WorldWideScience

Sample records for technologies cummins reported

  1. Biodiesel/Cummins CRADA Report

    Science.gov (United States)

    2014-07-01

    dedicated totes). This change provided uncontaminated containers to transport the delivery of biodiesel to the ANT, and better control for dosing as...emissions calculations. Each approach makes assumptions for farming practices, the biodiesel production process, and transportation and distribution... Biodiesel /Cummins CRADA Report Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION--TEST REPORT OF MOBILE SOURCE EMISSION CONTROL DEVICES, CUMMINS EMISSION SOLUTIONS AND CUMMINS FILTRATION DIESEL OXIDATION CATALYST AND CLOSED CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    The U.S. EPA has created the Environmental Technology Verification (ETV) Program. ETV seeks to provide high-quality, peer-reviewed data on technology performance. The Air Pollution Control Technology (APCT) Verification Center, a center under the ETV Program, is operated by Res...

  3. Development of a Cummins ISL Natural Gas Engine at 1.4g/bhp-hr NOx + NMHC Using PLUS Technology: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, M. M.

    2005-07-01

    NREL subcontractor report describes Cummins Westport, Inc.'s development of an 8.9 L natural gas engine (320 hp, 1,000 ft-lb peak torque) with CARB emissions certification of 1.4 g/bhp-hr NOx + NMHC.

  4. Cummins Light Truck Diesel Engine Progress Report

    International Nuclear Information System (INIS)

    John H. Stang

    2000-01-01

    The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution

  5. Final Report of a CRADA Between Pacific Northwest National Laboratory and Cummins, Incorporated (CRADA No.PNNL/283): “Enhanced High and Low Temperature Performance of NOx Reduction Catalyst Materials”

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szanyi, Janos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Yong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles HF [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howden, Ken [US Dept. of Energy, Washington, DC (United States); Currier, Neal [Cummins Inc., Columbus, IN (United States); Kamasamudram, Krishna [Cummins Inc., Columbus, IN (United States); Kumar, Ashok [Cummins Inc., Columbus, IN (United States); Li, J. [Cummins Inc., Columbus, IN (United States); Stafford, R. J. [Cummins Inc., Columbus, IN (United States); Yezerets, Aleksey [Cummins Inc., Columbus, IN (United States); Luo, J. [Cummins Inc., Columbus, IN (United States); Chen, H. Y. [Johnson Matthey Company, Royston (United Kingdom)

    2016-09-01

    of the most daunting challenges in R&D on new catalyst materials and processes that can effectively eliminate emissions at these quite low exhaust temperatures. This project has two clear focuses: (1) development of potassium-based high-temperature NSR materials, and studying their key causes of deactivation and methods of regeneration. By comparing results obtained on ‘Simple Model’ Pt-K/Al2O3 with ‘Enhanced Model’ Pt-K/ MgAlOx and Pt-K/TiO2 materials, we have developed an understanding of the role of various additives on the deactivation and regeneration processes. Studies have also been performed on the real commercial samples being used in a Dodge Ram truck with a Cummins diesel emission control system. However, the results about these ‘commercial samples’ will not be covered in this report. Following a brief description of our experimental approach, we will present a few highlights from some of the work performed in this CRADA with more details about these results provided in publications/reports/presentations lists presented at the end of the report. (2) for the Cu and Fe/Chabazite SCR catalysts, since these are so newly developed and references from open literature and industry are nearly absent, our work started from zeolite synthesis and catalyst synthesis methodology development, before research on their low- and high-temperature performance, deactivation, regeneration, etc. was conducted. Again, most work reported here is based on our “model” catalysts synthesized in-house. Work done on the ‘commercial samples’ will not be covered in this report.

  6. 2017 NMC Technology Outlook for Nordic Schools A Horizon Project Regional Report

    DEFF Research Database (Denmark)

    2017-01-01

    research effort between the New Media Consortium (NMC) and the Norwegian Centre for ICT in Education to inform Nordic school leaders and decision-makers about significant developments in technologies supporting teaching, learning, and creative inquiry in primary and secondary education across Denmark......Adams Becker, S., Cummins, M., Freeman, A., and Rose, K. (2017). 2017 NMC Technology Outlook for Nordic Schools: A Horizon Project Regional Report. Austin, Texas: The New Media Consortium. The 2017 NMC Technology Outlook for Nordic Schools: A Horizon Project Regional Report reflects a collaborative...

  7. Quality of life research: interview with Professor Robert Cummins

    Directory of Open Access Journals (Sweden)

    Robert Cummins

    2013-09-01

    Full Text Available Health-related quality of life (HRQOL is a fundamental concept in the field of clinical medicine and has been studied during the last years by psychologists, sociologists, economists and managers. The concept of HRQOL includes those aspects of overall QOL that can be indicated to have an impact on patients’ health, either physical or psychological. Concerning the individuals, this incorporates physical and mental health cognitions, including sociodemographic factors, sexual functioning, fatigue, sleep disorders and functional status. One of the most eminent experts in the world in the field of QOL is Prof. Robert Cummins [Professor of Psychology at Deakin University in Australia (School of Psychology, Deakin University, 221 Burwood Highway, Victoria 3125 Melbourne, Australia. E-mail: robert.cummins@deakin.edu.au] who kindly accepted to answer our questions in the con- text of this special edition.

  8. Cummins L10G in Kenworth truck 'viable today'

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    As the culmination of five years of developmental work by Cummins Engines, BC Research Inc., and BC Gas Utility Ltd., a T800 Kenworth truck was outfitted with a new Cummins L10G natural gas engine, and two lightweight fully -wrapped Dynetek cylinders; it was pronounced to be 'a viable clean truck today'. The L10G spark-ignited engine operates at a relatively high peak efficiency of 37 per cent and is commercially available to meet the current California Air Resources Board heavy duty vehicle emission standards without the use of a catalytic converter. The L10G engine produces no particulate emissions, a very significant advantage, in view of the fact that particulate emissions have been identified as major contributors to respiratory ailments

  9. Ceramics Technology Project database: September 1991 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project`s semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  10. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  11. 2003 Scientific Technological Report

    International Nuclear Information System (INIS)

    Prado Cuba, A.; Gayoso Caballero, C.; Robles Nique, A.; Olivera Lescano, P.

    2004-08-01

    This annual scientific-technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2003. This report includes 54 papers divided in 9 subject matters: physics and nuclear chemistry, nuclear engineering, materials science, radiochemistry, industrial applications, medical applications, environmental applications, protection and radiological safety, and management aspects

  12. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  13. Bridge technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. As LANs have proliferated, new technologies and system concepts have come to the fore. One of the key issues is how to interconnect networks. One means of interconnection is to use a 'bridge'. Other competing technologies are repeaters, routers, and gateways. Bridges permit traffic isolation, connect network segments together and operate at the MAC layer. Further, because they operate at the MAC layer, they can handle a variety of protocols such as TCP/IP, SNA, and X.25. This report focuses on the specific technology of bridging two netw

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  15. Scientific Technological Report 2002

    International Nuclear Information System (INIS)

    Gayoso C, C.; Cuya G, T.; Robles N, A.; Prado C, A.

    2003-07-01

    This annual scientific-technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2002. This report includes 58 papers divided in 10 subject matters: physics and nuclear chemistry, nuclear engineering, materials, industrial applications, biological applications, medical applications, environmental applications, protection and radiological safety, nuclear safety, and management aspects

  16. New energy technologies. Report

    International Nuclear Information System (INIS)

    2004-01-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  17. New energy technologies report

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  18. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  19. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  20. INNOVATIVE TECHNOLOGY VERIFICATION REPORT " ...

    Science.gov (United States)

    The RemediAidTm Total Petroleum Hydrocarbon Starter Kit (RemediAidTm kit) developed by CHEMetries, Inc. (CHEMetrics), and AZUR Environmental Ltd was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The purpose of the demonstration was to collect reliable performance and cost data for the RemediAid Tm kit and six other field measurement devices for total petroleum hydrocarbons (TPH) in soil. In addition to assessing ease of device operation, the key objectives of the demonstration included determining the (1) method detection limit, (2) accuracy and precision, (3) effects of interferents and soil moisture content on TPH measurement, (4) sample throughput, and (5) TPH measurement costs for each device. The demonstration involved analysis of both performance evaluation samples and environmental samples collected in five areas contaminated with gasoline, diesel, lubricating oil, or other petroleum products. The performance and cost results for a given field measurement device were compared to those for an off-site laboratory reference method,

  1. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  2. Scientific and Technological Report 2004

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Solis Veliz, Jose; Rodriguez R, Juan

    2005-08-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2004. This report includes 48 papers divided in 6 subject matters, such as: materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects

  3. Technology Deployment Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  4. 2010 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  5. 2008 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  6. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  7. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  8. Scientific and Technological Report 2010

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Santiago Contreras, Julio; Solis Veliz, Jose; Lopez Moreno, Edith

    2011-10-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2010. This report includes 41 papers divided in 8 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, scientific instrumentation and management aspects. It also includes annexes. (APC)

  9. Scientific and Technological Report 2005

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Rodriguez R, Juan; Solis Veliz, Jose

    2006-07-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2005. This report includes 38 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects

  10. Scientific and Technological Report 2011

    International Nuclear Information System (INIS)

    Lopez Milla, Alcides; Prado Cuba, Antonio; Agapito Panta, Juan; Montoya Rossi, Eduardo

    2013-01-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2011. This report includes 30 papers divided in 8 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, scientific instrumentation and management aspects. It also includes annexes. (APC)

  11. Scientific and Technological Report 2009

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Santiago Contreras, Julio; Lopez Milla, Alcides; Ramos Trujillo, Bertha

    2010-11-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2009. This report includes 46 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. It also includes annexes. (APC)

  12. Scientific and Technological Report 2006

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Solis Veliz, Jose; Osores Rebaza, Jose

    2007-08-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2006. This report includes 54 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. (APC)

  13. Scientific and Technological Report 2008

    International Nuclear Information System (INIS)

    Prado Cuba, A.; Santiago Contreras, J.; Rojas Tapia, J.; Ramos Trujillo, B.; Vela Mora, M.; Castro Gamero, E.

    2010-04-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2008. This report includes 60 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. It also includes annexes. (APC)

  14. 2012 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  15. 2015 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  16. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This annual report--now in its tenth year--provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation trends and then covers an array of industry and technology trends. The report also discusses project performance, wind turbine prices, project costs, operations and maintenance expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments, expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments.

  17. AEA Technology safety report 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    AEA Technology is the trading name of the United Kingdom Atomic Energy Authority. Work in support of nuclear power at home and abroad continues to be an important part of our business but as nuclear power has matured AEA Technology has looked beyond its traditional role to other markets worldwide. We are a major commercial enterprise, with an annual turnover of Pound 450 million, selling a variety of technical services and products to customers worldwide. The scope of the business lies in the closely related fields of energy, environment and safety, targeted at both nuclear and non-nuclear markets. We also have a major role in providing innovative technology solutions to assist manufacturing industry. The 1990 report on safety within the Authority is presented here. (author).

  18. AEA Technology safety report 1990

    International Nuclear Information System (INIS)

    1991-12-01

    AEA Technology is the trading name of the United Kingdom Atomic Energy Authority. Work in support of nuclear power at home and abroad continues to be an important part of our business but as nuclear power has matured AEA Technology has looked beyond its traditional role to other markets worldwide. We are a major commercial enterprise, with an annual turnover of Pound 450 million, selling a variety of technical services and products to customers worldwide. The scope of the business lies in the closely related fields of energy, environment and safety, targeted at both nuclear and non-nuclear markets. We also have a major role in providing innovative technology solutions to assist manufacturing industry. The 1990 report on safety within the Authority is presented here. (author)

  19. JPRS Report, Science & Technology: Europe

    Science.gov (United States)

    1989-07-17

    Construction of First Technological Park Begins [Barcelona REVISTA DE ROBOTICA , Mar 89] .... 8 European Firms Strive To Increase Competitiveness 8...Madrid University, Siemens Cooperation on AI Project Reported [Barcelona REVISTA DE ROBOTICA , Mar 89] .....: 21 ENERGY FRG’s Kohl Outlines...Park Begins 36980224b Barcelona REVISTA DE ROBOTICA in Spanish Mär 89 p 24 [Text] Telescincro, Inc., laid the cornerstone of its new factory and

  20. 2016 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  1. 2013 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  2. 2008 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  3. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  4. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  5. 2011 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  6. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  7. 2008 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9

  8. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  9. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  10. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-03

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospects for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes

  11. Liquefaction technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A survey of coal liquefaction technology and analysis of projected relative performance of high potential candidates has been completed and the results are reported here. The key objectives of the study included preparation of a broad survey of the status of liquefaction processes under development, selection of a limited number of high potential process candidates for further study, and an analysis of the relative commercial potential of these candidates. Procedures which contributed to the achievement of the above key goals included definition of the characteristics and development status of known major liquefaction process candidates, development of standardized procedures for assessing technical, environmental, economic and product characteristics for the separate candidates, and development of procedures for selecting and comparing high potential processes. The comparisons were made for three production areas and four marketing areas of the US. In view of the broad scope of the objectives the survey was a limited effort. It used the experience gained during preparation of seven comprehensive conceptual designs/economic evaluations plus comprehensive reviews of the designs, construction and operation of several pilot plants. Results and conclusions must be viewed in the perspective of the information available, how this information was treated, and the full context of the economic comparison results. Comparative economics are presented as ratios; they are not intended to be predictors of absolute values. Because the true cost of constructing and operating large coal conversion facilities will be known only after commercialization, relative values are considered more appropriate. (LTN)

  12. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  13. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-05-06

    Sought ( Nobuaki Teraoka; PUROMETEUSU, Nov 87) 62 IPCR Molecular Laser Uranium Enrichment Method Discussed (GENSHIRYOKU IINKAI GEPPO, Nov 87... Kobayashi ) Investigation of Tokyo University character of winter (Professor Tatsuo thunder on Japan Kawamura, Sea side by new Assistant...PUROMETEUSU in Japanese Nov 87 pp 78-81 [Article by Nobuaki Teraoka, Technology Development Division, Atomic Energy Bureau, Science and Technology Agency

  14. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% to 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of

  15. JPRS Report. Science & Technology: Japan.

    Science.gov (United States)

    1988-12-09

    Molding Technology [Takashi Kasai , Akihiko Hirota; KIKAI TO KOGU, May 88] 106 Injection Molding Technology [Toshiyuki Iwahashi; KIKAI TO KOGU, May 88...Development Shu Isa -Planning Office Fumio Sato —Control Office Shizuka Kudo - Patent Office Taro Inoue —Technical Information Office Takeshi...the possibility that a more serious situation could occur. Fumio Kaneko, who is in charge of the marine sector, joined the company in 1971 after

  16. GAIN Technology Workshops Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  17. GAIN Technology Workshops Summary Report

    International Nuclear Information System (INIS)

    Braase, Lori Ann

    2016-01-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  18. Evaluation of Smart Gun Technologies preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIII, I--MAINTAINING THE FUEL SYSTEM (PART III), CUMMINS DIESEL ENGINES, II--RADIATOR SHUTTER SYSTEM.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…

  20. 2017 Building Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-11-01

    The 2017 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers for the 109 Building Technologies Office (BTO) projects presented at the 2017 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.

