominate the large-scale touch panel industry in years to come. In the end, we discuss the motivation for doing academic research on large-scale panels.

  14. TECHNOLOGICAL DEVELOPMENT TO ELABORATE COMMON WHITE WINE IN MISIONES, WITH ECONOMIC EVALUATION AT INDUSTRIAL SCALE

    Directory of Open Access Journals (Sweden)

    Miño Valdés, Juan Esteban

    2013-01-01

    Full Text Available The objective of this paper was to develop a sustainable technology on an industrial scale to produce common white wine with non viniferous grapes cultivated in Misiones. This technological project was initiated at a laboratory scale, continued in the pilot plant and industrial-scale project. It was considered as a productive unit to 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: The development of dry white wine at laboratory scale. The evaluation of process variables in the vivification. The mathematical modeling of the alcoholic fermentation in oenological conditions. The valuation of the aptitude of wines for human consumption. The establishment of a technological procedure for wine in the pilot plant. The evaluation of the pilot plant in technological procedure established. The calculation and selection of industrial equipment. The estimate of the costs and profitability of industrial technological process. It reached a technology for a production capacity of 5,834 L day-1, with dynamic economic indicators whose values were: net present value of 6,602,666 U$D, an internal rate of return of 60 % for a period of recovery of investment to net present value of 3 years.

  15. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    Science.gov (United States)

    Kubo, Takayuki

    2015-06-01

    The field limit of a superconducting radio-frequency cavity made of a type II superconductor with a large Ginzburg-Landau parameter is studied, taking the effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for an ideal flat surface and a suppression factor that contains the effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors is derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by electropolishing is evaluated by using results of surface topographic study. The estimated field limit is consistent with the present record field of nitrogen-doped Nb cavities. Suppression factors of surfaces of other bulk and multilayer superconductors, and those after various surface processing technologies, can also be evaluated by using the formula.

  16. Field bus technology in accelerator control systems

    International Nuclear Information System (INIS)

    Tang Shuming

    1999-01-01

    Since eighties to now, the computer technology, network communication and ULSI technology have been developing rapidly. The level of control for industries and scientific experiments has been upgraded accordingly, so as to meet the increasing requirements for automation. The control systems become more complicated; the devices in control systems become more and more intelligent. However the cost of DCS (Distributed Control System) is quite expensive and the period of system integration is very long. More than ten measurement results for two methods defined in the world, in order to get inter operability of intelligent devices and reduce the costs. The author presents the development trend of fieldbuses briefly and describes the main performances of CAN, LONWORKS, WOLDFIP and PROFIBUS which are mainly used in the world today. The author proposes that the field bus technology will be introduced into the accelerator control systems in the country

  17. FEOL technology trend

    International Nuclear Information System (INIS)

    Taur, Y.; Ning, T.H.

    1998-01-01

    Trends in front-end-of-line technology are discussed. At the chip level, many of the important parameters are published in the National Technology Roadmap for Semiconductors in 1994. At the device and circuit level, both bipolar and CMOS are scalable. However, the large standby power of bipolar circuits severely limits the integration level of bipolar chips. The inherently low standby power of CMOS, on the contrary, allows the integration level of CMOS circuits to continue increasing with scaling. In reality, both the electric field and power density of CMOS devices have been gradually rising over the generations owing to non-scaling effects of thermal voltage and silicon bandgap. As power supply voltage reaches 1.5V and below, circuit performance can only be gained at the expense of higher active or standby power of the chip. Implications of device scaling on contact and silicide technology are addressed. Trends of local and global interconnect scaling are discussed. (orig.)

  18. Survey of high-voltage pulse technology suitable for large-scale plasma source ion implantation processes

    International Nuclear Information System (INIS)

    Reass, W.A.

    1994-01-01

    Many new plasma processes ideas are finding their way from the research lab to the manufacturing plant floor. These require high voltage (HV) pulse power equipment, which must be optimized for application, system efficiency, and reliability. Although no single HV pulse technology is suitable for all plasma processes, various classes of high voltage pulsers may offer a greater versatility and economy to the manufacturer. Technology developed for existing radar and particle accelerator modulator power systems can be utilized to develop a modern large scale plasma source ion implantation (PSII) system. The HV pulse networks can be broadly defined by two classes of systems, those that generate the voltage directly, and those that use some type of pulse forming network and step-up transformer. This article will examine these HV pulse technologies and discuss their applicability to the specific PSII process. Typical systems that will be reviewed will include high power solid state, hard tube systems such as crossed-field ''hollow beam'' switch tubes and planar tetrodes, and ''soft'' tube systems with crossatrons and thyratrons. Results will be tabulated and suggestions provided for a particular PSII process

  19. Recognition and development of "educational technology" as a scientific field and school subject

    Directory of Open Access Journals (Sweden)

    Danilović Mirčeta S.

    2004-01-01

    Full Text Available The paper explores the process of development, establishment and recognition of "educational technology" as an independent scientific field and a separate teaching subject at universities. The paper points to: (a the problems that this field deals with or should deal with, (b knowledge needed for the profession of "educational technologist", (c various scientific institutions across the world involved in educational technology, (d scientific journals treating issues of modern educational technology, (e the authors i.e. psychologists and educators who developed and formulated the basic principles of this scientific field, (f educational features and potentials of educational technologies. Emphasis is placed on the role and importance of AV technology in developing, establishing and recognition of educational technology, and it is also pointed out that AV technology i.e. AV teaching aids and a movement for visualization of teaching were its forerunners and crucial factors for its establishing and developing into an independent area of teaching i.e. school subject. In summary it is stressed that educational technology provides for the execution of instruction through emission transmission, selection, coding, decoding, reception, memorization transformation of all types of pieces of information in teaching.

  20. Scaling algebras and renormalization group in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Verch, R.

    1995-01-01

    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

  1. In-situ vitrification: a status of the technology

    International Nuclear Information System (INIS)

    FitzPatrick, V.F.

    1986-09-01

    The In Situ Vitrification (ISV) process is a new technology developed from its conceptual phase to selected field-scale applications in the last 5 years. The US Department of Energy (DOE) has sponsored the ISV program to develop alternative technology for potential application to contaminated soil sites. The ISV process converts contaminated soils and wastes into a durable glass and crystalline waste form in place by melting using joule heating. The ISV process has been developed through a series of 25 engineering-scale (laboratory) tests, 10 pilot-scale (small field) tests, and four large-scale (full-scale field) tests. Its major advantages for stabilizing radioactive and hazardous wastes are found to be: safety in terms of minimizing worker and public exposure; long-term durability of waste form (more than 1 million years); cost effectiveness ($150 to $300/m 3 ); applicability to a wide variety of soils and inclusions; and potential for eliminating exhumation, transport, and handling

  2. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  3. Anomalous scaling of a passive vector advected by the Navier-Stokes velocity field

    International Nuclear Information System (INIS)

    Jurcisinova, E; Jurcisin, M; Remecky, R

    2009-01-01

    Using the field theoretic renormalization group and the operator-product expansion, the model of a passive vector field (a weak magnetic field in the framework of the kinematic MHD) advected by the velocity field which is governed by the stochastic Navier-Stokes equation with the Gaussian random stirring force δ-correlated in time and with the correlator proportional to k 4-d-2ε is investigated to the first order in ε (one-loop approximation). It is shown that the single-time correlation functions of the advected vector field have anomalous scaling behavior and the corresponding exponents are calculated in the isotropic case, as well as in the case with the presence of large-scale anisotropy. The hierarchy of the anisotropic critical dimensions is briefly discussed and the persistence of the anisotropy inside the inertial range is demonstrated on the behavior of the skewness and hyperskewness (dimensionless ratios of correlation functions) as functions of the Reynolds number Re. It is shown that even though the present model of a passive vector field advected by the realistic velocity field is mathematically more complicated than, on one hand, the corresponding models of a passive vector field advected by 'synthetic' Gaussian velocity fields and, on the other hand, than the corresponding model of a passive scalar quantity advected by the velocity field driven by the stochastic Navier-Stokes equation, the final one-loop approximate asymptotic scaling behavior of the single-time correlation or structure functions of the advected fields of all models are defined by the same anomalous dimensions (up to normalization)

  4. Modelling of evapotranspiration at field and landscape scales. Abstract

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Butts, M.B.; Rosbjerg, Dan

    2002-01-01

    observations from a nearby weather station. Detailed land-use and soil maps were used to set up the model. Leaf area index was derived from NDVI (Normalized Difference Vegetation Index) images. To validate the model at field scale the simulated evapotranspiration rates were compared to eddy...

  5. Collective action and technology development: up-scaling of innovation in rice farming communities in Northern Thailand

    NARCIS (Netherlands)

    Limnirankul, B.

    2007-01-01

    Keywords:small-scale rice farmers, collective action, community rice seed, local innovations, green manure crop, contract farming, participatory technology development, up-scaling, technological configuration, grid-group theory,

  6. Governmental exposure connected to possible slide scale execution for future field developments

    International Nuclear Information System (INIS)

    Bjoerstad, Heidi; Sunnevaag, Kjell

    1993-01-01

    In the allotment of exploitation permits the governmental and Statoil parts have in the beginning been 50 % in all. This usually is divided in 30 % to the government and 20 % to Statoil. The slide scale system gives the government the right to increase the propriety share in a development project in connection with approval of the development plans. It is also possible in some permits to use the slide scale at a later date. The slide scale system was abolished for new permits in connection with the state budget discussions in 1993. The practice of giving Statoil and SDOE a share of at least 50 % was also eased. At the allotment time the uncertainty of the resource potential and the economy in the development project was considerable. However the companies have expectations for the location potentials. On this bases they made their allotment applications for exploitation permits. The application also contained an offer for a slide scale. In connection with the allotments the companies and the authorities also negotiated for the slice scale design and level. When the final propriety composition was to be established the slide scale offers were important criterias. The background for the slide scale system is the wish of the authorities to involve a larger part of the basic interest in large findings. The slide scale is an attempt from the authorities to make the system progressive with respect to reserve size. This progressiveness is difficult to obtain by aid of the taxation system because the companies are the objects not the fields. In order to establish a portfolio of possible developments where the slide scale option is present we have used data rom Wood Mackenzie from March 1993. The fields which are used as well as the contribution to the government by the use of a slide scale for the single field in increased present value is shown. The yearly alterations in governmental income are shown for use of the slide scale system for all the fields in the portfolio as

  7. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  8. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    Science.gov (United States)

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  9. Using virtual reality technology to include field operators in simulation and training

    International Nuclear Information System (INIS)

    Nystad, E.; Strand, S.

    2006-01-01

    By using virtual reality technology, field operators can be included in simulator training. A study has been performed where field operators could perform their activities in a virtual plant and communicate with a control room operator who was placed in a physical control room simulator. This paper describes the use of VR technology in the study and how the operators experienced interacting with the virtual plant. (author)

  10. Large-scale vortices in compressible turbulent medium with the magnetic field

    Science.gov (United States)

    Gvaramadze, V. V.; Dimitrov, B. G.

    1990-08-01

    An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.

  11. Technological learning through international collaboration: Lessons from the field

    Science.gov (United States)

    Wood, Danielle; Weigel, Annalisa

    2013-02-01

    Countries on every continent are making new or renewed commitments to domestic satellite programs. These programs have the potential to address national needs by enhancing access to information, improving infrastructure and providing inspiration to the public. How do countries without local expertise in space technology begin a new satellite program? What is the role of international collaboration in supporting the efforts of a new space fairing country? This paper explores such questions by highlighting outputs from intensive field work in Africa and Asia. Specifically, the study explores case studies of early space activity in these countries to search for lessons about the management of a young space program. The observations from field work are compared to ideas from scholarly literature on technological learning. The findings are organized using principles from systems architecture. The paper presents a model that captures many of the influences and strategic decision areas for a collaborative satellite development project. The paper also highlights the growth of capability among African countries in the area of satellite technology.

  12. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Science.gov (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-25

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  13. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    Science.gov (United States)

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  14. Inflationary susceptibilities, duality and large-scale magnetic fields generation

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We investigate what can be said about the interaction of scalar fields with Abelian gauge fields during a quasi-de Sitter phase of expansion and under the assumption that the electric and the magnetic susceptibilities do not coincide. The duality symmetry, transforming the magnetic susceptibility into the inverse of the electric susceptibility, exchanges the magnetic and electric power spectra. The mismatch between the two susceptibilities determines an effective refractive index affecting the evolution of the canonical fields. The constraints imposed by the duration of the inflationary phase and by the magnetogenesis requirements pin down the rate of variation of the susceptibilities that is consistent with the observations of the magnetic field strength over astrophysical and cosmological scales but avoids back-reaction problems. The parameter space of this magnetogenesis scenario is wider than in the case when the susceptibilities are equal, as it happens when the inflaton or some other spectator field is ...

  15. Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Science.gov (United States)

    Gomes, S. N.; Pavliotis, G. A.

    2018-06-01

    In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.

  16. Field-scale sensitivity of vegetation discrimination to hyperspectral reflectance and coupled statistics

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jabloun, Mohamed; Gupta, Manika

    2016-01-01

    a more powerful input to a nonparametric analysis for discrimination at the field scale, when compared with unaltered reflectance and parametric analysis. However, the discrimination outputs interact and are very sensitive to the number of observations - an important implication for the design......Remote sensing of land covers utilizes an increasing number of methods for spectral reflectance processing and its accompanying statistics to discriminate between the covers’ spectral signatures at various scales. To this end, the present chapter deals with the field-scale sensitivity...... of the vegetation spectral discrimination to the most common types of reflectance (unaltered and continuum-removed) and statistical tests (parametric and nonparametric analysis of variance). It is divided into two distinct parts. The first part summarizes the current knowledge in relation to vegetation...

  17. Intrinsic noise in aggressively scaled field-effect transistors

    International Nuclear Information System (INIS)

    Albareda, G; Jiménez, D; Oriols, X

    2009-01-01

    According to roadmap projections, nanoscale field-effect transistors (FETs) with channel lengths below 30 nm and several gates (for improving their gate control over the source–drain conductance) will come to the market in the next few years. However, few studies deal with the noise performance of these aggressively scaled FETs. In this work, a study of the effect of the intrinsic (thermal and shot) noise of such FETs on the performance of an analog amplifier and a digital inverter is carried out by means of numerical simulations with a powerful Monte Carlo (quantum) simulator. The numerical data indicate important drawbacks in the noise performance of aggressively scaled FETs that could invalidate roadmap projections as regards analog and digital applications

  18. An Integrated Experimental-Modelling Procedure Applied to the Design of a Field Scale Goethite Nanoparticle Injection for the Remediation of Contaminated Sites

    Science.gov (United States)

    Bianco, C.; Tosco, T.; Sethi, R.

    2017-12-01

    Nanoremediation is a promising in-situ technology for the reclamation of contaminated aquifers. It consists in the subsurface injection of a reactive colloidal suspension for the in-situ treatment of pollutants. The overall success of this technology at the field scale is strictly related to the achievement of an effective and efficient emplacement of the nanoparticles (NP) inside the contaminated area. Mathematical models can be used to support the design of nanotechnology-based remediation by effectively assessing the expected NP mobility at the field scale. Several analytical and numerical tools have been developed in recent years to model the transport of NPs in simplified geometry and boundary conditions. The numerical tool MNMs was developed by the authors of this work to simulate colloidal transport in 1D Cartesian and radial coordinates. A new modelling tool, MNM3D (Micro and Nanoparticle transport Model in 3D geometries), was also proposed for the simulation of injection and transport of NP suspensions in generic complex scenarios. MNM3D accounts for the simultaneous dependency of NP transport on water ionic strength and velocity. The software was developed to predict the NP mobility at different stages of a nanoremediation application, from the design stage to the prediction of the long-term fate after injection. In this work an integrated experimental-modelling procedure is applied to support the design of a field scale injection of goethite NPs carried out in the framework of the H2020 European project Reground. Column tests are performed at different injection flowrates using natural sand collected at the contaminated site as porous medium. The tests are interpreted using MNMs to characterize the NP mobility and derive the constitutive equations describing the suspension behavior in the natural porous medium. MNM3D is then used to predict NP behavior during the field scale injection and to assess the long-term mobility of the injected slurry. Finally

  19. Heterogeneous grain-scale response in ferroic polycrystals under electric field

    DEFF Research Database (Denmark)

    Daniels, John E.; Majkut, Marta; Cao, Qingua

    2016-01-01

    -ray diffraction (3D-XRD) is used to resolve the non-180° ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative...... to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk...

