Sample records for technologically important semiconducting

  1. Concise encyclopedia of semiconducting materials and related technologies

    CERN Document Server

    Mahajan, S M


    The development of electronic materials and particularly advances in semiconductor technology have played a central role in the electronics revolution by allowing the production of increasingly cheap and powerful computing equipment and advanced telecommunications devices. This Concise Encyclopedia, which incorporates relevant articles from the acclaimed Encyclopedia of Materials Science and Engineering as well as newly commissioned articles, emphasizes the materials aspects of semiconductors and the technologies important in solid-state electronics. Growth of bulk crystals and epitaxial layer

  2. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H


    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  3. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza


    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  4. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology. (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza


    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  5. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. (United States)

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin


    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.

  6. Controlled polymerizations for the synthesis of semiconducting conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Ken; Luscombe, Christine K.


    Conjugated polymers have been under active development since the 1970s as the active material in organic field-effect transistors (OFETs), photovoltaic devices and the emissive layer in light-emitting diodes (LEDs). Extensive work has been performed to investigate the physics and chemistry of these materials, and a variety of semiconducting polymers have been synthesized using a range of polymerization techniques. One of the most important key technologies is to obtain a well-controlled polymerization, which provides polymers with narrow polydispersities and defined molecular weights. In this paper, we describe the recent progress on the synthesis of semiconducting polymers as classified as polyphenylenes, polyphenylenevinylenes, polythiophenes, polyfluorene and their block copolymers by the use of controlled polymerizations.

  7. Development of technologically important crystals and devices

    International Nuclear Information System (INIS)

    Singh, S.G.; Tyagi, M.; Desai, D.G.; Singh, A.K.; Tiwari, Babita; Sen, Shashwati; Chauhan, A.K.; Gadkari, S.C.


    Device-grade single crystals of technologically important materials for use as scintillators in nuclear radiation detection, lasers and optical devices are grown in Crystal Technology Section of the Technical Physics Division. The expertise has been developed to establish crystal growth processes and design and fabricate crystal growth equipment. In addition, single crystals of new materials to be used in neutron and gamma detection are also being studied and developed currently. The processing, characterization and testing of devices are carried out using in-house facilities as well as in collaboration with other Divisions. (author)

  8. Semiconducting polymeric materials

    NARCIS (Netherlands)

    de Boer, Bert; Facchetti, Antonio


    (Semi)conducting polymers with a pi-conjugated (hetero)aromatic backbone are capable of transporting charge and interact efficiently with light enabling their utilization in a variety of opto-electronic devices. In this report and in the additional papers of this special issue, several classes of

  9. Importance of international standards on hydrogen technologies

    International Nuclear Information System (INIS)

    Bose, T.K.; Gingras, S.


    This presentation provided some basic information regarding standards and the International Organization for Standardization (ISO). It also explained the importance of standardization activities, particularly ISO/TC 197 which applies to hydrogen technologies. Standards are established by consensus. They define the minimum requirements that will ensure that products and services are reliable and effective. Standards contribute to the elimination of technical barriers to trade (TBT). The harmonization of standards around the world is desirable in a free trade environment. The influence of the TBT on international standardization was discussed with particular reference to the objectives of ISO/TC 197 hydrogen technologies. One of the priorities for ISO/TC 197 is a hydrogen fuel infrastructure which includes refuelling stations, fuelling connectors, and storage technologies for gaseous and liquid hydrogen. Other priorities include an agreement between the International Electrotechnical Commission (IEC) and the ISO, in particular the IEC/TC 105 and ISO/TC 197 for the development of fuel cell standards. The international standards that have been published thus far include ISO 13984:1999 for liquid hydrogen, land vehicle fuelling system interface, and ISO 14687:1999 for hydrogen fuel product specification. Standards are currently under development for: liquid hydrogen; airport hydrogen fuelling facilities; gaseous hydrogen blends; basic considerations for the safety of hydrogen systems; gaseous hydrogen and hydrogen blends; and gaseous hydrogen for land vehicle filling connectors. It was concluded that the widespread use of hydrogen is dependent on international standardization

  10. Nano semiconducting materials

    CERN Document Server

    Saravanan, R


    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  11. Weapons for Strategic Effect How Important is Technology?

    National Research Council Canada - National Science Library

    Gray, Colin


    There is no doubt that technology is important in war. While it is difficult to identify major security issues for which technology is not important, determining just how important is another matter...

  12. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides (United States)

    Hahm, Jong-In


    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed. PMID:23627064

  13. 14th Conference on "Microscopy of Semiconducting Materials"

    CERN Document Server

    Hutchison, J


    This is a long-established international biennial conference series, organised in conjunction with the Royal Microscopical Society, Oxford, the Institute of Physics, London and the Materials Research Society, USA. The 14th conference in the series focused on the most recent advances in the study of the structural and electronic properties of semiconducting materials by the application of transmission and scanning electron microscopy. The latest developments in the use of other important microcharacterisation techniques were also covered and included the latest work using scanning probe microscopy and also X-ray topography and diffraction. Developments in materials science and technology covering the complete range of elemental and compound semiconductors are described in this volume.

  14. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R


    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  15. The Strategic Importance of Information Technology in Community Colleges (United States)

    Lu, Romy Emaas


    In 2003, Nicholas Carr published in "Harvard Business Review" his article "IT Doesn't Matter," which rekindled the debate on the strategic importance of information technology (IT). Chief Information Officers (CIOs) of community colleges are now faced with the challenge of seeking the best technology for their institutions. The…

  16. Abstracts of 30. International School on Physics of Semiconducting Compounds Jaszowiec 2001

    International Nuclear Information System (INIS)


    30. International School on Physics of Semiconducting Compounds Jaszowiec 2001 is the last of the cyclic organised discussion forum for most important topics of semiconductor physics. Especially the low dimensional semiconducting systems were in the centre of interest of the conference scientific program. The methods of nanostructures manufacturing and investigation of their magnetic, optical and electrical properties has been extensively represented

  17. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.


    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  18. The Social Construction of Imported Technologies: Reflections on the Social History of Technology in Modern Korea. (United States)

    Choi, Hyungsub


    Can imported technologies be socially constructed? Starting from this puzzling question, this essay reflects on the various methodologies with which one can narrate the stories of technology in modern Korea. A focus on technological innovations and how they have been shaped by their societal milieu forces one to leave out a large part of the technological experience, especially when the bulk of the technologies-in-use have been imported from abroad. This poses a serious problem for the history of technology in Korea, a nation that relied heavily on foreign technologies as it went through rapid economic growth in the latter twentieth century.

  19. Technologically important properties of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Technologically important properties of lactic acid bacteria isolated from raw milk of three breeds of Algerian dromedary ( Camelus dromedarius ) ... isolated from Algerian dromedary milks that showed potentially important properties suggest that they are good candidate for camels milk processing or other dairy fermentation ...

  20. Luminescent Organic Semiconducting Langmuir Monolayers. (United States)

    Agina, Elena V; Mannanov, Artur A; Sizov, Alexey S; Vechter, Olga; Borshchev, Oleg V; Bakirov, Artem V; Shcherbina, Maxim A; Chvalun, Sergei N; Konstantinov, Vladislav G; Bruevich, Vladimir V; Kozlov, Oleg V; Pshenichnikov, Maxim S; Paraschuk, Dmitry Yu; Ponomarenko, Sergei A


    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

  1. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL


    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  2. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke


    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  3. Measurement and monitoring technologies are important SITE program component

    International Nuclear Information System (INIS)



    An ongoing component of the Superfund Innovative Technologies Evaluation (SITE) Program, managed by the US EPA at its Hazardous Waste Engineering Research Laboratory in Cincinnati, is the development and demonstration of new and innovative measurement and monitoring technologies that will be applicable to Superfund site characterization. There are four important roles for monitoring and measurement technologies at Superfund sites: (1) to assess the extent of contamination at a site, (2) to supply data and information to determine impacts to human health and the environment, (3) to supply data to select the appropriate remedial action, and (4) to monitor the success or effectiveness of the selected remedy. The Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV) has been supporting the development of improved measurement and monitoring techniques in conjunction with the SITE Program with a focus on two areas: Immunoassay for toxic substances and fiber optic sensing for in-situ analysis at Superfund sites

  4. Potential displacement of petroleum imports by solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.


    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  5. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa


    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  6. Assembly of ordered carbon shells on semiconducting nanomaterials (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner


    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  7. The Importance of Cooling Technology in Propulsion and Power Systems

    National Research Council Canada - National Science Library

    Auxier, Thomas


    Turbine cooling is the breakthrough technology for gas turbine engines and although the turbine engine and cooling are considered mature technologies, to date they have only achieved about 60 to 70...

  8. School Construction and Technology...A Few Important Pointers. (United States)

    Griffin, Richard A.; Fowler, Laura S.


    The most overlooked facet of school construction is the dovetailing of permanent construction insurance and technology construction insurance. Advice is provided about technology and technology purchases, highlighting problems associated with costs, copyright infringements, delivery delays, electrical wiring, hardware, student records, vendors,…

  9. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  10. Crystallographic characteristics and fine structures of semiconducting transition metal silicides

    Energy Technology Data Exchange (ETDEWEB)

    Shao, G., E-mail: [Institute for Materials Research and Innovation, University of Bolton, Bolton BL3 5AB (United Kingdom); Gao, Y. [Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China); Xia, X.H. [Institute for Materials Research and Innovation, University of Bolton, Bolton BL3 5AB (United Kingdom); Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China); Milosavljevic, M. [VINCA Institute of Nuclear Sciences, P.O. Box 522, Belgrade 11001 (Serbia)


    Silicide-based photonic materials have attracted a great deal of research interest due to their compatibility with the well-developed silicon technology. Extensive efforts have been made for the synthesis and characterisation of these materials. This paper covers some aspects of the microstructural and crystallographic characteristics of ion beam synthesised silicides such as the semiconducting iron and ruthenium silicides, using transmission electron microscopy. A previously predicted new orientation relationship has been found to exist between the Si substrate and ion beam synthesised {beta}FeSi{sub 2} nanocrystals, which are free of 90{sup o} rotational order domain boundaries.

  11. The Importance of Technology Readiness in NASA Earth Venture Missions (United States)

    Wells, James E.; Komar, George J.


    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of

  12. Young women in science and technology: The importance of choice


    Dimitriadi, Angeliki


    Despite significant improvements in the last couple of years, women are still under-represented in science and technology, both in the academic and private sector. This is due to a variety of reasons, mostly related to the role allocated to women in modern society as well as pre-existing prejudices that form glass ceilings while encouraging male presence in the workplace. It is also however, a result of information or lack of, which places young women in difficult position of making a career ...

  13. Synthesis and Applications of Semiconducting Graphene

    Directory of Open Access Journals (Sweden)

    Shahrima Maharubin


    Full Text Available Semimetal-to-semiconductor transition in graphene can bestow graphene with numerous novel and enhanced structural, electrical, optical, and physicochemical characteristics. The scope of graphene and its prospective for an array of implications could be significantly outspread by this transition. In consideration of the recent advancements of semiconducting graphene, this article widely reviews the properties, production, and developing operations of this emergent material. The comparisons among the benefits and difficulties of current methods are made, intending to offer evidences to develop novel and scalable synthesis approaches. The emphasis is on the properties and applications resulting from various conversion methods (doping, controlled reduction, and functionalization, expecting to get improved knowledge on semiconducting graphene materials. Intending to motivate further efficient implications, the mechanisms leading to their beneficial usages for energy conversion and storage are also emphasized.

  14. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen


    A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained....

  15. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. (United States)

    Wei, Li; Tezuka, Noriyasu; Umeyama, Tomokazu; Imahori, Hiroshi; Chen, Yuan


    Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.

  16. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie


    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  17. The growing dependency in health care. Recent changes in medical technology imports and exports in Turkey. (United States)

    Semin, S; Güldal, D


    This study investigates recent changes related to the import and export of medical technology and their results in Turkey. Between 1980 and 1993 the number of medical technology imports in Turkey rose, and there was a parallel rise in its ratio to total imports and health expenditures. In contrast the ratio of medical technology exports to total exports decreased significantly in the same period. The liberalization of foreign trade and the changes of health services toward free market policy has caused growing import of medical technology in Turkey.

  18. Paul Tillich and Technology: His Importance for Robust Science, Technology, and Society (STS) Education. (United States)

    Deitrich, Richard


    Discussed is the linkage between science, technology, and religious ideas. Tillich's continuum of existentialism, philosophy, and theology and his concepts of the multidimensional unity of life have been used to develop a technology and religion course. Included are the core ethic and basic tenets for STS education. (KR)

  19. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    National Research Council Canada - National Science Library

    Carlson, Lonnie


    .... This temperature dependent surface photovoltage effect is not compelling evidence for the majority carrier type but does suggest an increase in the carrier concentration in semiconducting boron...

  20. The Importance of Localized Related Variety for International Diversification of Corporate Technology

    DEFF Research Database (Denmark)

    Dettmann, Eva; Lacasa, Iciar Dominguez; Günther, Jutta


    technological activities. The estimations show that this is the case in regions characterized by a high overall technological strength. This suggests that related variety facilitates technological diversifications of foreign corporations in regions at the top of the geographic hierarchy......The importance of localized related variety for international diversification of corporate technology, Regional Studies. Internationalization of research and development has increased substantially in recent years. This paper analyses the determinants of spatial distribution of foreign...

  1. Realization of N-Type Semiconducting of Phosphorene through Surface Metal Doping and Work Function Study

    Directory of Open Access Journals (Sweden)

    Haocheng Sun


    Full Text Available Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.

  2. Topologically Directed Assemblies of Semiconducting Sphere-Rod Conjugates. (United States)

    Lin, Zhiwei; Yang, Xing; Xu, Hui; Sakurai, Tsuneaki; Matsuda, Wakana; Seki, Shu; Zhou, Yangbin; Sun, Jian; Wu, Kuan-Yi; Yan, Xiao-Yun; Zhang, Ruimeng; Huang, Mingjun; Mao, Jialin; Wesdemiotis, Chrys; Aida, Takuzo; Zhang, Wei; Cheng, Stephen Z D


    Spontaneous organizations of designed elements with explicit shape and symmetry are essential for developing useful structures and materials. We report the topologically directed assemblies of four categories (a total of 24) of sphere-rod conjugates, composed of a sphere-like fullerene (C 60 ) derivative and a rod-like oligofluorene(s) (OF), both of which are promising organic semiconductor materials. Although the packing of either spheres or rods has been well-studied, conjugates having both shapes substantially enrich resultant assembled structures. Mandated by their shapes and topologies, directed assemblies of these conjugates result not only in diverse unconventional semiconducting supramolecular lattices with controlled domain sizes but also in tunable charge transport properties of the resulting structures. These results demonstrate the importance of persistent molecular topology on hierarchically assembled structures and their final properties.

  3. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. (United States)

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu


    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  4. The importance of educational theories for facilitating learning when using technology in medical education. (United States)

    Sandars, John; Patel, Rakesh S; Goh, Poh Sun; Kokatailo, Patricia K; Lafferty, Natalie


    There is an increasing use of technology for teaching and learning in medical education but often the use of educational theory to inform the design is not made explicit. The educational theories, both normative and descriptive, used by medical educators determine how the technology is intended to facilitate learning and may explain why some interventions with technology may be less effective compared with others. The aim of this study is to highlight the importance of medical educators making explicit the educational theories that inform their design of interventions using technology. The use of illustrative examples of the main educational theories to demonstrate the importance of theories informing the design of interventions using technology. Highlights the use of educational theories for theory-based and realistic evaluations of the use of technology in medical education. An explicit description of the educational theories used to inform the design of an intervention with technology can provide potentially useful insights into why some interventions with technology are more effective than others. An explicit description is also an important aspect of the scholarship of using technology in medical education.

  5. Perceived Importance and Manageability of Teachers toward the Factors of Integrating Computer Technology into Classrooms (United States)

    ChanLin, Lih-Juan


    In this study, the perceived importance and manageability of teachers on the factors in technology integration were assessed among 407 elementary and secondary schoolteachers. A questionnaire containing 28 items focusing on environmental, personal, social and curricular factors related to technology integration was used. Two sets of data resources…

  6. semiconducting nanostructures: morphology and thermoelectric properties (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés


    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  7. Semiconducting SWNTs sorted by polymer wrapping: How pure are they? (United States)

    Derenskyi, Vladimir; Gomulya, Widianta; Gao, Jia; Bisri, Satria Zulkarnaen; Pasini, Mariacecilia; Loo, Yueh-Lin; Loi, Maria Antonietta


    Short-channel field-effect transistors (FETs) prepared from semiconducting single-walled carbon nanotube (s-SWNT) dispersions sorted with poly(2,5-dimethylidynenitrilo-3,4-didodecylthienylene) are demonstrated. Electrical analysis of the FETs shows no evidence of metallic tubes out of a total number of 646 SWNTs tested, implying an estimated purity of our semiconducting SWNT solution higher than 99.85%. These findings confirm the effectiveness of the polymer-wrapping technique in selecting semiconducting SWNTs, as well as the potential of sorted nanotubes for the fabrication of short channel FETs comprising from 1 to up to 15 nanotubes without inter-nanotube junctions.

  8. Growth and electronic structure of graphene on semiconducting Ge(110)


    Tesch, Julia; Voloshina, Elena; Fonin, Mikhail; Dedkov, Yuriy S.


    The direct growth of graphene on semiconducting or insulating substrates might help to overcome main drawbacks of metal-based synthesis, like metal-atom contaminations of graphene, transfer issues, etc. Here we present the growth of graphene on n-doped semiconducting Ge(110) by using an atomic carbon source and the study of the structural and electronic properties of the obtained interface. We found that graphene interacts weakly with the underlying Ge(110) substrate that keeps graphene's ele...

  9. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics. (United States)

    Lefebvre, Jacques; Ding, Jianfu; Li, Zhao; Finnie, Paul; Lopinski, Gregory; Malenfant, Patrick R L


    Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of

  10. Majorana quasiparticles in semiconducting carbon nanotubes (United States)

    Marganska, Magdalena; Milz, Lars; Izumida, Wataru; Strunk, Christoph; Grifoni, Milena


    Engineering effective p -wave superconductors hosting Majorana quasiparticles (MQPs) is nowadays of particular interest, also in view of the possible utilization of MQPs in fault-tolerant topological quantum computation. In quasi-one-dimensional systems, the parameter space for topological superconductivity is significantly reduced by the coupling between transverse modes. Together with the requirement of achieving the topological phase under experimentally feasible conditions, this strongly restricts in practice the choice of systems which can host MQPs. Here, we demonstrate that semiconducting carbon nanotubes (CNTs) in proximity with ultrathin s -wave superconductors, e.g., exfoliated NbSe2, satisfy these needs. By precise numerical tight-binding calculations in the real space, we show the emergence of localized zero-energy states at the CNT ends above a critical value of the applied magnetic field, of which we show the spatial evolution. Knowing the microscopic wave functions, we unequivocally demonstrate the Majorana nature of the localized states. An effective four-band model in the k -space, with parameters determined from the numerical spectrum, is used to calculate the topological phase diagram and its phase boundaries in analytic form. Finally, the impact of symmetry breaking contributions, like disorder and an axial component of the magnetic field, is investigated.

  11. The importance of the technologically able social innovators and entrepreneurs: A US National Laboratory Perspective

    NARCIS (Netherlands)

    Chavez, Victor; Stinnett, Regan; Tierney, Robert; Walsh, Steven Thomas

    A country's National Innovation Policies (NIP) often center on military, energy or other national security missions. Yet many countries' NIPs have resulted in tremendous societal benefit through both planned and unplanned action not associated with these goals. Socially important technology product

  12. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review (United States)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra


    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  13. Review of information technologies and their importance in the educational directory of education

    Directory of Open Access Journals (Sweden)

    Андрей Викторович Иванов


    Full Text Available The article focuses on the fact that the need for education is continuous and ongoing process therefore anytime anywhere access to it is becoming a necessity. The need for information is constantly increasing phenomenon. Education should meet the needs of different groups of learners, and therefore, modern information technologies are important to meet this need. Discusses the requirements of society, which consist in the fact that all the members of this society have the necessary level of technological literacy. Thus, increasing access and reducing the cost of education with the aim of achieving the planned quality of education possible to implement cloud-based IT technologies. Sets out the specifics of cloud computing, which imposes special requirements for training in their use, including the management of educational process. Draws conclusions about what information and communication technologies, understanding the capabilities of cloud technologies and their impact on the management efficiency of the education system, are the main prerequisites for the development of professional competence of the head of the educational organization in the field of information technology.

  14. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.


    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  15. Nonlinear transport in semiconducting polymers at high carrier densities. (United States)

    Yuen, Jonathan D; Menon, Reghu; Coates, Nelson E; Namdas, Ebinazar B; Cho, Shinuk; Hannahs, Scott T; Moses, Daniel; Heeger, Alan J


    Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional 'metal'.

  16. Technology Transfer in the EU: Exporting Strategically Important ICT Solutions to Other EU Member States

    Directory of Open Access Journals (Sweden)

    Säär Anni


    Full Text Available The fast development of ICTs pose new challenges to the European Union and its Member States. Every EU country has its own policies regarding technology transfer, ownership of state e-services, and the possibilities how the state-owned or licensed e-service could be exported. Taking into account the free movement of goods, the EU has created a platform to cooperate and export IT solutions. However, the lack of preparedness of infrastructures, legislation and stakeholders for cross-border exchanges poses a threat to IT transfer and should be taken into consideration in the EU as well. In the coming decades the number of outsourced ICT solutions, strategically important ICT solutions, public services and critically important information exchange platforms developed on behalf of the states, will grow exponentially. Still, digital development is uneven across the EU, they grow at different speeds and the performance is quite splintered. There are legal provisions which are outdated and therefore impede technological cooperation and export of IT solutions. A Member State may restrict the ICT licensing based on national security and policy reasons and the ownership of intellectual property might pose a threat to technology transfer or further development of the IT solution. There are examples of strategically important export of ICT solutions, the experience at which can be expanded to cover other EU Member States. Strong collaboration would enable mutual learning from past experiences along with the opportunities for better use of technology. Parallels can be drawn with military technology transfers, as the policies and legal framework was first developed and mostly used with them.

  17. Efficient technologies or user behaviour, which is the more important when reducing households' energy consumption?

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten


    , both for understanding why some households consume much more energy than others, and when looking for relevant approaches to a future low-carbon society. The paper uses several sources to explore this question, most of them from a Danish context, including results from the researcher's own projects......Much policy effort focuses on energy efficiency of technology, though not only efficiency but also user behaviour is an important factor influencing the amount of consumed energy. This paper explores to what extent energy efficiency of appliances and houses or user behaviour is the more important...... in Denmark. In the conclusion, these results are discussed in a broader international perspective and it is concluded that more research in this field is necessary. In relation to energy policy, it is argued that it is not a question of technology efficiency or behaviour, as both have to be included...

  18. Impacts of imports, government policy and technology on future natural gas supply

    International Nuclear Information System (INIS)

    Allison, E.


    This presentation discussed the impacts of imports, government policy and technology on future natural gas supply. Specifically, it discussed projections of natural gas supply and demand; the potential impact of imports on United States natural gas supply; the potential impacts of government policy on natural gas supply and demand; and the impact of technological innovations on natural gas supply such as coalbed methane and methane hydrate. Specific government policies that were examined included the American Recovery and Reinvestment Act of 2009; the American Clean Energy and Security Act of 2009; and the Clean Energy Jobs and American Power Act of 2009. It was concluded that the United States demand for natural gas will expand and that the impact of pending clean energy legislation is unclear. In addition, each potential future resource will face constraints and new resources may come on line in the next 20 years. figs.

  19. Semiconducting graphene: converting graphene from semimetal to semiconductor. (United States)

    Lu, Ganhua; Yu, Kehan; Wen, Zhenhai; Chen, Junhong


    Interest in graphene has grown extensively in the last decade or so, because of its extraordinary physical properties, chemical tunability, and potential for various applications. However, graphene is intrinsically a semimetal with a zero bandgap, which considerably impedes its use in many applications where a suitable bandgap is required. The transformation of graphene into a semiconductor has attracted significant attention, because the presence of a sizable bandgap in graphene can vastly promote its already-fascinating potential in an even wider range of applications. Here we review major advances in the pursuit of semiconducting graphene materials. We first briefly discuss the electronic properties of graphene and some theoretical background for manipulating the band structure of graphene. We then summarize many experimental approaches proposed in recent years for producing semiconducting graphene. Despite the relatively short history of research in semiconducting graphene, the progress has been remarkable and many significant developments are highly anticipated.

  20. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko


    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  1. The Importance of Knowledge Management in Terms of Increasing Social Capital in Selected Slovene Technology Parks

    Directory of Open Access Journals (Sweden)

    Riko Novak


    Full Text Available This article investigates the importance of knowledge management (KM and how it is influencing social capital (SC in selected organisations that are members of Slovene technology parks. The purpose of this article is to point out statistical important characteristics between the dependant variable and several independent variables on the basis of preliminary studied empirical data based on a population of 667 organisations chosen from the subjects of the innovative environment database maintained by the Public Agency of the Republic of Slovenia for Entrepreneurship and Foreign Investments (JAPTI. On the basis of a multivariate regression analysis we wanted to present empirical findings, namely, whether communication technologies and the capability (ability of the employed to access information sources influences KM. With this article we want to present the final findings which define the development of a conceptual framework for understanding the influence of KM in small and medium sized companies on the development of social capital. We came to the conclusion that in an organisation the importance of intellectual and social capital, intangible capital assets and their continuous measurement has to be emphasised in order to increase the importance (awareness of KM.

  2. The Holistic Perception of Information Technology and The Importance on the Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Aysenur Erdi̇l


    Full Text Available Supply Chain Management (SCM includes management of materials, products, services, information and financial flows which network of consisting suppliers, manufacturers, logistics service companies and clients. The individual elements of this chain with coordination and integration of each element to perform themselves ensure successful of SCM. Information technology has a very important role in activities for coordination and integration of supply chain. Acceleration of sharing information, simplification and increasing of reliability provide effective use of time in logistics companies, cost savings like effective management ways. In this prepared study which taking into account the positive impact on supply chain of information technologies, it was investigated on the effectiveness of sharing information of supply chain by examining infrastructure of the information technology, ranging from the production of raw materials to the end user in SCM. The results of the analyses by using the structural equation model indicate that the use of information technology in supply chain management enhances the relationship between buyer supplier; the enhancement of such relationship improves the quality, safety, and flexibility of products and reduces the cost of products; as a result, it increases firm performance.

  3. Importance of nuclear technology in the conservation and production of nutritional fungi

    International Nuclear Information System (INIS)

    Sajet, A.S.


    The shortfall in food and field crops due to bad weather and the incidence of insects and microbes during harvesting, handling and storage under non-suitable conditions, called the attention of researchers to try to minimize the damage happening and by various means, whether to develop sources of new food, such as producing nutritional fungi, or by following non-traditional methods of anti-microbes and insects such as the use of radiation as a safe and successful way to save the food without any toxic effects. Permits have been issued for food irradiation by many international organizations including IAEA, World Health Organization and FAO. Nutritional fungi is one of the food sources used as food fit for human consumption in various countries around the world due to their importance which includes many aspects: the nutritional and health value; medical significance; environmental importance and industrial importance. Nuclear technology has contributed in many of the developments in the production and conservation of nutritional fungi, notably, biological studies of nutritional fungi, production technology of fungus, the role of radiation in the preparation and improvement of the nutritional media, improvement of the fungus strains, the use of radiation in the conservation of nutritional fungi and the detection of irradiated nutritional fungus.

  4. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics (United States)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures

  5. Materials science and technology strained-layer superlattices materials science and technology

    CERN Document Server

    Pearsall, Thomas P; Willardson, R K; Pearsall, Thomas P


    The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting ...

  6. Aviation Technology Life Cycle Management: Importance for Aviation Companies, Aerospace Industry Organizations and Relevant Stakeholders

    Directory of Open Access Journals (Sweden)

    Stanislav Szabo


    Full Text Available The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.. Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”, written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print. The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.

  7. Tritium interactions of potential importance to fusion reactor systems: technology requirements

    International Nuclear Information System (INIS)

    Wilkes, W.R.


    The tritium technology requirements created by the controlled thermonuclear research program to develop a demonstration fusion power reactor by the year 2000 are reviewed. It is found that the majority of the technological advances which are needed to ensure adequate tritium containment in a tritium breeding power reactor need to be demonstrated on a pilot scale by approximately 1983, so that they may be incorporated into EPR-II, the second of two planned experimental power reactors. The most important advances include development of containment materials with permeabilities to tritium well below measured values for stainless steel; large scale, low inventory deuterium-tritium separation systems; and improved monitoring and assay systems. There are less critical requirements for information about the effects of tritium and helium on the mechanical properties of materials, the effects of tritium on biological systems, and data on physical and chemical properties of tritium. Substantial progress needs to be made on these problems early enough to permit possible solutions to be tested on EPR-I. In addition, major improvements in tritium handling equipment are required for EPR-I. Those technological problems for which solutions have not yet been demonstrated by EPR-II must be solved by 1989 if they are to be assured successful application in the demonstration reactor

  8. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers

    DEFF Research Database (Denmark)

    Müller, C.; Goffri, S.; Breiby, Dag Werner


    Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3-hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field-effect transistors that show saturated charge carrier mobilities, mu(FET), as high as 2 x...

  9. The impact and importance of new technologies in business development in context of economic diversity

    Directory of Open Access Journals (Sweden)

    Ciobanu Oana-Georgiana


    Full Text Available In a globalized world, led and connected by and through technology, gadgets and perpetual and intense technological development, the business environment and the trajectory travelled by entrepreneurs in the process of creation and development of a business, becomes more and more challenging and complex. Continuous innovation has become mandatory and „adaptability” became the keyword for the success of any entrepreneurial actions. In this socio-economic context, an organization must find, through entrepreneurs or managers, the courage to face the uncertainty and be always prepared to adopt radical solutions, so that, can provide sustainability of the business through competitiveness. The purpose of this research started from the need for adaptability and flexibility of the Romanian entrepreneurial environment to the trends in the digital era, in order to maintain the level of competitiveness and to develop sustainably. The objective of this scientific approach is to conduct a qualitative comparative analysis relating to the importance and the impact of new technologies in the development and sustainability of a business. The comparison will be made through the eyes of two main categories of actors in the creation and development of a business namely entrepreneurs and managers from two consecutive generations - generation X (born between 1965 and 1980 and generation Y (born between 1980 and 1995. The methodology used in this study is qualitative research through focus group method, and it aims to be highlighted the changes occurred in leadership and management style of a business/organization, by observing and comparing the two generations' attitudes towards change, towards new, towards the digital component, and the intent of the use of new technologies, and more than that, their impact on the management style.

  10. The protagonism of information technology systems in telephone interception: the importance of the chain of custody

    Directory of Open Access Journals (Sweden)

    Antonio Eduardo Ramires Santoro


    Full Text Available Due to technological advances, new means of obtaining information have been brought up to the field of criminal procedure, among them, the interception of telephone communication. Law 9.296/96 has introduced new actors on to the probative subsystem that play a direct part on the production/gathering of information that may be taken in consideration by the judge. The inexistence of proper procedural regulation that delimitates the manner in which such investigation must be carried out, the defense finds grave difficulty to try and trace the source of the proof. Fearing the risks associated with the production of defective evidence, the present study focuses on the importance of the chain of custody as a mean to track and assure the reliability of set information. With the purpose of knowing the rite to obtain the data through telephone interception and the verifying its credibility, a theoretical-bibliographic study was carried out and combined with an analysis of the statistics on means of investigation of proof provided by the CNJ and, finally, followed by an analysis of the technology systems developed to carry out the interception of communications measure.

  11. Seismic problems of thin-walled piping for technologically important water

    International Nuclear Information System (INIS)

    Rejent, B.; Kosek, Z.