  1. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Wiser, Mark Bolinger

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  2. JPRS Report, Science & Technology, China

    Science.gov (United States)

    1992-06-18

    Chile 1987 0.5 Thailand 1985 0.3 JPRS-CST-92-012 18 June 1992 SCIENCE & TECHNOLOGY POLICY 25 (3) Criteria For Testing Government Disbursements...8217.*, •> ■yiH’v;,!- ! \\%v.7X’>A->:-:-.-:v^>.*>>;v< vih >x-«v.; ’mmii The new Chinese Super VGA Card, as shown above, was developed by the Beijing Legend

  3. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1987-10-27

    much attention needs to be focused on the possibilities for the societal acceptance of AI technology and the problem of industrial and economic ...techni- cian training methods, AI implementation and economic benefits, Interna- tional problems) 2. Relationships with society (Examples: Promoting...also be extended. With respect to the EICE, which emulates MPU functions, the EICE-ID was publicized in April, 1987. This defines the ZICE function

  4. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  5. JPRS Report, Science & Technology Europe

    Science.gov (United States)

    1988-07-27

    commercialisation . Japan and the United States have become the undisputed world cham- pions in computer-generated images and image synthe- sis. Yet this...Aachen (FRG), and is benefiting from support under the EEC-COMETT [Community Program for Education and Teaching in the Field of Technology] programme...nications], DGA [General Delegation to Armament], Ministry of Industry, Ministry of Research and Higher Education ) and 15 percent by industrial

  6. JPRS Report, Science & Technology, China

    Science.gov (United States)

    1991-12-23

    Petrochemical Corp. Completes First Integrated Network [JISUANJI SHIJIE, 18 Sep 91] ............ 27 Shanghai To Build FTTH CATV Network [Xiao Qiang; JISUANJI...long-wave fiber optic communi- cations. Shanghai To Build FTTH CATV Network 92P60054D Beijing JISUANJI SHIJIE [CHINA First 60-km Unrepeatered Bundle...technology is now moving into Cable Operational"] the home ( FTTH , or fiber-to-the-home), with the upcoming construction in the Shanghai area’s Jiading [Summary

  7. China Report, Science and Technology

    Science.gov (United States)

    1985-06-11

    ZHIYEBING ZAZHI tCHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES!, No 1, 20 Feb 85 148 YICHUAN XUEBAO TACTA GENETICA SINICAJ, No 1...markets, all cities and counties should enthusiastically create conditions , substanti- ate strength, and augment the equipment to gradually develop... conditions should concentrate certain production capacity and certain technological force on developing new tech- nology and set up and improve the

  8. Innovative Technology Summary Report (ITSR)

    International Nuclear Information System (INIS)

    1999-01-01

    This section summarizes the demonstration of an Infrared-based Non-Intrusive Liquid Level Detection Technology (NLLDT) at the 221-U Facility located within the Hanford site. This demonstration was conducted by Infrared, Inc. of Reno Nevada in conjunction with Bechtel Hanford Inc. (Environmental Restoration Contractor) and DOE Engineers. The Infrared Imaging System demonstrated by Infrared, Inc. provides an attractive alternative to the baseline technology which employs mechanical methods of opening vessels to detect liquid level. An Infrared Imaging Systems is able to exploit the variations in physical properties of tanks, vessels and piping systems and the enclosed liquid and air to produce clearly defined locations of liquids, if they exist. For decontamination and commissioning (D and D) projects, the use of the NLLDT System to detect liquids in vessels eliminates the need to physically open and inspect these vessels. Risks to workers associated with gaining access to these type objects and the possible exposure to radioactive or contaminated materials can nearly be eliminated. This demonstration was conducted with the goal of characterizing a number of target vessels located on the deck of the 221 U Facility. This technology is suitable for DOE nuclear facilities D and D sites or similar public or commercial sites that must be decontaminated

  9. Philippine country report on radiation technology

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1993-01-01

    This report was presented during the First National Coordinators Meeting for Radiation Technology, held in Takasaki, Japan, 6-9 September 1993. The report was about the active involvement of Philippine Nuclear Research Institute (PNRI) in research and development on the application of radiation technology. Activities were on mutation breeding, food irradiation, radiation sterilization, wood-plastic combinations and radiation chemistry. The transfer of technology in the Philippines was supported and assisted by the UNDP/IAEA Industrial Project. With these technologies, many industries were interested in radiation processing

  10. Cone penetrometer: Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-04-01

    Cone penetrometer technology (CPT) provides cost-effective, real-time data for use in the characterization of the subsurface. Recent innovations in this baseline technology allow for improved access to the subsurface for environmental restoration applications. The technology has been improved by both industry and government agencies and is constantly advancing due to research efforts. The U.S. Department of Energy (DOE) Office of Science and Technology (formerly Technology Development) has contributed significantly to these efforts. This report focuses on the advancements made in conjunction with DOE's support but recognizes Department of Defense (DOD) and industry efforts

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  12. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  13. 2013 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  14. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  15. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  16. ISBE continuous technology forecasting reportsreport 2.

    OpenAIRE

    Ettrich, Rüdiger; Thanos, Dimitris; Butcher, Sarah; Kotrcova, Marcela; Stanford, Natalie; Goble, Carole; Oberthuer, Angela; Hoefer, Thomas

    2014-01-01

    This second continuous technology report is the outcome of the joint effort of the WP9 members and the Technology and Science Watch committee appointed by the steering committee appointed in April 2014. While the first report was designed to serve as a guide for building up the infrastructure, this second report takes into account the recommendations of the SAB that sees the possible role of the future infrastructure in fostering systems biology research by using existing experimental facilit...

  17. 2008 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  18. Instructional Technology in Brazil: A Status Report

    Science.gov (United States)

    Saettler, Paul

    1973-01-01

    A status report on the evolving conceptions of instructional technology and current applications in Brazil. A complementary purpose is to summarize those conditions which vitally influence the general characteristics of the Brazilian educational system and the nature of instructional technology in this major developing country of the world.…

  19. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  20. Nuclear Science and Technology Branch report 1977

    International Nuclear Information System (INIS)

    1977-12-01

    Research programs are reported for the following divisions: Physics, Chemical Technology, Materials, Engineering Research, Isotopes, Instrumentation and Control, Health Physics Research and Applied Maths and Computing. Staff responsible for each project are indicated

  1. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  2. 2016 Building Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2016-12-01

    The 2016 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers of the 67 BTO projects presented at the 2016 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.

  3. China nuclear science and technology report. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675∼CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  4. China nuclear science and technology report. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675{approx}CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  5. 2009 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  6. Smart gun technology requirements preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.; Brandt, D.J.; Tweet, K.D.

    1995-05-01

    Goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing user-recognizing-and-authorizing surety technologies. This project is funded by the National Institute of Justice. This document reports the projects first objective: to find and document the requirements for a user-recognizing-and-authorizing firearm technology that law enforcement officers will value. This report details the problem of firearm takeaways in law enforcement, the methodology used to develop the law enforcement officers` requirements, and the requirements themselves.

  7. Smart Gun Technology project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-05-01

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  8. China nuclear science and technology reports

    International Nuclear Information System (INIS)

    1987-01-01

    114 abstracts of nuclear science and technology reports, which were published in 1986-1987 in China, are collected. The subjects inclucled are: nuclear physics, nuclear medicine, radiochemistry, isotopes and their applications, reactors and nuclear power plants, radioactive protection, nuclear instruments etc... They are arranged in accordance with the INIS subject categories, and a report number index is annexed

  9. Report on the Audit of Materials Technology

    Science.gov (United States)

    1990-01-25

    We are providing this report on the Audit of Materials Technology for your information and use. No comments were required or received on the draft...report. The audit was made from July through September 1989. The objectives of the audit were to evaluate the missions and functions assigned to DOD

  10. Technology Deployment Annual Report 2013 December

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2014-01-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily

  11. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  12. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  13. The Office of Industrial Technologies technical reports

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  14. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  15. Centrifugal shot blasting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer

  16. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  17. Technology Deployment Annual Report 2014 December

    Energy Technology Data Exchange (ETDEWEB)

    Arterburn, George K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically

  18. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  19. 2016 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul; Tian, Tian; Stehly, Tyler; Spitsen, Paul; Robertson, Amy; Gevorgian, Vahan

    2017-08-08

    The 2016 Offshore Wind Technologies Market Report was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) and is intended to provide offshore wind policymakers, regulators, developers, researchers, engineers, financiers, and supply chain participants, with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide. In particular, this report is intended to provide detailed information on the domestic offshore wind industry to provide context to help navigate technical and market barriers and opportunities. The scope of the report covers the status of the 111 operating offshore wind projects in the global fleet through December 31, 2016, and provides the status and analysis on a broader pipeline of 593 projects at some stage of development. In addition, this report provides a wider assessment of domestic developments and events through the second quarter of 2017 to provide a more up-to-date discussion of this dynamically evolving industry.

  20. Progress report 1995 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der [ed.

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.).

  1. Progress report 1995 on fusion technology tasks

    International Nuclear Information System (INIS)

    Laan, J.G. van der

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.)

  2. Report of the Technology Service - Annex B

    International Nuclear Information System (INIS)

    Martinc, R.; Cupac, S.; Vukadin, Z.; Stosic, T.

    1987-01-01

    This report describes the organisational structure of the technology service and its activities and tasks: routine control of reactor parameters and cooperation with the reactor users; development of methodology of reactor control and its application; control of heavy water and gas system operation; dosimetry measurements of contamination in the reactor building; technical aspects of radiation protection; decontamination and accident analysis [sr

  3. Drafting & Design Technology. Technical Committee Report.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in drafting and design technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…

  4. Applied Welding Technology. Technical Committee Report.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in applied welding technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are…

  5. 2016 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  6. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  7. Nuclear science and technology branch report 1975

    International Nuclear Information System (INIS)

    Alder, K.F.

    1975-10-01

    Research programs are reported for the following divisions: Engineering Research, Chemical Technology, Instrumentation and Control, Materials division, Isotopes, Physics, Health Physics, Applied Mathematics and Computing, Radiation Biology Research. The names of staff responsible for each project are indicated. (R.L.)

  8. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  9. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  10. Steam vacuum cleaning. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy reg-sign Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly trademark Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE's Office of Science and Technology

  11. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  12. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  13. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  14. 1998-2001 Scientific Technological Report

    International Nuclear Information System (INIS)

    Gayoso C, C.; Ezpinoza Z, M.; Prado C, A.; Robles N, A.

    2002-01-01

    IPEN has elaborated the 1998-2001 Scientific-Technological Report as a result of several research and development works within the fields of production and services, and related with mining, archaeology, agriculture, biology, industry and medicine as well with tracer techniques in industry, welding quality control, speed and underground waters flows, direction, water treatment, environmental pollution, geothermy, production and calibration of radioactive sources, X-rays equipment quality control, neutron physics, neutron radiography, neutron activation analysis, water traces analysis, crystal growth and building of nuclear equipment. The 1998-2001 Scientific-Technological Report includes 148 papers divided in 8 subject matters: Nuclear and Reactor Physics, Nuclear Chemistry, Nuclear Engineering, Materials, Nuclear Safety, Protection and Radiological Safety, Nuclear Applications, and Rules and Regulation

  15. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  16. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  17. 2008 Solar Technologies Market Report: January 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

  18. 2008 Industrial Technologies Market Report, May 2009

    Energy Technology Data Exchange (ETDEWEB)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  19. Nuclear reactor technology progress report, vol. 4

    International Nuclear Information System (INIS)

    1981-01-01

    The works of the Engineering Section, Fast Experimental Reactor Division, are roughly classified into the technologies concerning the reactor core, abnormality monitoring, the plant, purity control and operation planning. In this paper, the activities of the Engineering Section, the operational results of Joyo and the foreign informations on FBRs in this quarter are reported. The second regular inspection carried out successively from the previous quarter was completed, and the fourth cycle operation of Joyo at 75 MW was started. The measurement of CP around the primary system pipings and equipments, the preliminary test of a core flow meter for Monju, and the various characteristic tests were carried out during this period. 2 N reports, 1 SA report and 63 memos were drawn up in this quarter. The test plan to be carried out during the period of the fourth to sixth cycle operations in this last year using the MK-1 core was formed and decided. Various meetings within and outside the division are reported. The data obtained in the operational characteristic test and special test are shown. As the results concerning the reactor technologies, the development of dosimetry techniques, the measurement and analysis of the core characteristics, the measurement of the temperature and flow velocity of coolant at the fuel assembly exit, the system pressure loss in the primary cooling system and others are reported. (Kako, I.)

  20. Raman probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    The Raman probe is deployed in high-level waste tanks with the cone penetrometer (CPT). These technologies are engineered and optimized to work together. All of the hardware is radiation hardened, designed for and tested in the high-radiation, highly caustic chemical environment of US Department of Energy's (DOE's) waste storage tanks. When deployed in tanks, the system is useful for rapidly assessing the species and concentrations of organic-bearing tank wastes. The CPT was originally developed for geological and groundwater applications, with sensors that measure physical parameters such as soil moisture, temperature, and pH. When deployed, it is hydraulically forced directly into the ground rather than using boring techniques utilized by rotary drilling systems. There is a separate Innovative Technology Summary Report for the CPT, so this report will focus on the changes made specifically to support the Raman probe. The most significant changes involve adapting the Raman probe for in-tank and subsurface field use and developing meaningful real-time data analysis. Testing of the complete LLNL system was conducted in a hot cell in the 222-S Laboratory at the Hanford site in summer 1997. Both instruments were tested in situ on solvent-contaminated soils (TCE and PCE) at the Savannah River Site in February and June 1998. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned

  1. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. F.; Einziger, R. E.; Green, D. W.