  20. Wafer-Scale Gigahertz Graphene Field Effect Transistors on SiC Substrates

    Institute of Scientific and Technical Information of China (English)

    潘洪亮; 金智; 麻芃; 郭建楠; 刘新宇; 叶甜春; 李佳; 敦少博; 冯志红

    2011-01-01

    Wafer-scale graphene field-effect transistors are fabricated using benzocyclobutene and atomic layer deposition Al2O3 as the top-gate dielectric.The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate.The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found.For the intrinsic characteristic of this particular channel material,the devices cannot be switched off.The cut-off frequencies of these graphene field-effect transistors,which have a gate length of l μm,are larger than 800 MHz.The largest one can reach 1.24 GHz.There are greater than 95% active devices that can be successfully applied.We thus succeed in fabricating wafer-scale gigahertz graphene field-effect transistors,which paves the way for high-performance graphene devices and circuits.%Wafer-scale graphene Beld-effect transistors are fabricated using benzocyclobutene and atomic layer deposition AI2O3 as the top-gate dielectric. The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate. The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found. For the intrinsic characteristic of this particular channel material, the devices cannot be switched off. The cut-off frequencies of these graphene field-effect transistors, which have a gate length of l μm, are larger than 800MHz. The largest one can reach 1.24 GHz. There are greater than 95% active devices that can be successfully applied. We thus succeed in fabricating wafer-scale gigahertz graphene Geld-effect transistors, which paves the way for high-performance graphene devices and circuits.

  1. Fiscal 1999 research report on long-term energy technology strategy. Basic research on industrial technology strategy (Individual technology strategy). Aerospace technology field (Aircraft technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (kokuki gijutsu bun'ya))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 basic research result on industrial technology strategy of an aircraft technology field. In an aircraft field, since the major theme is application of new technologies to new airframe development, with joining in international cooperative development of aircraft, Japanese initiative development of airframes based on the domestic market demands and profitability should be started as early as possible. Because there is no airframe development by only one country including U.S.A., Japan is profitable to unite with some overseas companies, and invest selectively in specific leading fields. Positive technical support to safety, reliability, comfort and environment harmony are also important. More important theme than establishment of elementary technologies is preparation of an integrated flight demonstration system to expand application chances of development results, and preparation of various test facilities for tests required during development activities. Application of information technologies to the whole aircraft industry, and organic cooperation between the private and public sectors are also important. (NEDO)

  2. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    dimensions of the novel micro and nano production. Nowadays, design methodologies and concurrent tolerance guidelines are not yet available for advanced micro manufacture. Moreover, there are no shared methodologies that deals with the uncertainty evaluation of feature of size in the sub-millimetre scale......The technological revolution that has deeply influenced the manufacturing industry over the past two decades opened up new possibilities for the realisation of advanced micro and nano systems but, at the same time, traditional techniques for quality assurance became not adequate any longer......, as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  3. George E. Pake Prize Lecture: CMOS Technology Roadmap: Is Scaling Ending?

    Science.gov (United States)

    Chen, Tze-Chiang (T. C.)

    The development of silicon technology has been based on the principle of physics and driven by the system needs. Traditionally, the system needs have been satisfied by the increase in transistor density and performance, as suggested by Moore's Law and guided by ''Dennard CMOS scaling theory''. As the silicon industry moves towards the 14nm node and beyond, three of the most important challenges facing Moore's Law and continued CMOS scaling are the growing standby power dissipation, the increasing variability in device characteristics and the ever increasing manufacturing cost. Actually, the first two factors are the embodiments of CMOS approaching atomistic and quantum-mechanical physics boundaries. Industry directions for addressing these challenges are also developing along three primary approaches: Extending silicon scaling through innovations in materials and device structure, expanding the level of integration through three-dimensional structures comprised of through-silicon-vias holes and chip stacking in order to enhance functionality and parallelism and exploring post-silicon CMOS innovation with new nano-devices based on distinctly different principles of physics, new materials and new processes such as spintronics, carbon nanotubes and nanowires. Hence, the infusion of new materials, innovative integration and novel device structures will continue to extend CMOS technology scaling for at least another decade.

  4. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  5. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  6. Field test plan: Buried waste technologies, Fiscal Year 1995

    International Nuclear Information System (INIS)

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  7. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  8. Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Innocente, P.; Alfier, A.; Canton, A.; Pasqualotto, R.

    2009-01-01

    The large range of plasma currents (I p = 0.2-1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.

  9. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  10. Low field scaling properties of high Tc superconductor glasses

    Science.gov (United States)

    Giovannella, C.; Fruchter, L.; Chappert, C.

    We show that the zero field cooling (ZFC) M/H curves of both the YBaCuO and the LaSrCuO granular superconductor glasses (SuG) are subjected to scaling when plotted against the reduced variable t/H1/ψ . The breaking of the scaling for too weak or too strong magnetic fields is discussed and justified by the introduction of a phenomenological fractal picture, describing the behaviour of the disordered intergranular junction network. Nous montrons que les courbes M/H caractéristiques des verres de supraconducteurs granulaires sont sujettes à une loi d'échelle lorsqu'elles sont tracées en fonction de la variable réduite t/H1/ψ. La brisure de la loi d'échelle pour des champs trop forts ou trop faibles est justifiée par l'introduction d'un modèle phénoménologique fractal capable de décrire le comportement d'un réseau désordonné des jonctions.

  11. Cost comparison of laboratory methods and four field screening technologies for uranium-contaminated soil

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.

    1994-01-01

    To address the problem of characterizing uranium-contaminated surface soil at federal facilities, the Department of Energy has the development of four uranium field screening technologies, under the direction of the Uranium-in-Soils Integrated Demonstration (USID) Program. These four technologies include: a long-range alpha detector a beta scintillation detector, an in situ gamma detector, and a mobile laser ablation-inductively coupled plasma/atomic emission spectrometry (LA-ICP/AES) laboratory. As part of the performance assessment for these field screening technologies, cost estimates for the development and operation of each technology were created. A cost study was conducted to compare three of the USID field screening technologies to the use of traditional field surveying equipment to adequately characterize surface soils of a one-acre site. The results indicate that the use of traditional equipment costs more than the in situ gamma detector, but less than the beta scintillation detector and LRAD. The use of traditional field surveying equipment results in cost savings of 4% and 34% over the use of the beta scintillation and LRAD technologies, respectively. A study of single-point surface soil sampling and laboratory analysis costs was also conducted. Operational costs of the mobile LA-ICP/AES laboratory were compared with operational costs of traditional sampling and analysis, which consists of collecting soil samples and conducting analysis in a radiochemical laboratory. The cost study indicates that the use of the mobile LA-ICP/AES laboratory results in cost savings of 23% and 40% over traditional field sampling and laboratory analysis conducted by characterization groups at two DOE facilities

  12. Notes on analytical study of holographic superconductors with Lifshitz scaling in external magnetic field

    International Nuclear Information System (INIS)

    Zhao, Zixu; Pan, Qiyuan; Jing, Jiliang

    2014-01-01

    We employ the matching method to analytically investigate the holographic superconductors with Lifshitz scaling in an external magnetic field. We discuss systematically the restricted conditions for the matching method and find that this analytic method is not always powerful to explore the effect of external magnetic field on the holographic superconductors unless the matching point is chosen in an appropriate range and the dynamical exponent z satisfies the relation z=d−1 or z=d−2. From the analytic treatment, we observe that Lifshitz scaling can hinder the condensation to be formed, which can be used to back up the numerical results. Moreover, we study the effect of Lifshitz scaling on the upper critical magnetic field and reproduce the well-known relation obtained from Ginzburg–Landau theory

  13. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    International Nuclear Information System (INIS)

    Rai, Varun; Victor, David G.; Thurber, Mark C.

    2010-01-01

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO 2 -scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  14. Carbon capture and storage at scale. Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun; Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost. (author)

  15. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun, E-mail: varun@stanford.ed [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States); Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  16. Technology Acceptance in Social Work Education: Implications for the Field Practicum

    Science.gov (United States)

    Colvin, Alex Don; Bullock, Angela N.

    2014-01-01

    The exponential growth and sophistication of new information and computer technology (ICT) have greatly influenced human interactions and provided new metaphors for understanding the world. The acceptance and integration of ICT into social work field education are examined here using the technological acceptance model. This article also explores…

  17. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  18. The field of tension between technology and journalism

    International Nuclear Information System (INIS)

    Hess, W.

    1992-01-01

    The relationship between technology and journalism is explained by nine theses, the seven most important of them being: many public media pay little positive attention to technology. A main reason for this is that among responsible editors there are too few journalists with a fully-fledged scientific education, and almost no engineers; nevertheless the portents are good for technical facts being presented in future in a more competent and detailed way than before; accuracy down to the smallest detail is not in journalism - one the contrary, it is important to grasp trends and put them into the right context; if today there is a field of tension between technology and journalism, it is due also to the fact that quite a few arguments put forward by technicians turned out to be clichees; journalists do not invent their news and reports, but refer to expert statements which, however, are inexpensive; enterprise-specific press relations must be guided by the demands of journalists - otherwise they are not worth the effort; if you (technicians) move towards technology, it is not ''love's labours lost'', because also journalism has moved recently towards technology. (orig./HSCH) [de

  19. Quasistatic zooming of FDTD E-field computations: the impact of down-scaling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Van de Kamer, J.B.; Kroeze, H.; De Leeuw, A.A.C.; Lagendijk, J.J.W. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands)

    2001-05-01

    Due to current computer limitations, regional hyperthermia treatment planning (HTP) is practically limited to a resolution of 1 cm, whereas a millimetre resolution is desired. Using the centimetre resolution E-vector-field distribution, computed with, for example, the finite-difference time-domain (FDTD) method and the millimetre resolution patient anatomy it is possible to obtain a millimetre resolution SAR distribution in a volume of interest (VOI) by means of quasistatic zooming. To compute the required low-resolution E-vector-field distribution, a low-resolution dielectric geometry is needed which is constructed by down-scaling the millimetre resolution dielectric geometry. In this study we have investigated which down-scaling technique results in a dielectric geometry that yields the best low-resolution E-vector-field distribution as input for quasistatic zooming. A segmented 2 mm resolution CT data set of a patient has been down-scaled to 1 cm resolution using three different techniques: 'winner-takes-all', 'volumetric averaging' and 'anisotropic volumetric averaging'. The E-vector-field distributions computed for those low-resolution dielectric geometries have been used as input for quasistatic zooming. The resulting zoomed-resolution SAR distributions were compared with a reference: the 2 mm resolution SAR distribution computed with the FDTD method. The E-vector-field distribution for both a simple phantom and the complex partial patient geometry down-scaled using 'anisotropic volumetric averaging' resulted in zoomed-resolution SAR distributions that best approximate the corresponding high-resolution SAR distribution (correlation 97, 96% and absolute averaged difference 6, 14% respectively). (author)

  20. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  1. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion

    Science.gov (United States)

    A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...

  2. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Can Simple Soil Parameters Explain Field-Scale Variations in Glyphosate-, Bromoxyniloctanoate-, Diflufenican-, and Bentazone Mineralization?

    DEFF Research Database (Denmark)

    Norgaard, Trine; de Jonge, Lis Wollesen; Møldrup, Per

    2015-01-01

    The large spatial heterogeneity in soil physico-chemical and microbial parameters challenges our ability to predict and model pesticide leaching from agricultural land. Microbial mineralization of pesticides is an important process with respect to pesticide leaching since mineralization...... is the major process for the complete degradation of pesticides without generation of metabolites. The aim of our study was to determine field-scale variation in the potential for mineralization of the herbicides glyphosate, bromoxyniloctanoate, diflufenican, and bentazone and to investigate whether....... The mineralization potentials for glyphosate and bentazone were compared with 9-years leaching data from two horizontal wells 3.5 m below the field. The field-scale leaching patterns, however, could not be explained by the pesticide mineralization data. Instead, field-scale pesticide leaching may have been governed...

  4. Efficiency scale and technological change in credit unions and multiple banks using the COSIF

    Directory of Open Access Journals (Sweden)

    Wanderson Rocha Bittencourt

    2016-08-01

    Full Text Available The modernization of the financial intermediation process and adapting to new technologies, brought adjustments to operational processes, providing the reduction of information borrowing costs, allowing generate greater customer satisfaction, due to increased competitiveness in addition to making gains with long efficiency period. In this context, this research aims to analyze the evolution in scale and technological efficiency of credit and multiple cooperative banks from 2009 to 2013. We used the method of Data Envelopment Analysis - DEA, which allows to calculate the change in efficiency of institutions through the Malmquist Index. The results indicated that institutions that employ larger volumes of assets in the composition of its resources presented evolution in scale and technological efficiency, influencing the change in total factor productivity. It should be noticed that cooperatives had, in some years, advances in technology and scale efficiency higher than banks. However, this result can be explained by the fact that the average efficiency of credit unions have been lower than that of banks in the analyzed sample, indicating that there is greater need to improve internal processes by cooperatives, compared to multiple banks surveyed.

  5. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  6. [Application of microwave irradiation technology to the field of pharmaceutics].

    Science.gov (United States)

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  7. A density spike on astrophysical scales from an N-field waterfall transition

    Science.gov (United States)

    Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.

    2015-09-01

    Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is ∝Δ2 (| x |) / N and the three-point function is ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.

  8. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  9. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  10. Large-scale Organized Magnetic Fields in O, B and A Stars

    Science.gov (United States)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  11. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  12. Optimization of FTA technology for large scale plant DNA isolation ...

    African Journals Online (AJOL)

    Conventional methods for DNA acquisition and storage require expensive reagents and equipments. Experimental fields located in remote areas and large sample size presents greater challenge to developing country institutions constrained financially. FTATM technology uses a single format utilizing basic tools found in ...

  13. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  14. Peak Fields of Nb$_{3}$Sn Superconducting Undulators and a Scaling Law

    CERN Document Server

    Kim, S H

    2005-01-01

    The peak fields on the beam axis and the maximum fields in the conductor of Nb$_{3}$Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb$_{3}$Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

  15. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  16. Supercapacitors specialities - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Münchgesang, Wolfram; Meisner, Patrick [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany); Yushin, Gleb [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30326 (United States)

    2014-06-16

    Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance.

  17. Supercapacitors specialities - Technology review

    Science.gov (United States)

    Münchgesang, Wolfram; Meisner, Patrick; Yushin, Gleb

    2014-06-01

    Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance.

  18. Supercapacitors specialities - Technology review

    International Nuclear Information System (INIS)

    Münchgesang, Wolfram; Meisner, Patrick; Yushin, Gleb

    2014-01-01

    Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance

  19. Field scale heterogeneity of redox conditions in till-upscaling to a catchment nitrate model

    DEFF Research Database (Denmark)

    Hansen, J.R.; Erntsen, V.; Refsgaard, J.C.

    2008-01-01

    Point scale studies in different settings of glacial geology show a large local variation of redox conditions. There is a need to develop an upscaling methodology for catchment scale models. This paper describes a study of field-scale heterogeneity of redox-interfaces in a till aquitard within an...

  20. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  1. Self-adaptive phosphor coating technology for wafer-level scale chip packaging

    International Nuclear Information System (INIS)

    Zhou Linsong; Rao Haibo; Wang Wei; Wan Xianlong; Liao Junyuan; Wang Xuemei; Zhou Da; Lei Qiaolin

    2013-01-01

    A new self-adaptive phosphor coating technology has been successfully developed, which adopted a slurry method combined with a self-exposure process. A phosphor suspension in the water-soluble photoresist was applied and exposed to LED blue light itself and developed to form a conformal phosphor coating with self-adaptability to the angular distribution of intensity of blue light and better-performing spatial color uniformity. The self-adaptive phosphor coating technology had been successfully adopted in the wafer surface to realize a wafer-level scale phosphor conformal coating. The first-stage experiments show satisfying results and give an adequate demonstration of the flexibility of self-adaptive coating technology on application of WLSCP. (semiconductor devices)

  2. Scaling of sustained ZT-40 M reversed field pinches

    International Nuclear Information System (INIS)

    Graham, J.; Haberstich, A.; Baker, D.A.; Buchenauer, C.J.; Caramana, E.J.; DiMarco, J.N.; Erickson, R.M.; Ingraham, J.C.; Jacobson, A.R.; Little, E.M.; Massey, R.S.; Phillips, J.A.; Schoenberg, K.F.; Schofield, A.E.; Thomas, K.S.; Watt, R.G.; Weber, P.G.