    The results of theoretical, calculation and experimental work associated with the problems of seismic stress of pipings with technologically important water at the Mochovce and Temelin nuclear power plants are discussed. The inner diameter of the piping is 500 to 1600 mm, wall thickness 8 to 12 mm; it is subject to vigorous corrosion, which at the Temelin power plant attains a value of 4.5 mm by the end of the service life (30 years). Discussed are the results of the static strength calculations, of experimental investigation of the properties of the friction pair in the push fit of the piping and of static examination of the loading capacity of the piping shell in the points of the supports. From the earthquake resistance aspect, attention is paid particularly to the vibro-isolation of the piping systems by virtue of friction in the supports. (Z.M.). 11 figs., 6 refs

  12. An Investigation of the Attitudes of the National Teams’ Coaches Towards the Role and Importance of Information Technology in Sport

    Directory of Open Access Journals (Sweden)

    Nasim Salehi


    Full Text Available In order to investigate the attitude of elite coaches of the team and individual sports towards the role and importance of information technology in sport, 132 coaches were chosen as a sample and answered to the questionnaire of the role of information technology in sport organised by Liebermann and Katz that consisted of 3 different sections: A General attitude of the coaches towards computer and technology; B The importance of science and technology in achieving coaching experience; C Understanding science and technology in sport. Descriptive and inferential statistics (CFA and independent t - test were used in order to analyse the data. The findings demonstrated that elite coaches selected two aims as their chief ones: 1 - Winning medals in competitions; 2- Having a good relationship with the athletes. There was not any significant relationship between the attitudes of the men and women and the coaches of the individual and team sports on science and technology. It seems that elite coaches are aware on the general importance of sport sciences and have a positive attitude towards the use of sport technologies. But they do not practically transfer this positive attitude to competitive sport environments even when they use information technology for other purposes. Eventually it can be stated that the attitude of the coaches towards technology is very positive and consequently it is a must to find strategies in order to encourage them to use current technology and science practically.

  13. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.


    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  14. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics (United States)

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee


    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes. PMID:27911774

  15. Schottky barriers at metal-finite semiconducting carbon nanotube interfaces


    Xue, Yongqiang; Ratner, Mark A.


    Electronic properties of metal-finite semiconducting carbon nanotube interfaces are studied as a function of the nanotube length using a self-consistent tight-binding theory. We find that the shape of the potential barrier depends on the long-range tail of the charge transfer, leading to an injection barrier thickness comparable to half of the nanotube length until the nanotube reaches the bulk limit. The conductance of the nanotube junction shows a transition from tunneling to thermally-acti...

  16. Development and Performance Verification of High Resistance Semiconducting Glaze Insulators (United States)

    Shinoda, Akihide; Chiyajo, Kiyonobu; Okada, Hideyuki; Suzuki, Yoshihiro; Ito, Susumu; Naito, Katsuhiko

    In case of transmission lines along the sea coast, audible noise due to partial discharges may occur from insulators when contaminated with sea salt and wetted. From the consideration to residents, insulator washing has been performed periodically, but this results in increase in the maintenance cost. As a countermeasure to reduce the audible noise, semiconducting glaze insulator (DC resistance approx. 20MΩ) has been developed and used. However, in case of a very special environment with direct spraying of sea water in seaside districts, there seems to be some risk of thermal runaway because voltage concentration on very small number of insulator units in a string is possible and it may rise the temperature of those units up to the critical point. In this paper, the thermal runaway mechanism is clarified from view point of input and output energy of the semiconducting glaze insulator under contaminated and wetted condition. The surface temperature starting thermal runaway is estimated from various experiments. As a result, the high resistance semiconducting glaze insulator, which has higher thermal runaway withstand capacity and acceptable agreeable audible noise characteristics is developed and subjected to the field evaluation.

  17. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions (United States)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  18. Application of nuclear technologies for growing of fruits which are of regional importance

    International Nuclear Information System (INIS)

    Sultanova, Z.K.; Kharlamova, N.A.; Aidarkhanova, G.S.; Kudabayev, A.B.; Andropenkov, S.A.; Maltseva, R.M.


    Application of recent achievements of nuclear techniques in different applied branches develops in such main directions as radiation-biological technologies under stimulation of plants, sterilization, increasing of storage terms, disinfestation of foodstuff, forage, raw material of animal and vegetable origin, dressing, instruments, which cannot be exposed to thermal and chemical processing. It is of practical interest the irradiation of fruits and berries cuttings, which are of regional importance and been growing in nurseries. This method is already widely introduced into practice as one of efficient methods. Aim of research was the optimal irradiation dose selection for stimulation of currant cuttings gemmas before bedding out. The sorts of black and goldish currants were used in the experiment. Irradiation was conducted in 60 Co gamma-ray source. As the study materials the black currant cuttings of the 'Katyusha' sort and goldish currants of the sort 'Uzbekistanskaya' were used. For each variant 20 cuttings were prepared.Cuttings were bedded out. Drop irrigation was employed. In the sequel agricultural monitoring was carried out. The results of rooting and development of irradiated samples will be presented in report

  19. The importance of health information technology in care coordination and transitional care. (United States)

    Cipriano, Pamela F; Bowles, Kathryn; Dailey, Maureen; Dykes, Patricia; Lamb, Gerri; Naylor, Mary


    Care coordination and transitional care services are strategically important for achieving the priorities of better care, better health, and reduced costs embodied in the National Strategy for Quality Improvement in Health Care (National Quality Strategy [NQS]). Some of the most vulnerable times in a person’s care occur with changes in condition as well as movement within and between settings of care. The American Academy of Nursing (AAN) believes it is essential to facilitate the coordination of care and transitions by using health information technology (HIT) to collect, share, and analyze data that communicate patient-centered information among patients, families, and care providers across communities. HIT makes information accessible, actionable, timely, customizable, and portable. Rapid access to information also creates efficiencies in care by eliminating redundancies and illuminating health history and prior care. The adoption of electronic health records (EHRs) and information systems can enable care coordination to be more effective but only when a number of essential elements are addressed to reflect the team-based nature of care coordination as well as a focus on the individual’s needs and preferences. To that end, the AAN offers a set of recommendations to guide the development of the infrastructure, standards, content, and measures for electronically enabled care coordination and transitions in care as well as research needed to build the evidence base to assess outcomes of the associated interventions.

  20. Design and implementation of the system of importing data of nuclear analysis experiment based on UML technology

    International Nuclear Information System (INIS)

    Peng Yanguang; Yu Chuansong; Ma Mei; Sun Gongxing


    There are some problems that Excel data importing to database for our scientific data processing, we introduce a method how to use UML and XML technology design and implementation our system. Because XML technology have flexible data exchange mechanism, so it is appropriate to do it, and it is easy for use that the system of importing data of nuclear analysis experiment has a web browser GUI. Our paper emphasis on the software design method and UML design cases. (authors)

  1. Marketing technology (Martech) – the most important dimension of online marketing


    Pătruțiu Balteș Loredana


    Nowadays, the new dimension of marketing and of online marketing in particular is marketing technology. Even if it is just at the beginning, marketing technology will become the most widely used hacking tool in the near future, and will probably be used by companies on the digital market in order to stay ahead of the competition. This article defines the concept of marketing technology, along with the advantages and disadvantages that it brings to a company

  2. Marketing technology (Martech – the most important dimension of online marketing

    Directory of Open Access Journals (Sweden)

    Pătruțiu Balteș Loredana


    Full Text Available Nowadays, the new dimension of marketing and of online marketing in particular is marketing technology. Even if it is just at the beginning, marketing technology will become the most widely used hacking tool in the near future, and will probably be used by companies on the digital market in order to stay ahead of the competition. This article defines the concept of marketing technology, along with the advantages and disadvantages that it brings to a company

  3. Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. (United States)

    Osaka, Itaru; Shimawaki, Masafumi; Mori, Hiroki; Doi, Iori; Miyazaki, Eigo; Koganezawa, Tomoyuki; Takimiya, Kazuo


    We report the synthesis and characterization of a novel donor-acceptor semiconducting polymer bearing naphthobisthiadiazole (NTz), a doubly benzothiadiazole (BTz)-fused ring, and its applications to organic field-effect transistors and bulk heterojunction solar cells. With NTz's highly π-extended structure and strong electron affinity, the NTz-based polymer (PNTz4T) affords a smaller bandgap and a deeper HOMO level than the BTz-based polymer (PBTz4T). PNTz4T exhibits not only high field-effect mobilities of ~0.56 cm(2)/(V s) but also high photovoltaic properties with power conversion efficiencies of ~6.3%, both of which are significantly high compared to those for PBTz4T. This is most likely due to the more suitable electronic properties and, importantly, the more highly ordered structure of PNTz4T in the thin film than that of PBTz4T, which might originate in the different symmetry between the cores. NTz, with centrosymmetry, can lead to a more linear backbone in the present polymer system than BTz with axisymmetry, which might be favorable for better molecular ordering. These results demonstrate great promise for using NTz as a bulding unit for high-performance semiconducting polymers for both transistors and solar cells.

  4. A Detailed Analysis over Some Important Issues towards Using Computer Technology into the EFL Classrooms (United States)

    Gilakjani, Abbas Pourhosein


    Computer technology has changed the ways we work, learn, interact and spend our leisure time. Computer technology has changed every aspect of our daily life--how and where we get our news, how we order goods and services, and how we communicate. This study investigates some of the significant issues concerning the use of computer technology…

  5. ICT security- aspects important for nuclear facilities; Information and Communication Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thunem, Atoosa P-J.


    Rapid application growth of complex Information and Communication Technologies (ICT) in every society and state infrastructure as well as industry has revealed vulnerabilities that eventually have given rise to serious security breaches. These vulnerabilities together with the course of the breaches from cause to consequence are gradually about to convince the field experts that ensuring the security of ICT-driven systems is no longer possible by only relying on the fundaments of computer science, IT, or telecommunications. Appropriating knowledge from other disciplines is not only beneficial, but indeed very necessary. At the same time, it is a common observation today that ICT-driven systems are used everywhere, from the nuclear, aviation, commerce and healthcare domains to camera-equipped web-enabled cellular phones. The increasing interdisciplinary and inter-sectoral aspects of ICT security worldwide have been providing updated and useful information to the nuclear domain, as one of the emerging users of ICT-driven systems. Nevertheless, such aspects have also contributed to new and complicated challenges, as ICT security for the nuclear domain is in a much more delicate manner than for any other domains related to the concept of safety, at least from the public standpoint. This report addresses some important aspects of ICT security that need to be considered at nuclear facilities. It deals with ICT security and the relationship between security and safety from a rather different perspective than usually observed and applied. The report especially highlights the influence on the security of ICT-driven systems by all other dependability factors, and on that basis suggests a framework for ICT security profiling, where several security profiles are assumed to be valid and used in parallel for each ICT-driven system, sub-system or unit at nuclear facilities. The report also covers a related research topic of the Halden Project with focus on cyber threats and

  6. The stratified flows' characteristics: A numerical study of the influence of technological parameters (United States)

    Bachurina, Maria V.; Trufanova, Nataliia M.; Kazakov, Alexey V.


    Made of polymers with certain supplements multilayer insulation and shielding coatings have a great potential nowadays. An extrusion method of insulation is still the most practically feasible one. Since the covering technology is a simultaneous imposition of all necessary layers (two the semiconducting shields on the insulation and on the conductor and the insulation), of current importance analysis of the influence of various factors on stratified flows' characteristics.

  7. Semiconducting Nanocrystals in Mesostructured Thin Films for Optical and Opto-Electronic Device Applications

    National Research Council Canada - National Science Library

    Chmelka, Bradley F


    ...) nanocomposite films have been measured and controlled to modify, enhance, and understand their optical and/or semiconducting properties over a hierarchy of dimensions, from molecular to macroscopic...

  8. Can Birds Fly? Can First Graders Learn the Importance of Technology? (United States)

    Jackson, Constance M.


    A project was designed to infuse technology education into the first-grade classroom. Students learned bird identification, read fiction about birds, built bird feeders, learned about binoculars through birdwatching, and wrote a book about the experience. (JOW)

  9. 31 CFR 545.205 - Prohibited importation of goods, software, technology, or services. (United States)


    ... to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN..., software, technology, or services owned or controlled by the Taliban or persons whose property or interests... Taliban is prohibited. ...

  10. Globalization and Employment: Imported Skill Biased Technological Change in Developing Countries


    Andrea Conte; Marco Vivarelli


    This paper discusses the impact of the international transfer of embodied technological change on the employment evolution of skills in a sample of low and middle income countries (LMICs). A large body of literature has already underlined the occurrence of widening wage and employment differentials between skilled and unskilled workers in high-income countries (HICs) (Katz and Autor, 1999). Such empirical evidence is consistent with both trade- and technology-based explanations while these co...

  11. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede


    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap bo...... bowing in In-containing nitride alloys can be explained by specific properties of InN, which do not follow trends observed in several other binaries....

  12. Scanning microwave microscopy applied to semiconducting GaAs structures (United States)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry


    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  13. An Exploration of Neutron Detection in Semiconducting Boron Carbide (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  14. Health care technology--information technology/Part 4. Why will the Internet be important to clinicians? (United States)

    Ruffin, M


    As the popularity of the Internet's World Wide Web exploded in 1994 and 1995, corporations began adopting the browser software called Mosaic (and its derivatives) for their networks. Why? That same software can be used to "surf" the Internet. Since Intranets are easier to maintain and less expensive, they are replacing the more expensive "groupware" applications based on client-server architectures that corporations installed over the past five years. These Intranets are based on widely-available technologies designed for the Internet, not proprietary software designed for a relatively few customers. Organizations with communication networks integrated with their transaction systems and electronic medical records will be more effective in managing health care resources--and more attractive to employers and insurers for managed care contracting.

  15. Markets for Technology and the Importance of Firm-Specific Search for Innovation Performance

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Grimpe, Christoph

    , the costs of firm-specific search are only justified in underdeveloped markets. Otherwise, market transactions provide higher efficiency and flexibility. This negative cross-level interaction effect is stronger the more knowledge in an industry is covered by markets for technology. We test and support......Firms rely increasingly on external knowledge, e.g. from universities, to improve their innovation performance. Existing research models the acquisition of knowledge either as a firm-specific search or a purchase on markets for technology. The former implies that a firm chooses and develops...... relationships with knowledge sources while the latter suggests a transaction governed by markets. We argue that both mechanisms increase a firm’s innovation performance but that they are interrelated. While on the firm level firm-specific search and acquisitions on markets for technology complement each other...

  16. Markets for Technology and the Importance of Firm-specific Search for Innovation Performance

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Sofka, Wolfgang

    Firms rely increasingly on external knowledge, e.g. from universities, to improve their innovation performance. Existing research models the acquisition of knowledge either as a firm-specific search or a purchase on markets for technology. The former implies that a firm chooses and develops...... relationships with knowledge sources while the latter suggests a transaction governed by markets. We argue that both mechanisms increase a firm?s innovation performance but that they are interrelated. While on the firm level firm-specific search and acquisitions on markets for technology complement each other......, the costs of firm-specific search are only justified in underdeveloped markets. Otherwise, market transactions provide higher efficiency and flexibility. This negative cross-level interaction effect is stronger the more knowledge in an industry is covered by markets for technology. We test and support...

  17. Markets for Technology and the Importance of Firm-Specific Search for Innovation Performance

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Grimpe, Christoph

    Firms rely increasingly on external knowledge, e.g. from universities, to improve their innovation performance. Existing research models the acquisition of knowledge either as a firm-specific search or a purchase on markets for technology. The former implies that a firm chooses and develops...... relationships with knowledge sources while the latter suggests a transaction governed by markets. We argue that both mechanisms increase a firm’s innovation performance but that they are interrelated. While on the firm level firm-specific search and acquisitions on markets for technology complement each other......, the costs of firm-specific search are only justified in underdeveloped markets. Otherwise, market transactions provide higher efficiency and flexibility. This negative cross-level interaction effect is stronger the more knowledge in an industry is covered by markets for technology. We test and support...

  18. Minimum Viable Product and the Importance of Experimentation in Technology Startups

    Directory of Open Access Journals (Sweden)

    Dobrila Rancic Moogk


    Full Text Available Entrepreneurs are often faced with limited resources in their quest to commercialize new technology. This article presents the model of a lean startup, which can be applied to an organization regardless of its size or environment. It also emphasizes the conditions of extreme uncertainty under which the commercialization of new technology is carried out. The lean startup philosophy advocates efficient use of resources by introducing a minimum viable product to the market as soon as possible in order to test its value and the entrepreneur’s growth projections. This testing is done by running experiments that examine the metrics relevant to three distinct types of the growth. These experiments bring about accelerated learning to help reduce the uncertainty that accompanies commercialization projects, thereby bringing the resulting new technology to market faster.

  19. The Importance of Design Thinking for Technological Literacy: A Phenomenological Perspective (United States)

    Wells, Alastair


    "We know that progress depends on discovery, inventions, creativity and design, but we have simply supposed that it happens anyway," de Bono (1999 p. 43). Technology education is ostensibly a foundation for future designers and creative thinking. However evidence of good design or creative thinking in outcomes displayed in school…

  20. Ethical Use of Information Technologies in Education: Important Issues for America's Schools. (United States)

    Sivin, Jay P.; Bialo, Ellen R.

    In response to the rapid growth of computer crime and such illegitimate practices as piracy and fraud, the National Institute of Justice and the Office for Educational Research and Improvement have formed a partnership to promote school programs on the ethical uses of new technologies. This report, the first of the partnership, is designed to…

  1. The importance of technological innovation in the logistics of ethanol exports

    Directory of Open Access Journals (Sweden)

    José Petraglia


    Full Text Available This paper analyzes the technological status of the bulk liquids logistical process at the port of Santos. The main objective is to identify problems encountered in port logistics for the export of ethanol and evaluate their respective technological innovation perspectives. Ethanol exports have increased given international environmental appeals. Within the complex and uncertain environments that contemporary corporations are experiencing, environmental issues have captured global attention. There is an awareness as to the relevance of reducing pollutant emissions to the atmosphere and one of the manners of so doing is by utilising ethanol as a source of propulsion energy fuelling automobile engines. Brazil is one of largest, high quality, ethanol producers in the world and a strong competitor to serve the global market given that the quality of the port logistic infrastructure poses significant impact on exports. Thus, this article proposes to further deepen the theory fundamentals alongside research conducted at companies of South-central Brazil´s sugar alcohol supply chain sector. The study´s analytical model is based on bibliographical research, monitoring and descriptive field surveys at companies within the segment. The article demonstrates that although the logistical process is evolving technologically, further investments in logistic infrastructure is required so as to obtain a sustainable competitive advantage and ensure the feasibility of exports of the Brazilian product.Key words: logistic process, technological innovation and ethanol.

  2. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    KAUST Repository

    Nielsen, Christian B.


    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous envi-ronment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially availa-ble conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT based devices, and show stability under aqueous oper-ation without the need for formulation additives and cross-linkers.

  3. Information and Communication Technologies in Azerbaijan and Importance of Their Use

    Directory of Open Access Journals (Sweden)

    Zeynalova K.Z


    Full Text Available The paper deals with the analysis of the development of information and communication technologies in the Republic of Azerbaijan. In recent years, great advancement in development and improvement of the ICThas been gained in the country, including adoption and implementation of the related state documents, creation of competition in the market of communication technologies as well as mobile operators,spatial enlargement of use of internet through the country’s territory, launch of the national telecommunication satellite, and othernumerous events and significant processes.The progress in establishment of informational environment found its reflection in the higher position of Azerbaijanamong world’s countriesfor the definite indexes.The factors and needed terms responsible for further acceleration of improvement of ICT are shown in the paper.

  4. User-centred design as an important component of technological development

    Directory of Open Access Journals (Sweden)

    Jankowski Natalie


    Full Text Available New technologies can be implemented in clinical rehabilitation processes or to close the gap in health care provision by transferring them to the patients’ home. Successful use can only be achieved under the assumption that the technology is accepted by its users. The involvement of users in iterative development processes is to be shown to increase the quality of health care systems and to prevent refusal. In this review potentials of user acceptance and satisfaction surveys in the development of stroke rehabilitation systems are discussed. The surveys are conducted as a method for improving the ongoing design process of innovative technical systems developed in the BMBF funded project “BeMobil”.

  5. Paying for Joint or Single Audits? The Importance of Auditor Pairings and Differences in Technology Efficiency

    DEFF Research Database (Denmark)

    Holm, Claus; Thinggaard, Frank


    In the first theoretical paper on joint audits, Deng et al. predict that the audit fees for joint audits will be lower than those from single audits. However, the prediction depends on the combination of audit firms involved in the joint audit and on their technology efficiency as well...... as on the liability involved. This paper is the first to empirically test the predictions. Our findings from Denmark do not indicate any general difference in audit fees when two audit firms – regardless of combination and technology efficiency – conduct the statutory audit compared to a single Big audit firm....... The results indicate the existence of fixed coordination costs in joint audits. We do, however, find higher audit fees in Big-Small joint audits when the Small audit firm has a share of less than 25 per cent. This may reflect free-riding concerns....

  6. Organizational and technological insight as important factors for successful implementation of IT. (United States)

    Nikula, R. E.


    Politicians and hospital management in Sweden and Denmark focus on IT and especially Electronic Patient Record, EPR as a tool for changes that will lead to better economy as well as better quality and service to the patients. These changes are not direct effects of the new medium for patient records but indirect effects due to the possibilities embedded in the new technology. To ensure that the implementation is successful, i.e. leads to changes in organization structure and workflow, we need tools to prepare clinicians and management. The focus of this paper is the individual insight in technology and organization and it proposes a model to assess and categorize the possibilities of individuals and groups to participate in and make an implementation process powerful. PMID:10566426

  7. Important advances in technology and unique applications related to cardiac magnetic resonance imaging. (United States)

    Ghosn, Mohamad G; Shah, Dipan J


    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  8. Experience is more important than technology in paediatric post-tonsillectomy bleeding. (United States)

    Hinton-Bayre, A D; Noonan, K; Ling, S; Vijayasekaran, S


    Paediatric tonsillectomy is a common procedure and one of the first skills acquired by surgical trainees. Post-tonsillectomy bleeding is one of the most significant complications. This study examined post-tonsillectomy bleed rates associated with technology and level of surgical experience. Data were collected on all tonsillectomies performed by surgical consultants (n = 6) and trainees (n = 10) at affiliated hospitals over a nine-month period. Hospital records were audited for post-tonsillectomy bleeding re-admissions and returns to the operating theatre. A total of 1396 tonsillectomies were performed (279 by trainees, 1117 by consultant surgeons). Primary post-tonsillectomy bleed rates were equivalent between trainees and consultants. Secondary bleed rates were significantly greater for trainees (10.0 per cent) compared to consultants (3.3 per cent), as were return to operating theatre rates (2.5 per cent vs 0.7 per cent). Amongst consultants, technology used was not associated with differences in secondary post-tonsillectomy bleeding and returns to the operating theatre. Our data suggest that experience of the surgeon may have greater bearing on post-tonsillectomy bleed rates than the technology used.

  9. Activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology

    International Nuclear Information System (INIS)

    Pashchenko, A.B.


    This publication contains 19 papers on the determination of cross sections relevant for the generation of long-lived radioisotopes through neutron-induced reactions in the neutron range around 14 MeV of importance in D-T fusion reactor technology. Refs, figs and tabs

  10. International careers and career success of Indian women in science & technology : The importance of career capital and organizational capital

    NARCIS (Netherlands)

    Valk, R.; van der Velde, E.G.; van Engen, Marloes


    This article presents a study on international careers and career success of Indian women in Science & Technology (S&T). We conducted interviews with 30 (upper) middle class Indian women in New Delhi and Bangalore (India) who pursued careers abroad as self-initiated expatriates (SIEs). Important

  11. 78 FR 33440 - Importer of Controlled Substances, Notice of Registration; Rhodes Technologies (United States)


    ... importer of the following basic classes of controlled substances: Drug Schedule Opium Raw (9600) II Poppy... States obligations under international treaties, conventions, or protocols in effect on May 1, 1971. DEA...

  12. 77 FR 35057 - Importer of Controlled Substances; Notice of Registration; Rhodes Technologies (United States)


    ... importer of the basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw... obligations under international treaties, conventions, or protocols in effect on May 1, 1971. DEA has...

  13. Effect of imports of uranium on the national security. Critical technologies

    International Nuclear Information System (INIS)


    The report gives results of an investigation to determine the effects of uranium imports on the national security. Uranium is essential to the operation of the Navy's nuclear-powered fleet, for nuclear weapon capability and for civilian nuclear energy generation. US utilities imported 43.8 percent of their uranium requirements in 1986 and 51.1 percent in 1987. The report finds that the domestic industry's competitiveness has deteriorated in recent years, due to the easily accessible and richer deposits available elsewhere. The report concludes, however, that in a national security emergency, defense requirements could be met through stockpiles of finished nuclear materials set aside for military needs. Furthermore, civilian requirements could be met through US production, reliable imports, inventories, and tails reprocessing. The report, therefore, finds that uranium is not being imported in such quantities or under such circumstances as to represent a threat to the national security



    Özkan Nesimioglu, Serife


    In this paper, energy poverty and as a result of this energy import dependency and its possible negative results have been examined by taking European Union (EU) into consideration. This analysis has two aims: the first one is questioning the European Unions’ energy security from supply perspective and the second one is investigating the solutions produced by European Union to get away or at least to reduce its energy import dependency. To guarantee its energy supply security at affordable pr...

  15. Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration

    Energy Technology Data Exchange (ETDEWEB)

    Merrild, Hanna; Damgaard, Anders; Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Bygning 113, DK-2800 Kgs. Lyngby (Denmark)


    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from


    Directory of Open Access Journals (Sweden)

    Amanda de Souza Motta


    Full Text Available Eacters of coccus or rods Gram-positive, catalase negative, non-sporulating, which produce lactic acid as the major end product during the fermentation of carbohydrates. When applied on food, provides beneficial effects to consumers through its functional and technological properties. With this the present review article, explore the potential application of lactic acid bacteria in food. The following genera are considered the principal lactic acid bacteria: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. These cultures have been used as starter or adjunct cultures for the fermentation of foods and beverages due to their contributions to the sensorial characteristics of these products and by microbiological stability. Their probiotic properties have also been investigated. More recent studies by indigenous cultures have received increased attention in light of the search for isolated cultures of a given raw material and a certain region. These microorganisms are being investigated for its functional and technological potential that may be applied in product development with its own characteristics and designation of origin. Those properties will be discussed in the present review in order to highlight the performance of these bacteria and the high degree of control over the fermentation process and standardization of the final product. The use of autochthonous cultures will be considered due the increase of studies of new cultures of lactic acid bacteria isolated of milk and meat of distinct products.

  17. Effect of crude oil and refined petroleum product imports on the national security. Critical technologies

    International Nuclear Information System (INIS)


    The report contains the results of an investigation requested under Section 232 of the Trade Expansion Act to study the effect of oil imports on the domestic petroleum industry and on United States energy security. It reviews previous energy security assessments and resulting initiatives, assesses current US energy security, and studies emergency petroleum requirements. The report finds that there have been substantial improvements in US energy security since the last Section 232 Petroleum finding in 1979. However, declining domestic oil production, rising oil imports, and growing dependence on potentially insecure sources of supply raise concerns of vulnerability to a major supply disruption

  18. Nanoscale semiconducting silicon as a nutritional food additive

    International Nuclear Information System (INIS)

    Canham, L T


    Very high surface area silicon powders can be realized by high energy milling or electrochemical etching techniques. Such nanoscale silicon structures, whilst biodegradable in the human gastrointestinal tract, are shown to be remarkably stable in most foodstuffs and beverages. The potential for using silicon to improve the shelf life and bioavailability of specific nutrients in functional foods is highlighted. Published drug delivery data implies that the nanoentrapment of hydrophobic nutrients will significantly improve their dissolution kinetics, through a combined effect of nanostructuring and solid state modification. Nutrients loaded to date include vitamins, fish oils, lycopene and coenzyme Q10. In addition, there is growing published evidence that optimized release of orthosilicic acid, the biodegradation product of semiconducting silicon in the gut, offers beneficial effects with regard bone health. The utility of nanoscale silicon in the nutritional field shows early promise and is worthy of much further study

  19. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shendong; Tang, Nujiang; Chen, Zhuo, E-mail: [School of Physics, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu, 210093 (China); Chen, Yan; Xia, Yidong [Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, No. 22 Hankou Road, Nanjing University, Nanjing, Jiangsu, 210093 (China); Xu, Xiaoyong; Hu, Jingguo, E-mail: [School of Physics Science and Technology, Yangzhou University, No. 180 Siwangting Road, Yangzhou, Jiangsu, 225002 (China)


    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  20. Fused electron deficient semiconducting polymers for air stable electron transport

    KAUST Repository

    Onwubiko, Ada


    Conventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone. This polymerisation route requires neither organometallic monomers nor transition metal catalysts and offers a reliable design strategy to facilitate delocalisation of frontier molecular orbitals, elimination of energetic disorder arising from rotational torsion and allowing closer interchain electronic coupling. These characteristics are desirable for high charge carrier mobilities. Our polymers with a high electron affinity display long wavelength NIR absorption with air stable electron transport in solution processed organic thin film transistors.

  1. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    Directory of Open Access Journals (Sweden)

    Shendong Zhuang


    Full Text Available Solution-processed graphene quantum dots (GQDs possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  2. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  3. Numerical simulation as an important tool in developing novel hypersonic technologies

    International Nuclear Information System (INIS)

    Bocharov, A N; Bityurin, V A; Medin, S A; Naumov, N D; Petrovskiy, V P; Ryabkov, O I; Tatarinov, A V; Teplyakov, I O; Fortov, V E; Balakirev, B A; Golovin, N N; Solomonov, Yu S; Tikhonov, A A; Gryaznov, V K; Iosilevskiy, I L; Evstigneev, N M


    Development of novel hypersonic technologies necessarily requires the development of methods for analyzing a motion of hypervelocity vehicles. This paper could be considered as the initial stage in developing of complex computational model for studying flows around hypervelocity vehicles of arbitrary shape. Essential part of the model is a solution to three-dimensional transport equations for mass, momentum and energy for the medium in the state of both LTE (local thermodynamic equilibrium) and non-LTE. One of the primary requirements to the developed model is the realization on the modern heterogeneous computer systems including both CPU and GPU. The paper presents the first results on numerical simulation of hypersonic flow. The first problem considered is three-dimensional flow around curved body under angle of attack. The performance of heterogeneous 4-GPU computer system is tested. The second problem highlights the capabilities of the developed model to study heat and mass transfer problems. Namely, interior heat problem is considered which takes into account ablation of thermal protection system and variation of the surface shape of the vehicle. (paper)

  4. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.


    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  5. Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study

    International Nuclear Information System (INIS)

    Riesz, Jenny; Elliston, Ben


    This study aims to identify research priorities to enable low cost, high renewable power systems. An evolutionary program optimises the mix of technologies in 100% renewable energy portfolios (RE) in the Australian National Electricity Market. Various technologies are reduced in availability to determine their relative importance for achieving low costs. The single most important factor is found to be the integration of large quantities of wind; therefore wind integration is identified as a research priority. In contrast, photovoltaics are found to “saturate” the system at less than 10% of total energy (in the absence of storage or demand management, installation of further photovoltaics does not contribute significant further value). This indicates that policies to promote utility-scale photovoltaics should be considered in partnership with complementary measures (such as demand side participation and storage). Biofuelled gas turbines are found to be important; a complete absence of bioenergy increases costs by AU$20–30/MWh, and even having only 0.1 TWh per year of bioenergy available reduces average costs by AU$3–4/MWh. Limits on the non-synchronous penetration (NSP) are found to be relatively expensive, suggesting a significant research priority around finding alternative approaches to providing synchronous services, such as inertia. Geothermal and concentrating solar thermal technologies do not appear essential as long as sufficient wind and peaking bioenergy is available. - Highlights: • Photovoltaics saturate early, suggesting they need complementary measures. • Biofuelled gas turbines or another peaking technology are important for low costs. • Limits on the non-synchronous penetration are relatively expensive.

  6. Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglomerates

    Directory of Open Access Journals (Sweden)

    В. Л. Трушко


    Full Text Available A problem of industrial fluxed agglomerates self-destruction in the process of cooling after sintering has been examined. It has been revealed that the main reason of strength degradation is polymorphism of dicalcium silicate Ca2SiO4 (or short designation С2S: β-Ca2SiO4 ® γ-Ca2SiO4. Ways for increasing the  agglomerate  strength by physical and crystal-chemical stabilization of the high temperature modification of C2S have been proposed and tested. Physical stabilization of C2S agglomerate is increased with its structure reinforcement due to thickening of walls between large pores that is achieved by increasing height of the sintered layer through improvement of its gas permeability. The task is addressed by substituting the previously used import sintering ore with the  polydisperse ore from the Yakovlevo field, which improves the charge  pelletizing by 3-4 times and helps to bring the  height of the sintered layer and the strength of the domestic agglomerate up to the international best practice standards, while eliminating a need to purchase import high-vacuum   exhausters. In practice crystal-chemical stabilization of C2S within iron-ore  agglomerate is ensured by adding an  opti- mal multicomponent additive in the form of the    waste product  generated in production  of alumina  from bauxites, i.e. the red mud, to the initial sinter charge. Thus mechanical strength of agglomerates and pellets is increased by 5-10 % and their hot strength improves by 20-40 %. The productivity of sintering machines and blast furnaces improves by 5-10 %. Specific coke consumption reduces by 2-2.5 %. In production of iron-ore pellets red mud is substituting the import  bentonite.