    2001-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  2. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  3. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  4. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  5. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  6. Borated stainless steel joining technology. Final report

    International Nuclear Information System (INIS)

    Smith, R.J.

    1994-12-01

    EPRI had continued investigating the application of borated stainless steel products within the US commercial nuclear power industry through participation in a wide range of activities. This effort provides the documentation of the data obtained in the development of the ASTM-A887 Specification preparation effort conducted by Applied Science and Technology and the most recent efforts for the development of joining technologies conducted under a joint effort by EPRI, Carpenter Technologies and Sandia National Laboratory under a US DOE CRADA program. The data presented in this report provides the basis for the ASTM specification which has been previously unpublished by EPRI and the data generated in support of the Joining Technology research effort conducted at Sandia. The results of the Sandia research, although terminated prior to the completion, confirms earlier data that the degradation of material properties in fusion welded borated stainless steels occurs in the heat affected zone of the weld area and not in the base material. The data obtained also supports the conclusion that the degradation of material properties can be overcome by post weld heat treatment which can result in material properties near the original unwelded metal

  7. Progress report 1994 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1995-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1994. The work is organized in R and D contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. A list of publications and staff members is also given. (orig.)

  8. Progress report 1992 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1993-08-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1992. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  9. Progress report 1994 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H T [ed.

    1995-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1994. The work is organized in R and D contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. A list of publications and staff members is also given. (orig.).

  10. Progress report 1993 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H T [ed.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.).

  11. Progress report 1993 on fusion technology tasks

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1994-09-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1993. The work is organized in RandD contracts for the next step NET/ITER Technology, the Solid Breeder Blanket Programme, the Long Term Programme and in JET and NET contracts. The topics concern: irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and stress analysis on magnet coils. List of publications and staff members are also given. (orig.)

  12. Nuclear power technologies. Abstracts of reports

    International Nuclear Information System (INIS)

    Koltysheva, G.I.; Mukusheva, M.K.; Perepelkin, I.G.

    2000-01-01

    In May 14-17, 2000, and on the initiative of the Ministry of Science and High Education of the Republic of Kazakstan with cooperation of Department of Energy US, International Seminar on Nuclear Power Technologies was held in Astana, Kazakhstan. More than 70 reports of scientists from different countries (USA, Russia, Japan and Kazakhstan) were presented during the Seminar. Representatives from different international organizations (European Commission Delegation, IAEA), from organizations of Kazakstan, Russia, USA, Japan took part in the Seminar. In all at the Seminar there were more then 100 participants. The Seminar included Plenary Session, two sections: 1) Nuclear Safety and Nuclear Technologies; 2) Material Investigations for Nuclear and Thermonuclear Power; Workshop: Nuclear Facilities Decommissioning and Decontamination; and Posters

  13. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  14. Application of fusion plasma technology. Final report

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1976-06-01

    This report presents principal findings of studies conducted at Iowa State on Applications of Fusion Plasma Technology. Two tasks were considered. The first was to identify and investigate plasma processes for near term industrial applications of already developed plasma technology. The second was to explore the potential of reprocessing the fuel for fusion test facilities in a closed-cycle system. For the first task, two applications were considered. One was alumina reduction in magnetically confined plasmas, and the other was uranium enrichment using plasma centrifuges. For the second task, in-core and ex-core plasma purification were considered. Separation techniques that are compatible with the plasma state were identified and preliminary analysis of their effectiveness were carried out. The effects of differential ionization of impurities on the separation effectiveness are considered. Possible technical difficulties in both tasks are identified and recommendations for future work are given

  15. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  16. Fiber distributed data interface [FDDI] technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. Fiber Distributed Data Interface [FDDI] is the American National Standard Institute's proposed standard for a 100 Mbps token-passing ring using an optical fibre medium. The FDDI standard has become a focal point for optical technology application in the LAN environment. The market place is filling with products in every category from complete systems to optical transceivers. The 1990s see FDDI as the predominant high speed LAN and backbone. The latest edition of this report is thoroughly updated and gives a complete overview of FDDI technol

  17. Report of the Technology Service - Annex B

    International Nuclear Information System (INIS)

    Martinc, R.; Cupac, S.; Vukadin, Z.; Stosic, T.; Sotic, O.

    1986-01-01

    This report describes the organisational structure of the technology service and its activities and tasks: routine control of reactor parameters and cooperation with the reactor users; development of methodology of reactor control and its application; control of heavy water and gas system operation; dosimetry measurements of contamination in the reactor building; technical aspects of radiation protection; decontamination and accident analysis. Separate chapter describes building of the reactor experimental loop for irradiation of fuel elements and construction materials, which will be placed in the central experimental channel VK-5 [sr

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    Science.gov (United States)

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  19. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  20. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  1. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  2. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  3. Physics and Advanced Technologies 2001 Annual Report

    International Nuclear Information System (INIS)

    Jacobs, R

    2002-01-01

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  4. JPRS Report, Science & Technology, USSR: Computers

    Science.gov (United States)

    1990-01-31

    physicochemical treatment, heat treatment and machining, respectively; a* - deforming; Pe - cutting; TO, TOc - technological equipment and technological...Technological Preparation of Series Production], Moscow, "Mashinostroyeniye", 1981, 287 pp. 7. Tsvetkov, V.D., " Sistema avtomatizirovannogo proektirovaniya

  5. Buried Waste Integrated Demonstration Technology Preparedness and Status Report Guidance

    International Nuclear Information System (INIS)

    Blacker, P.B.; Bonnenberg, R.W.; Cannon, P.G.; Hyde, R.A.; Watson, L.R.

    1994-04-01

    A Technology Preparedness and Status Report is required for each Technical Task Plan funded by the Buried Waste Integrated Demonstration. This document provides guidance for the preparation of that report. Major sections of the report will include a subset of the need for the technology, objectives of the demonstration, technology description and readiness evaluation, demonstration requirements, and preparedness checklist and action plan

  6. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  7. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  8. Expedited site characterization. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  9. Carmanah Technologies Corporation 2004 annual report

    International Nuclear Information System (INIS)

    2005-01-01

    British Columbia-based Carmanah Technologies is a world leader in the design, manufacture and supply of patented solar-powered light emitting diode (LED) lighting solutions. As a leading alternative energy manufacturer, it was the first company to integrate LEDs with solar chargers and battery power storage. Carmanah products have high-end assembly, minimal size, maximized performance and field-proven reliability. The products have been used in public transit applications, roadway lighting, and for general aviation lighting solutions. In 2004, their products saved the equivalent of 6,705 metric tonnes of carbon dioxide. This annual report includes information on the company's net earnings and investor profiles. The company has large markets for its products with little competition. It has a strong management team and its funding places it in a position to capitalize on current and emerging technologies. The company's energy resource activities were described and an operations review was presented along with consolidated financial statements and common share information such as assets, liabilities, revenues, expenses and cash flows. Revenue and expenditure statements were summarized by source. tabs., figs

  10. Expedited site characterization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned

  11. Technology Pathway Partnership Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  12. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  13. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  14. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  15. Consortium for Verification Technology Fellowship Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Lorraine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship on members of the consortium and on me/my laboratory’s technical knowledge and network.

  16. Geothermal Technologies Office 2012 Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-04-01

    On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, and key findings and recommendations are included in this report.

  17. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  19. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  20. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  1. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  2. Copper Cable Recycling Technology. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  3. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  4. Disruptive technologies and transportation : final report.

    Science.gov (United States)

    2016-06-01

    Disruptive technologies refer to innovations that, at first, may be considered unproven, lacking refinement, relatively unknown, or even impractical, but ultimately they supplant existing technologies and/or applications. In general, disruptive techn...

  5. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1990-09-18

    urgent and vital problems that faced the United States of America at that time. This discussion was of a completely free nature, and, although at...imeni M.O. Auezov, and the Sociology Center attached to the Institute of Eco- nomics, which took part in sociolinguistic studies of the language...development of advanced technologies. In the United States of America , for example, a special fund of these technologies was estab- lished. An

  6. SMD Technology Development Story for NASA Annual Technology report

    Science.gov (United States)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  7. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  8. Networking and Information Technology Workforce Study: Final Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This report presents the results of a study of the global Networking and Information Technology NIT workforce undertaken for the Networking and Information...

  9. Fuel Cycle Technologies 2014 Achievement Report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bonnie C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  10. 1997 Annual report. Technological Research Direction

    International Nuclear Information System (INIS)

    Instituto Nacional de Investigaciones Nucleares

    1998-01-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  11. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  12. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  13. JPRS Report, Science & Technology, Japan, Powder Metallurgy Technology

    Science.gov (United States)

    1988-12-13

    Katsuhiro Imada and Ken Sato , Materials Research Laboratory, Mitsubishi Electric Corp.; and Yasuyuki Kawagoe and Kenichiro Yamanishi, Applied...Tomomi Ishigaki and Osamu Yamamoto, Faculty of Technology, Mie University; and Mikio Takano, Hiromasa Mazaki, Zenji Hiroi and Toshichika Bando...Liberal Arts, Kyoto University; and Yasunori Ikeda, Mikio Takano and Yoshichika Bando, Institute of Chemical Research, Kyoto University

  14. JPRS Report Science & Technology Europe Economic Competitiveness

    National Research Council Canada - National Science Library

    1992-01-01

    Partial Contents: Science and Technology Policy, Corporate Alliances, Corporate Strategies, East West Relations, Europe Asia Relations, Infrastruction, Budget, Semiconductors, Strategy, Government, Industrial Policy...

  15. International Technology Exchange Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  18. Frozen soil barrier technology. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of using refrigeration to freeze soils has been employed in large-scale engineering projects for a number of years. This technology bonds soils to give load-bearing strength during construction; to seal tunnels, mine shafts, and other subsurface structures against flooding from groundwater; and to stabilize soils during excavation. Examples of modern applications include several large subway, highway, and water supply tunnels. Ground freezing to form subsurface frozen soil barriers is an innovative technology designed to contain hazardous and radioactive contaminants in soils and groundwater. Frozen soil barriers that provide complete containment (open-quotes Vclose quotesconfiguration) are formed by drilling and installing refrigerant piping (on 8-ft centers) horizontally at approximately 45 degrees angles for sides and vertically for ends and then recirculating an environmentally safe refrigerant solution through the piping to freeze the soil porewater. Freeze plants are used to keep the containment structure at subfreezing temperatures. A full-scale containment structure was demonstrated from May 12 to October 10, 1994, at a nonhazardous site on SEG property on Gallaher Road, Oak Ridge, Tennessee

  19. New technology for future colliders. Final report

    International Nuclear Information System (INIS)

    Peter McIntyre

    2006-01-01

    This document presents an annual report on our long-term R and D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress management, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles . The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ''free'' superconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla, and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A and M group ''comes of age'' in the family of superconducting magnet R and D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of TAMU3 model dipoles that each build incrementally upon a proven core design. TAMU3 provides a testbed in which we can build a succession of model dipoles in which each new model uses one new winding module coupled with one module from the previous model, and uses all of the same structural elements in successive models. This incremental development should enable us to keep to a minimum the time between the completion and testing of

  20. Final Technical Report: Characterizing Emerging Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  1. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  2. 2013 Bioenergy Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  3. 2013 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  4. JPRS Report, Science & Technology. Europe: Economic Competitiveness

    Science.gov (United States)

    1992-02-24

    will be coordinated with other programmes such as " Agriculture and Agro-Industry" and "Industrial and Materials Technology (BRITE/EURAM [Bright...programme. Ethics Area 4: Research on Biomedical Ethics This will include legislation on bioethics and current ethics; the social impact of the...programme (i.e., any technological risks); assessing bioethical aspects of other EC R&D programmes; and establishing a European "ethical observatory

  5. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  6. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  7. Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Capuano, Louis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huh, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chip, A.J. Mansure [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swanson, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-12-01

    This report provides an assessment of well construction technology for EGS with two primary objectives: 1. Determining the ability of existing technologies to develop EGS wells. 2. Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics.