    1993-12-01

    Experiments aimed at evaluating the scaling properties of the ZT-40M Reversed-Field Pinch (RFP) facility were conducted in 1983 at Los Alamos. Sustained discharges were produced at nominal toroidal currents ranging from 60 to 240 kA. The standard fill pressure was kept close to the lower limit of the usable pressure range, and the scaling data were acquired at a fixed time in the discharges while the plasma was in a quasi-steady state. Scalings of the diameter-averaged electron density, electron temperature on axis, product of these two parameters, and of various definitions of the electrical resistivity are presented. Trends of the toroidal voltage, energy containment time, and poloidal beta are shown. The impurity contents, particle containment time, and total radiation losses are described, and results obtained with and without poloidal limiters are compared. In addition, the performance of the facility at higher than standard density and at a constant ratio of the toroidal current over the electron line density is examined

  3. Scaling up ATLAS Database Release Technology for the LHC Long Run

    International Nuclear Information System (INIS)

    Borodin, M; Nevski, P; Vaniachine, A

    2011-01-01

    To overcome scalability limitations in database access on the Grid, ATLAS introduced the Database Release technology replicating databases in files. For years Database Release technology assured scalable database access for Monte Carlo production on the Grid. Since previous CHEP, Database Release technology was used successfully in ATLAS data reprocessing on the Grid. Frozen Conditions DB snapshot guarantees reproducibility and transactional consistency isolating Grid data processing tasks from continuous conditions updates at the 'live' Oracle server. Database Release technology fully satisfies the requirements of ATLAS data reprocessing and Monte Carlo production. We parallelized the Database Release build workflow to avoid linear dependency of the build time on the length of LHC data-taking period. In recent data reprocessing campaigns the build time was reduced by an order of magnitude thanks to a proven master-worker architecture used in the Google MapReduce. We describe further Database Release optimizations scaling up the technology for the LHC long run.

  4. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p rice ET in WSI fields, and for its cross scale conversion.

  5. Linking field and laboratory studies to investigate nitrate removal using permeable reactive barrier technology during managed recharge

    Science.gov (United States)

    Gorski, G.; Beganskas, S.; Weir, W. B.; Redford, K.; Saltikov, C.; Fisher, A. T.

    2017-12-01

    We present data from a series of field and laboratory studies investigating mechanisms for the enhanced removal of nitrate during infiltration as a part of managed recharge. These studies combine physical, geochemical, and microbiological data collected during controlled infiltration experiments at both a plot and a laboratory scale using permeable reactive barrier (PRB) technology. The presence of a PRB, made of wood chips or biochar, enhances nitrate removal by stimulating the growth and productivity of native soil microbes to process nitrate via denitrification. Earlier work has shown that unamended soil can remove up to 50% of nitrate during infiltration at rates microbiological data show significant population changes below the PRB where most of the cycling occurs. Coupled with isotopic analyses, these results suggest that a PRB expands the range of infiltration rates at which significant nitrate can be removed by microbial activity. Further, nitrate removal occurs at different depths below the biochar and redwood chips, suggesting different mechanisms of nitrate removal in the presence of different PRB materials. In laboratory studies we flowed artificial groundwater through intact sediment cores collected at the same field site where we also ran infiltration tests. These experiments show that the fluid flow rate and the presence of a PRB exhibit primary control on nitrate removal during infiltration, and that the relationship between flow rate and nitrate removal is fundamentally different in the presence of a PRB. These data from multiple scales and flow regimes are combined to offer a deeper understanding how the use of PRB technology during infiltration can help address a significant non-point source issue at the surface-subsurface interface.

  6. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    Science.gov (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  7. Simulating space-time uncertainty in continental-scale gridded precipitation fields for agrometeorological modelling

    NARCIS (Netherlands)

    Wit, de A.J.W.; Bruin, de S.

    2006-01-01

    Previous analyses of the effects of uncertainty in precipitation fields on the output of EU Crop Growth Monitoring System (CGMS) demonstrated that the influence on simulated crop yield was limited at national scale, but considerable at local and regional scales. We aim to propagate uncertainty due

  8. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  9. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.

    Science.gov (United States)

    Inoue, Yasushi; Katayama, Arata

    2011-09-15

    A two-scale evaluation concept of remediation technologies for a contaminated site was expanded by introducing life cycle costing (LCC) and economic input-output life cycle assessment (EIO-LCA). The expanded evaluation index, the rescue number for soil (RN(SOIL)) with LCC and EIO-LCA, comprises two scales, such as risk-cost, risk-energy consumption or risk-CO(2) emission of a remediation. The effectiveness of RN(SOIL) with LCC and EIO-LCA was examined in a typical contamination and remediation scenario in which dieldrin contaminated an agricultural field. Remediation was simulated using four technologies: disposal, high temperature thermal desorption, biopile and landfarming. Energy consumption and CO(2) emission were determined from a life cycle inventory analysis using monetary-based intensity based on an input-output table. The values of RN(SOIL) based on risk-cost, risk-energy consumption and risk-CO(2) emission were calculated, and then rankings of the candidates were compiled according to RN(SOIL) values. A comparison between three rankings showed the different ranking orders. The existence of differences in ranking order indicates that the scales would not have reciprocal compatibility for two-scale evaluation and that each scale should be used independently. The RN(SOIL) with LCA will be helpful in selecting a technology, provided an appropriate scale is determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Optical system design with wide field of view and high resolution based on monocentric multi-scale construction

    Science.gov (United States)

    Wang, Fang; Wang, Hu; Xiao, Nan; Shen, Yang; Xue, Yaoke

    2018-03-01

    With the development of related technology gradually mature in the field of optoelectronic information, it is a great demand to design an optical system with high resolution and wide field of view(FOV). However, as it is illustrated in conventional Applied Optics, there is a contradiction between these two characteristics. Namely, the FOV and imaging resolution are limited by each other. Here, based on the study of typical wide-FOV optical system design, we propose the monocentric multi-scale system design method to solve this problem. Consisting of a concentric spherical lens and a series of micro-lens array, this system has effective improvement on its imaging quality. As an example, we designed a typical imaging system, which has a focal length of 35mm and a instantaneous field angle of 14.7", as well as the FOV set to be 120°. By analyzing the imaging quality, we demonstrate that in different FOV, all the values of MTF at 200lp/mm are higher than 0.4 when the sampling frequency of the Nyquist is 200lp/mm, which shows a good accordance with our design.

  11. Transport equation for the time scale of a turbulent scalar field

    International Nuclear Information System (INIS)

    Kurbatskij, A.F.

    1999-01-01

    The two-parametric turbulence models cause serious difficulties by modeling the near-wall flows due to absence of the natural boundary condition on the wall for dissipation of the ε turbulence energy and the ε θ scalar field destruction. This difficulty may be overcome, if instead of the ε and ε θ , as the second parameter of the model, to apply the time scales of the turbulent dynamic and scalar fields. The equation of the scalar field is derived and numerical coefficients included therein, are determined from the simplest problems on the turbulent heat transfer [ru

  12. Coalescing colony model: Mean-field, scaling, and geometry

    Science.gov (United States)

    Carra, Giulia; Mallick, Kirone; Barthelemy, Marc

    2017-12-01

    We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.

  13. Scale-up on electrokinetic remediation: Engineering and technological parameters

    Energy Technology Data Exchange (ETDEWEB)

    López-Vizcaíno, Rubén [Department of Chemical Engineering, Institute of Chemical & Environmental Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Navarro, Vicente; León, María J. [Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Risco, Carolina [Department of Chemical Engineering, Institute of Chemical & Environmental Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Rodrigo, Manuel A., E-mail: manuel.rodrigo@uclm.es [Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain); Sáez, Cristina; Cañizares, Pablo [Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain)

    2016-09-05

    Highlights: • Moisture and compaction of soil must be re-establish in Scale-up of EKR. • Degree of compaction of soil depends on moisture, type of soil and EKR reactor. • Scale of EKR process determines the energy consumption in the treatment. • Electroosmosis and electromigration processes are favoured in prototype scale. • In real scale EKR processes it is important determine evaporation and leaks effects. - Abstract: This study analyses the effect of the scale-up of electrokinetic remediation (EKR) processes in natural soils. A procedure is proposed to prepare soils based on a compacting process to obtaining soils with similar moisture content and density to those found in real soils in the field. The soil used here was from a region with a high agrarian activity (Mora, Spain). The scale-up study was performed in two installations at different scales: a mock-up pilot scale (0.175 m{sup 3}) and a prototype with a scale that was very similar to a real application (16 m{sup 3}). The electrode configuration selected consisted of rows of graphite electrodes facing each other located in electrolyte wells. The discharge of 20 mg of 2,4-dichlorophenoxyacetic acid [2,4-D] per kg of dry soil was treated by applying an electric potential gradient of 1 V cm{sup −1}. An increase in scale was observed to directly influence the amount of energy supplied to the soil being treated. As a result, electroosmotic and electromigration flows and electric heating are more intense than in smaller-scale tests (24%, 1% and 25%, respectively respect to the values in prototype). In addition, possible leaks were evaluated by conducting a watertightness test and quantifying evaporation losses.

  14. Decision-making for new technology : A multi-actor, multi-objective method

    NARCIS (Netherlands)

    Cunningham, S.W.; van der Lei, T.E.

    2007-01-01

    Technology managers increasingly face problems of group decision. The scale and complexity of research, development and alliance efforts in emerging fields of technology mandate a correspondingly sophisticated form of group coordination. Information technology, biotechnology and nanotechnology are

  15. Decision Analysis Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Boudreaux, J.F.

    1998-01-01

    The purpose of this two-year investigation is to field test innovative technologies for coating and surface removal on concrete floors and compare the compiled data to baseline technologies, thereby ensuring that the best and most cost-effective options are developed and subsequently used during the decontamination and decommissioning (D and D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Comprehensive and comparable data will be collected in the areas of health and safety, operations, and secondary waste management. The technologies tested will include DOE-EM funded technologies and commercial non-nuclear technologies that have the potential to meet the environmental restoration objectives. This report summarizes the activities performed during Fiscal Year 1996 (FY96) and describes the planned activities for Fiscal Year 1997 (FY97). Accomplishments for FY96 include the completion of preparatory work to begin field testing of innovative technologies. A total of seven technologies will be tested during FY97. As a part of this project, interactive computer software will be developed during FY97, allowing site-specific parameters and technology performance data to be considered when determining the best option given site-specific conditions

  16. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  17. Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.

  18. Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects

    International Nuclear Information System (INIS)

    Yu, C.F.; van Sark, W.G.J.H.M.; Alsema, E.A.

    2011-01-01

    In a large number of energy models, the use of learning curves for estimating technological improvements has become popular. This is based on the assumption that technological development can be monitored by following cost development as a function of market size. However, recent data show that in some stages of photovoltaic technology (PV) production, the market price of PV modules stabilizes even though the cumulative capacity increases. This implies that no technological improvement takes place in these periods: the cost predicted by the learning curve in the PV study is lower than the market one. We propose that this bias results from ignoring the effects of input prices and scale effects, and that incorporating the input prices and scale effects into the learning curve theory is an important issue in making cost predictions more reliable. In this paper, a methodology is described to incorporate the scale and input-prices effect as the additional variables into the one factor learning curve, which leads to the definition of the multi-factor learning curve. This multi-factor learning curve is not only derived from economic theories, but also supported by an empirical study. The results clearly show that input prices and scale effects are to be included, and that, although market prices are stabilizing, learning is still taking place. (author)

  19. MULTI-SCALE ANALYSIS OF MAGNETIC FIELDS IN FILAMENTARY MOLECULAR CLOUDS IN ORION A

    International Nuclear Information System (INIS)

    Poidevin, Frédérick; Bastien, P.; Jones, T. J.

    2011-01-01

    New visible and K-band polarization measurements of stars surrounding molecular clouds in Orion A and stars in the Becklin-Neugebauer (BN) vicinity are presented. Our results confirm that magnetic fields located inside the Orion A molecular clouds and in their close neighborhood are spatially connected. On and around the BN object, we measured the angular offsets between the K-band polarization data and available submillimeter (submm) data. We find high values of the polarization degree, P K , and of the optical depth, τ K , close to an angular offset position of 90° whereas lower values of P K and τ K are observed for smaller angular offsets. We interpret these results as evidence for the presence of various magnetic field components toward lines of sight in the vicinity of BN. On a larger scale, we measured the distribution of angular offsets between available H-band polarization data and the same submm data set. Here we find an increase of (P H ) with angular offset, which we interpret as a rotation of the magnetic field by ∼< 60°. This trend generalizes previous results on small scales toward and around lines of sight to BN and is consistent with a twist of the magnetic field on a larger scale toward OMC-1. A comparison of our results with several other studies suggests that a two-component magnetic field, perhaps helical, could be wrapping the OMC-1 filament.

  20. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    International Nuclear Information System (INIS)

    Abraimov, D; Francis, A; Jaroszynski, J; McCallister, J; Polyanskii, A; Santos, M; Viouchkov, Y L; Ballarino, A; Bottura, L; Rossi, L; Barth, C; Senatore, C; Dietrich, R; Rutt, A; Schlenga, K; Usoskin, A; Majkic, G S; Selvamanickam, V

    2015-01-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa 2 Cu 3 O x−δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed. (paper)

  1. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    Science.gov (United States)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  2. A large scale field experiment in the Amazon Basin (Lambada/Bateristca)

    Energy Technology Data Exchange (ETDEWEB)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C. [Winand Staring Centre, Wageningen (Netherlands)

    1994-12-31

    A description is given of a large scale field experiment planned in the Amazon Basin, aiming to assess the large scale balances of energy, water and CO{sub 2}. The background for this experiment, the embedding in global change programmes of IGBP/BAHC and WCRP/GEWEX is described. A proposal by four European groups aimed at designing the experiment with the help of mesoscale models is described and a possible European input to this experiment is suggested. 24 refs., 1 app.

  3. A Novel Actinic Keratosis Field Assessment Scale for Grading Actinic Keratosis Disease Severity.

    Science.gov (United States)

    Dréno, Brigitte; Cerio, Rino; Dirschka, Thomas; Nart, Ignasi Figueras; Lear, John T; Peris, Ketty; de Casas, Andrés Ruiz; Kaleci, Shaniko; Pellacani, Giovanni

    2017-10-02

    Actinic keratosis (AK) lesions are surrounded by field cancerization (areas of subclinical, non-visible sun damage). Existing AK grading tools rely on AK counts, which are not reproducible. An Actinic Keratosis Field Assessment Scale (AK-FAS) for grading the severity of AK/field was developed. Standardized photographs of patients representing the full range of AK severity were collected. Six investigators independently rated each photograph according to 3 criteria: AK area (total skin area affected by AK lesions), hyperkeratosis and sun damage. Inter-rater reproducibility was good for all 3 criteria. Validation of the AK-FAS showed good reproducibility for AK area and hyperkeratosis, even for dermatologists untrained on use of the scale. In conclusion, the AK-FAS is objective, easy to use and implement, and reproducible. It incorporates assessment of the entire field affected by AK instead of relying on lesion counts. Use of the AK-FAS may standardize AK diagnosis, making it relevant to routine clinical practice.

  4. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  5. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  6. Respirometric oxygen demand determinations of laboratory- and field-scale biofilters

    International Nuclear Information System (INIS)

    Rho, D.; Mercier, P.; Jette, J.F.

    1995-01-01

    A biofiltration experiment operated at three inlet concentrations (425, 830, and 1,450 mg m -3 ), showed that the specific oxygen consumption rate was highly correlated (R = 0.938, n = 23) with the toluene elimination capacity. A radiorespirometric test was found to be more sensitive and appropriate for the field-scale biofilter treating gasoline vapors

  7. Meso-beta scale perturbations of the wind field by thunderstorm cells

    Science.gov (United States)

    Ulanski, S. L.; Heymsfield, G. M.

    1986-01-01

    Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.

  8. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  9. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  10. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  11. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    Science.gov (United States)

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  12. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    1998-10-01

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  13. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.

    Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  14. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  15. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 673 (Naval Research Laboratories)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinate by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  16. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 492 (Shaw Environmental, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 668 (NAEVA Geophysics, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing they PG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinate by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.

  19. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  20. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  1. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 901 (Sky Research, Inc.)

    National Research Council Canada - National Science Library

    McClung, J. S; Fling, Rick; McClung, Christina; Burch, William; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. This Scoring Record was coordinated by Stephen McClung and the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Development of a Scale to Explore Technology Literacy Skills of Turkish 8th Graders

    Science.gov (United States)

    Misirli, Zeynel A.; Akbulut, Yavuz

    2013-01-01

    The use of emerging technologies shape learners' knowledge creation and transformation processes. In this regard, this study aimed to develop a scale to investigate 8 th graders' competencies regarding the educational technology standards based on ISTE-NETS. After a review of relevant literature, an item pool was prepared. The pool was improved…

  3. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  4. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  5. Estimating total evaporation at the field scale using the SEBS model ...

    African Journals Online (AJOL)

    Estimating total evaporation at the field scale using the SEBS model and data infilling ... of two infilling techniques to create a daily satellite-derived ET time series. ... and produced R2 and RMSE values of 0.33 and 2.19 mm∙d-1, respectively, ...

  6. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    Science.gov (United States)

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  7. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  8. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Science.gov (United States)

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  9. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  10. Distance scaling of electric-field noise in a surface-electrode ion trap

    Science.gov (United States)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  11. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  12. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Zdinak, A.P.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m 3 of buried transuranic waste commingled with 170,000--224,000 m 3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  13. Economic scale of utilization of radiation in medicine in Japan.