  7. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ouk


    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  8. Drainage Adits in Upper Silesia - Industrial Technology Heritage and Important Elements of the Hydrotechnical Infrastructure (United States)

    Duży, Stanisław; Dyduch, Grzegorz; Preidl, Wojciech; Stacha, Grzegorz


    Adits played an important role in the hydrotechnical infrastructure for centuries. Initially, they were used mainly to drain wetland and supply water to the population. There were also inherent in the conduct of mining activities. They were used as exploratory, development and supply headings. Their usual function was to drain, ventilate and transport, and after the cessation of mining they became important elements of the hydrotechnical infrastructure in the transformed mining areas. The article presents issues related to the revitalization of the Main Key Hereditary Adit and Friedrich Adit as essential for the areas in which they are located. Both are hydraulic structures with the possibility of adaptation for tourism purposes. The need to consider some technical activities to be undertaken in this type of objects was pointed out, not only including aspects related to their proper protection so that they can continue to safely perform their function, but also to the preservation of their historical values. Due to their age and the method of drilling used in them, those headings are often included in the list of monuments and protected by law.

  9. Activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai


    The proceedings contain the progress reports of the Coordinated Research Programme to measure and evaluate the activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology and the contributed papers (9) presented at the Consultants' Meeting held at Argonne National Laboratory between 11-12 September 1989. A separate abstract was prepared for each paper. Refs, figs and tabs

  10. The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior

    International Nuclear Information System (INIS)

    Perejón, Antonio; Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Valverde, Jose Manuel


    Highlights: • The Calcium Looping (CaL) technology is a potentially low cost and highly efficient postcombustion CO 2 capture technology. • Energy integration and sorbent behavior play a relevant role on the process. • The industrial competitiveness of the process depends critically on the minimization of energy penalties. • It may be used in precombustion capture systems and other industrial processes such as cement production. • Sorbent deactivation must be assessed under realistic conditions involving high CO 2 concentration in the calciner. - Abstract: The Calcium Looping (CaL) technology, based on the multicyclic carbonation/calcination of CaO in gas–solid fluidized bed reactors at high temperature, has emerged in the last years as a potentially low cost technology for CO 2 capture. In this manuscript a critical review is made on the important roles of energy integration and sorbent behavior in the process efficiency. Firstly, the strategies proposed to reduce the energy demand by internal integration are discussed as well as process modifications aimed at optimizing the overall efficiency by means of external integration. The most important benefit of the high temperature CaL cycles is the possibility of using high temperature streams that could reduce significantly the energy penalty associated to CO 2 capture. The application of the CaL technology in precombustion capture systems and energy integration, and the coupling of the CaL technology with other industrial processes are also described. In particular, the CaL technology has a significant potential to be a feasible CO 2 capture system for cement plants. A precise knowledge of the multicyclic CO 2 capture behavior of the sorbent at the CaL conditions to be expected in practice is of great relevance in order to predict a realistic capture efficiency and energy penalty from process simulations. The second part of this manuscript will be devoted to this issue. Particular emphasis is put on the

  11. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes. (United States)

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C


    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  12. Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. (United States)

    Daeneke, Torben; Atkin, Paul; Orrell-Trigg, Rebecca; Zavabeti, Ali; Ahmed, Taimur; Walia, Sumeet; Liu, Maning; Tachibana, Yasuhiro; Javaid, Maria; Greentree, Andrew D; Russo, Salvy P; Kaner, Richard B; Kalantar-Zadeh, Kourosh


    Atomically thin semiconductors are one of the fastest growing categories in materials science due to their promise to enable high-performance electronic and optical devices. Furthermore, a host of intriguing phenomena have been reported to occur when a semiconductor is confined within two dimensions. However, the synthesis of large area atomically thin materials remains as a significant technological challenge. Here we report a method that allows harvesting monolayer of semiconducting stannous oxide nanosheets (SnO) from the interfacial oxide layer of liquid tin. The method takes advantage of van der Waals forces occurring between the interfacial oxide layer and a suitable substrate that is brought into contact with the molten metal. Due to the liquid state of the metallic precursor, the surface oxide sheet can be delaminated with ease and on a large scale. The SnO monolayer is determined to feature p-type semiconducting behavior with a bandgap of ∼4.2 eV. Field effect transistors based on monolayer SnO are demonstrated. The synthetic technique is facile, scalable and holds promise for creating atomically thin semiconductors at wafer scale.

  13. Organic small molecule semiconducting chromophores for use in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen


    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  14. Importance of the validation of saving technologies of electric power; Importancia de la validacion de tecnologias ahorradoras de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valer Negrete, Adrian [Programa de Ahorro de Energia del Sector Electrico (PAESE), Comision Federal de Electricidad (Mexico)


    Within the Programs of Energy Saving it is fundamental the search and application of new technologies, with which this saving can be obtained, selected with base in their technical characteristics that allow to reduce to the consumptions and demands of power, without damaging the electric networks nor the transformers of the Comision Federal de Electricidad. It is important that the investments which are made count on attractive periods of capital recovery, in comparison with the useful life of the product, reason why the knowledge and price of the new technologies will be parameters to consider in an important manner, creating the need of conducting tests that verify the veracity of the information of the supplier, resulting in certain cases, the change of design of these technologies, so that thus they fulfill the engaged characteristics. This paper indicates the characteristics that the new saving technologies of electrical energy must fulfill and the tests and parameters to consider their evaluation. [Spanish] Dentro de los Programas de Ahorro de Energia es fundamental la busqueda y aplicacion de nuevas tecnologias, con las que se pueda obtener dicho ahorro, seleccionadas con base en sus caracteristicas tecnicas que permitan reducir los consumos y demandas de potencia, sin danar las redes ni transformadores de la Comision Federal de Electricidad. Es importante que las inversiones que se realicen cuenten con periodos de recuperacion de capital atractivos, comparados con la vida util del producto, por lo que el conocimiento y precio de las nuevas tecnologias seran parametros a considerar de manera importante, creandose la necesidad de realizar pruebas que verifiquen la veracidad de la informacion del proveedor, resultando en determinados casos, el cambio de diseno de dichas tecnologias, para que asi cumplan las caracteristicas prometidas. Este trabajo indica las caracteristicas que deben cumplir las nuevas tecnologias ahorradoras de energia electrica y las

  15. New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media


    Trashkeev, Sergey I.; Kudryavtsev, Alexey N.


    The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though t...

  16. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides


    Hahm, Jong-In


    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optic...

  17. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger


    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.


    Directory of Open Access Journals (Sweden)



    Full Text Available The main purpose of this study is to capture based on new theories of economic growth in the knowledge, based economic development, the importance of investing in information are as a new factor of production, we propose a different treatment of essential identifiable knowledge structures: technologies and information .. Meanwhile, the article aims to capture the role that information plays in this highly complex process of economic growth. I realized through this expose, a representation of specific investments in information behavior and reasoning phenomena sustainable development concepts.

  19. Engineering the Kondo state in two-dimensional semiconducting phosphorene (United States)

    Babar, Rohit; Kabir, Mukul


    Correlated interaction between dilute localized impurity electrons and the itinerant host conduction electrons in metals gives rise to the conventional many-body Kondo effect below sufficiently low temperature. In sharp contrast to these conventional Kondo systems, we report an intrinsic, robust, and high-temperature Kondo state in two-dimensional semiconducting phosphorene. While absorbed at a thermodynamically stable lattice defect, Cr impurity triggers an electronic phase transition in phosphorene to provide conduction electrons, which strongly interact with the localized moment generated at the Cr site. These manifest into the intrinsic Kondo state, where the impurity moment is quenched in multiple stages and at temperatures in the 40-200 K range. Further, along with a much smaller extension of the Kondo cloud, the predicted Kondo state is shown to be robust under uniaxial strain and layer thickness, which greatly simplifies its future experimental realization. We predict the present study will open up new avenues in Kondo physics and trigger further theoretical and experimental studies.

  20. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng


    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  1. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.


    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  2. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)


    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  3. OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles. (United States)

    Yang, Shaozhuang; Chen, Haobin; Liu, Liwei; Chen, Bingling; Yang, Zhigang; Wu, Changfeng; Hu, Siyi; Lin, Huiyun; Li, Buhong; Qu, Junle


    Optical Coherence Tomography (OCT) is a valuable technology that has been used to obtain microstructure images of tissue, and has several advantages, though its applications are limited in high-scattering tissues. Therefore, semiconducting polymer nanoparticles (SPNs) that possess strong absorption characteristics are applied to decrease light scattering in tissues and used as exogenous contrast agents for enhancing the contrast of OCT imaging detection. In this paper, we prepared two kinds of SPNs, termed PIDT-TBZ SPNs and PBDT-TBZ SPNs, as the contrast agents for OCT detection to enhance the signal. Firstly, we proved that they were good contrast agents for OCT imaging in agar-TiO 2 . After that, the contrast effects of these two SPNs were quantitatively analyzed, and then cerebral blood vessels were monitored by a home-made SD-OCT system. Finally, we created OCT images in vitro and in vivo with these two probes and performed quantitative analysis using the images. The results indicated that these SPNs created a clear contrast enhancement of small vessels in the OCT imaging process, which provides a basis for the application of SPNs as contrast agents for bioimaging studies.

  4. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fathil, M.F.M., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Ruslinda, A.R., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Nuzaihan, M.N.M., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Adzhri, R., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hashim, U., E-mail: [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)


    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  5. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    International Nuclear Information System (INIS)

    Fathil, M.F.M.; Md Arshad, M.K.; Ruslinda, A.R.; Nuzaihan, M.N.M.; Gopinath, Subash C.B.; Adzhri, R.; Hashim, U.


    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  6. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels. (United States)

    Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying


    Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Semiconductive Nanostructures - Materials for Spinelectronics: New Data Bank Requirement

    Directory of Open Access Journals (Sweden)

    Paata J Kervalishvili


    Full Text Available Nanoscience, the interdisciplinary science that draws on physics, chemistry, biology, and computational mathematics, is still in its infancy. Control and manipulation on a nanometric scale allow the fabrication of nanostructures, the properties of which are mainly determined by quantum mechanics and differ considerably from that of the common crystalline state. Nanostructures constructed from inorganic solids such as semiconductors have new electronic and optical properties because of their size and quantization effects [1, 2]. The quantization effects reflect the fundamental characteristics of structures as soon as their size falls below a certain limit. An example of the simplest nanostructure is the quantum dot formed from the energy well of certain semiconductor materials with 5-10nm thickness sandwiched between other semiconductors with normal properties. Quantum dots, for example, have led to important novel technology for lasers, optical sensors, and other electronic devices. The application of nanolayers to data storage, switching, lighting, and other devices can lead to substantially new hardware, for example, energy cells, and eventually to the quantum-based internet. Nanoscience and nanotechnology encompass the development of nano-spinelectronics, spinelectronics materials production, and nano-spinelectronic measuring devices and technologies. Nano-spinelectronics, based on usage of magnetic semiconductors, represents a new and emerging area of science and engineering of the 21st century. It is a primary example of the creation and enhancement of new materials and devices for information technologies, operating with charge and spin degrees of freedom of carriers, free from present-day limitations. This new multi-disciplinary direction of science and technology is very much in need of support from new data banks, which will function as a source of new ideas and approaches.

  8. Design of Semiconducting Tetrahedral Mn_{1−x}Zn_{x}O Alloys and Their Application to Solar Water Splitting

    Directory of Open Access Journals (Sweden)

    Haowei Peng


    Full Text Available Transition metal oxides play important roles as contact and electrode materials, but their use as active layers in solar energy conversion requires achieving semiconducting properties akin to those of conventional semiconductors like Si or GaAs. In particular, efficient bipolar carrier transport is a challenge in these materials. Based on the prediction that a tetrahedral polymorph of MnO should have such desirable semiconducting properties, and the possibility to overcome thermodynamic solubility limits by nonequilibrium thin-film growth, we exploit both structure-property and composition-structure relationships to design and realize novel wurtzite-structure Mn_{1−x}Zn_{x}O alloys. At Zn compositions above x≈0.3, thin films of these alloys assume the tetrahedral wurtzite structure instead of the octahedral rocksalt structure of MnO, thereby enabling semiconductor properties that are unique among transition metal oxides, i.e., a band gap within the visible spectrum, a band-transport mechanism for both electron and hole carriers, electron doping, and a band lineup suitable for solar hydrogen generation. A proof of principle is provided by initial photo-electrocatalytic device measurements, corroborating, in particular, the predicted favorable hole-transport properties of these alloys.

  9. Mind your P's and Q's: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. (United States)

    Massey, Melissa; Wu, Miao; Conroy, Erin M; Algar, W Russ


    Semiconductor quantum dots (QDs) and semiconducting polymer nanoparticles (Pdots) are brightly emissive materials that offer many advantages for bioanalysis and bioimaging, and are complementary to revolutionary advances in fluorescence technology. Within the context of biological applications, this review compares the evolution and different stages of development of these two types of nanoparticle, and addresses current perceptions about QDs. Although neither material is a wholesale replacement for fluorescent dyes, recent trends have demonstrated that both types of nanoparticle can excel in applications that are often too demanding for fluorescent dyes alone. Examples discussed in this review include single particle tracking and imaging, multicolor imaging and multiplexed detection, biosensing, point-of-care diagnostics, in vivo imaging and drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Optics and Optoelectronics of Two-dimensional Semiconducting Monolayers and Heterostructures (United States)

    Ross, Jason Solomon

    , the first valleytronic demonstration via electrical control of the degree of valley polarization, and resonant excitation investigations of the interlayer exciton's role in absorption and emission in heterostructures. This work paves the way for future studies of 2D semiconducting systems and utilizing them in important new devices ranging from LEDs to photovoltaics to photonically coupled nanosystems such as a 2D nanolaser.

  11. Flow induced/ refined solution crystallization of a semiconducting polymer (United States)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  12. Fabrication and characterization of semiconducting nanowires for tunnel field transistors (United States)

    Vallett, Aaron Lee

    The scaling of traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) is hitting a limit, not due to difficulties in fabricating short gate lengths, but rather to an ongoing power crisis. As channel lengths have been reduced power densities of integrated circuits have risen dramatically. While supply voltage scaling would alleviate many power concerns, the MOSFET structure fundamentally limits the amount that voltages can be reduced. Because MOSFET operation is governed by thermal emission of carriers over a potential barrier, the subthreshold swing from the off to on current is limited to a minimum of 60 mV/decade of current. Therefore, reductions in the supply voltage will degrade the on/off current ratio. The tunnel field-effect transistor (TFET) has emerged as a potential solution to these problems. Current is controlled by band-to-band tunneling through a barrier that is modulated by the gate, and subthreshold swings below 60 mV/dec. can be achieved. While TFET simulations are quite promising, subthreshold swings below 60 mV/dec. at technically relevant on-currents have yet to be demonstrated experimentally. Nanowire geometries and III-V semiconductor channel materials are predicted to improve TFET performance by increasing gate control and tunneling current. In this dissertation the fabrication of TFETs from semiconducting nanowires will be investigated. First, axially doped silicon (Si) nanowire in situ p-n junctions will be studied. By controlling the nanowire growth, separate p and n-type segments can be formed to create a rectifying junction. While as-grown nanowire junctions do not have the abruptness necessary to facilitate band-to-band tunneling, thermally oxidized nanowires are shown to have a p-n-n+ profile with an abrupt n-n+ junction. By gating the nanowires an abrupt electrostatically-doped p +- n+ junction can be formed that permits reverse-biased tunneling. These p-n-n+ nanowires will be integrated into a top-gated lateral TFET

  13. Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly (United States)

    Kaur, Harneet; Yadav, Sandeep; Srivastava, Avanish. K.; Singh, Nidhi; Schneider, Jörg J.; Sinha, Om. P.; Agrawal, Ved V.; Srivastava, Ritu


    Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 104 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications. PMID:27671093

  14. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.


    with the excellent mechanical properties of certain commodity polymers. Here we investigate bicomponent blends comprising semicrystalline regioregular poly(3-hexylthiophene) and selected semicrystalline commodity polymers, and show that, owing to a highly favourable, crystallization-induced phase segregation......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer......Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material1, 2, 3. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species...

  15. PREFACE: 18th Microscopy of Semiconducting Materials Conference (MSM XVIII) (United States)

    Walther, T.; Hutchison, John L.


    YRM logo This volume contains invited and contributed papers from the 18th international conference on 'Microscopy of Semiconducting Materials' held at St Catherine's College, University of Oxford, on 7-11 April 2013. The meeting was organised under the auspices of the Royal Microscopical Society and supported by the Institute of Physics as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and scanning probe microscopy with high spatial resolution. This time the meeting was attended by 109 delegates from 17 countries world-wide. We were welcomed by Professor Sir Peter Hirsch, who noted that this was the first of these conferences where Professor Tony Cullis was unable to attend, owing to ill-health. During the meeting a card containing greetings from many of Tony's friends and colleagues was signed, and duly sent to Tony afterwards. As semiconductor devices shrink further new routes for device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, electronic structure, chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two topics that have at this meeting again highlighted the interesting contributions of aberration corrected transmission electron microscopy were: contrast quantification of annular dark-field STEM images in terms of chemical composition (Z-contrast), sample thickness and strain, and the study of

  16. Atomic volume and semiconducting properties in pnictides of non-magnetic transition metals

    International Nuclear Information System (INIS)

    Chapnik, I.M.


    Deviations of atomic volume from additivity are determined for binary compounds of pnictide elements with non-magnetic transition metals. It is shown that metallic properties (in contrast to semiconducting properties) are associated with intensive contraction. It is supposed that the wide range of contraction observed, the overlapping of the metallic and semiconducting ranges of contraction, and the usual absence of one smooth curve for the composition dependence of atomic volume in pnictides of transition metals, are associated with the change of valency state of the pnictide atoms in different compounds. (author)

  17. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites. (United States)

    Kirmayer, Saar; Aharon, Eyal; Dovgolevsky, Ekaterina; Kalina, Michael; Frey, Gitti L


    Lamellar nanocomposites based on semiconducting polymers incorporated into layered inorganic matrices are prepared by the co-assembly of organic and inorganic precursors. Semiconducting polymer-incorporated silica is prepared by introducing the semiconducting polymers into a tetrahydrofuran (THF)/water homogeneous sol solution containing silica precursor species and a surface-active agent. Semiconducting polymer-incorporated MoS(2) and SnS(2) are prepared by Li intercalation into the inorganic compound, exfoliation and restack in the presence of the semiconducting polymer. All lamellar nanocomposite films are organized in domains aligned parallel to the substrate surface plane. The incorporated polymers maintain their semiconducting properties, as evident from their optical absorption and photoluminescence spectra. The optoelectronic properties of the nanocomposites depend on the properties of both the inorganic host and the incorporated guest polymer as demonstrated by integrating the nanocomposite films into light-emitting diodes. Devices based on polymer-incorporated silica and polymer-incorporated MoS(2) show no diode behaviour and no light emission due to the insulating and metallic properties of the silica and MoS(2) hosts. In contrast, diode performance and electroluminescence are obtained from devices based on semiconducting polymer-incorporated semiconducting SnS(2), demonstrating that judicious selection of the composite components in combination with the optimization of material synthesis conditions allows new hierarchical structures to be tailored for electronic and optoelectronic applications.

  18. Innovation in Information Technology: Theoretical and Empirical Study in SMQR Section of Export Import in Automotive Industry (United States)

    Edi Nugroho Soebandrija, Khristian; Pratama, Yogi


    This paper has the objective to provide the innovation in information technology in both theoretical and empirical study. Precisely, both aspects relate to the Shortage Mispacking Quality Report (SMQR) Claims in Export and Import in Automotive Industry. This paper discusses the major aspects of Innovation, Information Technology, Performance and Competitive Advantage. Furthermore, In the empirical study of PT. Astra Honda Motor (AHM) refers to SMQR Claims, Communication Systems, Analysis and Design Systems. Briefly both aspects of the major aspects and its empirical study are discussed in the Introduction Session. Furthermore, the more detail discussion is conducted in the related aspects in other sessions of this paper, in particular in Literature Review in term classical and updated reference of current research. The increases of SMQR claim and communication problem at PT. Astra Daihatsu Motor (PT. ADM) which still using the email cause the time of claim settlement become longer and finally it causes the rejected of SMQR claim by supplier. With presence of this problem then performed to design the integrated communication system to manage the communication process of SMQR claim between PT. ADM with supplier. The systems was analyzed and designed is expected to facilitate the claim communication process so that can be run in accordance with the procedure and fulfill the target of claim settlement time and also eliminate the difficulties and problems on the previous manual communication system with the email. The design process of the system using the approach of system development life cycle method by Kendall & Kendall (2006)which design process covers the SMQR problem communication process, judgment process by the supplier, claim process, claim payment process and claim monitoring process. After getting the appropriate system designs for managing the SMQR claim, furthermore performed the system implementation and can be seen the improvement in claim communication

  19. Spin transport in lateral structures with semiconducting channel (United States)

    Zainuddin, Abu Naser

    Spintronics is an emerging field of electronics with the potential to be used in future integrated circuits. Spintronic devices are already making their mark in storage technologies in recent times and there are proposals for using spintronic effects in logic technologies as well. So far, major improvement in spintronic effects, for example, the `spin-valve' effect, is being achieved in metals or insulators as channel materials. But not much progress is made in semiconductors owing to the difficulty in injecting spins into them, which has only very recently been overcome with the combined efforts of many research groups around the world. The key motivations for semiconductor spintronics are their ease in integration with the existing semiconductor technology along with the gate controllability. At present semiconductor based spintronic devices are mostly lateral and are showing a very poor performance compared to their metal or insulator based vertical counterparts. The objective of this thesis is to analyze these devices based on spin-transport models and simulations. At first a lateral spin-valve device is modeled with the spin-diffusion equation based semiclassical approach. Identifying the important issues regarding the device performance, a compact circuit equivalent model is presented which would help to improve the device design. It is found that the regions outside the current path also have a significant influence on the device performance under certain conditions, which is ordinarily neglected when only charge transport is considered. Next, a modified spin-valve structure is studied where the spin signal is controlled with a gate in between the injecting and detecting contacts. The gate is used to modulate the rashba spin-orbit coupling of the channel which, in turn, modulates the spin-valve signal. The idea of gate controlled spin manipulation was originally proposed by Datta and Das back in 1990 and is called 'Datta-Das' effect. In this thesis, we have

  20. PREFACE: 17th International Conference on Microscopy of Semiconducting Materials 2011 (United States)

    Walther, T.; Midgley, P. A.


    This volume contains invited and contributed papers from the 17th international conference on 'Microscopy of Semiconducting Materials' held at Churchill College, University of Cambridge, on 4-7 April 2011. The meeting was organised under the auspices of the Institute of Physics and supported by the Royal Microscopical Society as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and related techniques with high spatial resolution. This time the meeting was attended by 131 delegates from 25 countries world-wide, a record in terms of internationality. As semiconductor devices shrink further new routes of device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, the electronic structure, the chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two examples of topics at this meeting that have attracted a number of interesting studies were: the correlation of microstructural, optical and chemical information at atomic resolution with nanometre-scale resolved maps of the local electrical fields in (In,Al)GaN based semiconductors and tomographic approaches to characterise ensembles of nanowires and stacks of processed layers in devices Figure 1 Figure 1. Opening lecture by Professor Sir Colin J Humphreys. Each manuscript submitted for publication in this proceedings volume has been independently reviewed and revised

  1. 31 CFR 545.505 - Importation of goods, software, or technology exported from the territory of Afghanistan... (United States)


    ... technology exported from the territory of Afghanistan controlled by the Taliban prior to July 6, 1999. 545...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN (AFGHANISTAN) SANCTIONS REGULATIONS... technology exported from the territory of Afghanistan controlled by the Taliban prior to July 6, 1999. (a...

  2. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes (United States)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.


    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  3. An augmented space formulation of the optical conductivity of random semiconducting alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.


    A formalism has been developed for the study of optical conductivity of disordered semiconducting alloys effect of off-diagonal disorder, clustering and randomness in the electron-photon interaction matrix may be incorporated within this. The aim is to finally study GaAssub(x)Sbsub(1-x) as well as deep levels in this alloy. (author)

  4. Semiconducting Polymer Nanoprobe for in vivo Imaging of Reactive Oxygen and Nitrogen Species (United States)

    Pu, Kanyi; Shuhendler, Adam J.


    Semiconducting polymer nanoparticles are utilized as a free-radical inert and light-harvesting nanoplatform for in vivo molecular imaging of reactive oxygen and nitrogen species (RONS). With its RONS-sensitive fluorescence, good biodistribution and passive targeting ability to leaky inflammatory vasculature, this nanoprobe permits detection of RONS in the microenvironment of spontaneous bacterial infection following systemic administration. PMID:23943508

  5. Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density

    NARCIS (Netherlands)

    Asadi, Kamal; Kronemeijer, Auke J.; Cramer, Tobias; Koster, L. Jan Anton; Blom, Paul W. M.; de Leeuw, Dago M.

    The transition rate for a single hop of a charge carrier in a semiconducting polymer is assumed to be thermally activated. As the temperature approaches absolute zero, the predicted conductivity becomes infinitesimal in contrast to the measured finite conductivity. Here we present a uniform

  6. Assembly, physics, and application of highly electronic-type purified semiconducting carbon nanotubes in aligned array field effect transistors and photovoltaics (United States)

    Arnold, Michael


    Recent advances in (1) achieving highly monodisperse semiconducting carbon nanotubes without problematic metallic nanotubes and (2) depositing these nanotubes into useful, organized arrays and assemblies on substrates have created new opportunities for studying the physics of these one-dimensional conductors and for applying them in electronics and photonics technologies. In this talk, I will present on two topics that are along these lines. In the first, we have pioneered a scalable approach for depositing aligned arrays of ultrahigh purity semiconducting SWCNTs (prepared using polyfluorene-derivatives) called floating evaporative self-assembly (FESA). FESA is exploited to create FETs with exceptionally high combined on-conductance and on-off ratio of 261 μS/ μm and 2 x105, respectively, for a channel length of 240 nm. This is 1400 x greater on-off ratio than SWCNT FETs fabricated by other methods, at comparable on-conductance per width of 250 μS/ μm, and 30-100 x greater on-conductance per width, at comparable on-off ratio of 105-107. In the second, we have discovered how to efficiently harvest photons using semiconducting SWCNTs by driving the dissociation of excitons using donor/acceptor heterojunctions. The flow of energy in SWCNT films occurs across a complex energy landscape, temporally resolved using two-dimensional white light ultrafast spectroscopy. We have demonstrated simple solar cells driven by SWCNT excitons, based on bilayers between C60 and ultrathin (5 nm) films of SWCNTs that achieve a 1% solar power conversion efficiency (7% at the bandgap). High internal quantum efficiency indicates that future blended or multijunction cells exploiting multiple layers will be many times more efficient.

  7. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1" è" r" e Avenue, Val d’Or, Québec J9P 1Y3 (Canada); Habib, M.A. [Computer Sciences and Engineering Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Abdul-Hafidh, E.H. [High Energy Physics Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Rosei, F. [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)


    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 10{sup 5} and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics.

  8. Semiconducting boron carbide thin films: Structure, processing, and diode applications (United States)

    Bao, Ruqiang

    The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic

  9. Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes. (United States)

    Fukumaru, Takahiro; Toshimitsu, Fumiyuki; Fujigaya, Tsuyohiko; Nakashima, Naotoshi


    The selective recognition/extraction of semiconducting (sem)- and metallic (met)-single-walled carbon nanotubes (SWNTs) is still a great challenge in the science and technology of carbon nanotubes because their selective synthesis is still difficult. Poly(9,9-dioctyl-fluorene-2,7-diyl) (2C8-PF) and its derivatives are widely used polymers in carbon nanotube science and technology since they only extract sem-SWNTs from the mixture of sem-/met-SWNTs, while the separation mechanism is still unclear. In this study, we focus on the alkyl chain number on the polyfluorenes (PFs) to understand the mechanism for selective recognition. Here we describe the synthesis of mono-octyl moiety-carrying polyfluorene (poly(9-octyl-9H-fluorene-2,7-diyl), C8H-PF), and characterized its selective SWNT recognition/extraction ability, and found that the C8H-PF solubilized sem-SWNTs with a diameter of 0.9-1.1 nm, whose behavior is similar to that of 2C8-PF. In addition, C8H-PF selectively extracted sem-SWNTs with larger diameters (average diameter = 1.4 nm), whose behavior is different from that of 2C8-PF. Molecular mechanics simulations were carried out to understand such specific solubilization behavior. This study provides an insight into the design and synthesis of PF-based polymers and copolymers that exhibit efficient selective sem-SWNT recognition/extraction ability and their applications.

  10. Determining the most important factors for sustainable energy technology selection in Africa: application of the Delphi technique

    CSIR Research Space (South Africa)

    Barry, M-L


    Full Text Available into account when identifying the most sustainable technological systems in the African context. The study utilised the Delphi technique. The questionnaire of the first round was based on factors identified during a focus group exercise with energy experts...

  11. Is it Important to Talk About Technologies with Eating Disorder Clients? The Health-Care Professional Perspective

    Czech Academy of Sciences Publication Activity Database

    Šmahelová, M.; Čevelíček, M.; Nehybková, E.; Šmahel, D.; Čermák, Ivo


    Roč. 32, říjen (2017), s. 1-8 ISSN 1041-0236 Institutional support: RVO:68081740 Keywords : eating disorders * technology * treatment * anorexia nervosa * bulimia nervosa Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations) Impact factor: 1.487, year: 2016

  12. Is it Important to Talk About Technologies with Eating Disorder Clients? The Health-Care Professional Perspective

    Czech Academy of Sciences Publication Activity Database

    Šmahelová, M.; Čevelíček, M.; Nehybková, E.; Šmahel, D.; Čermák, Ivo


    Roč. 32, říjen (2017), s. 1-8 ISSN 1041-0236 Institutional support: RVO:68081740 Keywords : eating disorder s * technology * treatment * anorexia nervosa * bulimia nervosa Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations) Impact factor: 1.487, year: 2016

  13. The IAEA co-ordinated research programme on activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology. Final report

    International Nuclear Information System (INIS)

    Pashchenko, A.B.


    The present report summarizes the final results of the IAEA Co-ordinated Research Programme on ''Activation Cross Section for the Generator of Long-lived Radionuclides of Importance in Fusion Reactor Technology''. The goal of the CRP was to obtain reliable information (experimental and evaluated) for 16 long-lived activation reactions of special importance to fusion reactor technology. By limiting the scope of the CRP to just 16 reactions it was possible to establish a very effective focus to the joint effort of many laboratories that has led to the generation of a set of valuable new data which provide satisfactory answers to several questions of technological concern to fusion. (author). 11 refs, 5 tabs

  14. Empirical Equation Based Chirality (n, m Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Directory of Open Access Journals (Sweden)

    Md Shamsul Arefin


    Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.

  15. High Technology Development and Creation of Experimental Industrial Area of High-Performance Precision Diamond Dress Tool Production for Engineering Needs and Import Substitution in Ukraine

    Directory of Open Access Journals (Sweden)

    N. Novikov


    Full Text Available Manufacturing design of high-precision diamond tool for special applications carried out at V. M Bakul Institute for Superhard Materials of NAS of Ukraine is described. Presented developments open up scientific and technological capabilities of special dress diamond tool production for mechanical engineering and substitution of imported tools at Ukrainian enterprises by home-produced.

  16. Speech-Language Pathologists' Perceptions of the Importance and Ability to Use Assistive Technology in the Kingdom of Saudi Arabia (United States)

    Al-Dawaideh, Ahmad Mousa


    Speech-language pathologists (SLPs) frequently work with people with severe communication disorders who require assistive technology (AT) for communication. The purpose of this study was to investigate the SLPs perceptions of the importance of and ability level required for using AT, and the relationship of AT with gender, level of education,…

  17. Passive and Semiconducting Properties Assessment of Commercially Pure Tantalum in Hank's Physiological Solution (United States)

    Fattah-alhosseini, Arash; Pourmahmoud, Mehdi


    In this study, various electrochemical measurements were used to evaluate the passive and semiconducting properties of commercially pure tantalum (Ta) in Hank's physiological solution at 310 K (37 °C). Potentiodynamic polarization and electrochemical impedance spectroscopy results show that the passivation of pure Ta immersed in Hank's physiological solution improves over time. Mott-Schottky (M-S) tests indicate that the passive layers of pure Ta in Hank's physiological solution behave as n-type semiconductors and longer immersion times do not lead to any inversion of semiconducting behavior. Additionally, M-S tests show that as the immersion time increases, the donor density of the passive layer decreases. Finally, scanning electron microscope micrographs and energy-dispersive spectroscopy results reveal that Ta is less likely to experience significant pitting or buildup of undesirable corrosion products after longer immersion times in this physiological solution.