  8. Abstracts of China Nuclear Science and Technology Report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1998 (Report Numbers CNIC-01231-CNIC-01330) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  9. Abstracts China nuclear science and technology report (1999)

    International Nuclear Information System (INIS)

    2001-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  10. Abstracts: China Nuclear Science and Technology Report (1990)

    International Nuclear Information System (INIS)

    1991-05-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1990 (Report Numbers CNIC--00355 to CNIC-00454) are presented. The items are arranged according to INIS subjects categories, which mainly are physics, chemistry, materials, earth sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  11. China nuclear science and technology report (1991). Abstracts

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1991 (Report Numbers CNIC-00455 to CNIC-00554) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  12. China nuclear science and technology report: Abstracts, 1992

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1992 (Report Numbers CNIC-00555 ∼ CNIC-00674) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  13. Abstracts of China Nuclear Science and Technology Report (1998)

    International Nuclear Information System (INIS)

    1999-09-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1998 (Report Numbers CNIC-01231-CNIC-01330) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  14. Abstracts China nuclear science and technology report (1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  15. Abstracts China nuclear science and technology reports (1988)

    International Nuclear Information System (INIS)

    1989-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1988 (Report Numbers CNIC -00115 ∼ CNIC-00254) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  16. Abstracts: China Nuclear Science and Technology Report (1989)

    International Nuclear Information System (INIS)

    1990-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Report published in 1989 (Report Numbers CNIC--00255∼CNIC--00354) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  17. Nuclear Technology Review 2013. Report by the Director General

    International Nuclear Information System (INIS)

    2013-01-01

    In response to requests by Member States, the Secretariat produces a comprehensive Nuclear Technology Review each year. Attached is this year's report, which highlights notable developments principally in 2012. The Nuclear Technology Review 2013 covers the following areas: power applications, atomic and nuclear data, accelerators and research reactors, and nuclear sciences and applications. Additional documentation associated with the Nuclear Technology Review 2013 is available on the Agency's website1 in English on nuclear hydrogen production technology and preliminary lessons learned from the Fukushima Daiichi accident for advanced nuclear power plant technology development. Information on the IAEA's activities related to nuclear science and technology can also be found in the IAEA's Annual Report 2012 (GC(57)/3), in particular the Technology section, and the Technical Cooperation Report for 2012 (GC(57)/INF/4). The document has been modified to take account, to the extent possible, of specific comments by the Board of Governors and other comments received from Member States. (author)

  18. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  19. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  20. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  1. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  2. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  3. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  4. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  5. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  6. West Europe Report Science & Technology No. 148

    Science.gov (United States)

    1983-06-30

    concerned parties can we ensure that the Federal Republic of Germany will not lose contact with biotechnology." [Text] [Duesseldorf VDI NACHRICHTEN in...Duesseldorf VDI NACHRICHTEN in German 18 Mar 83 p 14] 12330 CS0: 3698/320 23 INDUSTRIAL TECHNOLOGY SMALL PRECISION NC MACHINING CENTER

  7. JPRS Report, Science and Technology, Europe.

    Science.gov (United States)

    1991-02-15

    SPAZIOINFORMAZIONI, 1-3 Oct 90] 4 Germany: Hypersonic Technology Impact Assessment Published [Bonn TECHNOLOGIE- NACHRICHTEN PROGRAMM-INFORMATIONEN...14 German Laser System Measures Emission in Diesel Engines [Bonn TECHNOLOGIE- NACHRICHTEN MANAGEMENT-INFORMATIONEN, 29 Oct 90] 14 BIOTECHNOLOGY...Installed [Wim Amerongen; Amsterdam COMPUTERWORLD, 26 Sep 90] 16 ENERGY Germany Solar Energy Program Status Reviewed [Bonn TECHNOLOGIE- NACHRICHTEN

  8. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  9. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  10. Fiber Optic Communications Technology. A Status Report.

    Science.gov (United States)

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  11. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  13. JPRS Report, Science & Technology. Europe: Economic Competitiveness

    Science.gov (United States)

    1992-12-11

    general-council president Rene Monory, commenting on Poitiers’s Futuroscope, explains that "We had no chance of catching up with the other French...in Compiegne; Vatine Technology Park in Rouen; Caen-Normandie Technopolis in Caen; Cite Descartes in Marne-la-Vallee; Brest Iroise in Brest; Quimper

  14. Annual Technology Transfer Report FY 2017

    Science.gov (United States)

    2018-04-01

    The U.S. Department of Transportation (U.S. DOT) is the Federal steward of the Nation's transportation system. U.S. DOT consists of multiple modal operating administrations (OAs) that carry out mission-related research, development, and technology (R...

  15. Nuclear science and technology branch report 1977

    International Nuclear Information System (INIS)

    Symonds, J.L.

    1977-12-01

    Research being conducted includes: assessment of world energy sources and their utilization, basic information on fission reactors, reactor performance and safety, reviews of fission reactor technology, collaborative work on fission reactors, thermonuclear fusion and alternative energy sources. Staff publications are also included

  16. Nuclear science and technology branch report 1976

    International Nuclear Information System (INIS)

    1976-12-01

    Research being conducted includes: assessment of world energy sources and their utilization, basic information on fission reactors, reactor performance and safety, reviews of fission reactor technology, collaborative work on fission reactors, thermonuclear fusion and alternative energy sources. Staff publications and research interests are outlined. (J.R.)

  17. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  18. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  19. Canadian Fusion Fuels Technology Project activities report

    International Nuclear Information System (INIS)

    1985-01-01

    The Canadian Fusion Fuels Technology Project was formally established in 1982. The project is directed toward the further development of Canadian capabilities in five major areas: tritium technology, breeder technology, materials technology, equipment development and safety and the environment. The project is funded by three partners - Government of Canada (50%), Ontario Provincial Government (25%) and Ontario Hydro (25%). The fiscal year 1984/85 represents the third year of operation of the project. In 1984/85, 108 contracts were awarded totalling $4 million. Supplementary funding by subcontractors added approximately $1.9 million to the total project value. More than 200 people participated in the technical work involved in the project. Sixteen people were on attachment to foreign facilities for terms ranging from 1 month to 2.5 years. Five patents were applied for including a tritium discrimination monitor, a new radio-chemical tritium separation method, a new variation of fuel cleanup by gas chromatography, a passive tritium permeation system using bimetallic membranes, and a new breeder process using lithium salts dissolved in heavy water

  20. Report on the Enabling Technology Programme Optomechatronics

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Nulkes-de Groot, N.

    2014-01-01

    The last four years the research Programme Optomechatronics focused on the development of new key technologies for manufacturing and testing equipment and scientific instrumentation. The challenge is to develop instruments with higher accuracy, less costs and higher throughput than we can achieve

  1. Summary report on focusing HTGR technology programs

    International Nuclear Information System (INIS)

    The program effort to focus technology development activities consists of work in three areas: the identification of Reference Plant Options; the identification of design data needs and supporting program requirements for these plants; and the development of management plans and tools consistent with the execution of candidate systems

  2. JPRS Report, Science & Technology USSR: Chemistry

    Science.gov (United States)

    1991-05-02

    microfiltration , including sterilizing filtration and ultrafiltration or diafiltration, and to develop a technological plan and arrangement of hard...ware for separation and purification of biological prep- arations. A plan is suggested for combined utilization of prefiltration, microfiltration ...linked polyurethane elastomers, segmented polyurethanes are characterized by creep and are not fully restored after cyclic loads. Reducing these

  3. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  4. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  5. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  6. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  7. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  8. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  9. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  10. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  11. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  12. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  13. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  14. Report of the Information Technology Workshop

    Science.gov (United States)

    1983-10-01

    computer sci- ence and related fields. Th-se demographics result in 8.0 PRIORITIES sharpl ) increased demand for both faculty and technologi- The problem...Universities scripts for NL representation. The following universities are active in NL: Columbia University ( Mike Lebowitz. Cathy McKeown) Yale (Roger...Bruce beat environment for NL research; anything less will mean Buchanan, Mike Genesreth. The Heuristic Program- that progress is slower than it could

  15. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  16. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  17. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  18. New Generation Flask Sampling Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James R. [AOS, Inc., Colorado Springs, CO (United States)

    2017-11-09

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs to begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory

  19. Nuclear Science and Technology Branch report 1977

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1977-12-01

    A report of research programs continuing in the following areas is presented: mining and treatment of uranium ores, manufacture of uranium hexafluoride, uranium enrichment, waste treatment, reprocessing and the uranium fuel cycle. Staff responsible for each project are indicated

  20. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  1. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-01-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  2. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  3. 2007 annual meeting on nuclear technology. Report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    This year's Annual Nuclear Technology Conference (JK) organized by the Deutsches Atomforum e.V. (DAtF) and the Kerntechnische Gesellschaft e.V. (KTG) was held in Karlsruhe on May 22-24. The attendance of more than 1,200 persons from 21 nations, and the increase in participation over the past few years, underline the role of this specialized congress as one of the leading international events in the field of the peaceful uses of nuclear power. The first day of the conference, with its plenary presentations, traditionally focused mainly on political and economic problems of the use of nuclear power. The situation of nuclear power in the United Kingdom, the key country of this year's meeting, was covered in depth. As usual, the program of the three-day event was organized as follows: plenary sessions on the first day were followed by topical sessions, technical sessions, and special events on the other days. This year, the conference featured a record program of 251 papers presented at these sessions. The 'Nuclear Power Campus' was arranged very successfully for the 5th time as an event comprising lectures and a 'hands-on' exhibition explaining the world of nuclear power in a transparent way to students from schools and universities. The special commitment to young scientists and to the preservation of competence in the nuclear field were emphasized at the JK 2007, among other things, in a workshop on 'Preservation of Competence in Nuclear Technology'. Nearly 20 young scientists presented results of their scientific work. The Annual Meeting on Nuclear Technology was accompanied by a specialized exhibition with meeting points of industry organized by 33 manufacturers, vendors, and service companies. (orig.)

  4. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  5. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  6. 2013 Geothermal Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Geothermal Technologies Office

    2014-01-01

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as well as attendees.

  7. Geothermal Technologies Program 2011 Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Hollett, Douglas [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Stillman, Greg [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    On June 6-10, 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (GTP or the Program) conducted its annual program peer review in Bethesda, Maryland. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the program and is a forum for feedback and recommendations on future program planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the Program and to assess progress made against stated objectives.

  8. Electrical System Technology Working Group (WG) Report

    Science.gov (United States)

    Silverman, S.; Ford, F. E.

    1984-01-01

    The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.

  9. [New technology for linear colliders.] Progress report

    International Nuclear Information System (INIS)

    McIntyre, P.M.

    1986-01-01

    The purpose of the contract is to devise and analyze new technologies appropriate for future linear colliders. The focus of our research during 1986 has been the coaxial pulse line (CPL) accelerating structure. It is similar to a wake field structure, except that it replaces the annular ring beam driver by an annular TEM wave. The driver wave can be launched using a capacitor discharge arrangement similar to induction linacs. The structure has the combined advantages of high gradient (∼200 MeV/m) and high efficiency (perhaps ∼50%). A high-power lasertron based on a ribbon electron beam is proposed

  10. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  11. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  12. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  13. Contact radiotherapy. Report of technological assessment

    International Nuclear Information System (INIS)

    Ortholan, Cecile; Melin, Nicole; Lee-Robin, Sun Hae; David, Denis Jean; Pages, Frederique; Devaud, Christine; Noel, Georges; Biga, Julie; Moty-Monnereau, Celine; Canet, Philippe; Lascols, Sylvie; Lamas, Muriel; Ramdine, Jessica; Tuil, Louise

    2008-10-01

    This report aims at assessing safety, indications, the role in therapeutic strategy, and efficiency of contact radiotherapy. It also aims at answering questions like: is the contact radiotherapy technique validated? What are the indications for contact radiotherapy? What about the efficiency and safety of contact radiotherapy? After a presentation of preliminary notions on radiotherapy (radiation types, dose, and irradiation techniques), the report presents this specific technique of contact radiotherapy: definition, devices, use recommendations, issues of radiation protection, modalities of performance of a contact radiotherapy session, and concerned pathologies. Then, based on a literature survey, this report addresses the various concerned tumours (skin, rectum, brain, breast), indicates some general information about these tumours (epidemiological data, anatomy and classification, therapeutic options, radiotherapy), and proposes an assessment of the efficiency and safety of contact radiotherapy

  14. Nuclear science and technology branch report 1975

    International Nuclear Information System (INIS)

    Miles, G.L.

    1975-10-01

    This report records the technical services provided in support of the several research programs at the Research Establishment. It does not record the effort expended on many major services such as administration or the routine aspects of management of the site. (R.L.)

  15. Nuclear Science and Technology Branch report 1977

    International Nuclear Information System (INIS)

    Cawsey, W.E.T.

    1977-12-01

    This report records the technical service provided in support of research programs at the Research Establishment. Such services include HIFAR reactor operations, engineering services, information services, safety services and services provided research divisions themselves. Radioisotope production and other commercial activities are also included

  16. Nuclear science and technology branch report 1975

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1975-10-01

    Research programs are reported into topics such as the mining and treatment of uranium ore, the manufacture of uranium hexafluoride, enrichment of uranium, fuel manufacture, waste treatment, reprocessing, heavy water production and the uranium fuel cycle. The names of staff responsible for each project are indicated. (R.L.)

  17. 1981 Annual Status Report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The work perfomed on 1981 concerns four projects, namely: - The project 1: ''Reactor Studies''. During 1981 this activity was made in support to the European participation to the INTOR (INternational TOkamak Reactor) studies. This represents a collaborative effort among Europe, Japan; USA and USSR, under the auspices of IAEA, to design a major fusion experiment beyond the upcoming generation of large tokamaks. - The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. - The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. - The Project 4: ''Cyclotron Operation and Experiments'' has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  18. Physics and Advanced Technologies 2003 Annual Report

    International Nuclear Information System (INIS)

    Hazi, A; Sketchley, J

    2005-01-01

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  19. Concrete shaver. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work

  20. Young children (0-8) and digital technology - EU report

    OpenAIRE

    Chaudron, Stéphane; Plowman, Lydia; Beutel, M.E; Černikova, Martina; Donoso Navarette, Veronica; Dreier, Michael; Fletcher-Watson, Ben; Heikkilä, Anni-Sofia; Kontríková, Věra; Korkeamäki, Riitta-Liisa; Livingstone, Sonia; Marsh, Jackie; Mascheroni, Giovanna; Micheli, Marina; Milesi, Daniele

    2015-01-01

    Despite the growing number of very young children who go online and who are using a wide range of technologies, little is known about children’s interactions with those technologies. This report presents a pilot qualitative study designed and implemented in collaboration with a selected group of academic partners in different European countries that aims at pioneering in Europe the exploration of young children and their families` experiences with new technologies. It resents its results and ...

  1. Monthly progress report: Heat source technology program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [comp.

    1993-05-01

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  2. JPRS Report Science and Technology: Europe.

    Science.gov (United States)

    1991-08-19

    Duesseldorf VDI NACHRICHTEN , 3 May 91] 16 Italian Firm Reports Cuban, Ferrocene Improve Engine Performance [Frankfurt/Main FRANKFURTER ZEITUNG...Rose; Duesseldorf VDI NACHRICHTEN , 17 May 91] 23 Hyperstone’s El RISC Processor Described [Berlin RADIO FERNSEHEN ELEKTRONIK, Mar-Apr 91] 24...30 May 91] 30 Germany: Increased Process Heat Network Efficiency in Sight 31 Surfactants Reduce Friction [Bonn TECHNOLGIE- NACHRICHTEN

  3. Manufacturing Methods and Technology Project Summary Reports

    Science.gov (United States)

    1984-12-01

    Powder ME-16 Type Recoil Mechanism Testing Machine (Powder Gymnasticator ) Projects 677, 78 7814 - Synthetic Quenchants for ME-18 Heat Treating Weapon...were deemed most urgent. These two were the prime candidates for the GEPTTA. Figure I is an artist depiction of the General Purpose Transportability...REPORT (RCS DRCMT-302) MMT Project 677 7753 titled "Noise Suppressor for Powder Type Recoil Mecha- nism Testing Machine (Powder Gymnasticator )" was

  4. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  5. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  6. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  7. Data Mining: Technology and Policy. 2008 Report to Congress

    National Research Council Canada - National Science Library

    Teufel, III, Hugo

    2008-01-01

    ...: Technology and Policy. The Privacy Office has prepared this report to the Congress pursuant to the Department's obligations under Section 804 of the Implementing the Recommendations of the 9/11 Commission Act of 2007...