    Science.gov (United States)

    Yanagisawa, K; Inoue, T; Hayakawa, K; Shiotari, H; Nakamura, Y; Matsuyama, K; Nagasawa, K

    2009-01-01

    Economic scale of radioisotopes (RI) in Japan is studied in the field of medicine, agriculture and a part of industry. (1) RI is used during medical examination with economic scale by 1.7M$ (million dollars) in 1997 and 0.4M$ in 2005. (2) Economic scale of RI utilization in agriculture is 4M$ for R&D, 127M$ for environmental protection and 1M$ for chronology. RI usage in agriculture is increased five times due to needs at environmental technology lasted after the Kyoto protocol. (3) Indirect economic scale of RI ((85)Kr, (147)Pm, (90)Cr) usage in paper fabrication field in Japan for 2006 is 8432M$.

  14. Charting a course in the 90`s: From field measurement to management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Chudiak, G.J. [Microsoft, Calgary, Alberta (Canada); Yoon, M. [Valmet Automation, Calgary, Alberta (Canada)

    1996-12-31

    What`s new in the pipeline industry in terms of field automation and information systems technology? What impact are these technologies having on the business environment and how will they affect the way companies do business in the future? How can one leverage these technologies to support the demanding business requirements of today and tomorrow? The paper takes a quick look back at the origin of the first field control systems and office automation. Through a chronological progression it arrives at what`s on the leading edge of information technology today. From small scale compressor control systems to large scale pipeline information systems, the authors look at the informational requirements and how systems currently implement the required functionality.

  15. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  16. FY 2000 report on the survey on the long-term energy technology strategy. Fundamental survey to work out industrial technology strategies (technology strategy by field - material technology field); 2000 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (zairyo gijutsu bun'ya))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of constructing the material technology strategy, conducted were study of the trend of technical development, arrangement of material technology seeds, and survey of the R and D environment. Concretely, the paper carried out the grasp of the national projects related to materials in Europe and the U.S., patent registration (U.S.-Japan comparison)/application (Europe/Japan), transfer of technology trade, and survey of the trend of papers made public in scientific magazines. Further, in the survey of the R and D environment, conducted were how to treat researchers/engineers, how to handle intellectual ownership, system to promote the cooperation among industry/university/government, and comparison among countries in policies of technology such as patent strategy. The results of the survey were classified into the following 4 items: 1) trend of the technical development in the material technology field; 2) developmental environment in the material technology field; 3) competitive force in the material field and material user needs/seeds maps; 4) proposal for the material technology strategy. As to the competitive force of material technology in 3), the paper took up organic/polymer, iron/steel, aluminum, semiconductor, and ceramic materials. (NEDO)

  17. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1980-01-01

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV

  18. Species frequency dynamics in an old-field succession: Effects of disturbance, fertilization and scale

    Science.gov (United States)

    Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.

    2005-01-01

    Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.

  19. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2013-01-01

    Climate change will alter the environmental conditions for crop growth and require adjustments in management practices at the field scale. In this paper, we analyzed the impacts of two different climate change scenarios on optimal field management practices in winterwheat and grain maize production

  20. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  1. Service robotics: an emergent technology field at the interface between industry and services.

    Science.gov (United States)

    Ott, Ingrid

    2012-12-01

    The paper at hand analyzes the economic implications of service robots as expected important future technology. The considerations are embedded into global trends, focusing on the interdependencies between services and industry not only in the context of the provision of services but already starting at the level of the innovation process. It is argued that due to the various interdependencies combined with heterogenous application fields, the resulting implications need to be contextualized. Concerning the net labor market effects, it is reasonable to assume that the field of service robotics will generate overall job creation that goes along with increasing skill requirements demanded from involved employees. It is analyzed which challenges arise in evaluating and further developing the new technology field and some policy recommendations are given.

  2. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States)

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  3. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  4. Study of Near Field Communication Technology in University Scenarios

    Science.gov (United States)

    Ruiz, Irene Luque; Miraz, Guillermo Matas; Gómez-Nieto, Miguel Ángel

    2009-08-01

    In this paper we present an introduction to the possibilities of NFC (Near Field Communication) technology in the University environment. NFC is the key for the development of interactive systems where "intelligent" objects interact with the user just only by touching the objects with a NFC device. We support that a University environment with active objects dispatching information and services to the users (students and teachers) can introduce an appropriate environment for the fulfillment of the new Educational European directives. Here, we briefly describe some of the possibilities of the NFC technology and we include an example of the use of NFC through a Smart Poster for a scenario where a Department directory is considered.

  5. Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics

    International Nuclear Information System (INIS)

    Gent, David B.; Bricka, R. Mark; Alshawabkeh, Akram N.; Larson, Steven L.; Fabian, Gene; Granade, Steve

    2004-01-01

    The results of bench-scale laboratory tests and in situ, pilot-scale demonstration of electrokinetic extraction of chromium and cadmium from contaminated soil are presented. The laboratory tests were conducted using 10 cm long samples under current density of 5 A/m 2 for 1200 h. Tests were conducted with and without citric acid amendment at the cathode. The results showed that citric acid improved extraction, especially in the sections near the cathode. However, processing was not enough to result in complete cleanup. The field demo was conducted at the Naval Air Weapon Station (NAWS), Point Mugu, California. Three cathodes were centered between six anodes. The anode-cathode spacing was 4.45 m (15 ft). Constant voltage of 60 V (∼13 V/m) was applied for 20 days and then was reduced to 45 V (10 V/m) for 6 months. Citric acid was used to maintain the cathode pH at 4. After 6 months of treatment, 78% of the soil volume has been cleared of chromium or treated to below natural background levels. The results also indicated that 70% of the soil between the electrodes had been cleared of cadmium contamination. A comparison between the bench-scale and field demo showed that the field process was more effective than the lab tests. This indicated that small sample size will induce a negative effect on the efficiency of the process due to an increased impact of the boundaries on the overall process

  6. Creating a testing field where delta technology and water innovations are tested and demonstrated with the help of citizen science methods

    Science.gov (United States)

    de Vries, Sandra; Rutten, Martine; de Vries, Liselotte; Anema, Kim; Klop, Tanja; Kaspersma, Judith

    2017-04-01

    In highly populated deltas, much work is to be done. Complex problems ask for new and knowledge driven solutions. Innovations in delta technology and water can bring relief to managing the water rich urban areas. Testing fields form a fundamental part of the knowledge valorisation for such innovations. In such testing fields, product development by start-ups is coupled with researchers, thus supplying new scientific insights. With the help of tests, demonstrations and large-scale applications by the end-users, these innovations find their way to the daily practices of delta management. More and more cities embrace the concept of Smart Cities to tackle the ongoing complexity of urban problems and to manage the city's assets - such as its water supply networks and other water management infrastructure. Through the use of new technologies and innovative systems, data are collected from and with citizens and devices - then processed and analysed. The information and knowledge gathered are keys to enabling a better quality of life. By testing water innovations together with citizens in order to find solutions for water management problems, not only highly spatial amounts of data are provided by and/or about these innovations, they are also improved and demonstrated to the public. A consortium consisting of a water authority, a science centre, a valorisation program and two universities have joined forces to create a testing field for delta technology and water innovations using citizen science methods. In this testing field, the use of citizen science for water technologies is researched and validated by facilitating pilot projects. In these projects, researchers, start-ups and citizens work together to find the answer to present-day water management problems. The above mentioned testing field tests the use of crowd-sourcing data as for example hydrological model inputs, or to validate remote sensing applications, or improve water management decisions. Currently the

  7. Field-scale colloid migration experiments in a granite fracture

    International Nuclear Information System (INIS)

    Vilks, P.; Frost, L.H.; Bachinski, D.B.

    1997-01-01

    An understanding of particle migration in fractured rock, required to assess the potential for colloid-facilitated transport of radionuclides, can best be evaluated when the results of laboratory experiments are demonstrated in the field. Field-scale migration experiments with silica colloids were carried out at AECL's Underground Research Laboratory (URL), located in southern Manitoba, to develop the methodology for large-scale migration experiments and to determine whether colloid transport is possible over distances up to 17 m. In addition, these experiments were designed to evaluate the effects of flow rate and flow path geometry, and to determine whether colloid tracers could be used to provide additional information on subsurface transport to that provided by conservative tracers alone. The colloid migration studies were carried out as part of AECL's Transport Properties in Highly Fractured Rock Experiment, the objective of which was to develop and demonstrate methods for evaluating the solute transport characteristics of zones of highly fractured rock. The experiments were carried out within fracture zone 2 as two-well recirculating, two-well non-recirculating, and convergent flow tests, using injection rates of 5 and 101 min -1 . Silica colloids with a 20 nm size were used because they are potentially mobile due to their stability, small size and negative surface charge. The shapes of elution profiles for colloids and conservative tracers were similar, demonstrating that colloids can migrate over distances of 17 m. The local region of drawdown towards the URL shaft affected colloid migration and, to a lesser extent, conservative tracer migration within the flow field established by the two-well tracer tests. These results indicate that stable colloids, with sizes as small as 20 nm, have different migration properties from dissolved conservative tracers. (author)

  8. Theory Development and Convergence of Human Resource Fields: Implications for Human Performance Technology

    Science.gov (United States)

    Cho, Yonjoo; Yoon, Seung Won

    2010-01-01

    This study examines major theory developments in human resource (HR) fields and discusses implications for human performance technology (HPT). Differentiated HR fields are converging to improve organizational performance through knowledge-based innovations. Ruona and Gibson (2004) made a similar observation and analyzed the historical evolution…

  9. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    International Nuclear Information System (INIS)

    Azarbayejani, M; Jalalpour, M; Reda Taha, M M; El-Osery, A I

    2011-01-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide

  10. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    Science.gov (United States)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  11. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Directory of Open Access Journals (Sweden)

    Matthew A Gannon

    Full Text Available Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load and visual angle (1.0° or 2.5°. Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  12. Proceedings of the international conference on nascent technologies in the engineering fields of mechanical, electrical, electronics and telecommunication and computer/information technology: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference contains papers on grid computing, advanced networking, data mining, biometric technologies, social networks and social aspects of information technology, robotics and mechatronics, advances in manufacturing technology, modelling and simulation of mechanical systems, recent trends in refrigeration and air conditioning, energy conservation and alternative fuels and advances in vibration control and its techniques. It also addresses issues in the field of power generation transmission and distribution, energy management and energy efficiency, applications of power electronics and solid state devices, renewable energy technology, distributed generation and micro grid, drives, controls and automation and power quality. The electronics and telecommunication track received good response in the fields of wired and wireless communication, advanced communications, digital signal processing and its applications, optical and microwave communication, embedded and VLSI technology, micro electronics and nano-technology, antenna applications and solid state devices. Papers relevant to INIS are indexed separately

  13. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    Science.gov (United States)

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-04-17

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  15. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  16. On the role of the smallest scales of a passive scalar field in a near-wall turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Bergant; Iztok, Tiselj [Jozef Stefan Institute, Ljubljana (Slovenia)

    2006-03-01

    Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re{sub {tau}}=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer. (orig.)

  17. Reviewing the relations between teachers' knowledge and pupils' attitude in the field of primary technology education

    NARCIS (Netherlands)

    Ruurd Taconis; dr. Ellen J. J Rohaan; Wim Jochems

    2010-01-01

    This literature review reports on the assumed relations between primary school teachers' knowledge of technology and pupils' attitude towards technology. In order to find relevant aspects of technology-specific teacher knowledge, scientific literature in the field of primary technology education was

  18. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  19. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  20. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  1. Tools and technologies needed for conducting planetary field geology while on EVA: Insights from the 2010 Desert RATS geologist crewmembers

    Science.gov (United States)

    Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.

    2013-10-01

    The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.

  2. Validation of the Domains of Creativity Scale for Nigerian Preservice Science, Technology, and Mathematics Teachers

    Science.gov (United States)

    Awofala, Adeneye O. A.; Fatade, Alfred O.

    2015-01-01

    Introduction: Investigation into the factor structure of Domains of Creativity Scale has been on for sometimes now. The purpose of this study was to test the validity of the Kaufman Domains of Creativity Scale on Nigerian preservice science, technology, and mathematics teachers. Method: Exploratory and confirmatory factor analyses were performed…

  3. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer: Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  4. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  5. Scaling up Dietary Data for Decision-Making in Low-Income Countries: New Technological Frontiers.

    Science.gov (United States)

    Bell, Winnie; Colaiezzi, Brooke A; Prata, Cathleen S; Coates, Jennifer C

    2017-11-01

    Dietary surveys in low-income countries (LICs) are hindered by low investment in the necessary research infrastructure, including a lack of basic technology for data collection, links to food composition information, and data processing. The result has been a dearth of dietary data in many LICs because of the high cost and time burden associated with dietary surveys, which are typically carried out by interviewers using pencil and paper. This study reviewed innovative dietary assessment technologies and gauged their suitability to improve the quality and time required to collect dietary data in LICs. Predefined search terms were used to identify technologies from peer-reviewed and gray literature. A total of 78 technologies were identified and grouped into 6 categories: 1 ) computer- and tablet-based, 2 ) mobile-based, 3 ) camera-enabled, 4 ) scale-based, 5 ) wearable, and 6 ) handheld spectrometers. For each technology, information was extracted on a number of overarching factors, including the primary purpose, mode of administration, and data processing capabilities. Each technology was then assessed against predetermined criteria, including requirements for respondent literacy, battery life, requirements for connectivity, ability to measure macro- and micronutrients, and overall appropriateness for use in LICs. Few technologies reviewed met all the criteria, exhibiting both practical constraints and a lack of demonstrated feasibility for use in LICs, particularly for large-scale, population-based surveys. To increase collection of dietary data in LICs, development of a contextually adaptable, interviewer-administered dietary assessment platform is recommended. Additional investments in the research infrastructure are equally important to ensure time and cost savings for the user.

  6. Standardized UXO Technology Demonstration Site Open Field Scoring Recording Number 231 (Human Factors Applications, Inc.)

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Open Field. The scoring record was coordinated by Larry Overbuy and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  7. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  8. FY 1999 New Sunshine Project survey research project - Survey on the long-term energy technology strategy, etc. Fundamental survey to decide on the industrial technology strategy - Technology strategy by field (Material technology field - Nonferrous metal field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (zairyo gijutsu bun'ya (hitetsu kinzoku bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey/study were conducted to contribute to proposing technology strategies such as technical competitive force and the forecast in the material field, especially in the silicon wafer and compound semiconductor field. As to the silicon wafer technology, the following technologies were pointed out as those to be reinforced: future silicon crystals, mirror processing wafer, breakthrough technology needed for super LSI, heat-treated wafer, epitaxial wafer, SOI wafer, measuring/assessment technology, etc. In relation to the compound semiconductor technology, survey/study were made on the bulk crystal growth technology, epitaxial growth technology, crystal growth device technology, wafer processing technology, inspection/evaluation technology, device processing technology, etc. As the comprehensive strategy, the following were proposed: establishment of the place for industry/government/university cooperation, establishment of the center for evaluation of wafer materials/characteristics/process, and establishment of the compound semiconductor R and D center where men of practical business ability from industry/government/university get together and conduct the R and D of production technology and production facilities for compound semiconductor materials and devices. (NEDO)

  9. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    International Nuclear Information System (INIS)

    Mozer, F. S.; Hull, A.

    2010-01-01

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  10. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    Science.gov (United States)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  11. Survey and research for the enhancement of large-scale technology development 2. How large-scale technology development should be in the future; Ogata gijutsu kaihatsu suishin no tame no chosa kenkyu. 2. Kongo no ogata gijutsu kaihatsu no arikata

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A survey is conducted over the subject matter by holding interviews with people, employed with the entrusted businesses participating in the large-scale industrial technology development system, who are engaged in the development of industrial technologies, and with people of experience or academic background involved in the project enhancement effort. Needs of improvement are pointed out that the competition principle based for example on parallel development be introduced; that research-on-research be practiced for effective task institution; midway evaluation be substantiated since prior evaluation is difficult; efforts be made to organize new industries utilizing the fruits of large-scale industrial technology for the creation of markets, not to induce economic conflicts; that transfer of technologies be enhanced from the private sector to public sector. Studies are made about the review of research conducting systems; utilization of the power of private sector research and development efforts; enlightening about industrial proprietorship; and the diffusion of large-scale project systems. In this connection, problems are pointed out, requests are submitted, and remedial measures and suggestions are presented. (NEDO)

  12. Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale

    Czech Academy of Sciences Publication Activity Database

    Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, Tomáš; Steffen, K.; Jorgensen, K.S.; Tuomela, M.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 238-247 ISSN 0964-8305 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : bioremediation * contaminated soil * PAH * field scale Subject RIV: EE - Microbiology, Virology Impact factor: 2.131, year: 2014

  13. Technology for the large-scale production of multi-crystalline silicon solar cells and modules

    International Nuclear Information System (INIS)

    Weeber, A.W.; De Moor, H.H.C.