  18. Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework


    Castaldelli, Evandro; Imalka Jayawardena, K. D. G.; Cox, David C.; Clarkson, Guy J.; Walton, Richard I.; Le-Quang, Long; Chauvin, Jerôme; Silva, S. Ravi P.; Demets, Grégoire Jean-François


    Metal–organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite signifi...

  19. Giant magnetoresistance and extraordinary magnetoresistance in inhomogeneous semiconducting DyNiBi


    Casper, Frederick; Felser, Claudia


    The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal-insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.

  20. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.M.; McGehee, M.D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205 (United States); Liu, Y. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Frindell, K.L.; Stucky, G.D. [Department of Chemistry, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)


    Interpenetrating networks of organic and inorganic semiconductors are attractive for photovoltaic cells because electron transfer between the two semiconductors splits excitons. In this paper we show that films of titania with a uniform distribution of pore sizes can be made using a block copolymer as a structure-directing agent, and that 33 % of the total volume of the film can be filled with a semiconducting polymer. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John


    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  2. The importance of using simple and indigenous technologies for the exploitation of water resources in rural areas of developing countries (United States)

    Faillace, C.

    Taking care of thousands of village water supply systems requires a large organization and large financial inputs which most developing countries cannot afford. The author, after having briefly outlined the main points to be considered for the implementation of successful rural water programs, stresses the need to introduce simple, low-cost technologies for supplying safe water to small rural villages. The risk of failure is greatly reduced if there is an active participation of villagers in the various phases of the project. Health education village sanitation and training in the use and repair of equipment are essential for the long life of the water systems.

  3. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry. (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi


    Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are essential for the next generation of electronic devices, such as field-effect transistors and photovoltaic applications; however, contamination by metallic SWNTs reduces the efficiency of their associated devices. Here we report a simple and efficient method for the separation of semiconducting- and metallic SWNTs based on supramolecular complex chemistry. We here describe the synthesis of metal-coordination polymers (CP-Ms) composed of a fluorene-bridged bis-phenanthroline ligand and metal ions. On the basis of a difference in the 'solubility product' of CP-M-solubilized semiconducting SWNTs and metallic SWNTs, we readily separated semiconducting SWNTs. Furthermore, the CP-M polymers on the SWNTs were simply removed by adding a protic acid and inducing depolymerization to the monomer components. We also describe molecular mechanics calculations to reveal the difference of binding and wrapping mode between CP-M/semiconducting SWNTs and CP-M/metallic SWNTs. This study opens a new stage for the use of such highly pure semiconducting SWNTs in many possible applications.

  4. Novel Green Luminescent and Phosphorescent Material: Semiconductive Nanoporous ZnMnO with Photon Confinement. (United States)

    Lee, Sejoon; Lee, Youngmin; Panin, Gennady N


    A novel green luminescent and phosphorescent material of semiconductive nanoporous ZnMnO was synthesized by the thermal nucleation of nanopores in the 20-period Zn 0.93 Mn 0.07 O/Zn 0.65 Mn 0.35 O multilayer structure. Nanoporous ZnMnO showed an n-type semiconducting property and exhibited an extremely strong green light emission in its luminescence and phosphorescence characteristics. This arises from the formation of the localized energy level (i.e., green emission band) within the energy band gap and the confinement of photons. The results suggest nanoporous ZnMnO to have a great potential for the new type of semiconducting green phosphors and semiconductor light-emitting diodes with lower thresholds, producing an efficient light emission. In-depth analyses on the structural, electrical, and optical properties are thoroughly examined, and the formation mechanism of nanoporous ZnMnO and the origin of the strong green light emission are discussed.

  5. Electrospinning Technique for Organic Semiconductive Polymers Composites Coaxial Nanofibers for Electronic Devices (United States)

    Serrano Garcia, William; Thomas, Sylvia

    This work is motivated by the need of new 1D structures for organic flexible electronic devices that does not rely on silicon. Formation of organic semiconductors coaxial p-n junctions and sensors using the electrospinning technique will be studied. Actual progressions in coaxial fibers lead to an advance in the usage of fibers in many fields, but, for the first time, two organic semiconductor polymers will form a p-n junction in a coaxial nanofiber structure, expecting functional diodes in the 100 nm range in diameter. Semiconducting polymers as P3HT and BBL, p- and n-type respectively, will be studied under the presence of UV radiation and organic gases. Is been shown in recent research on single fiber and fibrous electrospun p-n junctions shows an ideality factor of 2 and less when rectifying signals. Also, with high surface area to volume ratio can serve not only as a single fiber sensor but as a yarn sensor enhancing the sensitivity of the device. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting flexible nanodevices. NSF Florida Georgia Louis Stokes Alliance for Minority Participation (FGLSAMP) Program.

  6. The importance of showing technological tools (like Cmap Tools to future teachers to improve their teaching practice in school

    Directory of Open Access Journals (Sweden)

    Emilio CRISOL MOYA


    Full Text Available Concept maps have proved to be an efficient tool for learning (Novak & Gowin, 1984 but also without the pretext of making a classification, one could say that has also been found useful to: identify students’ prior knowledge, summarizing what has been learned, note taking, help in the study, plan, build scaffolding for understanding, strengthen educational experiences, improve conditions for effective learning, promote critical thinking, support cooperation and collaboration, organize content (Cañas & Badilla, 2005; Coffey et al., 2003. In this study, we show the opinions concerning the use of Cmap Tools as a tool for making concept maps for their future practice as teachers in primary education, students of second year of teaching at the University of Granada. The research was based on the quantitative perspective, being the instrument used, a questionnaire released by one hand, the students’ opinion on the use of the methodology used: group activity and selfemployment, and the application of the tool Cmap Tools, and collect other personal and academic satisfaction of students involved in this experience. As for the extracted views emphasized that although student teachers feel that using technology in their classes, can be a strategy that promotes the teaching and learning, as claimed on this experience, it is true that students who do not coexist think so, hence it is necessary to strengthen this small percentage use of technological tools in teaching.

  7. Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Printz, Adam D.; Lipomi, Darren J., E-mail: [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448 (United States)


    The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competition can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not


    Directory of Open Access Journals (Sweden)

    Ionel NUTA


    Full Text Available Year 2014 was considered by NASA and NOAA hottest year in history. Combined temperature of the atmosphere and oceans has increased overall by 0.68 degrees Celsius, and the devastating effects of climate changes produced irreversible consequences on the sustainability of the planet earth. Increasing the frequency, intensity and complexity of their manifestation caused initiation and development of global policies aimed at mitigating climate change priority, reducing the risk of natural disasters or anthropological costs and negative effects to society and the environment. In order to fulfill the responsibilities assumed by Romania as a member of international bodies is necessary to search and apply new solutions as revolutionary and effective, especially autonomous enabling technology development and improvement of emergency intervention and replacement of emergency autonomous robotic systems. Autonomous robotic systems allow execution of prevention and management of emergencies in areas difficult to reach, hostile life and result in increasing their efficiency.

  9. The Importance of Trust in the Adoption and Use of Intelligent Assistive Technology by Older Adults to Support Aging in Place: Scoping Review Protocol. (United States)

    McMurray, Josephine; Strudwick, Gillian; Forchuk, Cheryl; Morse, Adam; Lachance, Jessica; Baskaran, Arani; Allison, Lauren; Booth, Richard


    Intelligent assistive technologies that complement and extend human abilities have proliferated in recent years. Service robots, home automation equipment, and other digital assistant devices possessing artificial intelligence are forms of assistive technologies that have become popular in society. Older adults (>55 years of age) have been identified by industry, government, and researchers as a demographic who can benefit significantly from the use of intelligent assistive technology to support various activities of daily living. The purpose of this scoping review is to summarize the literature on the importance of the concept of "trust" in the adoption of intelligent assistive technologies to assist aging in place by older adults. Using a scoping review methodology, our search strategy will examine the following databases: ACM Digital Library, Allied and Complementary Medicine Database (AMED), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline, PsycINFO, Scopus, and Web of Science. Two reviewers will independently screen the initial titles obtained from the search, and these results will be further inspected by other members of the research team for inclusion in the review. This review will provide insights into how the concept of trust is actualized in the adoption of intelligent assistive technology by older adults. Preliminary sensitization to the literature suggests that the concept of trust is fluid, unstable, and intimately tied to the type of intelligent assistive technology being examined. Furthermore, a wide range of theoretical lenses that include elements of trust have been used to examine this concept. This review will describe the concept of trust in the adoption of intelligent assistive technology by older adults, and will provide insights for practitioners, policy makers, and technology vendors for future practice. ©Josephine McMurray, Gillian Strudwick, Cheryl Forchuk, Adam Morse, Jessica Lachance, Arani Baskaran, Lauren

  10. Development of N- and P- Types of Semiconducting Polymers (United States)


    fabricated using both p-type and n-type PbTe nanocrystals for the conversion of thermal energy into electrical energy. More importantly, through the careful...1.2 Optical and electrical properties of polymers As shown by Gel permeation chromatography (GPC) measurements, these polymers exhibit number...Scheme 1 Synthetic routes of Polymers. 1.2 Optical and electrical properties of polymers As shown by Gel permeation chromatography (GPC

  11. Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures (United States)

    Lee, Dennis T.; Chung, Jong Won; Park, Geonhee; Kim, Yun-Tae; Lee, Chang Young; Cho, Yeonchoo; Yoo, Pil J.; Han, Jae-Hee; Shin, Hyeon-Jin; Kim, Woo-Jae


    Semiconducting single-walled carbon nanotubes (SWNTs) show promise as core materials for next-generation solar cells and nanoelectronic devices. However, most commercial SWNT production methods generate mixtures of metallic SWNTs (m-SWNTs) and semiconducting SWNT (sc-SWNTs). Therefore, sc-SWNTs must be separated from their original mixtures before use. In this study, we investigated a polymer-based, noncovalent sc-SWNT separation approach, which is simple to perform and does not disrupt the electrical properties of the SWNTs, thus improving the performance of the corresponding sc-SWNT-based applications. By systematically investigating the effect that different structural features of the semiconductor polymer have on the separation of sc-SWNTs, we discovered that the length and configuration of the alkyl side chains and the rigidity of the backbone structure exert significant effects on the efficiency of sc-SWNT separation. We also found that electron transfer between the semiconductor polymers and sc-SWNTs is strongly affected by their energy-level alignment, which can be tailored by controlling the donor-acceptor configuration in the polymer backbone structures. Among the polymers investigated, the highly planar P8T2Z-C12 semiconductor polymer showed the best sc-SWNT separation efficiency and unprecedentedly strong electronic interaction with the sc-SWNTs, which is important for improving their performance in applications.

  12. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes. (United States)

    Pochorovski, Igor; Wang, Huiliang; Feldblyum, Jeremy I; Zhang, Xiaodong; Antaris, Alexander L; Bao, Zhenan


    Semiconducting, single-walled carbon nanotubes (SWNTs) are promising candidates for applications in thin-film transistors, solar cells, and biological imaging. To harness their full potential, however, it is necessary to separate the semiconducting from the metallic SWNTs present in the as-synthesized SWNT mixture. While various polymers are able to selectively disperse semiconducting SWNTs, the subsequent removal of the polymer is challenging. However, many applications require semiconducting SWNTs in their pure form. Toward this goal, we have designed a 2-ureido-6[1H]-pyrimidinone (UPy)-based H-bonded supramolecular polymer that can selectively disperse semiconducting SWNTs. The dispersion purity is inversely related to the dispersion yield. In contrast to conventional polymers, the polymer described herein was shown to disassemble into monomeric units upon addition of an H-bond-disrupting agent, enabling isolation of dispersant-free, semiconducting SWNTs.

  13. The Important of the Usage of Information Technology during the Local Services: Special Provincial Administration of Kırşehir

    Directory of Open Access Journals (Sweden)

    Mustafa KOCAOĞLU


    Full Text Available The development of information and communication technologies has accelerated public service delivery through the application of information technologies in the world. In addition to these improvements, as a consequence of the reform efforts in the 2000s, important changes have occurred in the quality and quantity of the duties of local governments. It is expressed that the usage of information technologies for public service provision is making important contribution to local governments to fulfill their duties and responsibilities. In this paper aims the analyze that the usage of information technology during the local services delivery at The Special Provincial Administration of Kırşehir. Survey and interview were used as a method of the field research and additionally, the web site of the institute was analyzed. The results of the survey revealed that it has made progress in the efforts of computerization and web site development. The institute is expected to show progress on online service delivery and online management.

  14. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials


    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  15. The Development of Plasma Thrusters and Its Importance for Space Technology and Science Education at University of Brasilia (United States)

    Ferreira, Jose Leonardo; Calvoso, Lui; Gessini, Paolo; Ferreira, Ivan

    Since 2004 The Plasma Physics Laboratory of University of Brasilia (Brazil) is developing Hall Plasma Thurusters for Satellite station keeping and orbit control. The project is supported by CNPq, CAPES, FAP DF and from The Brazillian Space Agency-AEB. The project is part of The UNIESPAÇO Program for Space Activities Development in Brazillian Universities. In this work we are going to present the highlights of this project together with its vital contribution to include University of Brasilia in the Brazillian Space Program. Electric propulsion has already shown, over the years, its great advantages in being used as main and secondary thruster system of several space mission types. Between the many thruster concepts, one that has more tradition in flying real spacecraft is the Hall Effect Thruster (HET). These thrusters, first developed by the USSR in the 1960s, uses, in the traditional design, the radial magnetic field and axial electric field to trap electrons, ionize the gas and accelerate the plasma to therefore generate thrust. In contrast to the usual solution of using electromagnets to generate the magnetic field, the research group of the Plasma Physics Laboratory of University of Brasília has been working to develop new models of HETs that uses combined permanent magnets to generate the necessary magnetic field, with the main objective of saving electric power in the final system design. Since the beginning of this research line it was developed and implemented two prototypes of the Permanent Magnet Hall Thruster (PMHT). The first prototype, called P-HALL1, was successfully tested with the using of many diagnostics instruments, including, RF probe, Langmuir probe, Ion collector and Ion energy analyzer. The second prototype, P-HALL2, is currently under testing, and it’s planned the increasing of the plasma diagnostics and technology analysis, with the inclusion of a thrust balance, mass spectroscopy and Doppler broadening. We are also developing an

  16. The importance of using the irradiation technology in the post-harvest Preservation of onions and garlic

    International Nuclear Information System (INIS)

    Iglesias Enriquez, Isora


    In Cuba post-harvest preservation of onions and garlic for different uses have been performed by irradiation bulbs with a minimal dose range of 80 to 90 Gy of Gamma radiation (Co60 ) at commercial level in the Food Irradiation Plant (PIA) Producto 1 which in 1986 held a nominal activity of 110 000 ci. Results showed that the irradiated products could be preserved up to 8 and 11 months, respectively, resulting un total losses lower than 30 %. Products were stored in a warehouse with forced air distribution system of 22 0C to 32 0C and 70 to 100 % RH, resulting in 30 air changes /hour. An important economic benefit was obtained from this method as compared to other traditional storage methods using controlled temperature chambers ( 1 0C to 3 0C ) to preserve un-irradiated onions an garlic's. It is concluded that the irradiated products could be stored at atmospheric temperature and forced air distribution system resulting in lower losses and energy savings and non-imported product, which to reached more of the 5 dollars millions

  17. Activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai


    Following the recommendations of the International Nuclear Data Committee (INDC), the IAEA Nuclear Data Section has established a Co-ordinated Research Programme (CRP) on activation cross sections for the generation of long-lived radionuclides of importance in concentrating on the cross sections for the reactions suggested by the 16th INDC meeting. The first Research Co-ordination Meeting of the CRP was held at the IAEA Headquarters, Vienna, Austria, from 11 to 12 November 1991. The main objectives of the meeting were to review the results under the CRP and the status of long-lived activation cross section data and to fix the future working programme for the CRP. The proceedings contain the progress reports of the CRP and 12 contributed papers presented at the meeting as well as the summary of the conclusions and recommendations of the meeting. Refs, figs and tabs

  18. Relationship between concentration of health important groups of fatty acids and components and technological properties in cow milk

    Directory of Open Access Journals (Sweden)

    Oto Hanuš


    Full Text Available Groups of fatty acids (FAs in milk fat can have positive and negative impact on consumer health. Profile of FAs could be influenced by dairy cow nutrition, breed, milk yield level et cetera. The question is what relationships the FAs could have to quality of milk products? Relationships between FAs and their groups to selected milk indicators were studied in Czech Fleckvieh and Holstein cows (64 bulk milk samples. There were 8 herds in 2-year investigation during winter and summer season. The relationship of saturated FAs (SAFA; 66.22% was significant only to lactose (L content (0.290; P < 0.05. The relationships of monounsaturated FAs (MUFA; 29.21% to milk indicators (MIs were in­si­gni­fi­cant (P > 0.05. The relationships of polyunsaturated FAs (PUFA, beneficial for consumer health; 4.53% to MIs were narrower: fat (T, 0.321; P < 0.05; lactose (L, 0.458; P < 0.01; milk alcohol stability (AL, 0.447; P < 0.01; titration acidity (SH, 0.342; P < 0.01; cheese curd quality (KV, 0.427; P < 0.01; milk fermentationability (JSH, 0.529; P < 0.001, streptococci count in yoghurt (Strepto, 0.316; P < 0.05; total count of noble bacteria in yoghurt (CPMUK, 0.314; P < 0.05; streptococci/lactobacilly ratio (StreptoLacto, 0.356; P < 0.01. The relationships of conjugated linoleic acid (CLA; markedly beneficial for health; 0.68% to MIs were: T (0.379; P < 0.01; L (–0.542; P < 0.001; AL (0.266; P < 0.05; KV (0.411; P < 0.01; Strepto (0.260; P < 0.05; StreptoLacto (0.270; P < 0.05. The higher CLA levels were connected in this way with: higher fat content; lower lactose content; lower alcohol stability; lower streptococci count in yoghurt; lower streptococci/lactobacilly ratio in yoghurt. The PUFA and CLA representation decreased with L increase. Simultaneously some technological milk properties such as alcohol sta­bi­li­ty and fermentationability were slightly improved.

  19. Outlook and emerging semiconducting materials for ambipolar transistors. (United States)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta


    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors. (United States)

    Park, Minsuk; Kim, Somin; Kwon, Hyeokjae; Hong, Sukhyun; Im, Seongil; Ju, Sang-Yong


    Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s.

  1. A survey of selected neutron-activation reactions with short-lived products of importance to fusion reactor technology

    International Nuclear Information System (INIS)

    Ward, R.C.; Gomes, I.C.; Smith, D.L.


    The status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with D-T fusion reactors is investigated. The main concerns relative to these very radioactive isotopes are with radiation damage to sensitive components such as superconducting magnets, the decay-heat problem and the safety of personnel during operation of the facility. The present report surveys the status of nuclear data required to assess these problems. The study is limited to a few high-priority nuclear reactions which appear to be of critical concern in this context. Other reactions of lesser concern are listed but are not treated in the present work. Among the factors that were considered in defining the relevant reactions and setting priorities are: quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive byproducts, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half lives in the range from about 1 second to 15 minutes. Available cross-section and reaction-product decay information from the literature has been compiled and included in the report. Uncertainties have been estimated by examining several sets of experimental as well as evaluated data. Comments on the general status of data for various high-priority reactions are offered. On the basis of this investigation, it has been found that the nuclear data are in reasonably good shape for some of the most important reactions but are unacceptable for others. Based on this investigation, the reactions which should be given the greatest attention are: 16 O(n,p) 16 N, 55 Mn(n,p) 55 Cr, 57 Fe(n,p) 57 Mn, 186 W(n,2n) 185m W, and 207 Pb(n,n') 207m Pb. However, the development of fusion power would benefit from an across-the-board refinement in these nuclear data so that a more accurate quantitative

  2. African fermented dairy products - Overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security. (United States)

    Jans, Christoph; Meile, Leo; Kaindi, Dasel Wambua Mulwa; Kogi-Makau, Wambui; Lamuka, Peter; Renault, Pierre; Kreikemeyer, Bernd; Lacroix, Christophe; Hattendorf, Jan; Zinsstag, Jakob; Schelling, Esther; Fokou, Gilbert; Bonfoh, Bassirou


    Milk is a major source of nutrients, but can also be a vehicle for zoonotic foodborne diseases, especially when raw milk is consumed. In Africa, poor processing and storage conditions contribute to contamination, outgrowth and transmission of pathogens, which lead to spoilage, reduced food safety and security. Fermentation helps mitigate the impact of poor handling and storage conditions by enhancing shelf life and food safety. Traditionally-fermented sour milk products are culturally accepted and widely distributed in Africa, and rely on product-specific microbiota responsible for aroma, flavor and texture. Knowledge of microbiota and predominant, technologically important microorganisms is critical in developing products with enhanced quality and safety, as well as sustainable interventions for these products, including Africa-specific starter culture development. This narrative review summarizes current knowledge of technologically-important microorganisms of African fermented dairy products (FDP) and raw milk, taking into consideration novel findings and taxonomy when re-analyzing data of 29 publications covering 25 products from 17 African countries. Technologically-important lactic acid bacteria such as Lactococcus lactis and Streptococcus infantarius subsp. infantarius (Sii), Lactobacillus spp. and yeasts predominated in raw milk and FDP across Africa. Re-analysis of data also suggests a much wider distribution of Sii and thus a potentially longer history of use than previously expected. Therefore, evaluating the role and safety of African Sii lineages is important when developing interventions and starter cultures for FDP in Africa to enhance food safety and food security. In-depth functional genomics, epidemiologic investigations and latest identification approaches coupled with stakeholder involvement will be required to evaluate the possibility of African Sii lineages as novel food-grade Streptococcus lineage. Copyright © 2017 The Authors. Published by

  3. New Fabrication Methodologies for the Development of Low Power Gas Sensors Based on Semiconducting Nanowires


    Samà Monsonís, Jordi


    La tesis titulada New Fabrication Methodologies for the Development of Low Power Gas Sensors Based on Semiconducting Nanowires, se enmarca dentro de los sensores de gas para la monitorización ambiental de la calidad del aire, con el objetivo de detectar la presencia de gases nocivos para la salud humana. El trabajo desarrollado se basa en el uso de sensores de gas resistivos, es decir, que la adsorción de un gas en la superficie del sensor da lugar a un cambio en la conductividad del sens...

  4. Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films


    Tripathi, T.S.; Niemelä, Janne-Petteri; Karppinen, Maarit


    Atomic layer deposition (ALD) is a vital gas-phase technique for atomic-level thickness-controlled deposition of high-quality thin films on various substrate morphologies owing to its self-limiting gas-surface reaction mechanism. Here we report the ALD fabrication of thin films of the semiconducting CuCrO2 oxide that is a highly prospective candidate for transparent electronics applications. In our process, copper 2,2,6,6-tetramethyl-3,5-heptanedionate (Cu(thd)2) and chromium acetyl acetonate...

  5. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.


    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  6. Ultrafast switching of valence and generation of coherent acoustic phonons in semiconducting rare-earth monosulfides (United States)

    Punpongjareorn, Napat; He, Xing; Tang, Zhongjia; Guloy, Arnold M.; Yang, Ding-Shyue


    We report on the ultrafast carrier dynamics and generation of coherent acoustic phonons in YbS, a semiconducting rare-earth monochalcogenide, using two-color pump-probe reflectivity. Compared to the carrier relaxation processes and lifetimes of conventional semiconductors, recombination of photoexcited electrons with holes in localized f orbitals is found to take place rapidly with a density-independent time constant of properties of YbS including its two-photon absorption and thermooptic coefficients, the period and decay time of the coherent oscillation, and the sound velocity.

  7. Room temperature ferromagnetic and semiconducting properties of graphene adsorbed with cobalt oxide using electrochemical method (United States)

    Park, Chang-Soo; Lee, Kyung Su; Chu, Dongil; Lee, Juwon; Shon, Yoon; Kim, Eun Kyu


    We report the room temperature ferromagnetic properties of graphene adsorbed by cobalt oxide using electrochemical method. The cobalt oxide doping onto graphene was carried out in 0.1 M LiCoO2/DI-water solution. The doped graphene thin film was determined to be a single layer from Raman analysis. The CoO doped graphene has a clear ferromagnetic hysteresis at room temperature and showed a remnant magnetization, 128.2 emu/cm3. The temperature dependent conductivity of the adsorbed graphene showed the semiconducting behavior and a band gap opening of 0.12 eV.

  8. Excitonic singlet-triplet ratio in a semiconducting organic thin film (United States)

    Baldo, M. A.; O'brien, D. F.; Thompson, M. E.; Forrest, S. R.


    A technique is presented to determine the spin statistics of excitons formed by electrical injection in a semiconducting organic thin film. With the aid of selective addition of luminescent dyes, we generate either fluorescence or phosphorescence from the archetype organic host material aluminum tris (8-hydroxyquinoline) (Alq3). Spin statistics are calculated from the ratio of fluorescence to phosphorescence in the films under electrical excitation. After accounting for varying photoluminescent efficiencies, we find a singlet fraction of excitons in Alq3 of (22+/-3)%.

  9. Effect of rotation on a semiconducting medium with two-temperatures under L-S theory

    Directory of Open Access Journals (Sweden)

    Othman Mohamed I.A.


    Full Text Available The model of the equations of generalized thermoelasticity in a semi-conducting medium with two-temperature is established. The entire elastic medium is rotated with a uniform angular velocity. The formulation is applied under Lord-Schulman theory with one relaxation time. The normal mode analysis is used to obtain the expressions for the considered variables. Also some particular cases are discussed in the context of the problem. Numerical results for the considered variables are obtained and illustrated graphically. Comparisons are also made with the results predicted in the absence and presence of rotation as well as two-temperature parameter.

  10. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott


    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  11. Semiconducting, Magnetic or Superconducting Nanoparticles encapsulated in Carbon Shells by RAPET method.

    Directory of Open Access Journals (Sweden)

    Aharon Gedanken


    Full Text Available An efficient, solvent-free, environmentally friendly, RAPET (Reactions under Autogenic Pressure at Elevated Temperaturesynthetic approach is discussed for the fabrication of core-shell nanostructures. The semiconducting, magnetic orsuperconducting nanoparticles are encapsulated in a carbon shell. RAPET is a one-step, thermal decomposition reaction ofchemical compound (s followed by the formation of core-shell nanoparticles in a closed stainless steel reactor. Therepresentative examples are discussed, where a variety of nanomaterials are trapped in situ in a carbon shell that offersfascinating properties.

  12. Some considerations concerning the information and communication technologies and their importance in the self-learning of English for Economic purposes

    Directory of Open Access Journals (Sweden)

    Marisela Estrada-Ferrera


    Full Text Available This article aims to outline in broad terms the importance of the information technologies in teaching a foreign language, which is a crucial element in the development of the student´s autonomy of learning and achievement of communicative competence. The use of technologies provides a framework in which it is possible to integrate at the same time the natural use of language, for communication purposes similar to those that occur in the external world, treatment and teaching language learning processes among which we include the development of reading comprehension, texts and practice with different genres, and applying the most appropriate reading strategies and techniques. To do this we will describe this approach and present an example in actual practice, valid for teaching reading comprehension for economic purposes.

  13. Analytic Hierarchy Process to Define the Most Important Factors and Related Technologies for Empowering Elderly People in Taking an Active Role in their Health. (United States)

    Fico, G; Gaeta, E; Arredondo, M T; Pecchia, L


    Successful management of health conditions in older population is determined by strategic involvement of a professional team of careers and by empowering patients and their caregivers to take over a central role and responsibility in the daily management of condition. Identifying, structuring and ranking the most important needs related to these aspects could pave the way for improved strategies in designing systems and technological solutions supporting user empowerment. This paper presents the preliminary results of a study aiming to elicit these needs. Healthcare professionals, working together in the European and Innovation Partnership on Active and Healthy Ageing (EIP-AHA) initiative, have defined a set of needs and factors that have been organized in two hierarchies around the concepts of patient activation and proactive and prepared care team, defined in the Chronic Care Model. The two hierarchies have been mapped, by a team of experts in computer science, with technologies and solutions that could facilitate the achievement of the identified needs.

  14. Technology. (United States)

    Online-Offline, 1998


    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  15. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho


    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  16. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire. (United States)

    Hwang, Sun Kak; Min, Sung-Yong; Bae, Insung; Cho, Suk Man; Kim, Kang Lib; Lee, Tae-Woo; Park, Cheolmin


    One-dimensional nanowires (NWs) have been extensively examined for numerous potential nano-electronic device applications such as transistors, sensors, memories, and photodetectors. The ferroelectric-gate field effect transistors (Fe-FETs) with semiconducting NWs in particular in combination with ferroelectric polymers as gate insulating layers have attracted great attention because of their potential in high density memory integration. However, most of the devices still suffer from low yield of devices mainly due to the ill-control of the location of NWs on a substrate. NWs randomly deposited on a substrate from solution-dispersed droplet made it extremely difficult to fabricate arrays of NW Fe-FETs. Moreover, rigid inorganic NWs were rarely applicable for flexible non-volatile memories. Here, we present the NW Fe-FETs with position-addressable polymer semiconducting NWs. Polymer NWs precisely controlled in both location and number between source and drain electrode were achieved by direct electrohydrodynamic NW printing. The polymer NW Fe-FETs with a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) exhibited non-volatile ON/OFF current margin at zero gate voltage of approximately 10(2) with time-dependent data retention and read/write endurance of more than 10(4) seconds and 10(2) cycles, respectively. Furthermore, our device showed characteristic bistable current hysteresis curves when being deformed with various bending radii and multiple bending cycles over 1000 times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition (United States)

    Lee, No Ho; Yoon, Seong Yu; Kim, Dong Ha; Kim, Seong Keun; Choi, Byung Joon


    Improving the energy harvesting efficiency of triboelectric generators (TEGs) requires exploring new types of materials that can be used, and understanding their properties. In this study, we have investigated semiconducting SnO2 thin films as friction layers in TEGs, which has not been explored thus far. Thin films of SnO2 with various thicknesses were grown by atomic layer deposition on Si substrates. Either polymer or glass was used as counter friction layers. Vertical contact/separation mode was utilized to evaluate the TEG efficiency. The results indicate that an increase in the SnO2 film thickness from 5 to 25 nm enhances the triboelectric output voltage of the TEG. Insertion of a 400-nm-thick Pt sub-layer between the SnO2 film and Si substrate further increased the output voltage up to 120 V in a 2 cm × 2 cm contact area, while the enhancement was cancelled out by inserting a 10-nm-thick insulating Al2O3 film between SnO2 and Pt films. These results indicate that n-type semiconducting SnO2 films can provide triboelectric charge to counter-friction layers in TEGs.[Figure not available: see fulltext.

  18. Vanadium sesquioxide (V2O3)-based semiconducting temperature sensitive resistors for uncooled microbolometers (United States)

    Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Zia, Muhammad Fakhar; Bahidra, Esme; Alasaad, Amr


    This paper reports on a semiconducting resistor material based on vanadium sesquioxide (V2O3) with electrical resistivity and temperature coefficient of resistance (TCR) appropriate for microbolometer applications. In this work, V2O3-based semiconducting resistor material was synthesized and electrically characterized. The developed material was prepared by annealing, in O2 and N2 atmospheres, a cascaded multilayer structure composed of V2O3 (10 nm) and V (5 nm) room temperature sputter coated thin films. The developed 55 nm thin film microbolometer resistor material possessed high temperature sensitivity from 20∘C to 45∘C with a TCR of -3.68%/∘C and room temperature resistivity of 0.57 Ω ṡcm for O2 annealed samples and a TCR of -3.72%/∘C and room temperature resistivity of 0.72 Ω ṡcm for N2 annealed samples. The surface morphologies of the synthesized thin films were studied using atomic force microscopy showing no significant post-growth annealing effect on the smoothness of the samples surfaces.