  8. FHWA research and technology evaluation program summary report spring 2016

    Science.gov (United States)

    2016-08-01

    This report summarizes the 16 evaluations being conducted by the Volpe National Transportation Systems Center on behalf of FHWAs Research and Technology Program. The FHWA R&T Program furthers the Turner-Fairbank Highway Research Centers goal of...

  9. Institute for Energy Technology -Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes

  10. SRS tank closure. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure

  11. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  12. 1980 Annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1981-01-01

    According to the decisions taken by the Council of Ministers on the JRC multiannual programme (1980-83), the 1980 activity has been oriented toward four projects which cover a broad range of fields, namely: - the Project 1: 'Reactor Studies'. The main effort was oriented toward the NET/INTOR studies. JRC Ispra is acting as reference nucleus for NET preliminary design. For the moment being this work was made in support to the European participation to INTOR. In 1980 the conceptual design of a demonstration power reactor (FINTOR-D) was also achieved. - The Project 2: 'Blanket Technology' has the aim to investigate structural materials behaviour in fusion conditions. Items like tritium outgassing and permeation from structurals an materials compatibility were investigated. - The Projet 3: 'Material sorting and development'. Its aim is to assess mechanical properties and radiation damage of standard and advanced materials suited for reactor structures. - The Projet 4: 'Cyclotron construction and operation' has the task to install and exploit a cyclotron to simulate demages to materials in a fusion ambient

  13. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  14. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  15. ESDRED Temporary Sealing Technology Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.; Garcia-Sineriz, J. L.; Barcena, I.; Alonso, M. C.; Fernandez Luco, L.; Garcia, J. L.; Fries, T.; Pettersson, S.; Boden, A.; Salo, J. P.

    2009-07-01

    The work in the ESDRED In te grated Project Module 4, Temporary Sealing (using low pH cement) Technology, consisted first of designing a low pH cement formulation and then of preparing several concrete designs suitable for the construction of sealing plugs and for rock support using shot crete techniques. Regarding sealing plugs, a short plug was constructed at Aspo in Sweden and it was very quickly loaded to failure i.e. slippage by applying water pressure to one face. A second, full scale plug was subsequently constructed at Grimsel test site in Switzerland. It was loaded using the swelling pressure created by bentonite blocks which were artificially hydrated. At time of writing the targeted pressure on the plug was not reached. As the saturation of the bentonite is taking longer than expected the partners involved agreed to continue with the saturation of the bentonite blocks and the related data monitoring beyond the ESDRED Project. The studies on low-pH shot crete for rock sup port were based on available recipes of low-pH concrete mixtures for use in a repository. Pilot and full scale tests were carried out in Sweden and in Switzerland. (Author) 5 refs.

  16. Institute for Energy Technology -Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Research at Institutt for energiteknikk (IFE) comprises both nuclear and non-nuclear activities. The main nuclear program is centered on the OECD Halden Reactor Project. 19 participating countries and about 100 organisations is involved in the project. The Project is operated by a staff of 280 persons. In the autumn of 1996 the participating organizations reached agreement to continue their research collaboration for a further 3-year period (1997 to 1999). An extensive experimental program was carried out in 1996 using the Halden reactor (HBWR), partly for the joint international program, and partly for contract work for member countries. The main aim of this work is to improve the safety and reliability of existing nuclear power plants. The experimental equipment in the Halden reactor makes it ideal for simulating various operating conditions in different types of rectors. Processes such as corrosion in fuel cladding materials and fracture propagation in irradiated materials under the influence of additives in the coolant water can be studied. In an on-going study, fuel of Russian origin is being compared with modern western fuel. The results, being the first of their kind that are openly available, form an important bases for safety assessments of Russian VVER reactors. The man-machine laboratory is used to study how new technologies influence the operator and to develop computer based systems for improving the safety and accessibility of complex processes.

  17. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  19. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  20. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  1. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  2. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  4. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  5. China nuclear science and technology report 1995. Abstracts

    International Nuclear Information System (INIS)

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921∼CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  6. China nuclear science and technology report 1995. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921{approx}CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  7. China nuclear science and technology report. Abstracts 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801{approx}CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  8. China nuclear science and technology report abstracts 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021{approx}CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  9. China nuclear science and technology report abstracts 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021∼CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  10. China nuclear science and technology report. Abstracts 1994

    International Nuclear Information System (INIS)

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801∼CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  11. Innovative technology summary report: Concrete grinder

    International Nuclear Information System (INIS)

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m 2 , may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE's Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration

  12. Water Science and Technology Board annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) and its subgroups during 1989, it seventh year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1990, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is an introduction to the WSTB and its program for the year. 4 figs.

  13. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  14. 2013 Building Technologies Office Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  15. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  16. Superconducting Technology Program: Sandia 1993 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas

  17. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  18. DOE technology information management system database study report

    Energy Technology Data Exchange (ETDEWEB)

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

    1994-11-01

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  19. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  20. 2003 Scientific Technological Report; Informe Cientifico Tecnologico 2003

    Energy Technology Data Exchange (ETDEWEB)

    Prado Cuba, A; Gayoso Caballero, C; Robles Nique, A; Olivera Lescano, P [eds.

    2004-08-15

    This annual scientific-technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2003. This report includes 54 papers divided in 9 subject matters: physics and nuclear chemistry, nuclear engineering, materials science, radiochemistry, industrial applications, medical applications, environmental applications, protection and radiological safety, and management aspects.

  1. Scientific and Technological Report 2004; Informe Cientifico Tecnologico 2004

    Energy Technology Data Exchange (ETDEWEB)

    Prado Cuba, Antonio; Robles Nique, Anita; Solis Veliz, Jose; Rodriguez R, Juan [eds.

    2005-08-15

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2004. This report includes 48 papers divided in 6 subject matters, such as: materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects.

  2. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  3. INL Control System Situational Awareness Technology Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  4. Water Science and Technology Board. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1991. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Restoration of aquatic ecosystems - science, technologies and public policy; Water transfers in the West - efficiency, equity and the environment; Opportunities in the hydrologic sciences; and Ground water models - scientific and regulatory applications. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  5. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  6. 2014–2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Smith, Tyler Stehly, Walt Musial

    2015-09-30

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  7. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  8. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  9. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  10. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  11. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  12. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  13. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  14. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  15. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  16. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  17. HTGR generic technology program. Semiannual report ending March 31, 1980

    International Nuclear Information System (INIS)

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants

  18. Six phase soil heating. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminates from the subsurface during soil vapor extraction. The innovation combines an emerging technology, six-phase electric heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation systems for difficult soil and/or contaminate applications. This document describes the technology and reports on field demonstrations conducted at Savannah River and the Hanford Reservation

  19. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  20. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  1. Laser and Plasma Technology Division, Annual Reports 1996 and 1997

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1999-04-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre during the two year period 1996- 1997. This division is engaged in the research and development of high power beams mainly laser, plasma and electron beams. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of Department of Atomic Energy. This involves development and technology readiness study of laser, plasma and electron beam devices. In addition, studies are also carried out on related physical phenomenon with a view to gain better understanding of the devices. This report has been compiled from individual reports of various groups/sections working in the division. A list of publications by the several members of the division is also included. (author)

  2. Laser and Plasma Technology Division annual report 1995

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1996-01-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Mumbai during the period 1995. This division is engaged in the research and development of high power beams namely lasers, plasma and electron beams which are characterized by high power density. This division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad program objectives of the division are (1) development and technology readiness studies of laser, plasma and electron beam devices; (2) studies on related physical phenomena with a view to gain better understanding of the devices and (3) improvements in technology and exploration of new areas. This report has been compiled from individual reports of various groups/sections with marginal editing. At the end of each section; a list of publications by the staff members in the field indicated by the title of the section is given. refs., figs., tabs

  3. Reactor technology progress report on Joyo, vol. 6

    International Nuclear Information System (INIS)

    1982-01-01

    The works of the Technology Section, Fast Experimental Reactor Division, Power Reactor and Nuclear Fuel Development Corp., are roughly divided into core technology, anomaly monitoring techniques, plant technology, purity control techniques and operation planning and management. In this book, the state of activities in the Technology Section, the result of operation of Joyo and the foreign information related to FBRs in the quarter from July to September, 1981, are reported. The operation of Joyo of 75 MW rating No. 5 cycle was finished on August 9, and after fuel handling and FFDL test, the operation of special test cycle was carried out in September. In this quarter, main report papers were one N-report and 108 memos. The examination of the preliminary analysis and the plan for shifting to the MK-2 core and the performance test, and the planning of the core construction for the operation from No. 1 to No. 3 cycle with the MK-2 core and the analysis of its characteristics were carried out. The revision of the long term plan of the Technology Section was started in July, and the first draft was completed in September. The compilation of the general report on the MK-1 core was started in July. Three meetings for technical discussion within the Division were held. (Kako, I.)

  4. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  5. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  6. Accelerator technology program. Status report, October 1984-March 1985

    International Nuclear Information System (INIS)

    Jameson, R.A.; Schriber, S.O.

    1986-04-01

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period

  7. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  8. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  9. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  10. Laser and Plasma Technology Division annual report 1993

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1994-01-01

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm 2 . Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs

  11. Laser and Plasma Technology Division annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1994-12-31

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm{sup 2}. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs.

  12. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  13. Water Science and Technology Board annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

  14. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  15. Water Science and Technology Board. Annual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1993-1994. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Alternatives for ground water cleanup; Managing wastewater in coastal urban areas; and, Water transfers in the West - efficiency, equity and the environment. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  16. Water Science and Technology Board. Annual report 1992-1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  17. Reproductive technology: in Britain, the debate after the Warnock Report.

    Science.gov (United States)

    Gillon, Raanan

    1987-06-01

    Gillon contributes an article on Great Britain to the Hastings Center Report series on reproductive technologies outside the United States. In 1984 the Warnock Committee's report represented the first attempt by a national government to formulate a policy on reproductive issues such as artificial insemination, in vitro fertilization, surrogate mothers, and research on human embryos. Reaction to the Warnock report has focused on its recommendations to ban commercial surrogacy and to allow experimentation on embryos up to 14 days after fertilization. Legislation on surrogacy was passed in 1985, while bills banning embryo research failed in 1986. A 1986 government consultation paper called for discussion of other aspects of the Warnock report, including its recommendation that a statutory licensing authority to regulate reproductive technologies be established. Gillon predicts that no new legislation will be enacted under the present government.

  18. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Kossmann, J.; Soenderberg Petersen, L. (eds.)

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  19. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Kossmann, J; Soenderberg Petersen, L [eds.

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  20. Scientific and Technological Report 2005; Informe Cientifico Tecnologico 2005

    Energy Technology Data Exchange (ETDEWEB)

    Prado Cuba, Antonio; Robles Nique, Anita; Rodriguez R, Juan; Solis Veliz, Jose [eds.

    2006-07-15

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2005. This report includes 38 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects.

  1. Scientific Technological Report 2002; Informe Cientifico Tecnologico 2002

    Energy Technology Data Exchange (ETDEWEB)

    Gayoso C, C; Cuya G, T; Robles N, A; Prado C, A [eds.

    2003-07-01

    This annual scientific-technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2002. This report includes 58 papers divided in 10 subject matters: physics and nuclear chemistry, nuclear engineering, materials, industrial applications, biological applications, medical applications, environmental applications, protection and radiological safety, nuclear safety, and management aspects.

  2. Scientific and Technological Report 2009; Informe Cientifico Tecnologico 2009

    Energy Technology Data Exchange (ETDEWEB)

    Prado Cuba, Antonio; Santiago Contreras, Julio; Lopez Milla, Alcides; Ramos Trujillo, Bertha (ed.), E-mail: aprado@ipen.gob.p [Instituto Peruano de Energia Nuclear, Lima (Peru)

    2010-11-15

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2009. This report includes 46 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. It also includes annexes. (APC)

  3. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  4. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  5. Bridging the Gap from Networking Technologies to Applications: Workshop Report

    Science.gov (United States)

    Johnson, Marjory J.; desJardins, Richard

    2000-01-01

    The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each

  6. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  7. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  8. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  9. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  10. U.S. report on fuel performance and technology

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T [Department of Energy, Washington, DC (United States). Office of Engineering and Technology Development

    1997-12-01

    The report reviews the following aspects of fuel performance and technology: increased demand on fuel performance;improved fuel failure rate; operating fuel cycles; capacity factor for US nuclear electric generating plants; potential reduction of SNF due to improved fuel burnup.

  11. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    Science.gov (United States)

    2015-03-01

    Security Class (This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 52 22. Price Arctic Technology...specifically manned for the surveillance system. Smaller aerostats and sUAS could be deployed on skimming vessels; however, under many conditions their

  12. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...

  13. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  14. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    Science.gov (United States)

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  15. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  16. Water Science and Technology Board Annual Report 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This annual report marks the twentieth anniversary of the Water Science and Technology Board (WSTB) (1982-2002). The WSTB oversees studies of water issues. The principal products of studies are written reports. These reports cover a wide range of water resources issues of national concern. The following three recently issued reports illustrate the scope of the WSTB's studies: Envisioning the Agenda for Water Resources Research in the Twenty-first Century. The Missouri River Ecosystem: Exploring the Prospects for Recovery, and Assessing the TMDL Approach to Water Quality Management. The WSTB generally meets three times each year where discussions are held on ongoing projects, strategic planning, and developing new initiatives. The meetings also foster communication within the water resources community. The annual report includes a discussion on current studies, completed studies 2001-2002, and future plans, as well as a listing of published reports (1983-2002).