    1997-06-01

    In cooperation with Shell Solar Energy (formerly R and S Renewable Energy Systems) and the Research Institute for Materials of the Catholic University Nijmegen the Netherlands Energy Research Foundation (ECN) plans to develop a competitive technology for the large-scale manufacturing of solar cells and solar modules on the basis of multi-crystalline silicon. The project will be carried out within the framework of the Economy, Ecology and Technology (EET) program of the Dutch ministry of Economic Affairs and the Dutch ministry of Education, Culture and Sciences. The aim of the EET-project is to reduce the costs of a solar module by 50% by means of increasing the conversion efficiency as well as the development of cheap processes for large-scale production

  14. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    Science.gov (United States)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  15. Large-scale educational telecommunications systems for the US: An analysis of educational needs and technological opportunities

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.; Rothenberg, D.; Robinson, B. E.

    1975-01-01

    The needs to be served, the subsectors in which the system might be used, the technology employed, and the prospects for future utilization of an educational telecommunications delivery system are described and analyzed. Educational subsectors are analyzed with emphasis on the current status and trends within each subsector. Issues which affect future development, and prospects for future use of media, technology, and large-scale electronic delivery within each subsector are included. Information on technology utilization is presented. Educational telecommunications services are identified and grouped into categories: public television and radio, instructional television, computer aided instruction, computer resource sharing, and information resource sharing. Technology based services, their current utilization, and factors which affect future development are stressed. The role of communications satellites in providing these services is discussed. Efforts to analyze and estimate future utilization of large-scale educational telecommunications are summarized. Factors which affect future utilization are identified. Conclusions are presented.

  16. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...

  17. Practical Education of Aerospace Field in Muroran Institute of Technology

    Science.gov (United States)

    Tanatsugu, Nobuhiro

    Engineering study in the field of aerospace is an effective way to enhance the student motivation. The young students can be attracted by the research and development aiming at returning its results to the public society. The Muroran Institute of Technology is carrying out the practical education in the field of real research and development by the Aerospace Research Center. The projects of the center is being performed well in cooperation with the national research organization and the private companies and thereby the students have the good opportunity to find the actual situation of the real world.

  18. Rock sealing - large scale field test and accessory investigations

    International Nuclear Information System (INIS)

    Pusch, R.

    1988-03-01

    The experience from the pilot field test and the basic knowledge extracted from the lab experiments have formed the basis of the planning of a Large Scale Field Test. The intention is to find out how the 'instrument of rock sealing' can be applied to a number of practical cases, where cutting-off and redirection of groundwater flow in repositories are called for. Five field subtests, which are integrated mutually or with other Stripa projects (3D), are proposed. One of them concerns 'near-field' sealing, i.e. sealing of tunnel floors hosting deposition holes, while two involve sealing of 'disturbed' rock around tunnels. The fourth concerns sealing of a natural fracture zone in the 3D area, and this latter test has the expected spin-off effect of obtaining additional information on the general flow pattern around the northeastern wing of the 3D cross. The fifth test is an option of sealing structures in the Validation Drift. The longevity of major grout types is focussed on as the most important part of the 'Accessory Investigations', and detailed plans have been worked out for that purpose. It is foreseen that the continuation of the project, as outlined in this report, will yield suitable methods and grouts for effective and long-lasting sealing of rock for use at stategic points in repositories. (author)

  19. Heating of field-reversed plasma rings estimated with two scaling models

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1978-05-18

    Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.

  20. Gender Differences in the Field of Information Security Technology Management: A Qualitative, Phenomenological Study

    Science.gov (United States)

    Johnson, Marcia L.

    2013-01-01

    This qualitative study explored why there are so few senior women in the information security technology management field and whether gender played a part in the achievement of women in the field. Extensive interviews were performed to capture the lived experiences of successful women in the field regarding the obstacles and common denominators of…

  1. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  2. Silica scale prevention technology using organic additive, Geogard SX

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Almario; Garcia, Serafin; Solis, Ramonito; Fragata, Jimmy; Ellseworth, Lucero; Llenarizas, Leonardo; Tabuena, Joseph Erwin (PNOC Energy Development Corporation, Makati City (Philippines))

    1998-09-15

    A field trial on the application of an organic additive, phosphino carboxylic acid copolymer, was conducted in a geothermal system to evaluate its effectiveness in preventing silica deposition from brine containing ultra high silica concentration (1000-1300 ppm). Low polymer concentration was applied for about five months, and treatment efficiency based on silica concentrations in various sampling points ranged from 64 to 98%. Treatment efficiency improved as a function of time. Massive silica scaling in the fluid collection and disposal system was minimized.

  3. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    Science.gov (United States)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  4. BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A. C.

    2007-01-01

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories

  5. On the universality of MOG weak field approximation at galaxy cluster scale

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2017-07-01

    Full Text Available In its weak field limit, Scalar-tensor-vector gravity theory introduces a Yukawa-correction to the gravitational potential. Such a correction depends on the two parameters, α which accounts for the modification of the gravitational constant, and μ⁎−1 which represents the scale length on which the scalar field propagates. These parameters were found to be universal when the modified gravitational potential was used to fit the galaxy rotation curves and the mass profiles of galaxy clusters, both without Dark Matter. We test the universality of these parameters using the temperature anisotropies due to the thermal Sunyaev–Zeldovich effect. In our model the intra-cluster gas is in hydrostatic equilibrium within the modified gravitational potential well and it is described by a polytropic equation of state. We predict the thermal Sunyaev–Zeldovich temperature anisotropies produced by Coma cluster, and we compare them with those obtained using the Planck 2013 Nominal maps. In our analysis, we find α and the scale length, respectively, to be consistent and to depart from their universal values. Our analysis points out that the assumption of the universality of the Yukawa-correction to the gravitational potential is ruled out at more than 3.5σ at galaxy clusters scale, while demonstrating that such a theory of gravity is capable to fit the cluster profile if the scale dependence of the gravitational potential is restored.

  6. FY 1999 New Sunshine Project survey research project - Survey on the long-term energy technology strategy, etc. Fundamental survey to decide on the industrial technology strategy - Technology strategy by field (Electronic information technology field - Human process ware technology field of the computer relation field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (denshi joho gijutsu bun'ya (computer kanren bun'ya no uchi, human process ware gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey/study were conducted to contribute to proposing technology strategies such as the analysis of the present state of technical competitive force and the forecast in the human process ware industry technology field of the computer relation field. The human process ware is a system aimed at fermenting human power for thinking, problem solution and creation. Its main subjects are the following three: close society technology for will communication by automatically learning backgrounds of people joining the community; topics community technology for community formation for the appropriate people/organizations by grasping true topics/purposes from conversation; active interaction technology for supporting creative activities of users/community and making conversation with users. Further, in the region of the technology to meet the requests/restrictions from the society, the following are expected: energy/resource conservation; realization of the life with ease/safety and of high quality in the aged society; realization of the advanced information network society which becomes the basis of a new economic society. (NEDO)

  7. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2006-01-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb 3 Sn coils, Fermilab has started a Nb 3 Sn technology scale-up program using the dipole mirror design and the developed Nb 3 Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb 3 Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb 3 Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure

  8. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb{sub 3}Sn coils, Fermilab has started a Nb{sub 3}Sn technology scale-up program using the dipole mirror design and the developed Nb{sub 3}Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb{sub 3}Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb{sub 3}Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure.

  9. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  10. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  11. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    Science.gov (United States)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  12. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    International Nuclear Information System (INIS)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-01-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink R technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO TM automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the automated

  13. Formation and field-driven dynamics of nematic spheroids.

    Science.gov (United States)

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  14. Potential Electrokinetic Remediation Technologies of Laboratory Scale into Field Application- Methodology Overview

    Science.gov (United States)

    Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman

    2018-04-01

    Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.

  15. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  16. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  17. Evaluation method of economic efficiency of industrial scale research based on an example of coking blend pre-drying technology

    Directory of Open Access Journals (Sweden)

    Żarczyński Piotr

    2017-01-01

    Full Text Available The research on new and innovative solutions, technologies and products carried out on an industrial scale is the most reliable method of verifying the validity of their implementation. The results obtained in this research method give almost one hundred percent certainty although, at the same time, the research on an industrial scale requires the expenditure of the highest amount of money. Therefore, this method is not commonly applied in the industrial practices. In the case of the decision to implement new and innovative technologies, it is reasonable to carry out industrial research, both because of the cognitive values and its economic efficiency. Research on an industrial scale may prevent investment failure as well as lead to an improvement of technologies, which is the source of economic efficiency. In this paper, an evaluation model of economic efficiency of the industrial scale research has been presented. This model is based on the discount method and the decision tree model. A practical application of this proposed evaluation model has been presented based on an example of the coal charge pre-drying technology before coke making in a coke oven battery, which may be preceded by industrial scale research on a new type of coal charge dryer.

  18. Picosecond UV single photon detectors with lateral drift field: Concept and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, M.; Oktyabrsky, S.; Murat, P.

    2015-09-01

    Group III–V semiconductor materials are being considered as a Si replacement for advanced logic devices for quite some time. Advances in III–V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metal-oxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting mode in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging.

  19. Airborne electromagnetics supporting salinity and natural resource management decisions at the field scale in Australia

    NARCIS (Netherlands)

    Cresswell, R.G.; Mullen, I.C.; Kingham, R.; Kellett, J.; Dent, D.L.; Jones, G.L.

    2007-01-01

    Airborne geophysics has been used at the catchment scale to map salt stores, conduits and soil variability, but few studies have evaluated its usefulness as a land management tool at the field scale. We respond to questions posed by land managers with: (1) comparison of airborne and ground-based

  20. An investigation of the field-aligned currents associated with a large-scale ULF wave using data from CUTLASS and FAST

    Directory of Open Access Journals (Sweden)

    H. C. Scoffield

    2005-02-01

    Full Text Available On 14 December 1999, a large-scale ULF wave event was observed by the Hankasalmi radar of the SuperDARN chain. Simultaneously, the FAST satellite passed through the Hankasalmi field-of-view, measuring the magnetic field oscillations of the wave at around 2000km altitude, along with the precipitating ion and electron populations associated with these fields. A simple field line resonance model of the wave has been created and scaled using the wave's spatial and temporal characteristics inferred from SuperDARN and IMAGE magnetometer data. Here the model calculated field-aligned current is compared with field-aligned currents derived from the FAST energetic particle spectra and magnetic field measurements. This comparison reveals the small-scale structuring and energies of the current carriers in a large-scale Alfvén wave, a topic, which at present, is of considerable theoretical interest. When FAST traverses a region of the wave involving low upward field-aligned current densities, the current appears to be carried by unstructured downgoing electrons of energies less than 30eV. A downward current region appears to be carried partially by upgoing electrons below the FAST energy detection threshold, but also consists of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies <30eV, with the hotter upgoing electrons presumably representing those upgoing electrons which have been accelerated by the wave field above the low energy detection threshold of FAST. A stronger interval of upward current shows that small-scale structuring of scale ~50km has been imposed on the current carriers, which are downgoing magnetospheric electrons of energy 0-500eV.

  1. Microsecond-scale electric field pulses in cloud lightning discharges

    Science.gov (United States)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  2. New technologies for large-scale micropatterning of functional nanocomposite polymers

    Science.gov (United States)

    Khosla, A.; Gray, B. L.

    2012-04-01

    We present a review of different micropatterning technologies for flexible elastomeric functional nanocomposites with a particular emphasis on mold material and processes for production of large size substrates. The functional polymers include electrically conducting and magnetic materials developed at the Micro-instrumentation Laboratory at Simon Fraser University, Canada. We present a chart that compares many of these different conductive and magnetic functional nanocomposites and their measured characteristics. Furthermore, we have previously reported hybrid processes for nanocomposite polymers micromolded against SU-8 photoepoxy masters. However, SU-8 is typically limited to substrate sizes that are compatible with microelectronics processing as a microelectronics uv-patterning step is typically involved, and de-molding problems are observed. Recently, we have developed new processes that address the problems faced with SU-8 molds. These new technologies for micropatterning nanocomposites involve new substrate materials. A low cost Poly(methyl methacrylate) (PMMA) microfabrication technology has been developed, which involves fabrication of micromold via either CO2 laser ablation or deep UV. We have previously reported this large-scale patterning technique using laser ablation. Finally, we compare the two processes for PMMA producing micromolds for nanocomposites.

  3. Comparing an Annual and a Daily Time-Step Model for Predicting Field-Scale Phosphorus Loss.

    Science.gov (United States)

    Bolster, Carl H; Forsberg, Adam; Mittelstet, Aaron; Radcliffe, David E; Storm, Daniel; Ramirez-Avila, John; Sharpley, Andrew N; Osmond, Deanna

    2017-11-01

    A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  5. Cometabolic biotreatment of TCE-contaminated groundwater: Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Strandberg, G.W.; Morris, M.I.; Palumbo, A.V.; Boerman, P.A.; Tyndall, R.L.

    1992-01-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system

  6. Field Assessment and Specification Review for Roller-Integrated Compaction Monitoring Technologies

    Directory of Open Access Journals (Sweden)

    David J. White

    2011-01-01

    Full Text Available Roller-integrated compaction monitoring (RICM technologies provide virtually 100-percent coverage of compacted areas with real-time display of the compaction measurement values. Although a few countries have developed quality control (QC and quality assurance (QA specifications, broader implementation of these technologies into earthwork construction operations still requires a thorough understanding of relationships between RICM values and traditional in situ point test measurements. The purpose of this paper is to provide: (a an overview of two technologies, namely, compaction meter value (CMV and machine drive power (MDP; (b a comprehensive review of field assessment studies, (c an overview of factors influencing statistical correlations, (d modeling for visualization and characterization of spatial nonuniformity; and (e a brief review of the current specifications.

  7. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  8. The IAEA Activities in the Field of Fast Reactors Technology Development

    International Nuclear Information System (INIS)

    Monti, Stefano

    2011-01-01

    Main activities of the IAEA Programme on Fast Reactor: Carry out Collaborative Research Projects (CRPs) of common interest to the TWG-FR Member States in the field of FRs and ADS; Secure Training and Education in the field of fast neutron system physics, technology and applications; Support Fast Reactor data retrieval and knowledge preservation activities in MSs; Provide support to IAEA Nuclear Safety and Security Department for preparation of fast reactor Safety standards / requirements / guides. IAEA TWG-FR Functions: Provide advice and guidance, and marshal support in their countries for implementation of IAEA’s programmatic activities in the area of advanced technologies and R&D for fast reactors and sub-critical hybrid systems for energy production and for utilization/transmutation of long-lived nuclides; Provide a forum for information and knowledge sharing on national and international development programs; Act as a link between IAEA’s activities in the specific area of the TWG-FR and national scientific communities, delivering information from and to national communities

  9. Laboratory and field scale demonstration of reactive barrier systems

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy's Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems

  10. Large-scale fluid motion in the earth's outer core estimated from non-dipole magnetic field data

    International Nuclear Information System (INIS)

    Matsushima, Masaki; Honkura, Yoshimori

    1989-01-01

    Fluid motions in the Earth's outer core can be estimated from magnetic field data at the Earth's surface based on some assumptions. The basic standpoint here is that the non-dipole magnetic field is generated by the interaction between a strong toroidal magnetic field, created by differential rotation, and the convective motion in the outer core. Large-scale convective motions are studied to express them in terms of the poloidal velocity field expanded into a series of spherical harmonics. The radial distribution of differential rotation is estimated from the balance between the effective couple due to angular momentum transfer and the electromagnetic couple. Then the radial dependence of the toroidal magnetic field is derived from the interaction between the differential rotation thus estimated and the dipole magnetic field within the outer core. Magnetic field data are applied to a secular variation model which takes into account the fluctuations of the standing and drifting parts of the non-zonal magnetic field. The velocity field in the outer core is estimated for two cases. It is revealed that the pattern of convective motions is generally characterized by large-scale motions in the quasi-steady case. In the non-steady case, the magnitude of the velocity field is much larger, indicating a more dynamic feature. (N.K.)

  11. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    Energy Technology Data Exchange (ETDEWEB)

    Zaltash, Abdolreza [ORNL

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  12. Determining student teachers' perceptions on using technology via Likert scale, visual association test and metaphors: A mixed study

    Directory of Open Access Journals (Sweden)

    Mevhibe Kobak

    2013-04-01

    Full Text Available The aim of this study is to determine senior student teachers’ perceptions on using technology by approaching various points of view. In this study, researchers collected data through Technology Perceptions Scale, Visual Association Activity and Technology Metaphors. The participants of the study were 104 senior student teachers who were enrolled in Balıkesir University Necatibey Faculty of Education. In this descriptive study, researchers interpreted qualitative data in conjunction with quantitative data. Based on the data obtained, even though student teachers’ perceptions on using technology were found positive in the light of Likert scale, there was no significant relation in terms of gender and enrolled undergraduate program. According to the results of visual association test, student teachers ranked smartboard, Internet and computer in the first three, and portable media player, mobile phone and video/camera in the last three. Besides, researchers analyzed and classified student teachers’ metaphors about technology under 9 categories: 1developing-changing technology, 2rapidly progressing technology, 3 limitless-endless technology, 4beneficial technology, 5harmful technology, 6both beneficial and harmful technology, 7indispensible technology, 8technology as a necessity, 9 all-inclusive technology. At the end of the study, those nine categories which were acquired using the content analysis technique are presented in a table which shows the interaction between categories in a holistic view.