  19. Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer. (United States)

    Ishihara, Shinsuke; O'Kelly, Curtis J; Tanaka, Takeshi; Kataura, Hiromichi; Labuta, Jan; Shingaya, Yoshitaka; Nakayama, Tomonobu; Ohsawa, Takeo; Nakanishi, Takashi; Swager, Timothy M


    As-synthesized single-walled carbon nanotubes (SWCNTs) are a mixture of metallic and semiconducting tubes, and separation is essential to improve the performances of SWCNT-based electric devices. Our chemical sensor monitors the conductivity of an SWCNT network, wherein each tube is wrapped by an insulating metallosupramolecular polymer (MSP). Vapors of strong electrophiles such as diethyl chlorophosphate (DECP), a nerve agent simulant, can trigger the disassembly of MSPs, resulting in conductive SWCNT pathways. Herein, we report that separated SWCNTs have a large impact on the sensitivity and selectivity of chemical sensors. Semiconducting SWCNT (S-SWCNT) sensors are the most sensitive to DECP (up to 10000% increase in conductivity). By contrast, the responses of metallic SWCNT (M-SWCNT) sensors were smaller but less susceptible to interfering signals. For saturated water vapor, increasing and decreasing conductivities were observed for S- and M-SWCNT sensors, respectively. Mixtures of M- and S-SWCNTs revealed reduced responses to saturated water vapor as a result of canceling effects. Our results reveal that S- and M-SWCNTs compensate sensitivity and selectivity, and the combined use of separated SWCNTs, either in arrays or in single sensors, offers advantages in sensing systems.

  20. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. (United States)

    Kalbac, Martin; Hsieh, Ya-Ping; Farhat, Hootan; Kavan, Ladislav; Hofmann, Mario; Kong, Jing; Dresselhaus, Mildred S


    Raman spectroscopy and in situ Raman spectroelectrochemistry have been used to study the influence of defects on the Raman spectra of semiconducting individual single-walled carbon nanotubes (SWCNTs). The defects were created intentionally on part of an originally defect-free individual semiconducting nanotube, which allowed us to analyze how defects influence this particular nanotube. The formation of defects was followed by Raman spectroscopy that showed D band intensity coming from the defective part and no D band intensity coming from the original part of the same nanotube. It is shown that the presence of defects also reduces the intensity of the symmetry-allowed Raman features. Furthermore, the changes to the Raman resonance window upon the introduction of defects are analyzed. It is demonstrated that defects lead to both a broadening of the Raman resonance profile and a decrease in the maximum intensity of the resonance profile. The in situ Raman spectroelectrochemical data show a doping dependence of the Raman features taken from the defective part of the tested SWCNT.

  1. Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging. (United States)

    Stahl, Thomas; Bofinger, Robin; Lam, Ivan; Fallon, Kealan J; Johnson, Peter; Ogunlade, Olumide; Vassileva, Vessela; Pedley, R Barbara; Beard, Paul C; Hailes, Helen C; Bronstein, Hugo; Tabor, Alethea B


    Photoacoustic imaging combines both excellent spatial resolution with high contrast and specificity, without the need for patients to be exposed to ionizing radiation. This makes it ideal for the study of physiological changes occurring during tumorigenesis and cardiovascular disease. In order to fully exploit the potential of this technique, new exogenous contrast agents with strong absorbance in the near-infrared range, good stability and biocompatibility, are required. In this paper, we report the formulation and characterization of a novel series of endogenous contrast agents for photoacoustic imaging in vivo. These contrast agents are based on a recently reported series of indigoid π-conjugated organic semiconductors, coformulated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, to give semiconducting polymer nanoparticles of about 150 nm diameter. These nanoparticles exhibited excellent absorption in the near-infrared region, with good photoacoustic signal generation efficiencies, high photostability, and extinction coefficients of up to three times higher than those previously reported. The absorption maximum is conveniently located in the spectral region of low absorption of chromophores within human tissue. Using the most promising semiconducting polymer nanoparticle, we have demonstrated wavelength-dependent differential contrast between vasculature and the nanoparticles, which can be used to unambiguously discriminate the presence of the contrast agent in vivo.

  2. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. (United States)

    Zhu, Houjuan; Fang, Yuan; Miao, Qingqing; Qi, Xiaoying; Ding, Dan; Chen, Peng; Pu, Kanyi


    Development of optical nanotheranostics for the capability of photodynamic therapy (PDT) provides opportunities for advanced cancer therapy. However, most nanotheranostic systems fail to regulate their generation levels of reactive oxygen species (ROS) according to the disease microenvironment, which can potentially limit their therapeutic selectivity and increase the risk of damage to normal tissues. We herein report the development of hybrid semiconducting polymer nanoparticles (SPNs) with self-regulated near-infrared (NIR) photodynamic properties for optimized cancer therapy. The SPNs comprise a binary component nanostructure: a NIR-absorbing semiconducting polymer acts as the NIR fluorescent PDT agent, while nanoceria serves as the smart intraparticle regular to decrease and increase ROS generation at physiologically neutral and pathologically acidic environments, respectively. As compared with nondoped SPNs, the NIR fluorescence imaging ability of nanoceria-doped SPNs is similar due to the optically inactive nature of nanoceria; however, the self-regulated photodynamic properties of nanoceria-doped SPN not only result in dramatically reduced nonspecific damage to normal tissue under NIR laser irradiation but also lead to significantly enhanced photodynamic efficacy for cancer therapy in a murine mouse model. This study thus provides a simple yet effective hybrid approach to modulate the phototherapeutic performance of organic photosensitizers.

  3. Challenges Found When Patterning Semiconducting Polymers with Electric Fields for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Fernando A. de Castro


    Full Text Available A material-independent, contactless structuring method of semiconducting organic materials for the fabrication of interface-enhanced bilayer solar cells is not available so far. Patterning of thin films using electrohydrodynamic instabilities possesses many desired characteristics and has convincingly been used as a simple method to structure and replicate patterns of nonconducting polymers on submicrometer length scales. However, the applicability of this technique to a wider range of materials has not been demonstrated yet. Here, we report attempts to structure poly(p-phenylene vinylene in a similar way. We found that thin films of poly(2-methoxy-5-(2′-ethylhexyl-oxy-1,4-phenylene-vinylene (MEH-PPV and poly(2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylene-vinylene (MDMO-PPV could not be destabilized at all in the limited accessible range of the experimental parameters set by the delicate chemical nature of these materials. We discuss failure origins and present possible loopholes for the patterning of semiconducting polymers using electric fields.

  4. Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. (United States)

    Castaldelli, Evandro; Imalka Jayawardena, K D G; Cox, David C; Clarkson, Guy J; Walton, Richard I; Le-Quang, Long; Chauvin, Jerôme; Silva, S Ravi P; Demets, Grégoire Jean-François


    Metal-organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years. Here we report the synthesis and properties of a new highly crystalline, electrochemically active, cobalt and naphthalene diimide-based MOF that is an efficient electrical semiconductor and has a broad absorption spectrum, from 300 to 2500 nm. Its semiconductivity was determined by direct voltage bias using a four-point device, and it features a wavelength dependant photoconductive-photoresistive dual behaviour, with a very high responsivity of 2.5 × 10 5  A W -1 .

  5. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal. (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A


    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  6. New anthracene-based-phtalocyanine semi-conducting materials: Synthesis and optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kahouech, M.S. [Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l' Education et de la Formation Continue (Université El Manar), Bardo 2000 (Tunisia); Hriz, K., E-mail: [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir (Université de Monastir), Bd. de l' Environnement, Monastir 5019 (Tunisia); Touaiti, S.; Bassem, J. [Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l' Education et de la Formation Continue (Université El Manar), Bardo 2000 (Tunisia)


    Highlights: • Synthesis of tow phtalocyanines based on the anthracene and tetrazole. • Semi-conducting supramolecular material. • Good PL quantum yield. • The film morphology of the phtalocynine containing tetrazole group enhanced the carrier mobility. - Abstract: A new anthracene-based semi-conducting phtalocyanines AnPc and AnPc-Tr were synthesized in solvent-free conditions. The supramolecular structure of these compounds was confirmed by NMR and FT-IR spectroscopies. Their optical properties were investigated by UV–vis and photoluminescence spectroscopies. The optical gaps were estimated from the absorption-onsets films, and the obtained values were of 1.50 eV and 1.47 eV for AnPc-Tr and AnPc respectively. In solid state, a weaker π–π-interactions of conjugated systems were obtained in the case of AnPc-Tr in comparison with AnPc. This behavior was explained by steric hindrance of triazol groups, which decrease the planarity of macromolecular structure. The HOMO and LUMO levels were estimated using cyclic voltammetry analysis; two phtalocyanine derivatives show a comparable ionization potential. The phtalacyanine containing triazole groups (AnPc-Tr) reveals a higher electron affinity in comparison with AnPc. Single-layer diode devices were fabricated and showed relatively low turn-on voltages.

  7. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. (United States)

    Lei, Ting; Pochorovski, Igor; Bao, Zhenan


    Electronics that are soft, conformal, and stretchable are highly desirable for wearable electronics, prosthetics, and robotics. Among the various available electronic materials, single walled carbon nanotubes (SWNTs) and their network have exhibited high mechanical flexibility and stretchability, along with comparable electrical performance to traditional rigid materials, e.g. polysilicon and metal oxides. Unfortunately, SWNTs produced en masse contain a mixture of semiconducting (s-) and metallic (m-) SWNTs, rendering them unsuitable for electronic applications. Moreover, the poor solubility of SWNTs requires the introduction of insulating surfactants to properly disperse them into individual tubes for device fabrication. Compared to other SWNT dispersion and separation methods, e.g., DNA wrapping, density gradient ultracentrifugation, and gel chromatography, polymer wrapping can selectively disperse s-SWNTs with high selectivity (>99.7%), high concentration (>0.1 mg/mL), and high yield (>20%). In addition, this method only requires simple sonication and centrifuge equipment with short processing time down to 1 h. Despite these advantages, the polymer wrapping method still faces two major issues: (i) The purified s-SWNTs usually retain a substantial amount of polymers on their surface even after thorough rinsing. The low conductivity of the residual polymers impedes the charge transport in SWNT networks. (ii) Conjugated polymers used for SWNT wrapping are expensive. Their prices ($100-1000/g) are comparable or even higher than those of SWNTs ($10-300/g). These utilized conjugated polymers represent a large portion of the overall separation cost. In this Account, we summarize recent progresses in polymer design for selective dispersion and separation of SWNTs. We focus particularly on removable and/or recyclable polymers that enable low-cost and scalable separation methods. First, different separation methods are compared to show the advantages of the polymer

  8. Best-worst scaling to assess the most important barriers and facilitators for the use of health technology assessment in Austria. (United States)

    Feig, Chiara; Cheung, Kei Long; Hiligsmann, Mickaël; Evers, Silvia M A A; Simon, Judit; Mayer, Susanne


    Although Health Technology Assessment (HTA) is increasingly used to support evidence-based decision-making in health care, several barriers and facilitators for the use of HTA have been identified. This best-worst scaling (BWS) study aims to assess the relative importance of selected barriers and facilitators of the uptake of HTA studies in Austria. A BWS object case survey was conducted among 37 experts in Austria to assess the relative importance of HTA barriers and facilitators. Hierarchical Bayes estimation was applied, with the best-worst count analysis as sensitivity analysis. Subgroup analyses were also performed on professional role and HTA experience. The most important barriers were 'lack of transparency in the decision-making process', 'fragmentation', 'absence of appropriate incentives', 'no explicit framework for decision-making process', and 'insufficient legal support'. The most important facilitators were 'transparency in the decision-making process', 'availability of relevant HTA research for policy makers', 'availability of explicit framework for decision-making process', 'sufficient legal support', and 'appropriate incentives'. This study suggests that HTA barriers and facilitators related to the context of decision makers, especially 'policy characteristics' and 'organization and resources' are the most important in Austria. A transparent and participatory decision-making process could improve the adoption of HTA evidence.

  9. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors. (United States)

    Li, Shisheng; Liu, Chang; Hou, Peng-Xiang; Sun, Dong-Ming; Cheng, Hui-Ming


    Selective removal of metallic single-walled carbon nanotubes (SWCNTs) and consequent enrichment of semiconducting SWCNTs were achieved through an efficient carbothermic reaction with a NiO thin film at a relatively low temperature of 350 °C. All-SWCNT field effect transistors (FETs) were fabricated with the aid of a patterned NiO mask, in which the as-grown SWCNTs behaving as source/drain electrodes and the remaining semiconducting SWCNTs that survive in the carbothermic reaction as a channel material. The all-SWCNT FETs demonstrate improved current ON/OFF ratios of ∼10(3).

  10. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing


    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  11. Qualidade tecnológica de grãos e farinhas de trigo nacionais e importados Technological quality of national and imported wheat grain and wheat flours

    Directory of Open Access Journals (Sweden)

    Maria das Graças da Costa


    Full Text Available A farinha de trigo possui variadas aplicações na indústria de alimentos, apresentando um importante papel no aspecto econômico e nutricional da alimentação humana. Sabe-se, que as características nutricionais e tecnológicas da farinha de trigo sofrem interferência direta das condições de cultivo, colheita, secagem e armazenamento dos grãos de trigo utilizados como matéria-prima. Este estudo objetivou avasliar a qualidade tecnológica de amostras de grãos de trigo nacionais e importados, bem como de amostras de farinhas produzidas a partir destes grãos, através da análise de parâmetros físico-químicos (umidade, cinzas, glúten úmido, número de quedas e peso hectolitro e da farinografia (absorção de água, tempo de desenvolvimento e estabilidade. As análises físico-químicas mostraram diferenças significativas (p Wheat flour has a wide range of applications in the food industry, with an important economic and nutritional role in the human diet. It is known that the nutritional and technological aspects of wheat flour depend on the cultivation, harvesting, drying and storage conditions of the wheat grains used as raw material. This research aimed at analyzing the technological quality of samples of national and imported wheat grains, as well as of flour samples obtained from them. For this, physical-chemical (moisture, wet gluten, mineral content, falling number, hectoliter weight and farinographic (water absorption, development time, stability analyses were carried out. Physical-chemical analyses showed significant differences (p < 0.05 in the mineral content, wet gluten and falling number of the imported and national grain samples, and also among the flour samples obtained from them. Moisture was the only physical-chemical parameter that did not present a significant difference (p < 0.05 among the national and imported samples. Imported wheat grains and their flours presented higher values for wet gluten (28

  12. Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. (United States)

    Yang, Zhen; Song, Jibin; Dai, Yunlu; Chen, Jingyi; Wang, Feng; Lin, Lisen; Liu, Yijing; Zhang, Fuwu; Yu, Guocan; Zhou, Zijian; Fan, Wenpei; Huang, Wei; Fan, Quli; Chen, Xiaoyuan


    Although various noble metal and semiconducting molecules have been developed as photoacoustic (PA) agents, the use of semiconducting polymer-metal nanoparticle hybrid materials to enhance PA signal has not been explored. A novel semiconducting-plasmonic nanovesicle was fabricated by self-assembly of semiconducting poly(perylene diimide) (PPDI) and poly(ethylene glycol (PEG) tethered gold nanoparticles (Au@PPDI/PEG). A highly localized and strongly enhanced electromagnetic (EM) field is distributed between adjacent gold nanoparticles in the vesicular shell, where the absorbing collapsed PPDI is present. Significantly, the EM field in turn enhances the light absorption efficiency of PPDI, leading to a much greater photothermal effect and a stronger photoacoustic signal compared to PDI nanoparticle or gold nanovesicle alone. The optical property of the hybrid vesicle can be further tailored by controlling the ratio of PPDI and gold nanoparticle as well as the adjustable interparticle distance of gold nanoparticles localized in the vesicular shell. In vivo imaging and therapeutic evaluation demonstrated that the hybrid vesicle is an excellent probe for cancer theranostics.

  13. Isolation of Pristine Electronics Grade Semiconducting Carbon Nanotubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand. (United States)

    Joo, Yongho; Brady, Gerald J; Shea, Matthew J; Oviedo, M Belén; Kanimozhi, Catherine; Schmitt, Samantha K; Wong, Bryan M; Arnold, Michael S; Gopalan, Padma


    Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

  14. Semiconducting iron silicide thin films on silicon (111) with large Hall mobility and low residual electron concentration (United States)

    Muret, P.; Ali, I.; Brunel, M.


    Unprecedented Hall mobility, electron concentration and photoconductivity are demonstrated in semiconducting 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 thin films prepared on Si(111) surfaces by co-sputtering of iron and silicon followed by post-anneal. Characterization of the silicide as a function of the initial temperature and post-treatment shows that annealing temperatures above 0268-1242/13/10/020/img8C are needed to obtain single phase 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7. Reactive deposition on substrates heated at 0268-1242/13/10/020/img11C leads to textured films. Majority carriers are electrons in all these unintentionally doped films. Hall concentrations between 0268-1242/13/10/020/img12 and 0268-1242/13/10/020/img13 electrons 0268-1242/13/10/020/img14 and respective Hall mobilities from 290 to 0268-1242/13/10/020/img15 are measured at room temperature, involving two different conduction band minima in these two extreme cases. Only deep centres exist in the samples having the lower carrier concentration. In such a situation, raw data must be corrected for the substrate contribution to extract values which are relevant for the 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 film alone. Photoconductivity also takes place in these samples: at 80 K, it shows a maximum value at the direct band gap of 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 while at 296 K a step still appears at the same energy. Such results are a consequence of the important decrease of the residual impurity concentration in comparison to values previously published.

  15. Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation

    Directory of Open Access Journals (Sweden)

    M. Z. H. Makmud


    Full Text Available Nowadays, studies of alternative liquid insulation in high voltage apparatus have become increasingly important due to higher concerns regarding safety, sustainable resources and environmentally friendly issues. To fulfil this demand, natural ester has been extensively studied and it can become a potential product to replace mineral oil in power transformers. In addition, the incorporation of nanoparticles has been remarkable in producing improved characteristics of insulating oil. Although much extensive research has been carried out, there is no general agreement on the influence on the dielectric response of base oil due to the addition of different amounts and conductivity types of nanoparticle concentrations. Therefore, in this work, a natural ester-based nanofluid was prepared by a two-step method using iron oxide (Fe2O3 and titanium dioxide (TiO2 as the conductive and semi-conductive nanoparticles, respectively. The concentration amount of each nanoparticle types was varied at 0.01, 0.1 and 1.0 g/L. The nanofluid samples were characterised by visual inspection, morphology and the dynamic light scattering (DLS method before the dielectric response measurement was carried out for frequency-dependent spectroscopy (FDS, current-voltage (I-V, and dielectric breakdown (BD strength. The results show that the dielectric spectra and I-V curves of nanofluid-based iron oxide increases with the increase of iron oxide nanoparticle loading, while for titanium dioxide, it exhibits a decreasing response. The dielectric BD strength is enhanced for both types of nanoparticles at 0.01 g/L concentration. However, the increasing amount of nanoparticles at 0.1 and 1.0 g/L led to a contrary dielectric BD response. Thus, the results indicate that the augmentation of conductive nanoparticles in the suspension can lead to overlapping mechanisms. Consequently, this reduces the BD strength compared to pristine materials during electron injection in high electric

  16. Identifying and Revealing the Importance of Decision-Making Criteria for Health Technology Assessment: A Retrospective Analysis of Reimbursement Recommendations in Ireland. (United States)

    Schmitz, Susanne; McCullagh, Laura; Adams, Roisin; Barry, Michael; Walsh, Cathal


    Decisions on reimbursement of health interventions in many jurisdictions are informed by health technology assessments (HTAs). Historically, the focus of these has often been cost effectiveness or cost utility, while other criteria were considered informally. More recently, there has been an increasing interest in the formal incorporation of additional criteria using multi-criteria decision analysis. Such an approach has not yet formally been part of decision-making policy in Ireland. The objective of this analysis is to demonstrate that cost effectiveness is not the only criterion influencing reimbursement decisions in Ireland. Furthermore, the aim is to reveal criteria that may have informally influenced reimbursement decisions in the past. A list of potential criteria was identified based on the literature, national guidelines and experience of the national HTA agency. Information on each of these criteria was sought for every assessment conducted in Ireland up to July 2015. A logistic regression was fitted to the data to identify influential parameters. Model selection was performed using the Bolasso method. Thirteen criteria were considered in the analysis. Two members of the HTA review team assessed the performance of the interventions against these criteria. Model selection suggests that the incremental cost-effectiveness ratio and quality of evidence could be important drivers of reimbursement recommendations in Ireland. Less important drivers suggested include the year of assessment, the level of uncertainty, as well as safety and tolerability. The analysis demonstrates that recommendations for or against the reimbursement of technologies in Ireland are not only driven by cost effectiveness. This highlights the need for more formal inclusion of criteria in the process, to improve transparency and ensure consistency.

  17. Synthesis and Structures of Reduced Niobates with Four Perovskite-like Layers and Their Semiconducting Properties (United States)

    Sugimoto, W.; Ohkawa, H.; Naito, M.; Sugahara, Y.; Kuroda, K.


    Carriers were successfully doped into RbCa2NaNb4O13 by the substitution of Sr2+ for Na+, yielding electroconducting niobates with a layered structure consisting of four perovskite-like layers. Single-phase products of polycrystalline RbCa2Na1-xSrxNb4O13 (x=0.2 and 0.4) were synthesized by the solid-state reaction of RbCa2Nb3O10, Sr5Nb4O15, Nb2O5, and Nb metal. The solid solutions were indexed based on a tetragonal structure, corresponding to the end-member RbCa2NaNb4O13. With the increase in the amount of strontium substitution, an expansion of the c-axis was observed while the a-axis was essentially constant. The products showed semiconducting properties.

  18. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  19. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties. (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés


    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  20. Solution Synthesis of Semiconducting Two-Dimensional Polymer via Trimerization of Carbonitrile. (United States)

    Liu, Jingjing; Zan, Wu; Li, Ke; Yang, Yang; Bu, Fanxing; Xu, Yuxi


    The synthesis of crystalline two-dimensional polymers (2DPs) with proper bandgaps and well-defined repeating units presents a great challenge to synthetic chemists. Here we report the first solution synthesis of a single-layer/few-layer triazine-based 2DP via trimerization of carbonitrile at the interface of dichloromethane and trifluoromethanesulfonic acid. The processable triazine-based 2DP can be assembled into mechanically strong layered free-standing films with a high specific surface area via filtration. Moreover, the highly crystalline triazine-based 2DP can function as the active semiconducting layer in a field-effect transistor via drop coating and exhibits slightly bipolar behavior with a high on/off ratio of 10 3 and a remarkable mobility of 0.15 cm 2 V -1 s -1 .

  1. Excitons in semiconducting quantum filaments of CdS and CdSe with dielectric barriers

    CERN Document Server

    Dneprovskij, V S; Shalygina, O A; Lyaskovskij, V L; Mulyarov, E A; Gavrilov, S A; Masumoto, I


    The peculiarities of the luminescence spectra obtained by different polarization and intensity of the pumping excitation and luminescence kinetics of the CdS and CdSe nanocrystals are explained by the exciton transitions in the semiconducting quantum threads with dielectric barriers. The exciton transition energies correspond to the calculated ones with an account of both their dimensional quantization and the effect of the excitons dielectric intensification. It is shown that the excitons transition energies do not change by the change in the quantum threads diameter within the wide range, while the increase in the one-dimensional forbidden zone width of quantum thread by the decrease in its diameter is compensated through the decrease in the excitons binding energy

  2. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir


    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  3. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A


    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  4. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.


    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  5. The photoluminescence technique applied to the investigation of structural imperfections in quantum wells of semiconducting material

    Directory of Open Access Journals (Sweden)

    Eliermes Arraes Meneses


    Full Text Available Photoluminescence is one of the most used spectroscopy techniques for the study of the optical properties of semiconducting materials and heterostructures. In this work the potentiality of this technique is explored through the investigation and characterization of structural imperfections originated from fluctuations in the chemical composition of ternary and quaternary alloys, from interface roughnesses, and from unintentional compounds formed by the chemical elements intermixing at the interfaces. Samples of GaAs/AlGaAs, GaAsSb/GaAs, GaAsSbN/GaAs and GaAs/GaInP quantum well structures are analyzed to verify the influence of the structural imperfections on the PL spectra

  6. Stability of semiconducting transition metal dichalcogenides irradiated by soft X-rays and low energy electrons (United States)

    Walker, Roger C.; Bhimanapati, Ganesh R.; Shi, Tan; Zhang, Kehao; Eichfeld, Sarah M.; Jovanovic, Igor; Robinson, Joshua A.


    Semiconducting two-dimensional materials (2DMs) such as molybdenum disulfide and tungsten diselenide have attracted significant attention due to their unique electronic properties. Understanding their nanoscale radiation tolerance is needed for developing radiation-hardened nanoelectronics. Here, we report that the XPS environment of soft X-ray (E = 1.486 keV) exposure in a vacuum combined with a low energy electron flood gun leads to charge accumulation in the 2D layers over time, with little impact on layer chemistry. Additionally, the charging that induced the 2DM/substrate heterostructure depends more on the growth technique, the size of as-grown domains, and the surface coverage of the 2DM than the conductivity of the substrate. Charging is minimized for the combination of a continuous 2DM film and strong coupling between the 2DM and the substrate.

  7. Method for forming low-resistance ohmic contacts on semiconducting oxides (United States)

    Narayan, J.


    The invention provides a new method for the formation of high-quality ohmic contacts on wide-band-gap semiconducting oxides. As exemplified by the formation of an ohmic contact on n-type BaTiO/sub 3/ containing a p-n junction, the invention entails depositing a film of a metallic electroding material on the BaTiO/sub 3/ surface and irradiating the film with a Q-switched laser pulse effecting complete melting of the film and localized melting of the surface layer of oxide immediately underlying the film. The resulting solidified metallic contact is ohmic, has unusually low contact resistance, and is thermally stable, even at elevated temmperatures. The contact does not require cleaning before attachment of any suitable electrical lead. This method is safe, rapid, reproducible, and relatively inexpensive.

  8. Magnetic Correlations in the Quasi-2D Semiconducting Ferromagnet CrSiTe3 (United States)

    Williams, Travis; Aczel, Adam; Lumsden, Mark; Nagler, Steve; Stone, Matt; Yan, Jianqiang; Mandrus, David


    The quasi-two-dimensional, semiconducting ferromagnet CrSiTe3 is a particularly attractive candidate for spintronics applications due its relatively accessible transition temperature and large magnetic moment. In this study, we use neutron scattering to measure the static and dynamic magnetic properties. Neutron diffraction shows 3D ordering below TC=33K, but two dimensional static correlations persist up to at least 300K. The inelastic neutron scattering data shows two distinct spin wave bands, which are nearly dispersionless along the c-axis. The exchange constants extracted from the data suggest that the spins are very nearly Heisenberg, but only weakly coupled perpendicular to the 2D planes. Above the Curie temperature, the spin wave intensity decreases drastically but, like the static correlations, these dynamic magnetic correlations persist within the 2D planes up to room temperature.

  9. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)


    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  10. Synthesis and Application of Rylene Imide Dyes as Organic Semiconducting Materials. (United States)

    Feng, Jiajing; Jiang, Wei; Wang, Zhaohui


    Rylene imide dyes have been among the most promising organic semiconducting materials for several years due to their remarkable optoelectronic properties and high chemical/thermal stability. In the past decades, various excellent rylene imide dyes have been developed for optoelectronic devices, such as organic solar cells (OSCs) and organic field-effect transistors (OFETs). Recently, tremendous progress of perylene diimides (PDIs) and their analogues for use in OSCs has been achieved, which can be attributed to their ease of functionalization. In this review, we will mainly focus on the synthetic strategies toward to latest PDI dyes and higher rylene imide analogues. A variety of compounds synthesized from different building blocks are summarized, and some properties and applications are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Itinerant magnetism in doped semiconducting β-FeSi₂ and CrSi₂. (United States)

    Singh, David J; Parker, David


    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi₂ and CrSi₂ at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds.

  12. Progress in conducting/semiconducting and redox-active oligomers and polymers of arylamines

    Directory of Open Access Journals (Sweden)

    Janošević Aleksandra


    Full Text Available Recent advances in synthesis, characterization and application of the selected conducting/semiconducting and redox-active oligomers and polymers of arylamines are reviewed. A brief historical background of the selected topics is given. The overview of the preparation, structure and properties of polyaniline, substituted polyanilines, especially those obtained by the oxidative polymerization of p-substituted anilines, poly(1-aminonaphthalene and its derivatives, carbocyclic and heterocyclic polyaryldiamines such as poly(p-phenylenediamine and polydiaminoacridines, is presented. The mechanism of formation of polyaniline nanostructures is discussed. Recent approaches to the preparation of one-dimensional polyaniline nanostructures are concisely reviewed, with special attention paid to the template-free falling-pH method. Current and potential future applications of oligo/polyarylamines are briefly discussed. [Projekat Ministarstva nauke Republike Srbije, br. OI 172043

  13. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors

    KAUST Repository

    Chen, Hu


    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm2 V−1 s−1 in bottom-gate top-contact organic field-effect transistors.

  14. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes. (United States)

    Chmeliov, Jevgenij; Narkeliunas, Jonas; Graham, Matt W; Fleming, Graham R; Valkunas, Leonas


    We present a thorough analysis of one- and two-color transient absorption measurements performed on single- and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation-the coherent and the diffusion-limited ones-we are able to simultaneously reproduce excitation kinetics following both E11 and E22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E11 state bypassing the intermediate E22 manifold, so that after excitation resonant with the E11 transition, the E22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E22 manifold, comparing to those probed at the E11 band, is also provided.

  15. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound

    International Nuclear Information System (INIS)

    Jin, Guorui; Li, Jun; Li, Kai


    Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600–1200 nm). The photosensitive SP was then applied in electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold and evaluated its proliferative effect on HDFs under the illumination from red light-emitting diode (LED) with high tissue penetration. After 9 days of continuous stimulation, the hybrid electrospun PCL/PDBTT nanofibers with low cytotoxicity showed excellent support for HDFs adhesion, proliferation and collagen secretion than neat PCL nanofibers and HDFs on the stimulated PCL/PDBTT nanofibers gained typical spindle morphology, indicating the well cell spreading on the stimulated PCL/PDBTT nanofibers. The incorporation of functional materials within synthetic biomaterials could be a novel way in improving the performance of engineered tissue constructs by providing multiple cues (e.g. electrical stimulation) to the attached cells. - Highlights: • A photosensitive semiconducting polymer (SP) was applied in electrospun nanofibrous scaffold. • The SP-incorporated scaffold could promote cell proliferation upon light stimulation. • The designed photosensitive SP could be applied as functional material with low cost and high durability in skin tissue engineering.

  16. The importance of using open source technologies and common standards for interoperability within eHealth: perspectives from the Millennium Villages Project. (United States)

    Kanter, Andrew S; Borland, Rob; Barasa, Mourice; Iiams-Hauser, Casey; Velez, Olivia; Kaonga, Nadi Nina; Berg, Matt


    The purpose of this chapter is to illustrate the importance of using open source technologies and common standards for interoperability when implementing eHealth systems, and to illustrate this through case studies, where possible. The sources used to inform this chapter draw from the implementation and evaluation of the eHealth Program in the context of the Millennium Villages Project (MVP). As the eHealth Team was tasked to deploy an eHealth architecture, the Millennium Villages Global-Network (MVG-Net), across all 14 of the MVP sites in sub-Saharan Africa, the team not only recognized the need for standards and uniformity but also realized that context would be an important factor. Therefore, the team decided to utilize open source solutions. The MVP implementation of MVG-Net provides a model for those looking to implement informatics solutions across disciplines and countries. Furthermore, there are valuable lessons learned that the eHealth community can benefit from. By sharing lessons learned and developing an accessible, open source eHealth platform, we believe that we can more efficiently and rapidly achieve the health-related and collaborative Millennium Development Goals.

  17. The importance of interaction in the implementation of information technology in health care: a symbolic interactionism study on the meaning of accessibility. (United States)

    Nilsson, Lina; Hofflander, Malin; Eriksén, Sara; Borg, Christel


    A challenge when groups from different disciplines work together in implementing health information technology (HIT) in a health-care context is that words often have different meanings depending upon work practices, and definition of situations. Accessibility is a word commonly associated with HIT implementation. This study aimed to investigate different meanings of accessibility when implementing HIT in everyday work practice in a health-care context. It focused on the perspective of nurses to highlight another view of the complex relationship between HIT and information in a health-care context. This is a qualitative study influenced by institutional ethnographic. District nurses and student nurses were interviewed. The results indicate that when implementing HIT accessibility depends on working routines, social structures and patient relationship. The findings of the study suggest that interaction needs to take on a more important role when implementing HIT because people act upon words from the interpreted meaning of them. Symbolic interactionism is proposed as a way to set a mutual stage to facilitate an overall understanding of the importance of the meaning of words. There is a need for making place and space for negotiation of the meaning of words when implementing HIT in everyday work practice.