  17. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    Science.gov (United States)

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  18. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  19. The worldwide growth of launch vehicle technology and services : Quarterly Launch Report : special report

    Science.gov (United States)

    1997-01-01

    This report will discuss primarily those vehicles being introduced by the newly emerging space nations. India, Israel, and Brazil are all trying to turn launch vehicle assets into profitable businesses. In this effort, they have found the technologic...

  20. Accelerator Technology Program. Status report, October 1983-March 1984

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1985-01-01

    This report covers major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first sections highlight activities related to beam dynamics, inertial fusion, structure development, the racetrack microtron, and the CERN high-energy physics experiment NA-12. Discussed next is the Fusion Materials Irradiation Test Facility, followed by a summary of progress on the Proton Storage Ring and activities of the Theory and Simulation Group. The report concludes with a discussion of the H- accelerator program and a listing of papers published by AT-Division personnel during this reporting period

  1. 2014-2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  2. Technology Evaluation Report 17. Videoconferencing in Theatre and Performance Studies

    Directory of Open Access Journals (Sweden)

    Mark Childs

    2003-04-01

    Full Text Available Previous reports in this series have indicated the growing acceptance of video-conferencing in education delivery. The current report compares a series of video-conferencing methods in an activity requiring precision of expression and communication: theatre and performance studies. The Accessing and Networking with National and International Expertise (ANNIE project is a two-year project undertaken jointly by the University of Warwick and the University of Kent at Canterbury, running from March 2001 to March 2003. The project's aim is to enhance students' learning experience in theatre studies by enabling access to research-based teaching and to workshops led by practitioners of national and international standing. Various technologies have been used, particularly ISDN video-conferencing, computer-mediated conferencing, and the Internet. This report concludes that video-conferencing methods will gain acceptance in education, as academic schools themselves are able to operate commonly available technology the assistance of specialised service units.

  3. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  4. Laser Science and Technology Program Annual Report - 2000

    International Nuclear Information System (INIS)

    Chen, H-L

    2001-01-01

    The Laser Science and Technology (LSandT) Program Annual Report 2001 provides documentation of the achievements of the LLNL LSandT Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (ALandC), Laser Optics and Materials (LOandM), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LSandT Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LSandT beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LSandT is committed to this activity

  5. Portable x-ray fluorescence spectrometer. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    This report describes the application of portable X-ray fluorescence (XRF) spectrometry to characterize materials related to deactivation and decommissioning (D and D) of contaminated facilities. Two portable XRF instruments manufactured by TN Spectrace were used in a technology evaluation as part of the Large-Scale Demonstration Project (LSDP) held at the Chicago Pile-5 Research Reactor (CP-5) located at Argonne National Laboratory (ANL). The LSDP is sponsored by the US Department of Energy (DOE), Office of Science and Technology, Deactivation and Decommissioning Focus Are (DDFA). The objective of the LSDP is to demonstrate innovative technologies or technology applications potentially beneficial to the D and D of contaminated facilities. The portable XRF technology offers several potential benefits for rapid characterization of facility components and contaminants, including significant cost reduction, fast turnaround time,a nd virtually no secondary waste. Field work for the demonstration of the portable XRF technology was performed from August 28--September 3, 1996 and October 30--December 13, 1996

  6. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  7. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  8. Fieldwork Report for the Nucleic Acid Technology Lab

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie

    The development of new technologies requires an understanding of the social issues technologies would confront when deployed. Such is the case of e-Science solutions like the Mini-Grid, whose future users are molecular biologists. The successful adoption of the Mini-Grid requires its design...... to account to the existing conditions of the molecular biologists. In this technical report we present the results of an initial fieldwork study of molecular biologists. We present their organization structure, their roles, their tools, their activities, and information management behaviors and collaboration...

  9. 1998 annual report of Petroleum Technology Alliance Canada

    International Nuclear Information System (INIS)

    1999-01-01

    Key accomplishments of the Petroleum Technology Alliance of Canada (PTAC) during 1998 are summarized. PTAC is an association that facilitates collaborative research and technology development in the conventional oil and gas industry. Accomplishments in 1998 included the launch of 21 new research and development projects, increased memberships, and 16 successful workshops which focused on PTAC research and development initiatives in environmental impacts, conventional heavy oil, well completions, inactive well management and well abandonment. A financial statement attesting to the PTAC's financial health is included with this annual report. 2 tabs

  10. Deployment Area Selection and Land Withdrawal/Acquisition. M-X/MPS (M-X/Multiple Protective Shelter) Environmental Technical Report. Volume 2. Protected Species.

    Science.gov (United States)

    1981-10-02

    of natural desert acuatic habitats and by development of a continuing and comprehensive public education program. 8. Mitigation measures must squarely...vegetation zones within the study area. Transect lines have been designated and are synonomous with station locations for all acuatic biological...ecological literature reported for aquatic insects by Merritt and Cummins (1978) supports this statement. No comprehensive information on invertebrate

  11. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  12. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    International Nuclear Information System (INIS)

    NONE

    1998-01-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy's Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation

  13. The Office of Technology Development technical reports. A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

  14. Fusion technology. Annual report of the. Association Cea/EURATOM

    International Nuclear Information System (INIS)

    Magaud, P.; Le Vagueres, F.

    1996-01-01

    In 1996, the French EURATOM-CEA Association made significant contributions to the European technology programme. This work is compiled in this report as follows: the ITER CEA activities and related developments are described in the first section; blankets and material developments for DEMO, long term safety studies are summarised in the second part; the Underlying Technology activities are compiled in the third part of this report. In each section, the tasks are sorted out to respect the European presentation. For an easy reading, appendix 4 gives the list of tasks in alphabetical order with a page reference list. The CEA is in charge of the French Technology programme. Three specific organizational directions of the CEA, located on four sites (see appendix 5) are involves in this programme: Advanced Technologies Direction (DTA), for Material task; Nuclear Reactors Direction (DRN), for Blanket design, Neutronic problems, Safety tasks; Physical Sciences Direction (DSM) uses the competence of the Tore Supra team in the Magnet design and plasma Facing Component field. The CEA programme is completed by collaborations with Technicatome, COMEX-Nucleaire and Ecole Polytechnique. The breakdown of the programme by Directions is presented in figure 1. The allocation of tasks is given in appendix 2 and in appendix 3, the related publications. (author)

  15. WTEC panel report on research submersibles and undersea technologies

    Science.gov (United States)

    Seymore, Richard J.; Blidberg, D. Richard; Brancart, Claude P.; Gentry, Larry L.; Kalvaitis, Algis N.; Lee, Michael J.; Mooney, Brad; Walsh, Don

    1994-06-01

    This report covers research submersibles and related subsea technologies in Finland, France, Russia, Ukraine and the United Kingdom. Manned, teleoperated, and autonomous submersibles were of interest. The panel found that, in contrast to the United States, Europe is making substantial progress in cooperative and coordinated research in subsea technology, including the development of standards. France is a leader in autonomous vehicle technology. Because much less was known a priori about the technologies in Russia and Ukraine, there were more new findings in those countries than in those Western European nations visited. However, Russia and Ukraine have a sizeable (and currently underutilized) infrastructure in this field, including a highly educated and experienced manpower pool, impressive (in some cases unique) facilities for physical testing, extensive fleets of seagoing research vessels capable of long voyages, and state-of-the-art facilities for conducting oceanographic investigations. The panel visited newly-formed commercial companies associated with long-standing submersible R&D and production centers in Russia and Ukraine. So far, these new efforts are undercapitalized, and as such represent opportunities at very low cost for Western nations, as detailed in the site reports.

  16. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  17. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  18. 2009 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Hartmann, Miks; Hoffmann, Petra Britt; Stieglitz, Robert; Hoehne, Thomas; Weiss, Frank-Peter; Hollands, Thorsten; Sanchez Espinoza, Victor Hugo; Tietsch, Wolfgang; Sonnenburg, H.G.

    2009-01-01

    Summary report on these 3 - out of 13 - Sessions of the Annual Conference on Nuclear Technology held in Dresden on May 12 to 14, 2009: Thermodynamics and Fluid Dynamics (Session 2), Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), and, Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 4). The other Sessions Reactor Physics and Methods of Calculation (Session 1), Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 5), Operation of Nuclear Installations (Session 6), Decommissioning of Nuclear Installations (Session 7), Fusion Technology (Session 8), Research Reactors, Neutron Sources (Session 9), Energy Industry and Economics (Session 10), Radiation Protection (Session 11), New Build and Innovations (Session 12), and Education, Expert Knowledge, Know How Transfer (Session 13) have be covered in reports in further issues of atw. (orig.)

  19. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  20. Modern wind energy technology for Russian applications. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Winther-Jensen, M., Bindner, H.W. [and others

    1999-05-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis for future joint ventures and technology exports. More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions. The research programme is envisaged to be carried out in three phases, the first phase being the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) wind turbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operational conditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up is for verifications of such adapted and modified wind turbines. The reporting of this project is made in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report, (Risoe-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy as agreed upon between the Russian and the Danish parties. (au)

  1. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  2. Pipe Explorer surveying system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The US Department of Energy's (DOE) Chicago Operations Office and the DOE's Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer trademark system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals

  3. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  4. Laser and Plasma Technology Division : annual report (1990-91)

    International Nuclear Information System (INIS)

    1991-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period 1990-91 is presented. The R and D activities are reported under the headings: 1) Laser Activities, 2) Thermal Plasma Activities, and 3) Electron Beam Activities. List of publications including journal articles, papers published in symposia, conferences etc. is given at the end. (original). figs

  5. Laser and Plasma Technology Division annual report 1994

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1995-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: 1) laser activities, 2) thermal plasma activities, 3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs

  6. Laser and Plasma Technology Division : annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during 1991 is presented. The R and D activities are reported under the headings (1) Laser Activities, (2) Thermal Plasma Activities, (3) Electron Beam Activities and (4) Divisional Workshop Activities. List of publications is given at the end of each activity heading

  7. Laser and Plasma Technology Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1996-12-31

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: (1) laser activities, (2) thermal plasma activities, (3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs.

  8. Progress report on scientific and technological activities: 1996

    International Nuclear Information System (INIS)

    1997-01-01

    An overview of research and development activities of the Constituyentes Atomic Center, National Atomic Energy Commission (Argentine), during the period January-December 1996 is presented. The research and development activities are reported under the following headings: Fuel Elements; Non Destructive and Structural Test; Physics; Materials; Chemistry; Radiobiology Nuclear Reactors; Institute of Technology; Quality Management; Technical Assistance to Industry (SATI); Computer and Communication Services Center; Nuclear Power Stations Support Group. List of publications by the scientific staff of the Atomic Center is provided. The list includes paper published in journals, papers presented in conferences, symposia, etc., and technical reports

  9. Progress report on scientific and technological activities: 1995

    International Nuclear Information System (INIS)

    1996-01-01

    An overview of research and development activities of the Constituyentes Atomic Center, National Atomic Energy Commission (Argentine), during the period January-December 1995 is presented. The research and development activities are reported under the following headings: Fuel Elements; Non Destructive and Structural Test; Physics; Materials; Chemistry; Radiobiology Nuclear Reactors; Institute of Technology; Quality Management; Technical Assistance to Industry (SATI); Computer and Communication Services Center; Nuclear Power Stations Support Group. List of publications by the scientific staff of the Atomic Center is provided. The list includes paper published in journals, papers presented in conferences, symposia, etc., and technical reports

  10. Letter report: Evaluation of dryer/calciner technologies for testing

    International Nuclear Information System (INIS)

    Sevigny, G.

    1996-02-01

    This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL open-quotes Melter Performance Assessmentclose quotes and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report

  11. Accelerator technology program. Progress report, July-December 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-01-01

    The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H - ion sources and injectors

  12. Can technology improve intershift report? What the research reveals.

    Science.gov (United States)

    Strople, Bernadette; Ottani, Patricia

    2006-01-01

    Shift report is a multifaceted process that serves to provide nurses with vital patient information to facilitate clinical decisions and patient care planning. A shift report also provides nurses with a forum for functions, such as patient problem solving and collaboration. The authors conducted a literature review, which indicates that current methodologies used to collect and convey patient information are ineffective and may contribute to negative patient outcomes. Data incongruence, legal implications, time constraints augmented by the nursing shortage, and the financial impact of shift report are also addressed. The literature reveals significant rationale for pioneering new and innovative methods of shift-to-shift communication. In the report To Err is Human: Building a Safe Health System, the Institute of Medicine attributes the deaths of up to 98,000 hospitalized Americans to medical errors, including communication failures [Institute of Medicine. (1999). To err is human: Building a safe health system. Report by the Committee on Quality of Health Care in America. Washington, DC: National Academy Press]. As a result, government policy makers and health care agencies have focused their attention on determining the root cause of errors to identify preventative measures, including the use of information technology [Institute of Medicine. (2004). Keeping patients safe: Transforming the work environment of nurses. Report by the Committee on Quality of Health Care in America. Washington, DC: National Academy Press]. Under these premises, the authors examined the process of nursing shift report and how it impacts patient outcomes. The use of computer technology and wireless modes of communication is explored as a means of improving the shift report process and, subsequently, health care outcomes and patient safety.

  13. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  14. Personal Ice Cooling System (PICS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project's (FEMP's) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body's ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP's Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  15. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  16. Technology demonstration assessment report for X-701B Holding Pond

    International Nuclear Information System (INIS)

    1992-07-01

    This Technology Demonstration Assessment Report (TDAR) was developed to evaluate and recommend the most feasible approach for cleanup of contaminated Minford soils below the X-701B Holding Pond and to summarize closure activities at the Portsmouth Gaseous Diffusion Plant (PORTS)X-701B Holding Pond(X-701B)site. In this TDAR, the recommended alternative and the activities for closure of the X-701B site are discussed. Four treatment technologies chosen for the TD, along with a contingent design, were evaluated to determine which approach would be appropriate for final closure of X-701B. These technologies address removal of soil contamination from the vadose zone and the saturated zone. The four technologies plus the Contingent Design evaluated were: In situ Soil Mixing with Solidification/Stabilization; In situ Soil Mixing with Isothermal Vapor Extraction; In situ Soil Mixing with Thermally Enhanced Vapor Extraction; In situ Soil Mixing with Peroxidation Destruction; and Contingent Closure. These technologies were evaluated according to their performance, reliability, implementability, safety, waste minimization, cost, and implementation time. Based on these criteria, a preferred treatment approach was recommended. The goal of the treatment approach is to apply the most appropriate technology demonstrated at X-231 B in order to reduce Volatile Organic Compounds (VOCs) in the saturated Minford soils directly beneath the X-701B Holding Pond. The closure schedule will include bid and award of two construction contracts, mobilization and demobilization, soil treatment, cap design, and cap construction. The total time required for soil treatment will be established based on actual performance of the soil treatment approach in the field

  17. Field transportable beta spectrometer. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations

  18. Water Science and Technology Board annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broader scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.