  13. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  14. Experiences of using mobile technologies and virtual field tours in Physical Geography: implications for hydrology education

    Directory of Open Access Journals (Sweden)

    D. G. Kingston

    2012-05-01

    Full Text Available Education in hydrology is changing rapidly due to diversification of students, emergent major scientific and practical challenges that our discipline must engage with, shifting pedagogic ideas and higher education environments, the need for students to develop new discipline specific and transferrable skills, and the advent of innovative technologies for learning and teaching. This paper focuses on new technologies in the context of learning and teaching in Physical Geography and reflects on the implications of our experiences for education in hydrology. We evaluate the experience of designing and trialling novel mobile technology-based field exercises and a virtual field tour for a Year 1 undergraduate Physical Geography module at a UK university. The new exercises are based on using and obtaining spatial data, operation of meteorological equipment (explained using an interactive DVD, and include introductions to global positioning systems (GPS and geographical information systems (GIS. The technology and exercises were well received in a pilot study and subsequent rolling-out to the full student cohort (∼150 students. A statistically significant improvement in marks was observed following the redesign. Although the students enjoyed using mobile technology, the increased interactivity and opportunity for peer learning were considered to be the primary benefits by students. This is reinforced further by student preference for the new interactive virtual field tour over the previous "show-and-tell" field exercise. Despite the new exercises having many advantages, exercise development was not trivial due to the high start-up costs, the need for provision of sufficient technical support and the relative difficulty of making year-to-year changes (to the virtual field tour in particular. Our experiences are highly relevant to the implementation of novel learning and teaching technologies in hydrology education.

  15. Experiences of using mobile technologies and virtual field tours in Physical Geography: implications for hydrology education

    Science.gov (United States)

    Kingston, D. G.; Eastwood, W. J.; Jones, P. I.; Johnson, R.; Marshall, S.; Hannah, D. M.

    2012-05-01

    Education in hydrology is changing rapidly due to diversification of students, emergent major scientific and practical challenges that our discipline must engage with, shifting pedagogic ideas and higher education environments, the need for students to develop new discipline specific and transferrable skills, and the advent of innovative technologies for learning and teaching. This paper focuses on new technologies in the context of learning and teaching in Physical Geography and reflects on the implications of our experiences for education in hydrology. We evaluate the experience of designing and trialling novel mobile technology-based field exercises and a virtual field tour for a Year 1 undergraduate Physical Geography module at a UK university. The new exercises are based on using and obtaining spatial data, operation of meteorological equipment (explained using an interactive DVD), and include introductions to global positioning systems (GPS) and geographical information systems (GIS). The technology and exercises were well received in a pilot study and subsequent rolling-out to the full student cohort (∼150 students). A statistically significant improvement in marks was observed following the redesign. Although the students enjoyed using mobile technology, the increased interactivity and opportunity for peer learning were considered to be the primary benefits by students. This is reinforced further by student preference for the new interactive virtual field tour over the previous "show-and-tell" field exercise. Despite the new exercises having many advantages, exercise development was not trivial due to the high start-up costs, the need for provision of sufficient technical support and the relative difficulty of making year-to-year changes (to the virtual field tour in particular). Our experiences are highly relevant to the implementation of novel learning and teaching technologies in hydrology education.

  16. Standardized UXO Technology Demonstration Site, Open Field Scoring Record No. 770. Magnetometer FEREX DLG GPS/Sling

    National Research Council Canada - National Science Library

    Karwatka, Mike; Packer, Bonnie

    2006-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site open field. Scoring Records have been coordinated by Mike Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Large-scale commercial applications of the in situ vitrification remediation technology

    International Nuclear Information System (INIS)

    Campbell, B.E.; Hansen, J.E.; McElroy, J.L.; Thompson, L.E.; Timmerman, C.L.

    1994-01-01

    The first large-scale commercial application of the innovative In Situ Vitrification (ISV) remediation technology was completed at the Parsons Chemical/ETM Enterprises Superfund site in Michigan State midyear 1994. This project involved treating 4,800 tons of pesticide and mercury-contaminated soil. The project also involved performance of the USEPA SITE Program demonstration test for the ISV technology. The Parsons project involved consolidation and staging of contaminated soil from widespread locations on and nearby the site. This paper presents a brief description of the ISV technology along with case-study type information on these two sites and the performance of the ISV technology on them. The paper also reviews other remediation projects where ISV has been identified as the/a preferred remedy, and where ISV is currently planned for use. These sites include soils contaminated with pesticides, dioxin, PCP, paint wastes, and a variety of heavy metals. This review of additional sites also includes a description of a planned radioactive mixed waste remediation project in Australia that contains large amounts of plutonium, uranium, lead, beryllium, and metallic and other debris buried in limestone and dolomitic soil burial pits. Initial test work has been completed on this application, and preparations are now underway for pilot testing in Australia. This project will demonstrate the applicability of the ISV technology to the challenging application of buried mixed wastes

  18. Field Strain Measurement on the Fiber-Epoxy Scale in CFRPs

    KAUST Repository

    Tao, Ran

    2015-06-08

    Laminated composites are materials with complex architecture made of continuous fibers (usually glass or carbon) embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. Secondary electron images obtained by scanning electron microscopy (SEM) and then numerically deformed are post-processed by either local subset-based digital image correlation (DIC) or global finite-element based DIC to measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. It is shown that when global DIC is applied with a conformal mesh, it can capture more accurate local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset DIC, global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  19. Decision-making for new technology: A multi-actor, multi-objective method

    OpenAIRE

    Cunningham, S.W.; van der Lei, T.E.

    2007-01-01

    Technology managers increasingly face problems of group decision. The scale and complexity of research, development and alliance efforts in emerging fields of technology mandate a correspondingly sophisticated form of group coordination. Information technology, biotechnology and nanotechnology are good examples of sectors with complex coordination problems. Choices made include the selection of projects, the choice of investment alternatives, and the formation of technology licensing agreemen...

  20. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Utilization of Near Field Communication Technology for Loyalty Management

    Directory of Open Access Journals (Sweden)

    Ferina Ferdianti

    2013-09-01

    Full Text Available Near Field Communication (NFC is one of wireless technology developed at this time. We can use a mobile phone to do many transactions with NFC. Mobile developments have created to provide convenience for users in all aspects. However, at this time the function of NFC just limited for payment and micropayment. Beside it, there are assets that support to increase sales with attention of loyality management system. In this system, discounts or prizes are given based on data mining for every transaction costumers. Loyalty management has three concept, those are Frequency, Recency and Quantity. The goals are minimizing the cost, making purchase process faster, and managing data obtained through the NFC technology more simple. The result of this paper is the procedure to use data mining of NFC for loyalty management and system design using Unified Modeling Language approach.

  2. Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

    OpenAIRE

    Zoschke, Kai; Güttler, Maurice; Böttcher, Lars; Grübl, Andreas; Husmann, Dan; Schemmel, Johannes; Meier, Karlheinz; Ehrmann, Oswin

    2018-01-01

    Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system. The paper will give an overview of the neuromorphic computing platform at the KIP and the associated hardware requirements which drove the described technological developments. In the first phase of the project standard redistribution technologies from wafer level packaging were adapted to enable a ...

  3. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Science.gov (United States)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  4. A Survey of the Rapidly Emerging Field of Nanotechnology: Potential Applications for Scientific Instruments and Technologies for Atmospheric Entry Probes

    Science.gov (United States)

    Meyyappan, M.; Arnold, J. O.

    2005-01-01

    The field of Nanotechnology is well funded worldwide and innovations applicable to Solar System Exploration are emerging much more rapidly than thought possible just a few years ago. This presentation will survey recent innovations from nanotechnololgy with a focus on novel applications to atmospheric entry science and probe technology, in a fashion similar to that presented by Arnold and Venkatapathy at the previous workshop forum at Lisbon Portugal, October 6-9, 2003. Nanotechnology is a rapidly emerging field that builds systems, devices and materials from the bottom up, atom by atom, and in so doing provides them with novel and remarkable macro-scale performance. This technology has the potential to revolutionize space exploration by reducing mass and simultaneously increasing capability. Thermal, Radiation, Impact Protective Shields: Atmospheric probes and humans on long duration deep space missions involved in Solar System Exploration must safely endure 3 significant hazards: (i) atmospheric entry; (ii) radiation; and (iii) micrometeorite or debris impact. Nanostructured materials could be developed to address all three hazards with a single protective shield, which would involve much less mass than a traditional approach. The concept can be ready in time for incorporation into NASA s Crew Exploration Vehicle, and possible entry probes to fly on the Jupiter Icy Moons

  5. Computer-based measurement and automatizatio aplication research in nuclear technology fields

    International Nuclear Information System (INIS)

    Jiang Hongfei; Zhang Xiangyang

    2003-01-01

    This paper introduces computer-based measurement and automatization application research in nuclear technology fields. The emphasis of narration are the role of software in the development of system, and the network measurement and control software model which has optimistic application foreground. And presents the application examples of research and development. (authors)

  6. Cometabolic biotreatment of TCE-contaminated groundwater - Laboratory and bench-scale development studies

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T L; Palumbo, A V; Boerman, P A; Jennings, H L; Lucero, A J; Tyndall, R L; Strandberg, G W; Morris, M I [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1992-07-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system. (author)

  7. Statistical characterisation of COSMO Sky-Med X-SAR retrieved precipitation fields by scale-invariance analysis

    Science.gov (United States)

    Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta

    2013-04-01

    COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.

  8. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    Science.gov (United States)

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  9. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of

  10. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  11. Overview of DOE's field screening technology development activities

    International Nuclear Information System (INIS)

    Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T.; Erickson, M.D.

    1991-01-01

    The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R ampersand D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref

  12. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    Science.gov (United States)

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and g...

  13. Effect of CMOS Technology Scaling on Fully-Integrated Power Supply Efficiency

    OpenAIRE

    Pillonnet , Gaël; Jeanniot , Nicolas

    2016-01-01

    International audience; Integrating a power supply in the same die as the powered circuits is an appropriate solution for granular, fine and fast power management. To allow same-die co-integration, fully integrated DC-DC converters designed in the latest CMOS technologies have been greatly studied by academics and industrialists in the last decade. However, there is little study concerning the effects of the CMOS scaling on these particular circuits. To show the trends, this paper compares th...

  14. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Science.gov (United States)

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  15. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Directory of Open Access Journals (Sweden)

    Åsa N Austin

    Full Text Available Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer and spatial scales (local and regional, using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales

  16. Assessment of Bioremediation Technologies: Focus on Technologies Suitable for Field-Level Demonstrations and Applicable to DoD Contaminants.

    Science.gov (United States)

    1995-06-01

    Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...industrial facilities include chromium, copper, nickel, lead, mercury , cadmium, and zinc. Table 3 shows that inorganics in soil were identified as high... mercury , molybdenum, nickel, selenium, and tin. Constructed wetlands. The passive bioremediation of metals in wetlands is a concept borrowed from

  17. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  18. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    International Nuclear Information System (INIS)

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results

  19. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  20. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    International Nuclear Information System (INIS)

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Rémi; Fourquet, Alain

    2012-01-01

    We wanted to evaluate a simplified “field-in-field” technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347–1472) for SFF vs. 779 mL (range, 349–1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0–63) for SFF and 1.9 mL (range, 0–57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  1. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  2. Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field

    Science.gov (United States)

    King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio

    2017-04-01

    This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.

  3. Northern gas fields and NGH technology. A feasibility study to develop natural gas hydrate technology for the international gas markets; Nordlige gassfelt and NGH-teknologi. En studie av muligheter for utvikling av naturgasshydratteknologi for det internasjonale gassmarked

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Trond Ragnvald; Loy, Erik F.; Doesen, Sturle

    1997-12-31

    Two natural gas fields have been studied for three different technological solutions using two different economic theories. The aim was to examine whether a new technology for transporting natural gas, Natural Gas Hydrates (NGH), can compete with the existing technologies pipeline and Liquefied Natural Gas (LNG). Natural gas can rarely be used immediately after production and the supply systems can be divided into four interrelated parts: 1) Exploration. 2) Development and production. 3) Transportation. 4) Distribution. The emphasis in the study is on production costs and transportation. Exploration is assumed carried out and thus viewed sunk cost. Distribution from landing point to consumers is not part of the study. Production can take place either onshore or offshore, the natural gas can be transported to the market either by pipeline or ship and the costs are becoming more important as the distance from the fields to the markets increase. Natural gas projects have long lead times and large capital requirements. New supplies will materialise then if there is confidence that demand for the gas exists at a profitable price. Therefore natural gas is generally sold on long term contracts. The conclusions are that economies of scale exist and that pipeline is the superior technology for high volumes but cannot compete for smaller volumes where the LNG technology has been the best alternative. However, the report concludes that the NGH can compete fully. The distance to the market where the natural gas is to be transported is crucial for choice of transportation mode. The shipping modes are superior for long transportation distances. NGH is superior to LNG also with regards to distance. Despite that the two economic models used for the evaluation have provided very different absolute project values, they have provided the same conclusions about the ranking of the different technologies. It is clear then that if NGH technology is developed further into a reliable and

  4. The socio-materiality of learning practices and implications for the field of learning technology

    Directory of Open Access Journals (Sweden)

    Aditya Johri

    2011-12-01

    Full Text Available Although the use of digital information technologies in education has becomecommonplace, there are few, if any, central guiding frameworks or theories thatexplicate the relationship between technology and learning practices. In thispaper, I argue that such a theoretical framework can assist scholars and practitionersalike by working as a conduit to study and design learning technologies.Towards this goal, I propose socio-materiality as a key theoretical construct withvaluable insights and implications for the field of learning technology. Sociomaterialityhelps balance the disproportionate attention given to either the socialimplications of technology use or the material aspects of technology design.Furthermore, I forward ‘socio-material bricolage' as a useful analytical frameworkto examine and design technology-infused learning environments. I illustratethe value of the framework by applying it to three case studies of formaland informal technology-based learning.

  5. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    Science.gov (United States)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  6. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in [Indian Institute of Astrophysics, Bangalore-34 (India)

    2016-06-20

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  7. Evaluation of pulsed electric fields technology for liquid whole egg pasteurization.

    Science.gov (United States)

    Monfort, S; Gayán, E; Raso, J; Condón, S; Alvarez, I

    2010-10-01

    This investigation evaluated the lethal efficiency of pulsed electric fields (PEFs) to pasteurize liquid whole egg (LWE). To achieve this aim, we describe the inactivation of Salmonella Enteritidis and the heat resistant Salmonella Senftenberg 775 W in terms of treatment time and specific energy at electric field strengths ranging from 20 to 45 kV/cm. Based on our results, the target microorganism for this technology in LWE varied with intensity of the PEF treatment. For electric field strengths greater than 25 kV/cm, Salmonella Enteritidis was the most PEF-resistant strain. For this Salmonella serovar the level of inactivation depended only on the specific energy applied: i.e., 106, 272, and 472 kJ/kg for 1, 2, and 3 Log(10) reductions, respectively. The developed mathematical equations based on the Weibull distribution permit estimations of maximum inactivation level of 1.9 Log(10) cycles of the target Salmonella serovar in the best-case scenario: 250 kJ/kg and 25 kV/cm. This level of inactivation indicates that PEF technology by itself cannot guarantee the security of LWE based on USDA and European regulations. The occurrence of cell damage due to PEF in the Salmonella population opens the possibility of designing combined processes enabling increased microbial lethality in LWE. 2010 Elsevier Ltd. All rights reserved.

  8. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  9. States and tendencies of German standards in the field of nuclear filter technology

    International Nuclear Information System (INIS)

    Fichtner, N.; Sinhuber, D.

    1977-01-01

    The current situation in the Federal Republic of Germany with regard to standards and guidelines in the field of filter technology, as they apply to nuclear technology, is first presented. A detailed discussion follows of the results arrived at by the Nuclear Technology Standards Committee in its deliberations on the Standards' project DIN 25 414 'Ventilation equipment in nuclear power stations'. Particular attention is paid to the technical safety requirements for particulate filters, filter casings and filter housings, and methods of testing. The results so far obtained as regards filters in ventilation plant for pressurized water reactors are also dealt with

  10. TCE field-scale simulation using immobile-mobile waste phase model

    International Nuclear Information System (INIS)

    Hamm, L.L.; Aleman, S.E.; Shadday, M.A.