  18. The importance of using open source technologies and common standards for interoperability within eHealth: Perspectives from the Millennium Villages Project (United States)

    Borland, Rob; Barasa, Mourice; Iiams-Hauser, Casey; Velez, Olivia; Kaonga, Nadi Nina; Berg, Matt


    The purpose of this paper is to illustrate the importance of using open source technologies and common standards for interoperability when implementing eHealth systems and illustrate this through case studies, where possible. The sources used to inform this paper draw from the implementation and evaluation of the eHealth Program in the context of the Millennium Villages Project (MVP). As the eHealth Team was tasked to deploy an eHealth architecture, the Millennium Villages Global-Network (MVG-Net), across all fourteen of the MVP sites in Sub-Saharan Africa, the team recognized the need for standards and uniformity but also realized that context would be an important factor. Therefore, the team decided to utilize open source solutions. The MVP implementation of MVG-Net provides a model for those looking to implement informatics solutions across disciplines and countries. Furthermore, there are valuable lessons learned that the eHealth community can benefit from. By sharing lessons learned and developing an accessible, open-source eHealth platform, we believe that we can more efficiently and rapidly achieve the health-related and collaborative Millennium Development Goals (MDGs). PMID:22894051

  19. The importance of iteration and deployment in technology development: A study of the impact on wave and tidal stream energy research, development and innovation

    International Nuclear Information System (INIS)

    MacGillivray, Andrew; Jeffrey, Henry; Wallace, Robin


    The technological trajectory is the pathway through which an innovative technology develops as it matures. In this paper we model the technological trajectory for a number of energy technologies by analysing technological change (characterised by unit-level capacity up-scaling) and diffusion (characterised by growth in cumulative deployed capacity) using sigmoidal 5 Parameter Logistic (5PL) functions, observed and reported as a function of unit deployment. Application of 5PL functions allows inference of technology development milestones, such as initiation of unit-level up-scaling or industry growth, with respect to the number of unit deployments. This paper compares the technological trajectory followed by mature energy technologies to that being attempted by those in the nascent wave and tidal energy sectors, particularly with regards to unit deployment within a formative phase of development. We identify that the wave and tidal energy sectors are attempting to bypass a formative phase of technological development, which is not in line with technological trajectories experienced by historic energy technologies that have successfully diffused into widespread commercial application, suggesting that demand-pull support mechanisms are premature, and a need for technology push focused policy support mechanisms is vital for stimulating economically sustainable development and deployment of wave and tidal stream energy. - Highlights: • Technology up-scaling should take place after a formative phase of development. • Ocean energy technologies are attempting to bypass a formative phase. • Unit up-scaling has taken place prior to successful technology demonstration. • The cost of the formative phase may be insurmountable using MW-scale technology. • A shift in the research, development and innovation environment is necessary.

  20. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt


    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  1. Design, synthesis, morphology and properties of semiconducting block copolymers for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.


    morphology can be obtained. Morphological observations of the solid films can provide information on the local order of polymers and the influence of order on the device performance. Ultimately, this should lead to the establishment of relationships between thin-film structure/ordering and opto-electronic properties. Chapter 2 describes the design and synthesis of a series of novel diblock copolymers, in which one block is PPV and the other is a C60-functionalized polystyrene. During casting of soluble, semiconducting polymers, both the temperature and the quality of the solvent are strongly affected due to rapid evaporation of the solvent and the increasing concentration of the semiconducting polymer. The influence of the solvent temperature and the solvent quality on the chain conformation and the aggregation of semiconducting block copolymers is described in Chapter 3. In Chapter 4 the thermotropic properties and the solid-state morphology of PPV-based block copolymers are studied. As demonstrated in Chapter 5, the covalent incorporation of C60 in the PPV-based block copolymer results in a strong quenching of the photoluminescence from the PPV block, which is indicative of an efficient electron transfer at the donor-acceptor interface. Furthermore, photovoltaic devices based on thin films of donor and acceptor moieties, either a blend of donor and acceptor homopolymers or a donor-acceptor block copolymer, were prepared. In Chapter 6, the formation of highly ordered honeycomb structures upon dropcasting a solution of PPV-b-PS in CS{sub 2} is described. Chapter 7 describes a novel method to modify the surface properties of inorganic substrates by chemically grafting an initiator for Iiving free radical photopolymerizations. The design, synthesis, characterization and properties of regioregular, amphiphilic polythiophenes is described in Chapter 8. refs.

  2. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming


    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  3. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. (United States)

    Wang, Kaifa; Wang, Baolin


    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30 degrees, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable. © 2018 IOP Publishing Ltd.

  4. Investigation of spin-gapless semiconductivity and half-metallicity in Ti2MnAl-based compounds

    International Nuclear Information System (INIS)

    Lukashev, P.; Staten, B.; Hurley, N.; Kharel, P.; Gilbert, S.; Fuglsby, R.; Huh, Y.; Valloppilly, S.; Zhang, W.; Skomski, R.; Sellmyer, D. J.; Yang, K.


    The increasing interest in spin-based electronics has led to a vigorous search for new materials that can provide a high degree of spin polarization in electron transport. An ideal candidate would act as an insulator for one spin channel and a conductor or semiconductor for the opposite spin channel, corresponding to the respective cases of half-metallicity and spin-gapless semiconductivity. Our first-principle electronic-structure calculations indicate that the metallic Heusler compound Ti 2 MnAl becomes half-metallic and spin-gapless semiconducting if half of the Al atoms are replaced by Sn and In, respectively. These electronic structures are associated with structural transitions from the regular cubic Heusler structure to the inverted cubic Heusler structure.

  5. Organic Semiconducting Materials in Film and Powder Forms from a Co-polymeric Elastomer-Styrene Butadiene Rubber (United States)

    Santhamma, G.; Predeep, P.


    Semiconducting materials in both film and powder forms are prepared by Antimony Pentachloride (SBCl5) doping in Styrene Butadiene Rubber (SBR). SBR is a synthetic co-polymeric elastomer, insulating in undoped state, is mainly used for manufacturing tires, tubes etc. Synthesized conducting materials are proposed to have tremendous application potentials in optoelectronic, electronic and electrical industries. For example conducting films can be used as active elements for fabrication of organic light emitting diodes, photovoltaic cells etc. Electrical and optical properties of prepared samples are studied by measuring electrical conductivity and analyzing spectroscopic data. Electrical conductivity of samples lies in the range of that of semi-conducting materials. Presence of conjugated sequences in the back bone of prepared conducting materials, which is regarded as pre-requisite condition for a polymer to conductive, is confirmed by studying UV/Vis spectra.

  6. Competing magnetic and spin-gapless semiconducting behavior in fully compensated ferrimagnetic CrVTiAl: Theory and experiment (United States)

    Venkateswara, Y.; Gupta, Sachin; Samatham, S. Shanmukharao; Varma, Manoj Raama; Enamullah, Suresh, K. G.; Alam, Aftab


    We report the structural, magnetic, and transport properties of the polycrystalline CrVTiAl alloy along with first-principles calculations. The alloy crystallizes in a LiMgPdSn-type structure with a lattice parameter of 6.14 Å at room temperature. The absence of the (111) peak along with the presence of a weak (200) peak indicates the antisite disorder of Al with Cr and V atoms, which is different from the pure DO3 type. Magnetization measurements reveal a magnetic transition near 710 K, a coercive field of ˜100 Oe at 3 K, and a moment of ˜10-3μB/f .u . These observations are indicative of fully compensated ferrimagnetism in the alloy, which is confirmed by theoretical modeling. The temperature coefficient of resistivity is found to be negative, signaling the semiconducting nature. However, the absence of exponential dependence indicates the semiconducting nature with gapless/spin-gapless behavior. Electronic and magnetic properties of CrVTiAl for all three possible crystallographic configurations are studied theoretically. All the configurations are found to be different forms of semiconductors. The ground-state configuration is a fully compensated ferrimagnet with band gaps of 0.58 and 0.30 eV for the spin-up and -down bands, respectively. The next-higher-energy configuration is also fully compensated ferrimagnetic but has a spin-gapless semiconducting nature. The highest-energy configuration corresponds to a nonmagnetic, gapless semiconductor. The energy differences among these configurations are quite small (account the theoretical and experimental findings, we conclude that CrVTiAl is a fully compensated ferrimagnet with a predominantly spin-gapless semiconducting nature.

  7. Influence of metallic and semiconducting nanostructures on the optical properties of dye-doped polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail:; Matei, E.


    Dye-doped polymer thin films were obtained by spin-coating of 8% polyvinylpyrrolidone (PVP) solutions (in ethanol). Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films (10{sup −4} M dye concentration). Optical and morphological properties of simple dye-doped polymer films and films containing metallic or semiconducting nanostructures were investigated. Optical microscopy and scanning electron microscopy were used to image the nanowires. The presence of Ni nanowires induces a small shift (2–3 nm) to longer wavelengths on the emission band of Rh 6G doped PVP film. The ZnO nanowires' presence was confirmed by X-ray diffraction measurements. An enhancement of the emission of the dye doped polymer is induced by the semiconducting structures. - Highlights: • Rhodamine 6G doped polyvinylpyrrolidone thin films were obtained by spin-coating. • Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films. • Ni nanowires' presence induces a shift to shorter wavelengths on the emission band. • Enhancement of dye-doped polymer emission induced by the semiconducting structures.

  8. Thermal conductivity of organic semi-conducting materials using 3omega and photothermal radiometry techniques

    Directory of Open Access Journals (Sweden)

    Reisdorffer Frederic


    Full Text Available Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3. The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity.

  9. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk


    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  10. Mobility versus Alignment of a Semiconducting π-Extended Discotic Liquid-Crystalline Triindole. (United States)

    Ruiz, Constanza; Pandey, Upendra K; Termine, Roberto; García-Frutos, Eva M; López-Espejo, Guzmán; Ortiz, Rocío Ponce; Huang, Wei; Marks, Tobin J; Facchetti, Antonio; Ruiz Delgado, M Carmen; Golemme, Attilio; Gómez-Lor, Berta


    The p-type semiconducting properties of a triphenylene-fused triindole mesogen, have been studied by applying two complementary methods which have different alignment requirements. The attachment of only three flexible alkyl chains to the nitrogen atoms of this π-extended core is sufficient to induce columnar mesomorphism. High hole mobility values (0.65 cm 2 V -1 s -1 ) have been estimated by space-charge limited current (SCLC) measurements in a diode-like structure which are easily prepared from the melt, rendering this material a good candidate for OPVs and OLEDs devices. The mobility predicted theoretically via a hole-hopping mechanism is in very good agreement with the experimental values determined at the SCLC regime. On the other hand the hole mobility determined on solution processed thin film transistors (OFETs) is significantly lower, which can be rationalized by the high tendency of these large molecules to align on surfaces with their extended π-conjugated core parallel to the substrate as demonstrated by SERS. Despite the differences obtained with the two methods, the acceptable performance found on OFETs fabricated by simple drop-casting processing of such an enlarged aromatic core is remarkable and suggests facile hopping between neighboring molecular columns owing to the large conducting/isolating ratio found in this discotic compound.

  11. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred


    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests. PMID:28336857

  12. Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers (United States)

    Geng, Rugang; Subedi, Ram C.; Luong, Hoang M.; Pham, Minh T.; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A.; Nguyen, Tho D.


    Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1 /N0.5 has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1 /N0.52 in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

  13. Variable range hopping conduction and microstructure properties of semiconducting Co-doped TiO2

    International Nuclear Information System (INIS)

    Okutan, Mustafa; Bakan, Halil I.; Korkmaz, Kemal; Yakuphanoglu, Fahrettin


    The surface morphology, phases existing in the microstructure and conductivity behavior of Co-doped TiO2 have been investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), electrical conductivity measurements and X-ray diffraction technique. The semiconducting phase is found to obey Mott's variable range hopping mechanism of the conduction. The conduction mechanism of the ceramic shows a crossover from the, exp[-(T0/T)1/4] law to a simply activated law, exp(-ΔE/kT). This behavior is attributed to temperature-induced transition from 3D to thermally activated behavior. The hopping conduction parameters such as the characteristic temperature (T0), localization length (α), hopping distance (R), activation energy (ΔE) and density of states at Fermi level (N(EF) have been calculated. Surface morphology shows that the ceramic has a regular surface. The SEM study indicates that there are grains which have a certain type in the microstructure. Rutile phases with different plane in microstructure were found

  14. Selective dispersion of high-purity semiconducting carbon nanotubes using indacenodithiophene-based conjugated polymer (United States)

    Ji, Dongseob; Lee, Seung-Hoon; Noh, Yong-Young


    The facile sorting of highly pure semiconducting single-walled carbon nanotubes (s-SWNTs) is still one of the challenging issues for the next-generation wearable electronic devices such as various opto-electric devices and field-effect transistors (FETs). Herein, we demonstrate the selective dispersion of high-purity s-SWNTs using indacenodithiophene-co-benzothiadiazole (IDT-BT), which is a state-of-the-art high-mobility conjugated polymer. By the selective wrapping of the IDT-BT copolymer, SWNTs of chiral indices (6, 5), (7, 5), (7, 6), (8, 4), (9, 4), (8, 6), (8, 7), (10, 5), (9, 7), (10, 6), (11, 1), and (13, 3) are sorted. Finally, the networked s-SWNT film formed by spin-coating is applied as an active layer of FETs that exhibited ambipolar characteristics with an average mobility of 2.28 cm2/V s in the p-channel and 2.10 cm2/V s in the n-channel. The ON/OFF ratios in both p- and n-channels are approximately 105, which supports the high purity separation of s-SWNTs wrapped by IDT-BT.

  15. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer matrices. (United States)

    Lim, Jaehoon; Borg, Lisa zur; Dolezel, Stefan; Schmid, Friederike; Char, Kookheon; Zentel, Rudolf


    The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm-length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer-TP mixtures ("hybrids") show much better film qualities and TP distributions within the films when compared with the homopolymer-TP mixtures ("blends"), representing massive aggregations and cracks in the films. This grafting-to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of "excess" polymers up to the arm length of 100 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of an organic field effect transistor using nano imprinting of Ag inks and semiconducting polymers

    International Nuclear Information System (INIS)

    Hu, PingAn; Li, Kun; O'Neill, William; Chen, Weilin; Peng, Li; Chu, Daping


    A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (I on /I off ratio: 1 × 10 3 ; mobility: 0.071 cm 2 V −1 s −1 ).

  17. Photoproduction of I2, Br2, and Cl2 on n-semiconducting powder (United States)

    Reichman, B.; Byvik, C. E.


    The photosynthetic production of Br2 and Cl2 and the photocatalytic production of I2 from aqueous solutions of the respective halide ions in the presence of platinized semiconducting n-TiO2 powder are reported. Reactions were produced in 2-3 M oxygen-saturated aqueous solutions of KI, KBr or NaCl containing Pt-TiO2 powder which were irradiated by a high-pressure mercury lamp at a power of 400 mW/sq cm. Halogens are found to be produced in greater quantities when platinized TiO2 powders are used rather than pure TiO2, and rates of halogen production are observed to increase from Cl2 to Br2 to I2. The presence of the synthetic reactions producing Br2 and Cl2 with a net influx of energy indicates that an effective separation of the photoproduced electron-hole pair occurs in the semiconductor. Quantum efficiencies of the reaction, which increase with decreasing solution pH, are found to be as high as 30%, implying a solar-to-chemical energy conversion efficiency between 0.03% and 3% for the case of chlorine production. It is concluded that the photoproduction of halogens may be of practical value if product halogens are efficiently removed from the reaction cell.

  18. Singlet-Oxygen Generation From Individual Semiconducting and Metallic Nanostructures During Near-Infrared Laser Trapping

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bennett E.; Roder, Paden B.; Hanson, Jennifer L.; Manandhar, Sandeep; Devaraj, Arun; Perea, Daniel E.; Kim, Woo-Joong; Kilcoyne, Arthur L.; Pauzauskie, Peter J.


    Photodynamic therapy has been used for several decades in the treatment of solid tumors through the generation of reactive singlet-oxygen species (1O2). Recently, nanoscale metallic and semiconducting materials have been reported to act as photosensitizing agents with additional diagnostic and therapeutic functionality. To date there have been no reports of observing the generation of singlet-oxygen at the level of single nanostructures, particularly at near infrared (NIR) wavelengths. Here we demonstrate that NIR laser-tweezers can be used to observe the formation of singlet-oxygen produced from individual silicon and gold nanowires via use of a commercially available reporting dye. The laser trap also induces 2-photon photoexcitation of the dye following a chemical reaction with singlet oxygen. Corresponding 2-photon emission spectra confirms the generation of singlet oxygen from individual silicon nanowires at room temperature (30°C), suggesting a range of applications in understanding the impact of 1O2 on individual cancer cells.

  19. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts. (United States)

    Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang


    Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biotin-Functionalized Semiconducting Polymer in an Organic Field Effect Transistor and Application as a Biosensor

    Directory of Open Access Journals (Sweden)

    Yong Suk Yang


    Full Text Available This report presents biotin-functionalized semiconducting polymers that are based on fluorene and bithiophene co-polymers (F8T2. Also presented is the application of these polymers to an organic thin film transistor used as a biosensor. The side chains of fluorene were partially biotinylated after the esterification of the biotin with corresponding alcohol-groups at the side chain in F8T2. Their properties as an organic semiconductor were tested using an organic thin film transistor (OTFT and were found to show typical p-type semiconductor curves. The functionality of this biosensor in the sensing of biologically active molecules such as avidin in comparison with bovine serum albumin (BSA was established through a selective decrease in the conductivity of the transistor, as measured with a device that was developed by the authors. Changes to the optical properties of this polymer were also measured through the change in the color of the UV-fluorescence before and after a reaction with avidin or BSA.

  1. Simple Organic Salts Having a Naphthalenediimide (NDI) Core Display Multifunctional Properties: Gelation, Anticancer and Semiconducting Properties. (United States)

    Parveen, Rumana; Maity, Nabasmita; Dastidar, Parthasarathi


    Following a supramolecular synthon rationale, a dicarboxylic acid derivative having a naphthalenediimide (NDI) core, namely, bis-N-carboxymethyl naphthalenediimide (NDI-G), was reacted with n-alkyl amines with varying alkyl chain lengths to generate a new series of primary ammonium dicarboxylate (PAD) salts. The majority of the salts (≈85 %) were found to gel various polar solvents. The gels were characterized by dynamic rheology and high-resolution electron microscopy. Single-crystal and powder X-ray diffraction analyses were used to study the supramolecular synthon present in one of the gelator salts (i.e., S8). Charge-transfer (CT)-induced gelation with donor molecules such as anthracene methanol (Ant) and pyrene (Py) was also possible with S8. The CT complex (S8.Ant) displayed anticancer activity as probed by cell migration assay on the highly aggresive breast cancer cell line MDA-MB-231. The DMSO gel of S8.Ant also displayed semiconducting behavior. To the best of our knowledge, simple organic salts with an NDI core that display such mulitifunctional properties are hitherto unknown. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei


    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  3. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling. (United States)

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David


    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Semiconducting Polymer Nanoparticles for Centimeters-Deep Photoacoustic Imaging in the Second Near-Infrared Window. (United States)

    Wu, Jiayingzi; You, Liyan; Lan, Lu; Lee, Hyeon Jeong; Chaudhry, Saadia T; Li, Rui; Cheng, Ji-Xin; Mei, Jianguo


    Thienoisoindigo-based semiconducting polymer with a strong near-infrared absorbance is synthesized and its water-dispersed nanoparticles (TSPNs) are investigated as a contrast agent for photoacoustic (PA) imaging in the second near-infrared (NIR-II) window (1000-1350 nm). The TSPNs generate a strong PA signal in the NIR-II optical window, where background signals from endogenous contrast agents, including blood and lipid, are at the local minima. By embedding a TSPN-containing tube in chicken-breast tissue, an imaging depth of more than 5 cm at 1064 nm excitation is achieved with a contrast-agent concentration as low as 40 µg mL -1 . The TSPNs under the skin or in the tumor are clearly visualized at 1100 and 1300 nm, with negligible interference from the tissue background. TSPN as a PA contrast in the NIR-II window opens new opportunities for biomedical imaging of deep tissues with improved contrast. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers

    KAUST Repository

    Nikolka, Mark


    Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.

  6. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2 (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui


    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  7. Modelling of electrical resistance of semiconductive polymer pressed sample at the uniaxial compression

    International Nuclear Information System (INIS)

    Karimov, Kh.S.; Radzhabov, A.K.; Akhmedov, Yh.; Valiev, J.; Homidov, I.


    In the study the electrical resistance of pressed samples of the poly-N-methylcarbazole complex with iodine (PNMC) under uniaxial compression has been investigated by modeling. Physical model of the samples is considered in the form of contiguous of semiconducting spheres grains. It was investigated the influence of change of geometrical dimensions of the sample and electrical conductivity to resistance at the compression. For description of the polymers conductivity the hoping polaron mechanism of charge transfer was used. In the result of experimental data analysis, mathematical and physical models have been established: constant errors of the experiments are negligible in the linear dependence of the relative resistance on uniaxial pressures; tensity resistive effect caused by change of geometrical dimensions of the sample at the compression is less in comparison with increase of conductivity; the increase of the PMNC conductivity at the uniaxial compression may be result by increase of polaron's radius and dielectric permeability and decrease of polaron's jump length too. Received formula of the relative longitudinal resistance dependence on uruiaxial pressure may be used at the analysis of tensity resistive effect. (author)

  8. Importance measures

    International Nuclear Information System (INIS)

    Gomez Cobo, A.


    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  9. Charge and excitation dynamics in semiconducting polymer layers doped with emitters and charge carrier traps; Ladungstraeger- und Anregungsdynamik in halbleitenden Polymerschichten mit eingemischten Emittern und Ladungstraegerfallen

    Energy Technology Data Exchange (ETDEWEB)

    Jaiser, F.


    Light-emitting diodes generate light from the recombination of injected charge carriers. This can be obtained in inorganic materials. Here, it is necessary to produce highly ordered crystalline structures that determine the properties of the device. Another possibility is the utilization of organic molecules and polymers. Based on the versatile organic chemistry, it is possible to tune the properties of the semiconducting polymers already during synthesis. In addition, semiconducting polymers are mechanically flexible. Thus, it is possible to construct flexible, large-area light sources and displays. The first light-emitting diode using a polymer emitter was presented in 1990. Since then, this field of research has grown rapidly up to the point where first products are commercially available. It has become clear that the properties of polymer light-emitting diodes such as color and efficiency can be improved by incorporating multiple components inside the active layer. At the same time, this gives rise to new interactions between these components. While components are often added either to improve the charge transport or to change the emission, it has to made sure that other processes are not influenced in a negative manner. This work investigates some of these interactions and describes them with simple physical models. First, blue light-emitting diodes based on polyfluorene are analyzed. This polymer is an efficient emitter, but it is susceptible to the formation of chemical defects that can not be suppressed completely. These defects form electron traps, but their effect can be compensated by the addition of hole traps. The underlying process, namely the changed charge carrier balance, is explained. In the following, blend systems with dendronized emitters that form electron traps are investigated. The different influence of the insulating shell on the charge and energy transfer between polymer host and the emissive core of the dendrimers is examined. In the

  10. Potential applications of thin semi-conducting radiation detectors in radiation protection

    International Nuclear Information System (INIS)

    Brambilla, Andrea


    The aim of this work is to study semiconducting thin films (amorphous silicon and polycrystalline diamond) for nuclear particle detection in the framework of instrumentation for radiation protection. The possibility to produce detectors with thickness in the order of 10 - 50 pm over large surfaces offers new perspectives in the fields of contamination detection and dose measurements. Nuclear detectors based on hydrogenated amorphous silicon (a-Si:H) and polycrystalline diamond films have been fabricated using the plasma enhanced chemical vapour deposition technique. The physical, optical and electrical properties of the samples have been studied in order to optimise the growth conditions for nuclear detection applications. The detectors have been tested under nuclear radiations and their performances in terms of sensitivity and signal to noise ratio have been measured. The charge collection mechanisms have been analysed. In a-Si:H p-i-n diodes, the effects of the inhomogeneous electric field profile and of the multiple trapping transport of holes have been studied. In polycrystalline diamond, bulk recombination and trapping in the grain boundaries both limit the collected charge. The interaction of α, β and γ rays in the detector has been studied using a Monte Carlo transport code as well as by performing experimental measurements. The low stopping power of the films enables detection of charged particles in the presence of a strong γ ray background. Thus, for surface contamination measurements, the use of large surface thin a-Si:H diodes enhances the sensitivity of the detector and discriminates charged particles from photons. The dosimetric response of the detectors under photons and electrons has been simulated by Monte Carlo analysis. Experimental measurements under X and γ ray reference radiation have confirmed the simulations. With its atomic number close to that of human tissues, diamond is a good tissue equivalent material and can be used without

  11. Effects of alloying element and metallurgical structure on semiconducting characteristics of oxide film of zirconium alloy

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Kanno, Masayosi; Maki, Hideo.


    Semiconducting characteristics of oxide films formed on pure Zr, Zr-Sn binary alloy and Zr-Sn-X (X: Fe, Ni or Cr) ternary alloys were evaluated by photo-electrochemical method, in order to make clear the effects of alloying elements on oxidation mechanism of Zr alloy in BWR environment. Oxide films of the alloys showed the characteristics of n-type semiconductor. Maximum photocurrent (I max) was generated by an illumination of monochromatic light with the energy of 5 ∼ 6 eV, i.e. the band gap energy of the Zr alloy oxide was 5 ∼ 6 eV. This value is lower by 2 ∼ 3 eV than the theoretical band gap energy (8 eV) of stoichiometric ZrO 2 . These facts suggest that the generation of I max was resulted from an excitation of electrons trapped with anion vacancies (oxygen vacancies) of non-stoichiometric ZrO 2-x . Therefore, the value of I max is considered to be proportional to the density of anion vacancy. High corrosion resistant alloys showed lower value of I max. The changes of I max, due to change of chemical composition of alloys and due to the change of metallurgical structure, was able to be explained by the valence theory of oxide semiconductor, i.e. the decrease of 1 max was considered to be resulted from the decrease of anion vacancies due to the substitution of divalent cations (Ni 2+ ) and trivalent cations (Fe 3+ , Cr 3+ ) at Zr 4+ cation sites. From these results, it was concluded that oxidation rate of Zr alloy depended on the density of oxygen vacancies in oxide film. (author)

  12. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Directory of Open Access Journals (Sweden)

    Roland Kádár


    Full Text Available The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate (EBA nanocomposite hybrids containing graphite nanoplatelets (GnP and carbon black (CB. The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  13. Relation between the semiconducting properties of passive films and electrochemical and corrosion properties (United States)

    Harrington, Scott Peter

    Aqueous corrosion is a common materials degradation mechanism and is thought to be a likely failure mode of high level nuclear waste canisters. Corrosion damage is often mitigated by a protective oxide film that forms naturally on many metals. The semiconducting properties of these films often have a large impact on the electrochemical and corrosion behavior of metal-passive film systems. In this study the flatband potential and charge carrier density of the films that form on Alloy C22, Cr, Ti, Fe, Ni, Mo and mild steel were evaluated by Mott-Schottky analysis. All films with the exception of Ni oxide were n-type at all measured frequencies. The calculation of the flatband potentials and charge carrier densities was complicated by measured capacitances that were frequency dependent. A new method was proposed to fit the frequency dispersion with a Constant Phase Element (CPE) and then expressions developed by Brug et al. [J. Electroanal. Chem., 176, 275 (1984)] or Hsu and Mansfeld [Corrosion, 57, 747 (2001)] were used calculate effective capacitances as a function of potential. The success of this method was evaluated using cathodic polarization tests. Flatband potentials calculated using Brug et al.'s expression were in excellent agreement with the onset potential of reduction current growth in polarization scans. It was found that films with more negative flatband potentials were less susceptible to localized attack due to the slower reduction kinetics associated with low flatband potentials. Alloy C22 has a very negative flatband potential and is highly resistant to localized corrosion at room temperature but improved reduction kinetics at elevated temperature contributes to Alloy C22's susceptibility to metastable pitting at high temperatures.

  14. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. (United States)

    Jiang, Yuyan; Upputuri, Paul Kumar; Xie, Chen; Lyu, Yan; Zhang, Lulu; Xiong, Qihua; Pramanik, Manojit; Pu, Kanyi


    Photoacoustic (PA) imaging holds great promise for preclinical research and clinical practice. However, most studies rely on the laser wavelength in the first near-infrared (NIR) window (NIR-I, 650-950 nm), while few studies have been exploited in the second NIR window (NIR-II, 1000-1700 nm), mainly due to the lack of NIR-II absorbing contrast agents. We herein report the synthesis of a broadband absorbing PA contrast agent based on semiconducting polymer nanoparticles (SPN-II) and apply it for PA imaging in NIR-II window. SPN-II can absorb in both NIR-I and NIR-II regions, providing the feasibility to directly compare PA imaging at 750 nm with that at 1064 nm. Because of the weaker background PA signals from biological tissues in NIR-II window, the signal-to-noise ratio (SNR) of SPN-II resulted PA images at 1064 nm can be 1.4-times higher than that at 750 nm when comparing at the imaging depth of 3 cm. The proof-of-concept application of NIR-II PA imaging is demonstrated in in vivo imaging of brain vasculature in living rats, which showed 1.5-times higher SNR as compared with NIR-I PA imaging. Our study not only introduces the first broadband absorbing organic contrast agent that is applicable for PA imaging in both NIR-I and NIR-II windows but also reveals the advantages of NIR-II over NIR-I in PA imaging.

  15. Thiophene-Thiazole-Based Semiconducting Copolymers for High-Performance Polymer Field-Effect Transistors. (United States)

    Chung, Jong Won; Park, Won-Tae; Park, Jeong-Il; Yun, Youngjun; Gu, Xiaodan; Lee, Jiyoul; Noh, Yong-Young


    We report a newly synthesized donor (D)-acceptor (A)type semiconducting copolymer, consisting of thiophene as an electron-donating unit and thiazole as an electron-accepting unit (PQTBTz-TT-C8) for the active layer of the organic field-effect transistors (OFETs). Specifically, this study investigates the structure and electrical property relationships of PQTBTz-TT-C8 with comprehensive analyses on the charge-transporting properties corresponding to the spin rate of the spin coater during the formation of the PQTBTz-TT-C8 film. The crystallinity of PQTBTz-TT-C8 films is examined with grazing incidence X-ray diffraction. Temperature-dependent transfer measurements of the OFETs are conducted to extract the density of states (DOS) and characterize the charge-transport properties. Comparative analyses on charge transports within the framework of the physical model, based on polaron hopping and Gaussian DOS, reveal that the prefactors of both physical charge-transport models are independent of the spin-coating condition for the films. For staggered structural transistors, however, the thickness of the PQTBTz-TT-C8 films, which strongly affect the series resistance along the charge-transfer path in a vertical direction, is changed in accordance with the spin-coating rate. In other words, the spin-coating rate of the PQTBTz-TT-C8 films influences the thickness of the polymer films, yet any significant changes in the crystallinity of the film or electronic coupling between the neighboring molecules upon the spin-coating condition were barely noticeable. Because the PQTBTz-TT-C8 backbone chains inside the thin film are stacked up with the edge-on, the series resistances are changed according to the thickness of the film and thus the performance of the device varies depending on the thickness.

  16. Which Elementary School Subjects Are the Most Likeable, Most Important, and the Easiest? Why?: A Study of Science and Technology, Mathematics, Social Studies, and Turkish (United States)

    Dündar, Sahin; Güvendir, Meltem Acar; Kocabiyik, Oya Onat; Papatga, Erdal


    The present study was conducted first to identify which school subjects were most liked, most important, and most difficult, as well as least liked, least important and easiest as perceived by elementary school students and second to explore the reasons why students most/least liked, considered as most/least important, and considered as most…

  17. The Extent of Al-Balqa Applied University's Students' Perception of the Importance of Means of Information and Communication Technology in High Education in Jordan (United States)

    Al Zou'bi, Abdallah S.; Al-Onizat, Sabah


    This study aimed to identify the effectiveness of using information technology and communications' means in the academic education from the perspective of Al-Balqa Applied University's students. And to achieve this goal, the researchers prepared and developed a questionnaire as a tool of the study including 26 items. The population of the study,…

  18. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed. (United States)

    Herbort, Carl P; Tugal-Tutkun, Ilknur


    Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.