  19. Acidic deposition: State of science and technology. Report 15. Liming acidic surface waters. Final report

    International Nuclear Information System (INIS)

    Olem, H.; Thornelof, E.; Sandoy, S.; Schreiber, R.K.

    1990-09-01

    The document describes the science and technology of aquatic liming--a method for improving the water quality of acidic surface waters to restore or enhance fisheries. The report is a comprehensive compilation of years of research in North America and Europe by dozens of scientists. Several mitigation technologies--including those that have only been proposed--are critically evaluated along with the effects of liming on water chemistry and aquatic biota. Through these evaluations, the state of the science and technology of aquatic liming is identified for the reader. Whole-lake liming is now recognized as a valuable management tool for acidic surface waters and their fisheries. However, some liming technologies are considered experimental and will need further evaluation. Distinctions between technologies are included--as is the distinction between liming acidic surface waters and reducing acidifying emissions

  20. The New Mexico Technology Deployment Pilot Project: A technology reinvestment project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The New Mexico Technology Deployment Project (NMTDP) has been in operation for slightly more than two years. As one of the original TRP projects, NMTDP had the charter to develop and validate a new model for technology extraction which emphasized focused technology collaboration, early industry involvement, and a strong dual use commercialization and productization emphasis. Taken in total, the first two years of the NMTDP have been exceptionally successful, surpassing the goals of the project. This report describes the accomplishments and evolution of the NMTDP to date and discusses the future potential of the project. Despite the end of federal funding, and a subsequent reduction in level of effort, the project partners are committed to continuation of the project.

  1. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  2. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  3. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  4. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    Science.gov (United States)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  5. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  6. Sodium-bearing Waste Treatment Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  7. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  8. Integrated System Health Management (ISHM) Technology Demonstration Project Final Report

    Science.gov (United States)

    Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken

    2006-01-01

    Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.

  9. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  10. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  11. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  12. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Gissel Nielsen, G; Gundersen, V; Nielsen, O J; Oestergaard, H; Aarkrog, A [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  13. Environmental Science and Technology Department annual report 1994

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  14. Laser and Plasma Technology Division annual report 1992

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1993-01-01

    The report describes the research and development (R and D) activities of Laser and Plasma technology Division, Bhabha Atomic Research Centre, Bombay during 1992. The broad programme objectives of the Division are: (1) development and technology readiness studies of laser, plasma and electron beam devices, (2) studies on related physical phenomena with a view to gain better understanding of the devices, and (3) improvements in technology and exploration of new areas. The R and D activities are reported under the sections entitled: (1) Laser Activities, (2) Thermal Plasma Activities, and (3) Electron Beam Activities. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. Some of the highlights of R and D work during 1992 are:(1) fabrication of an electron beam sustained CO 2 laser, (2) commissioning of a 6.5 m high LMMHD (Liquid Metal Magneto-hydrodynamic) generator loaded with 1.5 tons of mercury, (3) fabrication of electron beam processing equipment, and (4) study of the magnetic properties of vanadium nitride films produced by reactive sputtering in an indigenously developed DC magnetron sputtering equipment. (author). 56 figs., 6 tabs

  15. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  16. Accelerator technology program. Status report, July-December 1982

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1984-05-01

    Major projects of the Los Alamos National Laboratory's Accelerator Technology Division are discussed, covering activities that occurred during the last six months of calendar 1982. The first sections report highlights in beam dynamics, accelerator inertial fusion, radio-frequency structure development, the racetrack microtron, CERN high-energy physics experiment NA-12, and high-flux radiographic linac study. Next we report on selected proton Storage Ring activities that have made significant progress during this reporting period, followed by an update on the free electron laser. The Fusion Materials Irradiation Test Facility work is discussed next, then progress on the klystron development project and on the gyrocon project. The activities of the newly formed Theory and Simulation Group are outlined. The last section covers activities concerning the accelerator test stand for the neutral particle beam program

  17. TECHNOLOGY EVALUATION REPORT: SILICATE TECHNOLOGY CORPORATION - SOLIDIFICATION/STABILIZATION OF PCP AND INORGANIC CONTAMINANTS IN SOILS - SELMA, CA

    Science.gov (United States)

    This Technolgy Evaluation Report evaluates the solidification/stabilization process of Silicate Technology Corporation (STC) for the on-site treatment of contaminated soil The STC immobilization technology uses a proprietary product (FMS Silicate) to chemically stabilize and ...

  18. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 3. Section reports

    International Nuclear Information System (INIS)

    Arnold, Uwe; Baumann, Erik; Fischer, Ulrich; Bohnstedt, Angelika; Gehring, Michael; Roedig, Manfred; Willschuetz, Hans-Georg; Goers, Stefan; Schoenfelder, Christian

    2010-01-01

    Summary report on these 6 - out of 12 - Sessions of the Annual Conference on Nuclear Technology held in Berlin on May 3 to 6, 2010: - Decommissioning of Nuclear Installations (Session 7), - Fusion Technology (Session 8), - Energy Industry and Economics (Session 10), - Radiation Protection (Session 11), - New Build and Innovations (Session 12), and - Education, Expert Knowledge, Know-how-Transfer (Session 13). The other Sessions: - Reactor Physics and Methods of Calculation (Session 1), - Thermodynamics and Fluid Dynamics (Session 2), - Safety of Nuclear Installations - Methods, Analysis, Results (Session 3), - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Session 4), - Front End of the Fuel Cycle, Fuel Elements and Core Components (Session 5), - Operation of Nuclear Installations (Session 6) have been covered in atw issues 10 and 11 (2010). (orig.)

  19. Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Laurence R. Zirker; James E. Francfort

    2003-01-01

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  20. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  1. 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY. Pt. 4. Section reports

    International Nuclear Information System (INIS)

    Berlepsch, Thilo v.; Hering, Wolfgang

    2011-01-01

    Summary report on 2 Sessions of Section: - New Build and Innovations (Section 12) of the ANNUAL MEETING On NUCLEAR TECHNOLOGY held in Berlin on May 4 to 6, 2010. The other Sections 'Reactor Physics and Methods of Calculation (Section 1)', 'Thermodynamics and Fluid Dynamics (Section 2)', 'Safety of Nuclear Installations - Methods, Analysis, Results (Section 3)', 'Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage (Section 4)', 'Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 5)', 'Operation of Nuclear Installations (Section 6)', 'Decommissioning of Nuclear Installations (Section 7)', 'Fusion Technology (Section 8)', 'Energy Industry and Economics (Section 10)', 'Radiation Protection (Section 11)', 'New Build and Innovations (Session New Build and Innovations, Section 12)', and 'Education, Expert Knowledge, Know-how-Transfer (Section 13)' have been covered in atw issues 10, 11 and 12 (2010). (orig.)

  2. Application of multimedia image technology in engineering report demonstration system

    Science.gov (United States)

    Lili, Jiang

    2018-03-01

    With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.

  3. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  4. Seizure reporting technologies for epilepsy treatment: A review of clinical information needs and supporting technologies.

    Science.gov (United States)

    Bidwell, Jonathan; Khuwatsamrit, Thanin; Askew, Brittain; Ehrenberg, Joshua Andrew; Helmers, Sandra

    2015-11-01

    This review surveys current seizure detection and classification technologies as they relate to aiding clinical decision-making during epilepsy treatment. Interviews and data collected from neurologists and a literature review highlighted a strong need for better distinguishing between patients exhibiting generalized and partial seizure types as well as achieving more accurate seizure counts. This information is critical for enabling neurologists to select the correct class of antiepileptic drugs (AED) for their patients and evaluating AED efficiency during long-term treatment. In our questionnaire, 100% of neurologists reported they would like to have video from patients prior to selecting an AED during an initial consultation. Presently, only 30% have access to video. In our technology review we identified that only a subset of available technologies surpassed patient self-reporting performance due to high false positive rates. Inertial seizure detection devices coupled with video capture for recording seizures at night could stand to address collecting seizure counts that are more accurate than current patient self-reporting during day and night time use. Copyright © 2015. Published by Elsevier Ltd.

  5. Exploratory battery technology development and testing report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  6. Ceramic Technology Project data base: September 1992 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1993-06-01

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in this report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.

  7. Report of the 2017 IEEE Cyber Science and Technology Congress

    Directory of Open Access Journals (Sweden)

    Wenbing Zhao

    2017-12-01

    Full Text Available The modern digitized world has led to the emergence of a new paradigm on global information networks and infrastructures known as Cyberspace and the studies of Cybernetics, which bring seamless integration of physical, social and mental spaces. Cyberspace is becoming an integral part of our daily life from learning and entertainment to business and cultural activities. As expected, this whole concept of Cybernetics brings new challenges that need to be tackled. The 2017 IEEE Cyber Science and Technology Congress (CyberSciTech 2017 provided a forum for researchers to report their research findings and exchange ideas. The congress took place in Orlando, Florida, USA during 6–10 November 2017. Not counting poster papers, the congress accepted over fifty papers that are divided into nine sessions. In this report, we provide an overview of the research contributions of the papers in CyberSciTech 2017.

  8. Quantification of environmental impacts of various energy technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Selfors, A [ed.

    1994-10-01

    This report discusses problems related to economic assessment of the environmental impacts and abatement measures in connection with energy projects. Attention is called to the necessity of assessing environmental impacts both in the form of reduced economic welfare and in the form of costs of abatement measures to reduce the impact. In recent years, several methods for valuing environmental impacts have been developed, but the project shows that few empirical studies have been carried out. The final report indicates that some important factors are very difficult to evaluate. In addition environmental impacts of energy development in Norway vary considerably from project to project. This makes it difficult to obtain a good basis for comparing environmental impacts caused by different technologies, for instance hydroelectric power versus gas power or wind versus hydroelectric power. It might be feasible however to carry out more detailed economic assessments of environmental impacts of specific projects. 33 refs., 1 fig., 4 tabs.

  9. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  10. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  11. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  12. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  13. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  14. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  15. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  16. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  17. Nuclear Technology Programs semiannual progress report, October 1987--March 1988

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-08-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1987--March 1988. Work in applied physical chemistry included investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  18. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  19. Personal Ice Cooling System (PICS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE`s Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE`s projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project`s (FEMP`s) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body`s ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP`s Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  20. Reactor technology. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Warren, J.L.

    1978-07-01

    Progress is reported in eight program areas. The nuclear Space Electric Power Supply Program examined safety questions in the aftermath of the COSMOS 954 incident, examined the use of thermoelectric converters, examined the neutronic effectiveness of various reflecting materials, examined ways of connecting heat pipes to one another, studied the consequences of the failure of one heat pipe in the reactor core, and did conceptual design work on heat radiators for various power supplies. The Heat Pipe Program reported progress in the design of ceramic heat pipes, new application of heat pipes to solar collectors, and final performance tests of two pipes for HEDL applications. Under the Nuclear Process Heat Program, work continues on computer codes to model a pebble bed high-temperature gas-cooled reactor, adaptation of a set of German reactor calculation codes to use on U.S. computers, and a parametric study of a certain resonance integral required in reactor studies. Under the Nonproliferation Alternative Sources Assessment Program LASL has undertaken an evaluation of a study of gaseous core reactors by Southern Science Applications, Inc. Independently LASL has developed a proposal for a comprehensive study of gaseous uranium-fueled reactor technology. The Plasma Core Reactor Program has concentrated on restacking the beryllium reflector and redesigning the nuclear control system. The status of and experiments on four critical assemblies, SKUA, Godiva IV, Big Ten, and Flattop, are reported. The Nuclear Criticality Safety Program carried out several tasks including conducting a course, doing several annual safety reviews and evaluating the safety of two Nevada test devices. During the quarter one of the groups involved in reactor technology has acquired responsibility for the operation of a Cockroft-Walton accelerator. The present report contains information on the use of machine and improvements being made in its operation

  1. LNG - Status in Denmark. Technology and potential. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2012-05-15

    The interest for LNG both on a small and a large scale is increasing worldwide. The experiences and knowledge on LNG is limited in Denmark. The Danish gas companies' Technical Management Group (TCG) has asked for a status report including a technology description and an evaluation of the potential in Denmark. A survey of primarily small-scale LNG technology is done in the report. The focus is motivated by the new areas of gas utilisation that become possible with small-scale LNG. Small-scale LNG in this study is defined as LNG stored and used at the application or in an isolated gas grid. The small-scale use of LNG has today an almost negligible share of the total LNG trade but offers interesting new applications for gas utilisation. LNG on a small scale can be used primarily as: 1) Ship fuel. 2) Truck fuel (heavy duty long distance). 3) Individual users not connected to the natural gas grid. 4) Backup for upgraded biogas to individual users and vehicle fleets. 5) Security of supply or supply enhancement of heavily loaded parts of the gas grid. 6) Small-scale storage and/or peak shaving. All but the first topics are natural uses for the current Danish gas distributors. LNG as ship fuel may engage other specialized LNG companies. The report contains a technical description of the parts in primarily small-scale LNG handling and operation. Liquefaction, transport, storage, engine technologies, gas quality and safety aspects related to LNG are covered. There seem to be two more or less separate paths for LNG in Denmark, onshore and off-shore use. These are not, apparently, sharing their experiences and knowledge. Rules and regulations are also different which may create some problems in the interface, for example ship bunkering. Further studies are suggested in the area of gas quality and engine technologies and adaptation of foreign guidelines for small-scale installations to Danish conditions. These guidelines ought to be based on international standards and

  2. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  3. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  4. Accelerator technology program. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report

  5. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  6. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  7. Stereotactic Radiation Therapy for Liver Tumours. Technological evaluation report

    International Nuclear Information System (INIS)

    Zeghari-Squalli, Nadia

    2016-09-01

    The purpose of this report was to analyse the efficacy and safety data of Stereotactic Body Radiation Therapy (SBRT) in patients with inoperable primary (hepatocellular carcinoma (HCC) and metastatic liver tumors (LM), to define the indications and the place of SBRT in the therapeutic strategy with the aim of its inclusion in the CCAM (French National list of reimbursement). The key points that arose from this assessment are the following: - The results are preliminary and the literature is inconclusive about safety and efficacy; - There are no standardised guidelines for: the indications, the eligibility criteria, the treatment protocols or the place of SBRT in the therapeutic strategy; - SBRT is a technique that requires great rigorous radioprotection and quality assurance procedures; the professionals and National institutions concerned recommend that SBRT only be performed in centres with sufficient resources, specific expertise and an organisation which guarantees that the quality assurance procedures will be respected. Recommendations HAS believes it is premature to recommend SBRT for the routine treatment of liver tumors and its reimbursement by the National Health Insurance (Assurance Maladie). HAS recommends its use in the strict context of clinical research by centres with sufficient resources, specific expertise and an organisation which guarantees that the quality assurance procedures will be respected. The literature search strategy prioritized randomised comparative studies and systematic reviews; If these were not available then non-randomised controlled trials, prospective studies were to be used and finally retrospective studies and case series were to be used. The assessment of SRBT for liver tumors was based on the critical analysis of clinical data from: - Three prospective case series, five retrospective case series, four health technology evaluation reports and 11 good practice recommendations, for primary liver tumors (HCC) - One prospective

  8. Plan for advanced microelectronics processing technology application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  9. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and

  10. Raley's LNG Truck Site Final Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  11. Accelerator technology program. Progress report, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Jameson, R.A. (comps.)