    1997-01-01

    Groundwater contamination resulting from releases of chlorinated volatile organic compounds into the environment is commonplace. Industrial solvents, such as trichloroethylene (TCE), were historically released into top soils as a means of disposal. At numerous sites nationwide, cleanup efforts are underway. To evaluate the benefits associated with proposed remediation alternatives, flow and transport modeling is playing an ever increasing role. In many situations site characterization of contaminant source terms is very sketchy, resulting in a lack of necessary data to develop a reliable source term model directly from a database. As such, investigators are forced into an approach of estimating the source term in an inverse modeling fashion. Field-scale attempts are made here to predict the fate and transport of TCE under various remediation alternatives. Under a no action scenario, inverse modeling to establish the source term is performed where comparison to field measurements are made

  11. Supporting Students with Disabilities Entering the Science, Technology, Engineering, and Mathematics Field Disciplines

    Science.gov (United States)

    Dishauzi, Karen M.

    Extensive research exists on female, African American, and Hispanic students pursuing Science, Technology, Engineering and Mathematics (STEM) field disciplines. However, little research evaluates students with disabilities and career decision-making relating to STEM field disciplines. This study explored the career decision-making experiences and self-efficacy for students with disabilities. The purpose of this research study was to document experiences and perceptions of students with disabilities who pursue, and may consider pursuing, careers in the STEM field disciplines by exploring the career decision-making self-efficacy of students with disabilities. This study documented the level of influence that the students with disabilities had or may not have had encountered from parents, friends, advisors, counselors, and instructors as they managed their decision-making choice relating to their academic major/career in the STEM or non-STEM field disciplines. A total of 85 respondents of approximately 340 students with disabilities at one Midwestern public university completed a quantitatively designed survey instrument. The Career Decision-Making Self-Efficacy Scale-Short Form by Betz and Hackett was the instrument used, and additional questions were included in the survey. Data analysis included descriptive statistics and analysis of variance. Based upon the results, college students with disabilities are not currently being influenced by individuals and groups of individuals to pursue the STEM field disciplines. This is a cohort of individuals who can be marketed to increase enrollment in STEM programs at academic institutions. This research further found that gender differences at the institution under study did not affect the career decision-making self-efficacy scores. The men did not score any higher in confidence in career decision-making than the women. Disability type did not significantly affect the relationship between the Career Decision-Making Self

  12. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  13. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  14. Testing the Abbreviated Food Technology Neophobia Scale and its relation to satisfaction with food-related life in university students.

    Science.gov (United States)

    Schnettler, Berta; Grunert, Klaus G; Miranda-Zapata, Edgardo; Orellana, Ligia; Sepúlveda, José; Lobos, Germán; Hueche, Clementina; Höger, Yesli

    2017-06-01

    The aims of this study were to test the relationships between food neophobia, satisfaction with food-related life and food technology neophobia, distinguishing consumer segments according to these variables and characterizing them according to willingness to purchase food produced with novel technologies. A survey was conducted with 372 university students (mean aged=20.4years, SD=2.4). The questionnaire included the Abbreviated version of the Food Technology Neophobia Scale (AFTNS), Satisfaction with Life Scale (SWLS), and a 6-item version of the Food Neophobia Scale (FNS). Using confirmatory factor analysis, it was confirmed that SWFL correlated inversely with FNS, whereas FNS correlated inversely with AFTNS. No relationship was found between SWFL and AFTNS. Two main segments were identified using cluster analysis; these segments differed according to gender and family size. Group 1 (57.8%) possessed higher AFTNS and FNS scores than Group 2 (28.5%). However, these groups did not differ in their SWFL scores. Group 1 was less willing to purchase foods produced with new technologies than Group 2. The AFTNS and the 6-item version of the FNS are suitable instruments to measure acceptance of foods produced using new technologies in South American developing countries. The AFTNS constitutes a parsimonious alternative for the international study of food technology neophobia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Integration of Modern Information Technologies in the Field of Financial Accounting

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2011-11-01

    Full Text Available Financial accounting activities are currently influenced as many other important areas that characterize and surrounds the activities within each economic entity, the avalanche of modern information technologies, which are able to improve specific business processes and to ensure future business success. Approach analysis of the impact of new technologies on this field should be so as a starting point to identify the opportunities and the benefits they would bring to specific activities. Information and communication technologies are in use both at the individual level and at the organizational level with the flexibility of the increasingly high, using a huge volume of information that financial accounting with direct impact on all human activities. Basically, it has already made the passage to a new stage:the global network society, whose main features are digitizing and interconnectivity. In this sense, this paper has as its main objective of examining the impact of modern information technologies may have on the financial accounting domain and the identification and submission directions for their integration within organizations.

  16. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    Science.gov (United States)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  17. Multi-scale MHD analysis of heliotron plasma in change of background field

    International Nuclear Information System (INIS)

    Ichiguchi, K.; Sakakibara, S.; Ohdachi, S.; Carreras, B.A.

    2012-11-01

    A partial collapse observed in the Large Helical Device (LHD) experiments shifting the magnetic axis inwardly with a real time control of the background field is analyzed with a magnetohydrodynamics (MHD) numerical simulation. The simulation is carried out with a multi-scale simulation scheme. In the simulation, the equilibrium also evolves including the change of the pressure and the rotational transform due to the perturbation dynamics. The simulation result agrees with the experiments qualitatively, which shows that the mechanism is attributed to the destabilization of an infernal-like mode. The destabilization is caused by the change of the background field through the enhancement of the magnetic hill. (author)

  18. Special Technology Area Review on Field Programmable Gate Arrays (FPGAs) For Military Applications

    National Research Council Canada - National Science Library

    2005-01-01

    ...) on Field Programmable Gate Arrays (FPGAs) for Military Applications on August 3-4, 2004 at the Naval Postgraduate School in Monterey, California to address issues relevant to the use of this technology in military systems...

  19. Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Yip, Alan; Ng, Gavin; Guo Fei; Chen Zhikai; Roco, Mihail C.

    2003-01-01

    Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents

  20. Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field

    Science.gov (United States)

    Huang, Zan; Chen, Hsinchun; Yip, Alan; Ng, Gavin; Guo, Fei; Chen, Zhi-Kai; Roco, Mihail C.

    2003-08-01

    Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.

  1. Development and psychometric evaluation of the Impact of Health Information Technology (I-HIT) scale.

    Science.gov (United States)

    Dykes, Patricia C; Hurley, Ann; Cashen, Margaret; Bakken, Suzanne; Duffy, Mary E

    2007-01-01

    The use of health information technology (HIT) for the support of communication processes and data and information access in acute care settings is a relatively new phenomenon. A means of evaluating the impact of HIT in hospital settings is needed. The purpose of this research was to design and psychometrically evaluate the Impact of Health Information Technology scale (I-HIT). I-HIT was designed to measure the perception of nurses regarding the ways in which HIT influences interdisciplinary communication and workflow patterns and nurses' satisfaction with HIT applications and tools. Content for a 43-item tool was derived from the literature, and supported theoretically by the Coiera model and by nurse informaticists. Internal consistency reliability analysis using Cronbach's alpha was conducted on the 43-item scale to initiate the item reduction process. Items with an item total correlation of less than 0.35 were removed, leaving a total of 29 items. Item analysis, exploratory principal component analysis and internal consistency reliability using Cronbach's alpha were used to confirm the 29-item scale. Principal components analysis with Varimax rotation produced a four-factor solution that explained 58.5% of total variance (general advantages, information tools to support information needs, information tools to support communication needs, and workflow implications). Internal consistency of the total scale was 0.95 and ranged from 0.80-0.89 for four subscales. I-HIT demonstrated psychometric adequacy and is recommended to measure the impact of HIT on nursing practice in acute care settings.

  2. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    Science.gov (United States)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  3. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  4. Quantum critical scaling for field-induced quantum phase transition in a periodic Anderson-like model polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.J., E-mail: dinglinjie82@126.com; Zhong, Y.

    2017-07-15

    Highlights: • The quantum critical scaling is investigated by Green’s function theory. • The obtained power-law critical exponents (β, δ and α) obey the critical scaling relation α + β(1 + δ) = 2. • The scaling hypothesis equations are proposed to verify the scaling analysis. - Abstract: The quantum phase transition and thermodynamics of a periodic Anderson-like polymer chain in a magnetic field are investigated by Green’s function theory. The T-h phase diagram is explored, wherein a crossover temperature T{sup ∗} denoting the gapless phase crossover into quantum critical regimes, smoothly connects near the critical fields to the universal linear line T{sup ∗} ∼ (h − h{sub c,s}), and ends at h{sub c,s}, providing a new route to capture quantum critical point (QCP). The quantum critical scaling around QCPs is demonstrated by analyzing magnetization, specific heat and Grüneisen parameter Γ{sub h}, which provide direct access to distill the power-law critical exponents (β, δ and α) obeying the critical scaling relation α + β(1 + δ) = 2, analogous to the quantum spin system. Furthermore, scaling hypothesis equations are proposed to check the scaling analysis, for which all the data collapse onto a single curve or two independent branches for the plot against an appropriate scaling variable, indicating the self-consistency and reliability of the obtained critical exponents.

  5. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  6. Parental Perceptions and Recommendations of Computing Majors: A Technology Acceptance Model Approach

    Science.gov (United States)

    Powell, Loreen; Wimmer, Hayden

    2017-01-01

    Currently, there are more technology related jobs then there are graduates in supply. The need to understand user acceptance of computing degrees is the first step in increasing enrollment in computing fields. Additionally, valid measurement scales for predicting user acceptance of Information Technology degree programs are required. The majority…

  7. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  8. A new scaling for divertor detachment

    Science.gov (United States)

    Goldston, R. J.; Reinke, M. L.; Schwartz, J. A.

    2017-05-01

    The ITER design, and future reactor designs, depend on divertor ‘detachment,’ whether partial, pronounced or complete, to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. It would be valuable to have a measure of the difficulty of achieving detachment as a function of machine parameters, such as input power, magnetic field, major radius, etc. Frequently the parallel heat flux, estimated typically as proportional to P sep/R or P sep B/R, is used as a proxy for this difficulty. Here we argue that impurity cooling is dependent on the upstream density, which itself must be limited by a Greenwald-like scaling. Taking this into account self-consistently, we find the impurity fraction required for detachment scales dominantly as power divided by poloidal magnetic field. The absence of any explicit scaling with machine size is concerning, as P sep surely must increase greatly for an economic fusion system, while increases in the poloidal field strength are limited by coil technology and plasma physics. This result should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. Nonetheless, it suggests that higher magnetic field, stronger shaping, double-null operation, ‘advanced’ divertor configurations, as well as alternate means to handle heat flux such as metallic liquid and/or vapor targets merit greater attention.

  9. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  10. Evaluation of the field-scale cation exchange capacity of Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.I.

    2003-02-01

    Three-dimensional simulations of unsaturated flow, transport, and multi-component, multi-site cation exchange in the vadose zone were used to analyze the migration of a plume resulting from a leak of the SX-115 tank at the Hanford site, USA. The match within about 0.5 meters of the positions of retarded sodium and potassium fronts suggests that the laboratory-derived parameters may be used in field-scale simulations of radionuclide migration at the Hanford site.

  11. The Developing Field of Technology Education: A Review to Look Forward

    Science.gov (United States)

    Jones, Alister; Buntting, Cathy; de Vries, Marc J.

    2013-01-01

    This paper attempts to review the development of technology education over the last 20-25 years. The purpose is to reflect on how far the field has come and where it might go to, including what questions need to be considered in its ongoing development. The data for this paper draw on our work in developing "The International Handbook of Research…

  12. The Role of Water Governance and Irrigation Technologies in Regional-Scale Water Use and Consumption in the US West

    Science.gov (United States)

    Lammers, R. B.; Grogan, D. S.; Frolking, S. E.; Proussevitch, A. A.; Zuidema, S.; Fowler, L.; Caccese, R. T.; Peklak, D. L.; Fisher-Vanden, K.

    2017-12-01

    Water management in the Western USA is challenged by the demands of an increased population, ecological needs and changing values for water use, and a broadening of variability in climate, which together have created physical limits on water availability. The management of scarce water resources in this region is strictly constrained by the current legal structure (prior appropriation water rights) on one hand, and on the other assisted by the development of new, efficient water delivery and application technologies. Therefore, critical components for a complete understanding of the hydrological landscape include the institutions governing water rights, the technologies used for the highly water consumptive agricultural sector, and the role institutions and technologies play in altering when and where water is used and consumed by humans or reserved for the environment. To explore the sensitivities of water availability within the human-physical system, we present a method to incorporate water rights allocated under the prior appropriation doctrine for the western U.S. into the University of New Hampshire macro-scale Water Balance Model to capture the essential structure of these rights and their impacts on different economic sectors in Idaho and across the US West. In addition to legal structures, new irrigation technologies also alter the efficiency and timing of water use. We assess the impacts of a variety of technologies for both the delivery of water to the agricultural fields and the application methods for bringing water to the crops on consumptive and non-consumptive agricultural water use. We explore the impacts relative to natural climate variability, investigate the role that return flows from different agricultural technologies have on regional water balance, and examine the sensitivity of the entire system to extremes such as extended drought. These methods are sufficiently generalizable to be used by other hydrological models.

  13. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  14. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  15. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  16. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  17. You've got 'scale' : developments in well-bore remediation technology

    Energy Technology Data Exchange (ETDEWEB)

    Zemlak, Z. [Schlumberger Canada Ltd., Calgary, AB (Canada); Kortash, B. [Amoco Canada Petroleum Co. Ltd., Calgary, AB (Canada)

    2000-06-01

    The Kaybob field Beaver Hill Lake formation in Central Alberta is an aquifer driven maturing gas reservoir with high concentrations of iron sulfide scale. This scale, in combination with a time layered asphaltenes has an impact on production. Since the scale forms on tubular walls and results in corrosion of metal, it also increases risks during well intervention. Past techniques to remove the scale have not proven to be successful. This study presents a newly developed Blaster scale removal system to clean tubings. Blaster techniques use high-pressure jetting in combination with special abrasives to remove extremely hard, inert scales without damaging the tubing or completion components. Amoco Canada has been involved in the continual improvement and modification of the method since its introduction in 1998. To date, a total of 19 wells have been completed, providing valuable data about the method. It was concluded that although iron sulfide scale is common throughout the gas reservoir, the composition and solubility varies from well to well. Amoco Canada has found that Blaster techniques are a safe, low risk method of cleaning coiled tubulars to known drift parameters, in areas where scale and corrosion have been uncontrollable. 5 refs., 2 tabs., 1 fig.

  18. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, T. [Bureau of Ocean Energy Management (BOEM), Washington, DC (United States); Tegen, S. [Bureau of Ocean Energy Management (BOEM), Washington, DC (United States); Beiter, P. [Bureau of Ocean Energy Management (BOEM), Washington, DC (United States)

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  19. International cooperation in highly technological fields, especially in the field of aeronautics and astronautics and nuclear engineering

    International Nuclear Information System (INIS)

    Schunk, G.

    1982-01-01

    The subject of the study is the analysis of Research and Development (RandD) cooperation in highly technological fields. The study deals in particular with the reasons for cooperation, the aims and types of cooperation, with cooperating partners, as well as with alternative solutions and possible future developments. Special attention is given to those factors, which necessitate cooperation, and to aspects of possible alternatives and future developments. (orig.) [de

  20. Technology and Information Tool Preferences of Academics in the Field of Anaesthesiology.

    Science.gov (United States)

    Akkaya, Akcan; Bilgi, Murat; Demirhan, Abdullah; Kurt, Adem Deniz; Tekelioğlu, Ümit Yaşar; Akkaya, Kadir; Koçoğlu, Hasan; Tekçe, Hikmet

    2014-12-01

    Researchers use a large number of information technology tools from the beginning until the publication of a scientific study. The aim of the study is to investigate the technology and data processing tool usage preferences of academics who produce scientific publications in the field of anaesthesiology. A multiple-choice survey, including 18 questions regarding the use of technology to assess the preferences of academicians, was performed. PubMed has been the most preferred article search portal, and the second is Google Academic. Medscape has become the most preferred medical innovation tracking website. Only 12% of academicians obtain a clinical trial registration number for their randomized clinical research. In total, 28% of respondents used the Consolidated Standards of Reporting Trials checklist in their clinical trials. Of all participants, 21% was using Dropbox and 9% was using Google-Drive for sharing files. Google Chrome was the most preferred internet browser (32.25%) for academic purposes. English language editing service was obtained from the Scribendi (21%) and Textcheck (12%) websites. Half of the academics were getting help from their specialist with a personal relationship, 27% was doing it themselves, and 24% was obtaining professional assistance for statistical requirements. Sixty percent of the participants were not using a reference editing program, and 21% was using EndNote. Nine percent of the academics were spending money for article writing, and the mean cost was 1287 Turkish Liras/year. Academics in the field of anaesthesiology significantly benefit from technology and informatics tools to produce scientific publications.