  19. Optical and electronic properties of semiconducting nanoparticles; Optische und elektronische Eigenschaften von halbleitenden Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Gondorf, Andreas


    In the present thesis, the electronic properties of semiconducting nanoparticles are investigated. The I-V-characteristics of a submonolayer of silicon nanoparticles, embedded in a Si{sub 3}N{sub 4}-matrix are calculated. The calculated results are compared to those found experimentally by Cho et al. It is investigated whether quantization effects, like the Coulomb blockade, can also be observed in systems, which contain many particles. Compacted silicon and germanium nanoparticle powders are analyzed by reflection measurements. The goal is to determine the carrier density and to find how the core-shell-structure (Ge/Si core and Ge/Si oxide shell) affects the reflection spectra. Furthermore, the influence of doping on the properties of the nanoparticles is investigated. Optical spectroscopy and magneto-transport measurements are performed on thin films, consisting of indium tin oxide nanoparticles (ITO nanoparticles). In optical spectroscopy the dielectric function in the high frequency region is determined. With the known dielectric function the charge carrier concentration as well as the mobility can be calculated. With magnetotransport measurements it is possible to measure the Hall voltage and the macroscopic conductivity. By taking into account the theoretically derived correction factor [Kharitonov, 2008] the carrier density and macroscopic mobility can be determined. Thus, the combination of the two measurement methods allows an insight into the electronic structure of this system. Additionally, layers consisting of ITO nanoparticles exhibit a decreasing resistivity when a magnetic field is applied perpendicular to the current orientation. This effect is called negative transverse magnetoresistance. The experimental results can be explained by the weak localization theory of granular systems. For the dephasing time {tau}{sub H}, however, we find a different dependence on the magnetic field than predicted by theory (experiment: 1/{tau}{sub H} {proportional

  20. Reflection About the Relation Between Internet and State in Contemporary Societies: The Importance of a Proper Regulation that Comprehends the Dynamic of Technological Development and Appreciates Fundamental Rights

    Directory of Open Access Journals (Sweden)

    Matheus Fernando de Arruda e Silva


    Full Text Available The article makes a reflection, of transdisciplinary character and hypothetic-deductive reasoning line, about the relation between Internet and State in contemporary societies. The objective is to demonstrate that the Internet is not a simply mean of mass dissemination of information and needs a proper regulation, in view of the dynamics of technological development and emphasis on appreciating the Fundamental Rights, already provided in both the domestic and international legal system, in a way to avoid a regulation that can configure a meaning of exception state that admits the violation of the users’ rights on behalf of State sovereignty.

  1. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Han [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China); Kettle, Jeff [School of Electronics, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT Wales (United Kingdom); Horie, Masaki, E-mail: [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China)


    The synthesis, characterisation, and device performance of a series of cyclopentadithiophene (CPDT)-naphthalenediimide (NDI) donor-acceptor-donor (D-A-D) polymers is reported. The monomers with various alkyl chains are synthesised via direct arylation using palladium complex catalyst. The monomers are then polymerised by oxidative polymerisation using FeCl{sub 3} to provide high molecular weight polymers (M{sub n} = 21,800–76,000). The polymer films show deep-red absorption including near-infrared region up to 1100 nm to give optical bandgap of approximately 1.16 eV. The polymers exhibit only n-type semiconducting properties giving the highest electron mobility of 9 × 10{sup -3} cm{sup 2} V{sup −1} s{sup −1} in organic field-effect transistors (OFETs). Organic photovoltaic (OPV) devices are fabricated from solutions of the polymers as acceptors and poly(3-hexylthiophene) (P3HT) as a donor. - Highlights: • Cyclopentadithiophene–naphthalenediimide oligomers were prepared by direct arylation. • The oligomers were polymerised by oxidative reaction using iron(III)chloride. • The polymer films show deep-red absorption up to 1100 nm with a bandgap of 1.1 eV. • The polymers exhibit only n-type semiconducting properties in OFETs and OPVs.

  2. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal


    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  3. Semiconductive behavior of and the fabrication of ap-n junction diode from amorphous polymer-derived ceramics (United States)

    Ryu, Hee-Yeon

    The electrical properties of high temperature semiconducting silicon oxycarbonitride (SiCNO) using titanium nitride (TiN) interconnects are studied. This research had three objectives. The first was to fabricate possible high temperature electrical ceramic and to construct metallic interconnects on SiCNO. The interconnect was selected by investigating the reaction between metals and SiCNO in powders by x-ray characterization of the reaction products. It was concluded that TiN is the most suitable interconnect material. In the final process TiN was produced by coating SiCNO with Ti by RF magnetron sputtering and then heat-treating at high temperatures in argon or nitrogen atmosphere to form TiN. The phase transformation from Ti to TIN starts at 1000°C, however optimum condition for the formation of TiN layer was found to be 1200°C for 2 hours. X-ray analysis on the coated and heat-treated surface reveals presence of TiN and TiO2 phases. The TiN coating was found to be stable up to a maximum temperature of about 1400°C without any noticeable degradation, which was confirmed X-ray analysis. The second was to study the electrical properties of silicon oxycarbonitride (SiCNO) at temperature up to 1300°C as a function of their composition. Silicon oxycarbonitride was made with processing temperature between 1100°C and 1400°C. Their electrical conductivities at temperature up to 1300°C were measured as a function of their chemical compositions that were already analyzed for each processing conditions. As varying processing temperature, their chemical compositions were changed and affect their electrical conductivity. The ratio of nitrogen and oxygen in SiCNO affected their electrical conductivity changes. Polymer-derived SiCNO ceramics remained semiconductive at all temperature and followed Mott's variable range hopping (VRH) mechanism for amorphous semiconductor. From the carrier concentration by Hall-effect measurement of SiCNO ceramics, their hopping energy and


    Directory of Open Access Journals (Sweden)

    N. G. Kurakova


    Full Text Available The article explores key issues in reaching a balance of funding resources, needed for fulfilling strategic goals for scientific-technological development ofRussia. Shared forecasts predict that in 2016, Russia's share of the global budget for Research and Development (R&D will amount to less than 2%, whereas the share of only three countries – the USA, China and Japan, will amount to 55,6%. The six leading countries investing heavily state funded in R&D in 2016, will be theUSA,China,Japan,Germany,South KoreaandIndia. The accumulative share of investments in R&D in 2016, will amount to 68,5%. Comparing the investment volumes of leading countries',Russia's expected national investment in R&D might be non-competitive. It is noted that the needed resources for increasing volumes of state funding in Russian scientific-technological field in the midterm perspective are already exhausted. Therefore, the single opportunity for reaching the goal of Russian President's Order № 599 for increasing internal spending on R&D, so it amounts 1,77% of GDP is to dramatically increase the volume of extra-budgetary financing in the domestic R&D sector. Special attention is paid to the disproportion of the budget spending on R&D and the number of people employed in R&D, which leads toRussiahaving one of the lowest indicators among developed countries for «internal expenditure on R&D per researcher». It is concluded that without a clear strategic answer to the posed question about how the Russian industrial sector will be able to increase internal spending on R&D from current 1,15% to 1,77% and how will it accommodate the 4th biggest corpus of scientists in the world in the processes of reindustrialization of the country, strategic targets for becoming a global technological leader risk to remain in the status of «ambitious goals». 

  5. Hardened technologies for hazardous environments

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.


    The complete radiation environment of neutrons, total dose, transient ionizing radiation, and energetic cosmic rays (SEU) can have various deleterious effects upon semiconductor electronic components. However, hardening techniques for these radiation effects have been developed for the various semiconduct technologies that will permit their use even in severe radiation environments. The process techniques are occasionally line dependent and may require modification to achieve the desired hardness goal. Similarly, hardening semiconductor components for elevated thermal operation can be achieved with process techniques which, unlike the radiation case, are readily transferable between process lines. Radiation effects and hardening technologies are discussed for Metal Oxide Semiconductor (MOS), Bipolar, Junction Field Effect Transistors (JFET), Metal Semiconductor Field Effect Transistor (MESFET), Diode, Electro-optic, and crystal technologies. 44 refs., 44 figs


    Directory of Open Access Journals (Sweden)

    Alessandra Vasconcelos Gallon


    Full Text Available The objective of this article is to describe the network of relationships and identify the importance of these relationships to the organizational performance of small ITBs incubated in the perception of entrepreneurs. Therefore, the research was exploratory, with qualitative method in the first part and descriptive, using a quantitative method in the continuation. Data were collected through a script with open questions and two structured questionnaires. The manager of the incubator and entrepreneurs from 14 residents were ITBs social subjects respondents. Component analysis of the relationship network of ITBs was to: (i examine the characteristics of the network of relationships of ITBs incubated by a statement of means-ends relationships, related by links of influence, and (ii note that there are line between efforts to meet the goals set by both ITBs incubated, as the incubator, and the importance of achieving these objectives for the improvement of organizational performance of ITBs.


    Directory of Open Access Journals (Sweden)

    Alessandra Vasconcelos Gallon


    Full Text Available The objective of this article is to describe the network of relationships and identify the importance of these relationships to the organizational performance of small ITBs incubated in the perception of entrepreneurs. Therefore, the research was exploratory, with qualitative method in the first part and descriptive, using a quantitative method in the continuation. Data were collected through a script with open questions and two structured questionnaires. The manager of the incubator and entrepreneurs from 14 residents were ITBs social subjects respondents. Component analysis of the relationship network of ITBs was to: (i examine the characteristics of the network of relationships of ITBs incubated by a statement of means-ends relationships,related by links of influence, and (ii note that there are line between efforts to meet the goals set by both ITBs incubated, as the incubator, and the importance of achieving these objectives for the improvement of organizational performance of ITBs.

  8. Imported biofuels

    International Nuclear Information System (INIS)

    Sieurin, J.


    No import of biofuels to Sweden for energy production existed before 1991. That year, import of wood chips from Latvia and olive wastes (pits) from the Mediterranean region started, with volumes corresponding to 100 GWh each. This fuels were used in district heating plants, with converted coal boilers. The price was about 120 SEK/MWh (∼ 18 USD/MWh) at the plant. Small amounts of wood pellets were imported from Poland, Canada and Denmark, totalling less than 100 GWh. This fuel was used by small heating centrals and the import was caused by a shortage of swedish pellets. Potentially important export countries, if a large scale biofuel use starts in Sweden, are Russia, the Baltic states, USA, and Canada. Technical possibilities for converting coal-fired boilers to biofuel firing are discussed in a four page section of this paper. (2 refs., 2 tabs.)


    CERN Multimedia

    HR Department


    Green plates, removals and importation of personal effects Please note that, as from 1 April 2009, formalities relating to K and CD special series French vehicle plates (green plates), removals and importation of personal effects into France and Switzerland will be dealt with by GS Department (Building 73/3-014, tel. 73683/74407). Importation and purchase of tax-free vehicles in Switzerland, as well as diplomatic privileges, will continue to be dealt with by the Installation Service of HR Department (Building 33/1-011, tel. 73962). HR and GS Departments

  10. Elaboration and installation of technology of on-line diagnostics of important equipment damage as a procedure of NPP lifetime management

    International Nuclear Information System (INIS)

    Bakirov, M.; Povarov, V.


    In contrast to conventional approaches used for diagnostics (i.e. when inspection results are used as data for numerical calculative strength analysis) the specific feature of the new proposed approach consists in a fact that the approach is based on application of the 'inverse problem' principle. As regards to implementation of the proposed new approach, first of all a detailed numerical calculative finite-element model of the monitored equipment must be developed. Results of preliminary calculations allow to make reasonable selection of definite installation places and types of control sensors intended for more effective and precise work of the calculative model. As a rule, the control sensors are high-temperature strain gauges, temperature probes, pressure, acceleration and displacement sensors, as well as acoustic-emission and ultrasonic sensors used for monitoring of actual defectiveness kinetics in the zone of potential damaging. All the sensors work in the on-line mode during several years of operation, the optimal frequency of data records is selected, all recorded data after prompt processing are transferred to the finite-element calculative modulus for strength calculations of a monitored zone. Software for strength calculation must be based on an individual calculative code, since it should also work in the on-line mode. Comprehensible strength analysis in conjunction with obtained results of defectiveness kinetics monitoring allow not only to foresee the most unfavorable scenario resulting to damaging, but also to have a possibility for prompt analysis and elaboration of compensating measures allowing to reduce operational loadings. In the report the results of development and practical application of the new approach at NPPs and corresponding technology are presented. (author)

  11. Growth and characterization of semiconducting nickel sulfide nanocrystals from air-stable single-source metal organic precursors

    Directory of Open Access Journals (Sweden)

    Sohail Saeed


    Full Text Available Three symmetrical and unsymmetrical nickel(II complexes [cis-(C3H72NC(SNC(OC6H3(3,5-NO22]2Ni(II, [cis-(C4H92NC(SNC(OC6H3(3,5-NO22]2Ni(II, and [cis-(Hex(Me2NC(SNC(O C6H3(3,5-NO22]2Ni(II were synthesized and characterized by FTIR spectroscopy, elemental analysis, and mass spectrometry. These metal complexes have been used as single-source precursors for the preparation of semiconducting nickel sulfide nanocrystals. Rapid injection of metal complexes into oleylamine at 230°C, followed by immediate cooling, led to the formation of irregular-shaped 20–170-nm nickel sulfide nanocrystals. The deposited nickel sulfide nanocrystals were characterized by X-ray powder diffraction and transmission electron microscopy.

  12. Phase transitions and optical properties of the semiconducting and metallic phases of single-layer MoS₂. (United States)

    Fair, K M; Ford, M J


    We report density functional theory calculations for single layer MoS2 in its 2H, semiconducting and 1T metallic phases in order to understand the relative stability of these two phases and transition between them in the presence of adsorbed lithium atoms and under compressive strain. We have determined the diffusion barriers between the two phases and demonstrate how the presence of Li adatoms or strain can significantly reduce these barriers. We show that the 2H and 1T structures have the same energy under 15% biaxial, compressive strain. This is the same strain value posited by Lin et al (2014 Nat. Nanotechnology 9 391-396) for their intermediate α phase. Calculations of the 1T and 2H permittivity and electron energy loss spectrum are also performed and characterized.

  13. Hybrids of copolymers of fluorene and C60 -carrying-carbazole with semiconducting single-walled carbon nanotubes. (United States)

    Toshimitsu, Fumiyuki; Ozawa, Hiroaki; Nakashima, Naotoshi


    Three different copolymers of C60 -carrying-carbazole and fluorene units with different copolymer composition ratios were designed and synthesized. On the basis of photoluminescence, atomic force microscopy, and Vis-NIR and Raman spectroscopic analysis, we found that these copolymers solubilize only semiconducting single-walled carbon nanotubes (sem-SWNTs) to form copolymer/sem-SWNT hybrids, in which energy transfer from the copolymer/C60 moieties to the SWNTs was revealed. By comparing two possible hybrid structures with molecular-mechanics simulations, the greatest stabilization was found when the C60 moieties lay on the sem-SWNT surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Purification of Semiconducting Polymer Dots by Size Exclusion Chromatography Prior to Cytotoxicity Assay and Stem Cell Labeling. (United States)

    Chen, Dandan; Yuan, Ye; Yu, Jiangbo; Chiu, Daniel T; Wu, Changfeng


    Semiconducting polymer dots (Pdots) as fluorescent probes have shown promising applications because of their excellent optical properties. However, apparent differences were observed in cytotoxicity assays, which might originate from impurities introduced in polymer synthesis or nanoparticle preparation. In this paper, a simple gel filtration-based purification method was used to address this issue. Purified Pdots displayed obviously decreased cytotoxicity as compared with the same batch of unpurified Pdots. The purified Pdots were further examined in cytotoxicity study on mesenchymal stem cells (MSCs), which are very sensitive to exogenous probes. The results indicated that purified Pdots did not affect the proliferation ability of MSCs, while unpurified Pdots could have obvious cytotoxicity. In addition, the purified Pdots did not show cytotoxicity even after 6-month storage. Our results demonstrated that gel filtration is an effective method for obtaining Pdots with minimal cytotoxicity, which are more suitable for biological applications.

  15. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    International Nuclear Information System (INIS)

    Jung, Hye-Mi; Um, Sukkee


    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO 2 and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO x ) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO x composite semiconducting films, which have an sp 3 /sp 2 bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO x composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO x -graphene oxide composite (G/VO x ) films were fabricated by sol–gel process. • The G/VO x films mainly consisted of Magnéli-phase VO 2 and reduced graphene sheets. • The G/VO x films exhibited multi-lamellar textures with planar VO x nanowire arrays. • The G/VO x films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO x films were discussed.

  16. Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices

    International Nuclear Information System (INIS)

    Salah, Numan; Habib, Sami S.; Memic, Adnan; Alharbi, Najlaa D.; Babkair, Saeed S.; Khan, Zishan H.


    Thin films of Te 94 Se 6 nanoparticles were synthesized using the physical vapor condensation technique at different argon (Ar) pressures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. XRD results show that the as-grown films have a polycrystalline structure. SEM images display uniform nanoparticles in these films where the size increases from ∼ 12 to about 60 nm by decreasing Ar pressure from 667 to 267 Pa. These as-grown thin films were found to have direct band gaps, whose value decreases with increasing particle size. The absorption and extinction coefficients for these films were also investigated. PL emission spectra exhibit three bands peaking at 666, 718 and 760 nm, while Raman spectra displayed three bands located at 123, 143 and 169 cm −1 . No significant changes are observed in positions or intensities of these bands by decreasing the Ar pressure, except that of the last band of PL; where the intensity increases. The obtained results on this Te 94 Se 6 nanomaterial especially its controlled direct bandgap might be useful for development of optical disks and other semiconducting devices. - Highlights: ► Thin films of Te 94 Se 6 nanoparticles were grown at different argon (Ar) pressures. ► Size of the nanoparticles increased by decreasing Ar pressure. ► They have direct band gap, whose value decreases by increasing the particle size. ► These nanomaterials might be useful for development of semiconducting devices

  17. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. (United States)

    Liu, Hsuan-Wei; Lin, Fan-Cheng; Lin, Shi-Wei; Wu, Jau-Yang; Chou, Bo-Tsun; Lai, Kuang-Jen; Lin, Sheng-Di; Huang, Jer-Shing


    Aluminum, as a metallic material for plasmonics, is of great interest because it extends the applications of surface plasmon resonance into the ultraviolet (UV) region and is superior to noble metals in natural abundance, cost, and compatibility with modern semiconductor fabrication processes. Ultrasmooth single-crystalline metallic films are beneficial for the fabrication of high-definition plasmonic nanostructures, especially complex integrated nanocircuits. The absence of surface corrugation and crystal boundaries also guarantees superior optical properties and applications in nanolasers. Here, we present UV to near-infrared plasmonic resonance of single-crystalline aluminum nanoslits and nanoholes. The high-definition nanostructures are fabricated with focused ion-beam milling into an ultrasmooth single-crystalline aluminum film grown on a semiconducting GaAs substrate with a molecular beam epitaxy method. The single-crystalline aluminum film shows improved reflectivity and reduced two-photon photoluminescence (TPPL) due to the ultrasmooth surface. Both linear scattering and nonlinear TPPL are studied in detail. The nanoslit arrays show clear Fano-like resonance, and the nanoholes are found to support both photonic modes and localized surface plasmon resonance. We also found that TPPL generation is more efficient when the excitation polarization is parallel rather than perpendicular to the edge of the aluminum film. Such a counterintuitive phenomenon is attributed to the high refractive index of the GaAs substrate. We show that the polarization of TPPL from aluminum preserves the excitation polarization and is independent of the crystal orientation of the film or substrate. Our study gains insight into the optical property of aluminum nanostructures on a high-index semiconducting GaAs substrate and illustrates a practical route to implement plasmonic devices onto semiconductors for future hybrid nanodevices.

  18. Ciência, Tecnologia e Sociedade: a relevância do enfoque CTS para o contexto do Ensino Médio Science, Technology and Society: the importance of the STS view to high school context

    Directory of Open Access Journals (Sweden)

    Nilcéia Aparecida Maciel Pinheiro


    Full Text Available Ressalta-se a importância do enfoque Ciência, Tecnologia e Sociedade (CTS perante os questionamentos críticos e reflexivos acerca do contexto científico-tecnológico e social e, em especial, sua relevância para o Ensino Médio. Os pressupostos do movimento CTS têm se ampliado em toda sociedade brasileira, principalmente na área educacional. Dentro da proposta da Lei de Diretrizes e Bases da Educação Nacional (LDB, configurada nos Parâmetros Curriculares Nacionais do Ensino Médio (PCNEMs, percebe-se a relevância de aproximar o aluno da interação com a ciência e a tecnologia em todas as dimensões da sociedade, oportunizando a ele uma concepção ampla e social do contexto científico-tecnológico.We aim to highlight the importance of the STS view as a driving force of critical and reflexive questions about scientific, technological and social contexts, and also, to emphasize its relevance to High School. The STS movement has spread throughout our society and, specially, has gained more and more followers in the educational area. Inside the Guidelines Law of the National Education (LDB proposal, designed in the National Curriculum Parameters for Secondary Education (PCNEMS, we noticed the importance of bringing the student closer to the interaction between science and technology in societal dimensions, considering their reciprocal relation, giving the students a wide and social conception of the scientific and technological context.

  19. RFID technologies for imported foods inspection (United States)

    Food-borne illness typically occurs due to contamination of food products with Escherichia coli, Salmonella spp., Listeria monocytogenes and other pathogens. Unfortunately, it takes several weeks to identify the source of such contamination, possibly due to lack of a central database system that is ...

  20. Investigation Effects of Magnetetic Impurity Doping on Average Magnetization of Semiconducting Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Saeedeh Ghafourian


    Full Text Available Single wall carbon nanotubes (SWCNT extensively are attractive from both theoretical and experimental point of view, due to its technological applications such as nano electronics devises. SWCNT are created by rolling a graphen sheet into a cyclindrical form. We have investigated the possibility of making a ferromagnetic semiconductor zigzag SWCNT by doping magnetic impurities. We found by increasing magnetic impurities doping on a zigzag SWCNT, average magnetization is increased and one can make a ferromagnetic semiconductor

  1. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hye-Mi; Um, Sukkee, E-mail:


    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO{sub 2} and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO{sub x}) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO{sub x} composite semiconducting films, which have an sp{sup 3}/sp{sup 2} bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO{sub x} composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO{sub x}-graphene oxide composite (G/VO{sub x}) films were fabricated by sol–gel process. • The G/VO{sub x} films mainly consisted of Magnéli-phase VO{sub 2} and reduced graphene sheets. • The G/VO{sub x} films exhibited multi-lamellar textures with planar VO{sub x} nanowire arrays. • The G/VO{sub x} films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO{sub x} films were discussed.

  2. Synthesis and semiconducting properties of tin(II) sulfide: Application to photocatalytic degradation of Rhodamine B under sun light

    Energy Technology Data Exchange (ETDEWEB)

    Kabouche, S. [Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Bellal, B. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of the Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Louafi, Y. [Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Trari, M., E-mail: [Laboratory of Storage and Valorization of Renewable Energies, Faculty of the Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria)


    We have investigated the semiconducting and photoelectrochemical properties of SnS grown by a template-free chemical route using thiourea as precursor. Tin(II) sulfide is characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance and Raman spectroscopy. The X-ray diffraction indicates an orthorhombic SnS phase (SG: Pbnm) with a crystallite size of 52 nm while the optical measurements give a direct band gap of 1.33 eV. The Mott–Schottky plot exhibits a linear behavior, characteristic of n-type conductivity with a flat band potential of 0.19 V{sub SCE} and a donor density of 4.12 × 10{sup 18} cm{sup -3}. The electrochemical impedance spectroscopy (EIS) measured in the range (10{sup -2}–5 × 10{sup 4} Hz) shows one semicircle attributed to the bulk resistance (R{sub b} = 20.37 kΩ cm{sup 2}). The conduction band, located at 4.84 eV below vacuum, is made up of Sn{sup 2+:}5p while the valence band (6.17 eV) derives mainly from S{sup 2-}: 3p character. The energy band diagram, constructed from the photoelectrochemical characterization, predicts the photodegradation of Rhodamine B on SnS by H{sub 2}O{sub 2} generated photoelectrochemically. 88.46% of the initial concentration (10 mg L{sup -1}) disappears after adsorption and 4 h of exposure to solar light. The photoactivity is nearly restored during the second cycle and follows a second order kinetic with a rate constant of 1.55 × 10{sup -3} mg{sup -1} L min{sup -1}. - Highlights: • The semiconducting properties of SnS synthesized by chemical route are studied. • The n type conductivity is evidenced by chrono-amperometry and photoelectrochemistry. • The conduction band, located at 4.84 eV below vacuum, is made up of Sn{sup 2+}: 5p. • SnS was successfully used for the Rhodamine B oxidation under sunlight.

  3. Final Report for DE-FG36-08GO18007 "All-Inorganic, Efficient Photovoltaic Solid State Devices Utilizing Semiconducting Colloidal Nanocrystal Quantum Dots"

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Bulovic and Moungi Bawendi


    We demonstrated robust colloidal quantum dot (QD) photovoltaics with high internal quantum efficiencies. In our structures, device durability is derived from use of all-inorganic atmospherically-stable semiconducting metal-oxide films together with QD photoreceptors. We have shown that both QD and metal-oxide semiconducting films and contacts are amenable to room temperature processing under minimal vacuum conditions, enabling large area processing of PV structures of high internal efficiency. We generated the state of the art devices with power conversion efficiency of more than 4%, and have shown that efficiencies as high as 9% are achievable in the near-term, and as high as 17% in the long-term.

  4. Recognition and one-pot extraction of right- and left-handed semiconducting single-walled carbon nanotube enantiomers using fluorene-binaphthol chiral copolymers. (United States)

    Akazaki, Kojiro; Toshimitsu, Fumiyuki; Ozawa, Hiroaki; Fujigaya, Tsuyohiko; Nakashima, Naotoshi


    Synthesized single-walled carbon nanotubes (SWNTs) are mixtures of right- and left-handed helicity and their separation is an essential topic in nanocarbon science. In this paper, we describe the separation of right- and left-handed semiconducting SWNTs from as-produced SWNTs. Our strategy for this goal is simple: we designed copolymers composed of polyfluorene and chiral bulky moieties because polyfluorenes with long alkyl-chains are known to dissolve only semiconducting SWNTs and chiral binaphthol is a so-called BINAP family that possesses a powerful enantiomer sorting capability. In this study, we synthesized 12 copolymers, (9,9-dioctylfluorene-2,7-diyl)x((R)- or (S)-2,2'-dimethoxy-1,1'-binaphthalen-6,6-diyl)y, where x and y are copolymer composition ratios. It was found that, by a simple one-pot sonication method, the copolymers are able to extract either right- or left-handed semiconducting SWNT enantiomers with (6,5)- and (7,5)-enriched chirality. The separated materials were confirmed by circular dichroism, vis-near IR and photoluminescence spectroscopies. Interestingly, the copolymer showed inversion of SWNT enantiomer recognition at higher contents of the chiral binaphthol moiety. Molecular mechanics simulations reveal a cooperative effect between the degree of chirality and copolymer conformation to be responsible for these distinct characteristics of the extractions. This is the first example describing the rational design and synthesis of novel compounds for the recognition and simple sorting of right- and left-handed semiconducting SWNTs with a specific chirality.

  5. [C6H14N]PbBr3: An ABX3-Type Semiconducting Perovskite Hybrid with Above-Room-Temperature Phase Transition. (United States)

    Zhang, Jing; Liu, Xitao; Li, Xianfeng; Han, Shiguo; Tao, Kewen; Wang, Yuyin; Ji, Chengmin; Sun, Zhihua; Luo, Junhua


    Organic-inorganic hybrid perovskites, with the formula ABX 3 (A=organic cation, B=metal cation, and X=halide; for example, CH 3 NH 3 PbI 3 ), have diverse and intriguing physical properties, such as semiconduction, phase transitions, and optical properties. Herein, a new ABX 3 -type semiconducting perovskite-like hybrid, (hexamethyleneimine)PbBr 3 (1), consisting of one-dimensional inorganic frameworks and cyclic organic cations, is reported. Notably, the inorganic moiety of 1 adopts a perovskite-like architecture and forms infinite columns composed of face-sharing PbBr 6 octahedra. Strikingly, the organic cation exhibits a highly flexible molecular configuration, which triggers an above-room-temperature phase transition, at T c =338.8 K; this is confirmed by differential scanning calorimetry (DSC), specific heat capacity (C p ), and dielectric measurements. Further structural analysis reveals that the phase transition originates from the molecular configurational distortion of the organic cations coupled with small-angle reorientation of the PbBr 6 octahedra inside the inorganic components. Moreover, temperature-dependent conductivity and UV/Vis absorption measurements reveal that 1 also displays semiconducting behavior below T c . It is believed that this work will pave a potential way to design multifeatured perovskite hybrids by utilizing cyclic organic amines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystal and phonon structure of ZnSiP{sub 2}, a II-IV-V{sub 2} semiconducting compound

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Pedraza, H., E-mail: [Departamento de Fisica, Universidad de Pamplona, Pamplona 54518000 (Colombia); Lopez-Rivera, S.A.; Martin, J.M. [Laboratorio de Fisica Aplicada, ULA, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, J.M. [Laboratorio de Cristalografia, ULA, Merida 5101 (Venezuela, Bolivarian Republic of); Power, Ch. [Centro de Estudios en Semiconductores, ULA, Merida 5101 (Venezuela, Bolivarian Republic of)


    Using single-crystal X-ray diffraction and Raman spectroscopy, the characterization of a member of the II-IV-V{sub 2} family of semiconducting compounds, ZnSiP{sub 2}, is presented in this work. The diffraction experiment showed that ZnSiP{sub 2} crystallizes in a chalcopyrite-type of structure (space group: I4{sup Macron }2d) with unit cell parameters a = 5.407(9) Angstrom-Sign and c = 10.454(2) Angstrom-Sign . The structure is based on a cubic close-packed arrangement of phosphorus atoms with the two cations in an orderly way occupying one-half of the tetrahedral sites. In this structure, two Zn and two Si are bonded to each phosphorus atom and four phosphorus atoms are bonded to each cation. The results obtained are consistent with previous reports. Raman spectroscopy, Group Theory, and a modified correlation method allowed the assignment of the characteristics of the thirteen first-order Raman active optical vibrational modes observed for this material.

  7. Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes (United States)

    Kharlamova, M. V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Saito, T.; Pichler, T.


    In the present work, we have obtained metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes (SWCNTs) by density gradient separation of metallicity mixed filled nanotubes. Double-walled carbon nanotubes (DWCNTs) were obtained by annealing of filled SWCNTs in vacuum. The diameter distribution of inner tubes was analyzed by multifrequency Raman spectroscopy. The chemical transformation of nickelocene upon annealing was studied by X-ray photoelectron spectroscopy (XPS) at the Ni 2 p core level. The thermally-induced transformation of nickelocene to nickel carbides and metallic nickel was revealed. The electronic properties of the filled SWCNTs and DWCNTs were investigated by XPS at the C 1 s core level. By tracing the C 1 s binding energy, it was shown that the annealing of nickelocene-filled SWCNTs at low temperatures (360-600 °C) led to electron doping of SWCNTs, whereas annealing at high temperatures and formation of DWCNTs (680-1200 °C) resulted in hole doping of nanotubes.

  8. Variable range hopping conduction and microstructure properties of semiconducting Co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Okutan, Mustafa [Department of Physics, Gebze Institute of Technology, 41400 Gebze (Turkey)]. E-mail:; Bakan, Halil I. [TUBITAK-MAM, Materials and Chemical Research Institute, 41470 Gebze (Turkey); Korkmaz, Kemal [Department of Material Science and Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Arts and Science, Firat University, 23169 Elazig (Turkey)


    The surface morphology, phases existing in the microstructure and conductivity behavior of Co-doped TiO2 have been investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), electrical conductivity measurements and X-ray diffraction technique. The semiconducting phase is found to obey Mott's variable range hopping mechanism of the conduction. The conduction mechanism of the ceramic shows a crossover from the, exp[-(T0/T)1/4] law to a simply activated law, exp(-{delta}E/kT). This behavior is attributed to temperature-induced transition from 3D to thermally activated behavior. The hopping conduction parameters such as the characteristic temperature (T0), localization length ({alpha}), hopping distance (R), activation energy ({delta}E) and density of states at Fermi level (N(EF) have been calculated. Surface morphology shows that the ceramic has a regular surface. The SEM study indicates that there are grains which have a certain type in the microstructure. Rutile phases with different plane in microstructure were found.