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  12. Accelerator Technology Program. Status report, January-September 1983

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1984-07-01

    This report presents highlights of major projects in the Accelerator Technology Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility's 2-MeV accelerator on which tests began in May, as scheduled. Then, activities are reported on beam dynamics, inertial fusion, structure development, the racetrack microtron, the CERN high-energy physics experiment NA-12, and LAMPF II. The Proton Storage Ring is discussed next, with emphasis on the computer control system, diagnostics interfacing, and theoretical support. Other sections summarize progress on a portable radiographic linac, developments on the klystron code, and on permanent magnets. Activities of the Theory and Simulation Group are outlined next, followed by discussion of the oscillator experiment and the energy-recovery experiment in the free electron laser project. The last section reports on the accelerator test stand. An unusual and very satisfying activity for the Division was the hosting of the 1983 Particle Accelerator Conference in Santa Fe, March 21-23, 1983. The conference had the largest attendance ever, with 895 registrants, 61 invited papers, and 521 contributed papers

  13. 2005 Final Report: New Technologies for Future Colliders

    International Nuclear Information System (INIS)

    Peter McIntyre; Al McInturff

    2005-01-01

    This document presents an annual report on our long-term R and D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress management, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ''free'' superconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A and M group ''comes of age'' in the family of superconducting magnet R and D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design

  14. Continued research, development and test of SOFC Technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The aim of the project was to further develop the SOFC cell and stack technology and drive down manufacturing costs in order to accomplish the performance and economic targets set forward in the SOFC road map, which has been developed in collaboration with the national Danish SOFC Strategy group. The project was divided into four parts. Part 1, Continued cell development covered the successful development of larger cells with a 500 cm2 footprint. Part 2, Cell manufacturing covered the production of 9.859 equivalents (12x12 cm2 standard cells) that were used in the stacks for demonstration projects (EFP 33033-0050)and for in-house research, development and testing in this project. Part 3, Continued stack development covered the successful test of a 3 kW{sub e} stack as well as the planning of a >8.000 hours stack test with new stack technology. The >8.000 hours test that started after the end date for this project will last for 12 months and be reported in the PSO 2008-1-010049 project. Part 4, Stack manufacturing covered a number of small stacks for in-house research, development and testing. (auther)

  15. TRUEX/SREX demonstration. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The tank waste at the Idaho National engineering and Environmental Laboratory (INEEL) must be removed from the tanks by 2012. Transuranic Extraction (TRUEX) and Strontium Extraction (SREX) are the preferred processes for treating INEEL tank waste. The demonstrations for both the TRUEX and SREX processes were carried out separately in the ICPP Remote Analytical Laboratory (RAL) shielded hot cell. A 24-stage bank of 2-cm diameter, centrifugal contactors was fabricated by Argonne National Laboratory. The contractors were modified at the ICPP for remote installation and operation in the RAL hot cell. An overall removal efficiency of 99.79% was obtained for the actinides using TRUEX. An overall removal efficiency of 94% was obtained for the actinides using SREX. The TRUEX and SREX processes will undergo further testing before full-scale processes are built. The experimental results are based on short-term testing (2--3 h). Longer testing times are needed. This report describes the technology, their performance, the application of the technology, costs, regulatory and policy issues, and lessons learned

  16. Environmental Science and Technology Department annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  17. Environmental Science and Technology Department annual report 1993

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  18. Innovative technology summary report: Sealed-seam sack suits

    International Nuclear Information System (INIS)

    1998-09-01

    Sealed-seam sack suits are an improved/innovative safety and industrial hygiene technology designed to protect workers from dermal exposure to contamination. Most of these disposable, synthetic-fabric suits are more protective than cotton suits, and are also water-resistant and gas permeable. Some fabrics provide a filter to aerosols, which is important to protection against contamination, while allowing air to pass, increasing comfort level of workers. It is easier to detect body-moisture breakthrough with the disposable suits than with cotton, which is also important to protecting workers from contamination. These suits present a safe and cost-effective (6% to 17% less expensive than the baseline) alternative to traditional protective clothing. This report covers the period from October 1996 to August 1997. During that time, sealed-seam sack suits were demonstrated during daily activities under normal working conditions at the C Reactor and under environmentally controlled conditions at the Los Alamos National Laboratory (LANL)

  19. Enviromental Science and Technology Department. Annual report 1990

    International Nuclear Information System (INIS)

    Jensen, A.; Helms Joergensen, J.; Nielsen, O.J.; Nilsson, K.; Aarkrog, A.

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author)

  20. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  1. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  2. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  3. Enviromental Science and Technology Department. Annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Helms Joergensen, J; Nielsen, O J; Nilsson, K; Aarkrog, A

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author).

  4. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  5. Accelerator Technology Program. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H - ion sources and injectors, then with accelerator instrumentation and beam dynamics

  6. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  7. Accelerator technology program. Progress report, July-December 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-08-01

    We report on the major projects of the Los Alamos National Laboratory's Accelerator Technology Division during the last 6 months of calendar year 1981. We have continued work on the radio-frequency quadrupole linear accelerator; we are doing studies of octupole focusing. We have completed the design study on an unusual electron-linear radiographic machine that could obtain x rays of turbine engines operating under simulated flight-maneuver conditions on a centrifuge. In September we completed the 5-y PIon Generator for Medical Irradiation (PIGMI) program to develop the concept and technology for an accelerator-based facility to treat cancer in a hospital environment. The design and construction package for the site, building, and utilities for the Fusion Materials Irradiation Test (FMIT) facility has been completed, and we have begun to concentrate on tests of the rf power equipment and on the design, procurement, and installation of the 2-MeV proto-type accelerator. The Proton Storage Ring project has continued to mature. The main effort on the racetrack microtron (RTM) has been on the design and construction of various components for the demonstration RTM. On the gyrocon radio-frequency generator project, the gyrocon was rebuilt with a new electron gun and new water-cooled gun-focus coil; these new components have performed well. We have initiated a project to produce a klystron analysis code that will be useful in reducing the electrical-energy demand for accelerators. A free-electron laser amplifier experiment to test the performance of a tapered wiggler at high optical power has been successfully completed

  8. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  9. Urethane foam void filling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Under the decontamination and decommissioning (D and D) Implementation Plan of the United States Department of Energy's (DOE's) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP's OSDF are provisions to protect against subsidence of the OSDF's cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create depressions in the OSDF's cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP's OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene torch was the baseline approach used by the FEMP's D and D contractor on Plant 1, B and W Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, it is time-consuming, labor-intensive and costly. Use of the oxy-acetylene torch exposes workers to health and safety hazards including the risk of burns, carbon monoxide, and airborne contamination of residual lead-based paints and other contaminants on the surface of the components being segmented. In addition, solvents used to remove paint from the components before segmenting them emit flammable, noxious fumes. This demonstration investigated the feasibility of placing large vessels intact in the OSDF without segmenting them. To prevent the walls of the vessels from collapsing under the overburden or from degradation, an innovative approach was employed which involved filling the voids in the vessels with a fluid material that hardened on standing. The hardened filling would support the walls of the vessels, and prevent them from collapsing. This report

  10. Environmental Technology Verification Report: Taconic Energy, Inc. TEA Fuel Additive

    Science.gov (United States)

    The Greenhouse Gas Technology Center (GHG Center) is one of six verification organizations operating under EPA’s ETV program. One sector of significant interest to GHG Center stakeholders is transportation - particularly technologies that result in fuel economy improvements. Taco...

  11. Semiconductor measurement technology: reliability technology for cardiac pacemakers 2: a workshop report, 1976

    International Nuclear Information System (INIS)

    Schafft, H.A.

    1977-01-01

    Summaries are presented of 12 invited talks on the following topics: the procurement and assurance of high reliability electronic parts, leak rate and moisture measurements, pacemaker batteries, and pacemaker leads. The workshop, second in a series, was held in response to strong interest expressed by the pacemaker community to address technical questions relevant to the enhancement and assurance of cardiac pacemaker reliability. Discussed at the workshop were a process validation wafer concept for assuring process uniformity in device chips; screen tests for assuring reliable electronic parts; reliability prediction; reliability comparison of semiconductor technologies; mechanisms of short-circuiting dendritic growths; details of helium and radioisotope leak test methods; a study to correlate package leak rates, as measured with test gasses, and actual moisture infusion; battery life prediction; microcalorimetric measurements to nondestructively evaluate batteries for pacemakers; and an engineer's and a physician's view of the present status of pacemaker leads. References are included with most of the reports

  12. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  13. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  14. Advanced Technology Training Program for the Apparel Industry. Final Report.

    Science.gov (United States)

    El Paso Community Coll., TX.

    A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…

  15. Short Report: New use of current technology to measure rectal ...

    African Journals Online (AJOL)

    The technology necessary to log data remotely and independently has been available for some years. This technology has been applied mostly to environmental and natural sciences, however, and not in life sciences. This was due primarily to the cost of the technology and the small demand for it in the life sciences, ...

  16. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  17. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  18. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  19. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  20. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  1. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  2. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1989-01-01

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs

  3. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    Energy Technology Data Exchange (ETDEWEB)

    Czvikovszky, T [Research Inst. for the Plastic Industry, Budapest (Hungary)

    1990-12-31

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs.

  4. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  5. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  6. Report of subcommittee on Promotion of basic technology

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987, the policy of promoting the development of the basic technology that connects basic research to project development was shown, placing emphasis on the creative and innovative aspect of atomic energy. It is necessary to accomplish the international responsibility and to make breakthrough in the present day problems such as the heightening of safety, reliability and economical efficiency imposed on atomic energy by purposefully and efficiently advancing the development of these basic technologies, in this way, to build up atomic energy technological system for the beginning of 21st century. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the trend of developing atomic energy technology hereafter and the basic technology, the concept of developing material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks, the plan of the development of basic technology for atomic energy and the efficient promotion of its development are discussed. (K.I.)

  7. Projects at the Western Environmental Technology Office. Quarterly technical progress report, April 1--June 30, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report contains brief outlines of the multiple projects under the responsibility of the Western Environmental Technology Office in Butte Montana. These projects include biomass remediation, remediation of contaminated soils, mine waste technology, and several other types of remediation

  8. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  9. Volpe Center Office of Research and Technology Applications (ORTA) : FY 2013 Annual Report

    Science.gov (United States)

    2013-12-01

    Technology transfer activities performed by the Volpe National Transportation Systems Center during fiscal year 2013 in fulfillment of statutory Office of Research and Technology Applications (ORTA) responsibilities are summarized in this report. Dur...

  10. Volpe Center Office of Research and Technology Applications (ORTA) : fiscal year 2014 annual report

    Science.gov (United States)

    2014-12-01

    Technology transfer activities performed by the Volpe National Transportation Systems Center during fiscal year 2014 in fulfillment of statutory Office of Research and Technology Applications (ORTA) responsibilities are summarized in this report.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  12. Performance-Based Technology Selection Filter description report

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL)

  13. FY2015 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-29

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  14. FY2014 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  15. FY2016 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-03

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  16. Performance-Based Technology Selection Filter description report

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  17. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010.

    Science.gov (United States)

    Dyer, S; Chambers, G M; de Mouzon, J; Nygren, K G; Zegers-Hochschild, F; Mansour, R; Ishihara, O; Banker, M; Adamson, G D

    2016-07-01

    were, in 2008, 2009 and 2010, 21.8, 20.5 and 20.4%, respectively, with a corresponding triplet rate of 1.3, 1.0 and 1.1%. Fresh IVF and ICSI carried a perinatal mortality rate per 1000 births of 22.8 (2008), 19.2 (2009) and 21.0 (2010), compared with 15.1, 12.8 and 14.6/1000 births following FET in the same periods of observation. The proportion of women aged 40 years or older undergoing non-donor ART increased from 20.8 to 23.2% from 2008 to 2010. The data presented are reliant on the quality and completeness of data submitted by individual countries. This report covers approximately two-thirds of the world ART activity. The ICMART World Reports provide the most comprehensive global statistical census and review of ART utilization, effectiveness, safety and quality. While ART treatment continues to increase globally, the wide disparities in access to treatment and embryo transfer practices warrant attention by clinicians and policy makers. The authors declare no conflict of interest and no specific support from any organizations in relation to this manuscript. ICMART acknowledges financial support from the following organizations: American Society for Reproductive Medicine; European Society for Human Reproduction and Embryology; Fertility Society of Australia; Japan Society for Reproductive Medicine; Japan Society of Fertilization and Implantation; Red Latinoamericana de Reproduccion Asistida; Society for Assisted Reproductive Technology; Government of Canada (Research grant), Ferring Pharmaceuticals (Grant unrelated to World Reports). not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...