  1. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    Science.gov (United States)

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  2. Implementing Large-Scale Instructional Technology in Kenya: Changing Instructional Practice and Developing Accountability in a National Education System

    Science.gov (United States)

    Piper, Benjamin; Oyanga, Arbogast; Mejia, Jessica; Pouezevara, Sarah

    2017-01-01

    Previous large-scale education technology interventions have shown only modest impacts on student achievement. Building on results from an earlier randomized controlled trial of three different applications of information and communication technologies (ICTs) on primary education in Kenya, the Tusome Early Grade Reading Activity developed the…

  3. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  4. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  5. Recent developments in radiation field control technology

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses

  6. Recent developments in radiation field control technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.

  7. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales

    OpenAIRE

    Austin, ?sa N.; Hansen, Joakim P.; Donadi, Serena; Ekl?f, Johan S.

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal model...

  8. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Department de Fisica de PartIculas, University de Santiago de Compostela, 15782 Santiago, SPAIN (Spain); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2006-10-15

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 10{sup 18} to 10{sup 19}eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  9. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  10. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  11. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  12. Relevance of separation science and technology to nuclear fuel complex operations

    International Nuclear Information System (INIS)

    Rao, S.M.; Ojha, P.B.; Rajashri, M.; Mirji, K.V.; Kalidas, R.

    2004-01-01

    During the last three decades at Nuclear Fuel Complex (NFC), Hyderabad, the Science and Technology of separation to produce various reactor grade materials in tonnage quantity is being practiced in the fields of Zr/Hf, U and Nb/Ta. Apart from this, the separation science is also being used in the production of various high purity materials and in the analytical field. The separation science and technology that is used in the production and characterisation of reactor grade materials has many striking differences from that of the common metals. The relevance and significance of separation science in the field of nuclear materials arises mainly due to the harmful effects w.r.t corrosion property and absorption of neutron caused by the presence of impurities, that are to be brought down to ppm or sub ppm level. In many cases low separation factors, that too from a multi component system call for effective process control at every stage of the bulk production so as to get quality product consistently. This article brings out the importance of separation science and technology and various process standardisations/developments that have been carried out at NFC, starting from laboratory scale to pilot scale and up to industrial scale production in the case of (i) Uranium refining (ii) Zr-Hf separation (iii) Ta-Nb separation and (iv) High purity materials production. (author)

  13. Integrating iPad Technology in Earth Science K-12 Outreach Courses: Field and Classroom Applications

    Science.gov (United States)

    Wallace, Davin J.; Witus, Alexandra E.

    2013-01-01

    Incorporating technology into courses is becoming a common practice in universities. However, in the geosciences, it is difficult to find technology that can easily be transferred between classroom- and field-based settings. The iPad is ideally suited to bridge this gap. Here, we fully integrate the iPad as an educational tool into two…

  14. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  15. [Application of advanced engineering technologies to medical and rehabilitation fields].

    Science.gov (United States)

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed.

  16. Development and validation of the computer technology literacy self-assessment scale for Taiwanese elementary school students.

    Science.gov (United States)

    Chang, Chiung-Sui

    2008-01-01

    The purpose of this study was to describe the development and validation of an instrument to identify various dimensions of the computer technology literacy self-assessment scale (CTLS) for elementary school students. The instrument included five CTLS dimensions (subscales): the technology operation skills, the computer usages concepts, the attitudes toward computer technology, the learning with technology, and the Internet operation skills. Participants were 1,539 elementary school students in Taiwan. Data analysis indicated that the instrument developed in the study had satisfactory validity and reliability. Correlations analysis supported the legitimacy of using multiple dimensions in representing students' computer technology literacy. Significant differences were found between male and female students, and between grades on some CTLS dimensions. Suggestions are made for use of the instrument to examine complicated interplays between students' computer behaviors and their computer technology literacy.

  17. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  18. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    Science.gov (United States)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  19. Structure from Motion vs. the Kinect: Comparisons of River Field Measurements at the 10-2 to 102 meter Scales

    Science.gov (United States)

    Fonstad, M. A.; Dietrich, J. T.

    2014-12-01

    At the very smallest spatial scales of fluvial field analysis, measurements made historically in situ are often now supplemented, or even replaced by, remote sensing methods. This is particularly true in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range from millimeters up to hundreds of meters. Two recent approaches for remote mapping of river environments at the scales of historical in situ observations are (1) camera-based structure from motion (SfM), and (2) active patterned-light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches can produce topographic datasets over three to four orders of magnitude of spatial scale. Which approach is most useful? Previous studies have demonstrated that both SfM and the Kinect are precise and accurate over in situ field measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for our river measurement tasks. These metrics might include (1) the ease of field use, (2) which general environments are or are not amenable to measurement, (3) robustness to changing environmental conditions, (4) ease of data processing, and (5) cost. We test these metrics in a variety of bar-scale fluvial field environments, including a large-river cobble bar, a sand-bedded river point bar, and a complex mountain stream bar. The structure from motion approach is field-equipment inexpensive, is viable over a wide range of environmental conditions, and is highly spatially scalable. The approach requires some type of spatial referencing to make the data useful. The Kinect has the advantages of an almost real-time display of collected data, so problems can be detected quickly, being fast and easy to use, and the data are collected with arbitrary but metric coordinates, so absolute referencing isn't needed to use the data for many problems. It has the disadvantages of its light field

  20. Pilot-scale Biogas Plant for the Research and Development of New Technologies

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2012-09-01

    Full Text Available Тhe paper describes a new pilot-scale biogas plant of the Institute of Microbiology - Bulgarian Academy of Sciences. The equipment includes: a 100 L pilot bioreactor, a 200 L metal gasholder, sensors, actuators, a two-level automatic process monitoring and control system, a fire and explosion protection system and two web cameras. The monitoring and control system is composed on the lower level of a controller Beckhoff, and on the higher level - of a PC with specialized software (under development. The pilot biogas plant is designed to work out and scale up various anaerobic digestion (AD technologies based on different types of feedstock. All the data will be stored on the PC for quick reference and possibly data mining, parameter identification and verification of different AD mathematical models.

  1. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  2. Personal Professional Development Efforts of Science and Technology Teachers in Their Fields

    Science.gov (United States)

    Bilgin, Aysegul; Balbag, Mustafa Zafer

    2018-01-01

    The aim of this study is to examine the personal professional development efforts of science and technology teachers in their fields with regard to some variables. These variables were determined as gender, year of seniority and sufficiency level of the laboratory equipment. Moreover, the relation between the actual efforts exerted by science and…

  3. Model of educational field on the basis of technology of knowledge management

    Directory of Open Access Journals (Sweden)

    Виталий Алексеевич Кудинов

    2010-03-01

    Full Text Available The paper presents an approach to the description of educational field-based technologies for knowledge management. Two level system of knowledge representation, including the concepts of knowledge and training facilities is proposed. Such organization allows corporate knowledge management portal to easily adapt training to the individual needs of a learner.

  4. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

    Science.gov (United States)

    Emerson, Hilary P.; Hart, Ashley E.; Baldwin, Jonathon A.; Waterhouse, Tyler C.; Kitchens, Christopher L.; Mefford, O. Thompson; Powell, Brian A.

    2014-02-01

    In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

  5. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  6. Optical security based on near-field processes at the nanoscale

    International Nuclear Information System (INIS)

    Naruse, Makoto; Tate, Naoya; Ohtsu, Motoichi

    2012-01-01

    Optics has been playing crucial roles in security applications ranging from authentication and watermarks to anti-counterfeiting. However, since the fundamental physical principle involves optical far-fields, or propagating light, diffraction of light causes severe difficulties, for example in device scaling and system integration. Moreover, conventional security technologies in use today have been facing increasingly stringent demands to safeguard against threats such as counterfeiting of holograms, requiring innovative physical principles and technologies to overcome their limitations. Nanophotonics, which utilizes interactions between light and matter at the nanometer scale via optical near-field interactions, can break through the diffraction limit of conventional propagating light. Moreover, nanophotonics has some unique physical attributes, such as localized optical energy transfer and the hierarchical nature of optical near-field interactions, which pave the way for novel security functionalities. This paper reviews the physical principles and describes some experimental demonstrations of systems based on nanophotonics with respect to security applications such as tamper resistance against non-invasive and invasive attacks, hierarchical information retrieval, hierarchical holograms, authentication, and traceability. (paper)

  7. SCALES: SEVIRI and GERB CaL/VaL area for large-scale field experiments

    Science.gov (United States)

    Lopez-Baeza, Ernesto; Belda, Fernando; Bodas, Alejandro; Crommelynck, Dominique; Dewitte, Steven; Domenech, Carlos; Gimeno, Jaume F.; Harries, John E.; Jorge Sanchez, Joan; Pineda, Nicolau; Pino, David; Rius, Antonio; Saleh, Kauzar; Tarruella, Ramon; Velazquez, Almudena

    2004-02-01

    The main objective of the SCALES Project is to exploit the unique opportunity offered by the recent launch of the first European METEOSAT Second Generation geostationary satellite (MSG-1) to generate and validate new radiation budget and cloud products provided by the GERB (Geostationary Earth Radiation Budget) instrument. SCALES" specific objectives are: (i) definition and characterization of a large reasonably homogeneous area compatible to GERB pixel size (around 50 x 50 km2), (ii) validation of GERB TOA radiances and fluxes derived by means of angular distribution models, (iii) development of algorithms to estimate surface net radiation from GERB TOA measurements, and (iv) development of accurate methodologies to measure radiation flux divergence and analyze its influence on the thermal regime and dynamics of the atmosphere, also using GERB data. SCALES is highly innovative: it focuses on a new and unique space instrument and develops a new specific validation methodology for low resolution sensors that is based on the use of a robust reference meteorological station (Valencia Anchor Station) around which 3D high resolution meteorological fields are obtained from the MM5 Meteorological Model. During the 1st GERB Ground Validation Campaign (18th-24th June, 2003), CERES instruments on Aqua and Terra provided additional radiance measurements to support validation efforts. CERES instruments operated in the PAPS mode (Programmable Azimuth Plane Scanning) focusing the station. Ground measurements were taken by lidar, sun photometer, GPS precipitable water content, radiosounding ascents, Anchor Station operational meteorological measurements at 2m and 15m., 4 radiation components at 2m, and mobile stations to characterize a large area. In addition, measurements during LANDSAT overpasses on June 14th and 30th were also performed. These activities were carried out within the GIST (GERB International Science Team) framework, during GERB Commissioning Period.

  8. The oxidized porous silicon field emission array

    International Nuclear Information System (INIS)

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Trost, H.J.

    1993-01-01

    The goal of developing a highly efficient microwave power source has led the authors to investigate new methods of electron field emission. One method presently under consideration involves the use of oxidized porous silicon thin films. The authors have used this technology to fabricate the first working field emission arrays from this substance. This approach reduces the diameter of an individual emitter to the nanometer scale. Tests of the first samples are encouraging, with extracted electron currents to nearly 1 mA resulting from less than 20 V of pulsed DC gate voltage. Modulated emission at 5 MHz was also observed. Developments of a full-scale emission array capable of delivering an electron beam at 18 GHz of minimum density 100 A/cm 2 is in progress

  9. Rehabilitation of Mature Gas Fields in Romania: Success Through Integration of Management Processes and New Technology

    Directory of Open Access Journals (Sweden)

    Louboutin Michel

    2004-09-01

    Full Text Available Nature oil and gas fields are difficult to rehabilitate effectively because of the economics of declining production. Many fields are abandoned prematurely when their life could be prolonged significantly through application of new technology. Romgaz (a national exploration and production company and Schlumberger (an integrated oilfield services company developed a new business model to overcome these obstacles. The key to success of this model, which is being applied to gas fields in the Transylvanian basin of Romania, is the shared risk and shared reward for the two companies. Integrated management processes addressing the complete system from reservoir to wellbore to surface/transmission facilities and application of new technology (logging, perforation, etc. have resulted in multifold increases in production.

  10. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    OpenAIRE

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  11. Beyond the plot: technology extrapolation domains for scaling out agronomic science

    Science.gov (United States)

    Rattalino Edreira, Juan I.; Cassman, Kenneth G.; Hochman, Zvi; van Ittersum, Martin K.; van Bussel, Lenny; Claessens, Lieven; Grassini, Patricio

    2018-05-01

    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.

  12. Report on the surveys in fiscal 1999 on foundations for establishing industrial technology strategies. Technological strategies by fields (Human life engineering field); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu gijutsu senryaku (ningen seikatsu kogaku bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the surveys in fiscal 1999 on establishing industrial technology strategies in the human life engineering field. The human life engineering is an engineering to identify scientifically humans and their living characteristics, and apply them to products, systems, and environment building. Market size for the human living related industries is more than two trillion yen, whose annual growth rate is 9%. Discussions were given on problems that hinder technological innovations in this field. What lacks is the comprehensive strategic conception, and insufficient is the structural approach by related organizations. Technological systems for designing have not been established, and technological foundations relative to human characteristics and living characteristics are not well arranged. Methods to evaluate research achievements have not been established, and the works on proposing international standards are weak. Insufficiency in human resource nurturing is also an issue. As the future prospect and strategies, such fields as psychology, recognition, and sensitivity are important for the seeds technologies, and so are the measurement of supportive technologies, and information processing. The human living engineering aims at supporting safety, freedom from care, and high-quality life, realizing industrial and technological competitiveness of the world top groups, and forming societies with activity and high quality. (NEDO)

  13. Preliminary design and estimate of capital and operating costs for a production scale application of laser decontamination technology

    International Nuclear Information System (INIS)

    Pang, Ho-ming; Edelson, M.C.

    1994-01-01

    The application of laser ablation technology to the decontamination of radioactive metals, particularly the surfaces of equipment, is discussed. Included is information related to the design, capital and operating costs, and effectiveness of laser ablation technology, based on commercial excimer and Nd:YAG lasers, for the decontamination of production scale equipment

  14. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    Science.gov (United States)

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  16. PathlinesExplorer — Image-based exploration of large-scale pathline fields

    KAUST Repository

    Nagoor, Omniah H.

    2015-10-25

    PathlinesExplorer is a novel image-based tool, which has been designed to visualize large scale pathline fields on a single computer [7]. PathlinesExplorer integrates explorable images (EI) technique [4] with order-independent transparency (OIT) method [2]. What makes this method different is that it allows users to handle large data on a single workstation. Although it is a view-dependent method, PathlinesExplorer combines both exploration and modification of visual aspects without re-accessing the original huge data. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathline segments. With this view-dependent method, it is possible to filter, color-code, and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  17. [Current advances and future prospects of genome editing technology in the field of biomedicine.

    Science.gov (United States)

    Sakuma, Tetsushi

    Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.

  18. Scaling law in free walking of mice in circular open fields of various diameters.

    Science.gov (United States)

    Shoji, Hiroto

    2016-03-01

    Open-field tests are routinely used to study locomotor activity in rodents. I studied the effects of apparatus size on rodent locomotor activity, specifically with respect to how resting and walking periods are interwoven. I explored the open-field behavior of mice utilizing circular open fields of various diameters. When the diameter of the test apparatus was greater than 75 cm, the durations of the resting and moving periods of free walking behavior obeyed bounded power-law distribution functions. I found that the properties of the scaling exponents and model selection became similar for test apparatus diameters greater than 75 cm. These results can provide a guide for the selection of the size of the test apparatus for use in the study of the open-field behavior of rodents.

  19. Near field communications technology and the potential to reduce medication errors through multidisciplinary application

    LENUS (Irish Health Repository)

    O’Connell, Emer

    2016-07-01

    Patient safety requires optimal management of medications. Electronic systems are encouraged to reduce medication errors. Near field communications (NFC) is an emerging technology that may be used to develop novel medication management systems.

  20. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-01-01

    Full Text Available The Fuling shale gas field in the Sichuan Basin, as a national shale gas demonstration area, is the largest commercially developed shale gas field in the world except those in North America. The fracturing technology in the mode of “well factory” has been applied widely in the gas field, but it is necessary to perform further investigation on the way to evaluate effectively the fracturing effect of multi-well platform “well factory” and the distribution laws of its induced fracture networks. In this paper, the fractures induced by the “well factory” at the JY 48 platform were real-time monitored by a surface–downhole combined microseismic monitoring technology. The geometric size and extension direction of artificial fractures induced in the model of “well factory” fracturing in the Jiaoshiba block of Fuling Shale Gas Field were preliminarily understood. Moreover, the fracturing parameters under the mode of “well factory” were recognized by using the comprehensive interpretation results of surface–downhole combined microseismic monitoring technology, together with the SRV fracturing prediction chart. Eventually, the distribution laws of artificial fractures during the “well-factory-zipper” fracturing in the Fuling Shale Gas Field were clarified definitely. This paper provides guidance for the optimization of fracturing parameters at the later stage.