  9. Diketopyrrolopyrrole (DPP)-Based Donor-Acceptor Polymers for Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes. (United States)

    Lei, Ting; Lai, Ying-Chih; Hong, Guosong; Wang, Huiliang; Hayoz, Pascal; Weitz, R Thomas; Chen, Changxin; Dai, Hongjie; Bao, Zhenan


    Low-bandgap diketopyrrolopyrrole (DPP)-based polymers are used for the selective dispersion of semiconducting single-walled carbon nanotubes (s-SWCNTs). Through rational molecular design to tune the polymer-SWCNT interactions, highly selective dispersions of s-SWCNTs with diameters mainly around 1.5 nm are achieved. The influences of the polymer alkyl side-chain substitution (i.e., branched vs linear side chains) on the dispersing yield and selectivity of s-SWCNTs are investigated. Introducing linear alkyl side chains allows increased polymer-SWCNT interactions through close π-π stacking and improved C-H-π interactions. This work demonstrates that polymer side-chain engineering is an effective method to modulate the polymer-SWCNT interactions and thereby affecting both critical parameters in dispersing yield and selectivity. Using these sorted s-SWCNTs, high-performance SWCNT network thin-film transistors are fabricated. The solution-deposited s-SWCNT transistors yield simultaneously high mobilities of 41.2 cm(2) V(-1) s(-1) and high on/off ratios of greater than 10(4) . In summary, low-bandgap DPP donor-acceptor polymers are a promising class of polymers for selective dispersion of large-diameter s-SWCNTs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Selyukov, A. S., E-mail:; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Vasiliev, R. B.; Sokolikova, M. S. [Moscow State University (Russian Federation)


    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  11. Site-specific electron-induced cross-linking of ortho-carborane to form semiconducting boron carbide (United States)

    Pasquale, Frank L.; Kelber, Jeffry A.


    Semiconducting boron carbide (B10C2Hx) films have been formed by bombardment of condensed ortho-carborane (closo-1,2-dicarbadodecaborane) multilayers on polycrystalline copper substrates by 200 eV electrons under ultra-high vacuum conditions. The film formation process was characterized by X-ray and ultraviolet photoelectron spectroscopies. Electron bombardment results in the cross-linking of the icosahedral units. The cross-linking is accompanied by a shift in the B(1s) binding energy indicating site-specific cross-linking between two boron sites on adjacent carborane icosahedra. An additional shift in valence band binding energies attributed to the surface photovoltage effect is indicative of the formation of a p-type semiconductor. This is the first report of B10C2Hx formation by electron bombardment of condensed films, and the data indicate that this method is a viable route towards formation of ultra-thin films of tailored composition and cross-linkages for emerging nanoelectronics and sensor applications.

  12. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sisto, Thomas J. [Columbia University; Peurifoy, Samuel [Columbia University; Zhang, Boyuan [Columbia University; Nuckolls, Colin [Columbia University


    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstrate that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. Detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.

  13. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles. (United States)

    Petrini, Paula Andreia; Lopes da Silva, Ricardo Magno; de Oliveira, Rafael Furlan; Merces, Leandro; Bufon, Carlos César Bof


    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscope (STM). The incorporation of molecular materials in devices is not a trivial task since the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (kCuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensemble have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (< 30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (kCuPc = 4.5 ± 0.5). These values suggest a mild contribution of molecular orientation in the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology. © 2018 IOP Publishing Ltd.

  14. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films. (United States)

    Nafady, Ayman; Bond, Alan M; Bilyk, Alexander; Harris, Alexander R; Bhatt, Anand I; O'Mullane, Anthony P; De Marco, Roland


    Electrocrystallization of single nanowires and/or crystalline thin films of the semiconducting and magnetic Co[TCNQ]2(H2O)2 (TCNQ=tetracyanoquinodimethane) charge-transfer complex onto glassy carbon, indium tin oxide, or metallic electrodes occurs when TCNQ is reduced in acetonitrile (0.1 M [NBu4][ClO4]) in the presence of hydrated cobalt(II) salts. The morphology of the deposited solid is potential dependent. Other factors influencing the electrocrystallization process include deposition time, concentration, and identity of the Co2+(MeCN) counteranion. Mechanistic details have been elucidated by use of cyclic voltammetry, chronoamperometry, electrochemical quartz crystal microbalance, and galvanostatic methods together with spectroscopic and microscopic techniques. The results provide direct evidence that electrocrystallization takes place through two distinctly different, potential-dependent mechanisms, with progressive nucleation and 3-D growth being controlled by the generation of [TCNQ]*- at the electrode and the diffusion of Co2+(MeCN) from the bulk solution. Images obtained by scanning electron microscopy reveal that electrocrystallization of Co[TCNQ]2(H2O)2 at potentials in the range of 0.1-0 V vs Ag/AgCl, corresponding to the [TCNQ]0/*- diffusion-controlled regime, gives rise to arrays of well-separated, needle-shaped nanowires via the overall reaction 2[TCNQ]*-(MeCN)+Co2+(MeCN)+2H2O right harpoon over left harpoon {Co[TCNQ]2(H2O)2}(s). In this potential region, nucleation and growth occur at randomly separated defect sites on the electrode surface. In contrast, at more negative potentials, a compact film of densely packed, uniformly oriented, hexagonal-shaped nanorods is formed. This is achieved at a substantially increased number of nucleation sites created by direct reduction of a thin film of what is proposed to be cobalt-stabilized {(Co2+)([TCNQ2]*-)2} dimeric anion. Despite the potential-dependent morphology of the electrocrystallized Co[TCNQ]2(H2O)2

  15. The importance of the stimulation vessels in the Brazilian offshore basins: a history of technological evolution; A importancia dos barcos de estimulacao em bacias offshore brasileiras: uma historia de evolucao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ricardo S.; Prata, Fernando Gaspar M.; Dean, Gregory D. [BJ Services do Brasil Ltda., RJ (Brazil)


    The Campos Basin is known as one of the most challenging deep water basins in the world. Currently there are thirty-seven platforms, more than a thousand oil wells, and about 4200 kilometers of submarine pipelines, having produced more than 1,2 billion barrels of oil per year and 15,7 million cubic meters of gas per day. The Campos Basin is responsible for more than 80% of Brazil's national production. Brazil intends to produce 2,2 million barrels of oil per day by 2007, when it will reach self-sufficiency. Therefore, the continued development of the offshore basins, such as Campos, Santos and Espirito Santo will be critical to meet this goal. In this context, the technological evolution of the vessels that render stimulation services is of fundamental importance to improve job quality, reduce time, protect with the environment, enable efficient communication, and ensure operational viability of new techniques. This paper reports on the history of this vessels, describing and illustrating new and state-of-the-art technology, historical cases of pioneering operations, data transmission in real time and the benefits for offshore operators with a global vision. (author)

  16. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent


    or anthropomorphism is important for the branding of new technology. Technology is seen as creating a techno-transcendence towards a more qualified humanity which is in contact with fundamental human values like intuition, vision, and sensing; all the qualities that technology, industrialization, and rationalization......, - in short modernity - have taken away from human existence. What old technology has removed now comes back through new technology promoting a better humanity. The present article investigates how digital technology and affects are presented and combined, with examples from everyday imagery, e.g. TV......Samsung introduced in 2008 a mobile phone called "Soul" made with a human touch and including itself a "magic touch". Through the analysis of a Nokia mobile phone TV-commercials I want to examine the function and form of digital technology in everyday images. The mobile phone and its digital camera...

  17. Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances

    KAUST Repository

    Scaccabarozzi, A. D.


    In recent years, immense efforts in the organic electronics field have led to unprecedented progress and to devices of ever increasing performance. Despite these advances, new opportunities are sought in order to widen the applications of organic-based technologies and expand their functionalities and features. For this purpose, use of multicomponent systems seems an interesting approach in view of, e.g., increasing the mechanical flexibility and stability of organic electronic products as well as introducing other features such as self-encapsulation. One specific strategy is based on blending polymeric insulators with organic semiconductors; which has led to a desired improvement of the mechanical properties of organic devices, producing in certain scenarios robust and stable architectures. Here we discuss the working principle of semiconductor:insulator blends, examining the different approaches that have recently been reported in literature. We illustrate how organic field-effect transistors (OFET)s and organic solar cells (OPV)s can be fabricated with such systems without detrimental effects on the resulting device characteristics even at high contents of the insulator. Furthermore, we review the various properties that can be enhanced and/or manipulated by blending including air stability, mechanical toughness, H- vs. J-aggregation, etc. This journal is © the Partner Organisations 2014.

  18. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  19. Importance of hemodialysis-related outcomes: comparison of ratings by a self-help group, clinicians, and health technology assessment authors with those by a large reference group of patients. (United States)

    Janssen, Inger M; Scheibler, Fueloep; Gerhardus, Ansgar


    The selection of important outcomes is a crucial decision for clinical research and health technology assessment (HTA), and there is ongoing debate about which stakeholders should be involved. Hemodialysis is a complex treatment for chronic kidney disease (CKD) and affects many outcomes. Apart from obvious outcomes, such as mortality, morbidity and health-related quality of life (HRQoL), others such as, concerning daily living or health care provision, may also be important. The aim of our study was to analyze to what extent the preferences for patient-relevant outcomes differed between various stakeholders. We compared preferences of stakeholders normally or occasionally involved in outcome prioritization (patients from a self-help group, clinicians and HTA authors) with those of a large reference group of patients. The reference group consisted of 4,518 CKD patients investigated previously. We additionally recruited CKD patients via a regional self-help group, nephrologists via an online search and HTA authors via an expert database or personal contacts. All groups assessed the relative importance of the 23 outcomes by means of a discrete visual analog scale. We used descriptive statistics to rank outcomes and compare the results between groups. We received completed questionnaires from 49 self-help group patients, 19 nephrologists and 18 HTA authors. Only the following 3 outcomes were ranked within the top 7 outcomes by all 4 groups: safety, HRQoL and emotional state. The ratings by the self-help group were generally more concordant with the reference group ratings than those by nephrologists, while HTA authors showed the least concordance. Preferences of CKD patients from a self-help group, nephrologists and HTA authors differ to a varying extent from those of a large reference group of patients with CKD. The preferences of all stakeholders should form the basis of a transparent approach so as to generate a valid list of important outcomes.

  20. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T. (Center for Nanoscale Materials)


    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  1. Unraveling the origin of the orientation of Ir complexes doped in organic semiconducting layers (United States)

    Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo


    Emitting dipole orientation (EDO) is an important issue of emitting materials in organic light-emitting diodes for an increase of outcoupling efficiency of light. The origin of preferred orientation of emitting dipole of iridium-based heteroleptic phosphorescent dyes doped in organic layers is revealed by simulation of vacuum deposition using molecular dynamics along with quantum mechanical characterization of the phosphors. Consideration of both the electronic transitions in a molecular frame and the orientation of the molecules at the vacuum/molecular film interface allows quantitative analyses of the EDO depending on host molecules and dopant structures. Interactions between the phosphor and nearest host molecules on the surface, minimizing the non-bonded van der Waals and electrostatic interaction energies determines the molecular alignment during the vacuum deposition. Parallel alignment of the main cyclometalating ligands in the molecular complex due to host interactions rather than the ancillary ligand orienting to vacuumleads to the horizontal EDO.

  2. Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals (United States)

    Sangeetha, N. S.; Smetana, V.; Mudring, A.-V.; Johnston, D. C.


    Crystals of SrMn2Sb2 and BaMn2Sb2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ , heat capacity Cp, and magnetic susceptibility χ measurements versus temperature T , and magnetization versus field M (H ) isotherm measurements. SrMn2Sb2 adopts the trigonal CaAl2Si2 -type structure, whereas BaMn2Sb2 crystallizes in the tetragonal ThCr2Si2 -type structure. The ρ (T ) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn2Sb2 and 0.16 eV for BaMn2Sb2 . The χ (T ) and Cp(T ) data reveal antiferromagnetic (AFM) ordering at TN = 110 K for SrMn2Sb2 and 450 K for BaMn2Sb2 . The anisotropic χ (T ≤TN) data also show that the ordered moments in SrMn2Sb2 are aligned in the hexagonal a b plane, whereas the ordered moments in BaMn2Sb2 are aligned collinearly along the tetragonal c axis. The a b -plane M (H ) data for SrMn2Sb2 exhibit a continuous metamagnetic transition at low fields 0 survey of the literature for Mn pnictides with the CaAl2Si2 and ThCr2Si2 crystal structures show that the TN values for the CaAl2Si2 -type compounds are much smaller than those for the ThCr2Si2 -type materials.

  3. Ratiometric detection of copper ions and alkaline phosphatase activity based on semiconducting polymer dots assembled with rhodamine B hydrazide. (United States)

    Sun, Junyong; Mei, Han; Gao, Feng


    The rational surface functionalization of semiconducting polymer dots (Pdots) has attracted much attention to extend their applications in fabricating chemo/biosensing platform. In this study, a novel ratiometric fluorescent sensing platform using functionalized Pdots as probes for fluorescence signal transmission has been designed for sensing Cu(Ⅱ) and activity of alkaline phosphatase (ALP) with high selectivity and enhanced sensitivity. The highly fluorescent Pdots were firstly prepared with Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) via nanoprecipitation method, and then assembled with non-fluorescent rhodamine B hydrazide (RB-hy), which shows special binding activity to Cu(Ⅱ), through adsorption process to obtain functionalized nanohybrids, Pdots@RB-hy. As thus, a FRET donors/acceptors pair, in which PFBT Pdots act as energy donors while RB-hy-Cu(II) complexes act as energy acceptors were constructed. On the basis of the varies in fluorescence intensities of donors/acceptors in the presence of different amounts of Cu(II), a ratiometric method for sensing Cu(II) has been proposed. The proposed ratiometric Cu(II) sensor shows a good linear detection range from 0.05 to 5μM with a detection limit of 15nM. Furthermore, using the Pdots@RB-hy-Cu(II) system as signal transducer, a ratiometric sensing for alkaline phosphatase (ALP) activity has also been established with pyrophosphate (PPi) as substrates. The constructed ratiometric sensor of ALP activity displays a linear detection range from 0.005 to 15UL -1 with a detection limit of 0.0018UL -1 . The sensor was further successfully used for ALP activity detection in human serum with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique. (United States)

    Wang, Yilei; Pillai, Suresh Kumar Raman; Chan-Park, Mary B


    Single-walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next-generation printed electronic transistor materials. However, large-scale solution-based parallel assembly of SWNTs to obtain high-performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution-based technique can achieve this. Herein a novel solution-based technique, the immersion-cum-shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s-SWNTs). By immersing an aminosilane-treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT-based field-effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 10(4) and mobility 46.5 cm(2) /Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm(2) and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of parallel process is large-scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large-area electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dielectric properties and soft modes in semiconducting (Pb, Sn, Ge)Te (United States)

    Jantsch, W.

    The narrow-gap semiconductors PbTe, SnTe, GeTe and their alloys exhibit a tendency for a ferroelectric displacive phase transition from a high-temperature rocksalt structure to a rhombohedral phase at low temperatures. The critical temperatures vary within an exceedingly wide range: -70 K(PbTe) up to 650 K(GeTe). Owing to the outstanding simplicity of their crystal structure and their well-known electronic properties, the instability and the chemical trends of Tc can be understood in terms of a quantitative pseudopotential model (Sect.5.2). Phenomenological models explain the temperature dependence of the soft mode outside the critical regime fairly well (Sect.5.1). Critical phenomena, however, deserve further attention: the anomalies of the static dielectric constant (Sects.3.1 and 5.3) and the influence of defects are possibly related to a central peak. Additional systematic investigations on the nature and influence of defects are required to obtain more insight into this highly interesting field of general importance.

  6. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films (United States)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu


    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  7. Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Smith, D.L.; Pashchenko, A.B.


    The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: 27 Al (n, 2n) 26 Al, 63 Cu(n,p) 63 Ni, 94 Mo(n,p) 94 Nb, 109 Ag(n,2n) 108m Ag, 179 Hf(n,2n) 178m2 Hf, 182 W(n,n ' a) 178m2 Hf, 151 Eu(n,2n) 150 gEu, 153 Eu(n,2n) 152+m2 Eu, 159 Tb(n, 2n) 158 Tb, 158 Dy(n,p) 158 Tb, 193 Ir(n,2n) 192m2 Ir, 187 Re(n,2n) 186m Re, 62 Ni(nγ) 63 Ni, 98 Mo(n,γ) 99 Mo(β-) 99 Tc, 165 Ho(n,γ) 166m Ho and 191 Ir(n,γ) 192m2 Ir. this paper documents progress achieved from the start of the program through mid- 1993

  8. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)


    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  9. DFT study of the effect of fluorine atoms on the crystal structure and semiconducting properties of poly(arylene-ethynylene) derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Mónica, E-mail: [Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071 Albacete (Spain); García, Gregorio [Department of Chemistry, University of Burgos, Plaza Misael Bañuelos, s/n, 09001 Burgos (Spain); Garzón, Andrés [Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, Paseo de los Estudiantes, 02071 Albacete (Spain); Granadino-Roldán, José M.; Fernández-Gómez, Manuel [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén (Spain)


    The effect of fluorine substitution on the molecular structure, crystal packing, and n-type semiconducting properties of a set of poly(arylene-ethynylene) polymers based on alternating thiadiazole and phenyl units linked through ethynylene groups has been studied by means of Density Functional Theory. As a result, an enlargement in the interplanar distance between cofacial polymer chains, as well as a decrease of the electronic coupling and electron mobility is predicted. On the other hand, fluorination could facilitate electron injection into the material. A polymer containing both alkoxy pendant chains and fluorine atoms is proposed as a compromise solution between efficiency of electron injection and charge transport within the material.

  10. Crystal Structure and Band-Gap Engineering of a Semiconducting Coordination Polymer Consisting of Copper(I) Bromide and a Bridging Acceptor Ligand. (United States)

    Okubo, Takashi; Himoto, Kento; Tanishima, Koki; Fukuda, Sanshiro; Noda, Yusuke; Nakayama, Masanobu; Sugimoto, Kunihisa; Maekawa, Masahiko; Kuroda-Sowa, Takayoshi


    A new semiconducting 3D coordination polymer, [Cu 2 Br 2 (ttz)] n (1), with an acceptor bridging ligand, 1,2,4,5-tetrazine (ttz), was synthesized. The complex shows large absorption bands extending to the near-IR region, indicating a small band gap in the coordination polymer. This complex shows higher conductivity than those of [CuBr(pyz)] n (2), including pyrazine (pyz) with a higher lowest unoccupied molecular orbital level. We performed density functional theory band calculations using the VASP program to understand the electronic states and conducting paths of the coordination polymer.

  11. Optimization of the bulk heterojunction composition for enhanced photovoltaic properties: correlation between the molecular weight of the semiconducting polymer and device performance. (United States)

    Nicolet, Célia; Deribew, Dargie; Renaud, Cedric; Fleury, Guillaume; Brochon, Cyril; Cloutet, Eric; Vignau, Laurence; Wantz, Guillaume; Cramail, Henri; Geoghegan, Mark; Hadziioannou, Georges


    Herein we propose an approach toward the optimization of the photovoltaic performance of bulk heterojunctions by tuning the composition of the active layer with respect to the molecular weight of the semiconducting polymer. We used a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blend as a typical system and varied the molecular weight of the P3HT semiconducting polymer in order to determine its influence on the bulk heterojunction morphology as well as on the optoelectronic characteristics of the device. We have systematically mapped out the phase diagram for different molecular weight P3HTs blended with PCBM and observed the presence of a eutectic composition, which shifts to higher content of P3HT for lower molecular weight P3HTs. This shift inherent to the P3HT molecular weight is also apparent in the photovoltaic performance as the eutectic composition corresponds to the best of the photovoltaic properties. The P3HT molecular weight dependence of the eutectic composition is due to the molecular weight dependence of the P3HT crystallization behavior, which leads to dramatic morphological changes of the bulk heterojunction.

  12. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model. (United States)

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash


    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility (United States)

    Lin, Hung-Cheng; Stehlin, Fabrice; Soppera, Olivier; Zan, Hsiao-Wen; Li, Chang-Hung; Wieder, Fernand; Ponche, Arnaud; Berling, Dominique; Yeh, Bo-Hung; Wang, Kuan-Hsun


    Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors. PMID:26014902

  14. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people......Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels....... The boundaries of firms and countries are increasingly porous and imprecise, because firms use alliances and outsourcing, and countries are rarely technologically self-sufficient. On the other hand, locations remain distinct and idiosyncratic, with innovation systems remaining largely nationally bound. Knowledge...

  15. The importance of learning when supporting emergent technologies for energy efficiency-A case study on policy intervention for learning for the development of energy efficient windows in Sweden

    International Nuclear Information System (INIS)

    Kiss, Bernadett; Neij, Lena


    The role of policy instruments to promote the development and diffusion of energy efficient technologies has been repeatedly accentuated in the context of climate change and sustainable development. To better understand the impact of policy instruments and to provide insights into technology change, assessments of various kinds are needed. This study analyzes the introduction and development of energy efficient windows in Sweden and the policy incentives applied to support this process. The study focuses on the assessment of technology and market development of energy efficient windows in Sweden; and by applying the concept of learning, it assesses how conditions for learning-by-searching, learning-by-doing, learning-by-using and learning-by-interacting have been supported by different policies. The results show successful progress in technology development and an improvement in best available technology of Swedish windows from 1.8 W/m 2 K in the 1970s to 0.7 W/m 2 K in 2010; in the same time period the market share of energy efficient windows increased from 20% in 1970 (average U-value of 2.0 W/m 2 K) to 80-85% in 2010 (average U-value of 1.3-1.2 W/m 2 K). The assessment shows that various policy instruments have facilitated all four learning processes resulting in the acknowledged slow but successful development of energy efficient windows. - Highlights: → Policy instruments for learning and technology change are assessed. → The development and diffusion of energy efficient windows (EEWs) in Sweden is taken as showcase. → Learning has been supported by various policies resulting in successful development of EEWs. → The thermal performance of EEWs improved with 2/3 and their market share increased by 3/5 in 40 years. → Main policies for learning are RD and D, technology procurement, testing and voluntary initiatives.

  16. The Most Important Maglev Applications

    Directory of Open Access Journals (Sweden)

    Hamid Yaghoubi


    Full Text Available The name maglev is derived from magnetic levitation. Magnetic levitation is a highly advanced technology. It has various uses. The common point in all applications is the lack of contact and thus no wear and friction. This increases efficiency, reduces maintenance costs, and increases the useful life of the system. The magnetic levitation technology can be used as an efficient technology in the various industries. There are already many countries that are attracted to maglev systems. Many systems have been proposed in different parts of the worlds. This paper tries to study the most important uses of magnetic levitation technology. The results clearly reflect that the maglev can be conveniently considered as a solution for the future engineering needs of the world.

  17. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the superconducting material and device (technical development of the Josephson device hybrid system); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (Josephson soshi hybrid system no gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.

  18. Neutron-diffraction measurements of an antiferromagnetic semiconducting phase in the vicinity of the high-temperature superconducting state of K(x)Fe(2-y)Se2. (United States)

    Zhao, Jun; Cao, Huibo; Bourret-Courchesne, E; Lee, D-H; Birgeneau, R J


    The recently discovered K-Fe-Se high-temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting, or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al., Phys. Rev. X 1, 021020 (2011); and W. Li et al., Phys. Rev. Lett. 109, 057003 (2012)]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the sqrt[5]×sqrt[5] block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor.

  19. Importance of process oriented organizations (United States)

    Bedic, S.


    This paper analyzes different types of start-up aerospace organizations, common mistakes and the importance of process oriented management systems. It is made using experience in starting up 5 airlines, one microlight aircraft production, two GLXP teams and 4 space technology companies' startup.

  20. The transport and optical sensing properties of MoS2, MoSe2, WS2 and WSe2 semiconducting transition metal dichalcogenides (United States)

    Nayeri, Maryam; Moradinasab, Mahdi; Fathipour, Morteza


    In this paper, we investigate the transport and optical properties of the monolayer semiconducting transition metal dichalcogenides (STMDs) in the absence and presence of the NH3, NO, NO2, and O2 gas molecules to assess their potentials as gas sensors. The first-principles calculations based on density functional theory indicate that absorption of the O2, NO2, NO gas molecules on the surface of these materials leads to significant changes in their transmission spectrum. Our calculations predict a charge transfer between the adsorbent gas and any of these STMDs. However, the presence of NH3 molecule has little effect on the transport properties of these materials. The results show that when the STMDs are exposed to NO, NO2, and O2 molecules, the dielectric function changes. Therefore, these materials can be employed as the sensing element in an optical gas sensor.

  1. Influence of van der Waals contact forces on the deformation mechanics of thin flexible membranes assembled from metallic or semiconducting single-wall carbon nanotubes (United States)

    Hobbie, Erik K.; Harris, John; Iyer, Swathi; Huh, Ji Yeon; Fagan, Jeffrey A.; Hudson, Steven D.; Stafford, Christopher M.


    Thin membranes of single-wall carbon nanotubes (SWCNTs) assembled from either metallic or semiconducting SWCNTs are subjected to the compressive strains imposed by a stretched elastic substrate, and the mechanical characteristics of the membranes are inferred from the topography of the wrinkling instability that emerges. By depositing comparable films on quartz, we also use optical (UV-Vis-NIR) absorption spectroscopy to compute the effective London dispersion spectra of the purified materials, and from these we compute the attractive part of the van der Waals potential between nanotubes of identical electronic type as a function of separation and relative orientation. We find significant differences in the strength and shape of the contact potential depending on electronic type, which in turn are evident in the modulus and yield strain measured from the deformation of the films. Supported by the NSF through CMMI-0969155 and the DOE through DE-FG36-08GO88160.

  2. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers. (United States)

    Chen, X; Bhola, B; Huang, Y; Ho, S T


    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  3. Possible High Thermoelectric Power in Semiconducting Carbon Nanotubes ˜A Case Study of Doped One-Dimensional Semiconductors˜ (United States)

    Yamamoto, Takahiro; Fukuyama, Hidetoshi


    We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.

  4. Neutron scattering measurements of spatially anisotropic magnetic exchange interactions in semiconducting K0.85 Fe1.54Se2 (TN = 280 K. (United States)

    Zhao, Jun; Shen, Yao; Birgeneau, R J; Gao, Miao; Lu, Zhong-Yi; Lee, D-H; Lu, X Z; Xiang, H J; Abernathy, D L; Zhao, Y


    We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic order in semiconducting K(0.85)Fe(1.54)Se(2) (T(N) = 280 K). We show that the spin-wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic inplane couplings at T = 5 K. At high temperature (T = 300 K) above T(N), short-range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the inplane anisotropic magnetic couplings are a fundamental property of the iron-based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.

  5. Determination of optical dispersion and film thickness of semiconducting disordered layers by transmission measurements: Application for chemically vapor deposited Si and SnO2 film (United States)

    Davazoglou, D.


    A method is presented for the determination of the optical dispersion and thickness of thin semiconducting disordered layers, or stacks of such layers, deposited on fully or partly transparent substrates using transmission measurements. The method consists in fitting to the experimentally recorded spectra, theoretical ones, generated simulating the optical dispersion of the films involved with the help of the physical model proposed by Forouhi and Bloomer for amorphous semiconductors [Phys. Rev. B 34, 7018 (1986)]. The fit is made using standard regression analysis techniques that allow determination of the model parameters corresponding to these films. This method is applied for amorphous Si layers deposited on fused silica substrates by low pressure chemical vapor deposition (CVD) and SnO2 films grown by atmospheric pressure CVD on glass substrates and give results that are in agreement with those reported in the literature.

  6. CaB(2)C(2): Reinvestigation of a Semiconducting Boride Carbide with a Layered Structure and an Interesting Boron/Carbon Ordering Scheme. (United States)

    Albert, Barbara; Schmitt, Konny


    Calcium diboride dicarbide, CaB(2)C(2), was synthesized as a crystalline powder and investigated by electron energy loss spectroscopy, X-ray powder diffractometry, conductivity measurements, and LMTO band structure calculations. A new structure model was derived, and the crystal structure was refined by Rietveld methods in the tetragonal space group I4/mcm (No. 140, a = 537.33(1) pm and c = 741.55(2) pm, Z = 4). The boron and carbon atoms are well ordered within layers consisting of four- and eight-membered rings. A convincing coloring scheme is proven by the detection of a superstructure reflection. An earlier assignment of the compound into the LaB(2)C(2) structure family (space group P&fourmacr;2c or P4(2)/mmc, respectively) has been shown to be incorrect. LMTO band structure calculations suggest semiconducting behavior for CaB(2)C(2), which has been confirmed by conductivity measurements.

  7. `Technology for Advanced Treatment of High Melting Point Metal-Based Material,` local research and development of important technology for fiscal 1997. Development of materials creation technology for high efficiency power generator components; 1997 nendo juyo chiiki gijutsu kenkyu kaihatsu. `Koyuten kinzokukei buzai no kodo kako gijutsu` (kokoritsu hatsuden`yo buzai sosei gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)



    Efforts are made for the creation of high melting point metal-base materials to replace the currently-used Ni-base superalloys for the turbine to withstand higher operating temperatures. The main efforts made in fiscal 1997 are outlined. As in fiscal 1996, Nb-base solution alloys, in which solution reinforcement elements such as Mo and W are alloyed, are manufactured by button arc melting and tested for mechanical properties and texture/characteristics. In the designing and evaluation for a strongest Nb-base composite material, Nb-base composite materials are manufactured by use of particle dispersion-strengthening attained by addition of intermetallic compounds or elements to contribute to the formation of oxides, carbides, or nitrides. Nb-base composite materials may also be manufactured by use of eutectic-strengthening attained by utilizing crystallization in the process of coagulation. The resultant Nb-base composite materials are evaluated for their dynamic characteristics at high temperatures. In the development and evaluation of technologies for creating Nb-base materials for high-temperature components, larger specimens as heavy as several kg are tested in line with small specimens for basic studies, and the results are utilized for alloy designing for high-temperature materials. 50 refs., 97 figs., 15 tabs.

  8. Technology Transfer (United States)

    Bullock, Kimberly R.


    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  9. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.


    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  10. Syntheses and characterization of thin films of Te{sub 94}Se{sub 6} nanoparticles for semiconducting and optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Habib, Sami S.; Memic, Adnan [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Alharbi, Najlaa D. [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Sciences Faculty for Girls, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Babkair, Saeed S. [Center of Nanotechnology, Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Zishan H. [Department of Applied Sciences and Humanities, Jamia Millia Islamia (Central University), New Delhi-110025 (India)


    Thin films of Te{sub 94}Se{sub 6} nanoparticles were synthesized using the physical vapor condensation technique at different argon (Ar) pressures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. XRD results show that the as-grown films have a polycrystalline structure. SEM images display uniform nanoparticles in these films where the size increases from ∼ 12 to about 60 nm by decreasing Ar pressure from 667 to 267 Pa. These as-grown thin films were found to have direct band gaps, whose value decreases with increasing particle size. The absorption and extinction coefficients for these films were also investigated. PL emission spectra exhibit three bands peaking at 666, 718 and 760 nm, while Raman spectra displayed three bands located at 123, 143 and 169 cm{sup −1}. No significant changes are observed in positions or intensities of these bands by decreasing the Ar pressure, except that of the last band of PL; where the intensity increases. The obtained results on this Te{sub 94}Se{sub 6} nanomaterial especially its controlled direct bandgap might be useful for development of optical disks and other semiconducting devices. - Highlights: ► Thin films of Te{sub 94}Se{sub 6} nanoparticles were grown at different argon (Ar) pressures. ► Size of the nanoparticles increased by decreasing Ar pressure. ► They have direct band gap, whose value decreases by increasing the particle size. ► These nanomaterials might be useful for development of semiconducting devices.

  11. Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. (United States)

    Richards, Jeffrey J; Whittle, Curtis L; Shao, Guozheng; Pozzo, Lilo D


    Aqueous dispersions of semiconducting nanoparticles have shown promise as a robust and scalable platform for the production of efficient polymer/fullerene active layers in organic photovoltaic applications. Semiconducting nanoparticles are a composite of both an n-type and p-type semiconductor contained within a single nanoparticle. In order to realize efficient organic solar cells from these materials, there is a need to understand how the size and internal distribution of materials within each nanoparticle contributes to photocurrent generation in a nanoparticle-derived device. Therefore, characterizing the internal distribution of conjugated polymer and fullerene within the dispersion is the first step to improving performance. To date, study of polymer/fullerene structure within these nanoparticles has been limited to microscopy techniques of deposited nanoparticles. In this work, we use contrast variation with small-angle neutron scattering to determine the internal distribution of poly(3-hexylthiophene) and [6,6]phenyl-C61-butyric acid methyl ester inside the composite nanoparticles as a function of formulation while in dispersion. On the basis of these measurements, we connect the formulation of these nanoparticles with their internal structure. Using electrostatic deposited monolayers of these nanoparticles, we characterize intrinsic charge generation using photoconductive atomic force microscopy and correlate this with structures determined from small-angle neutron scattering measurements. These techniques combined show that the best performing composite nanoparticles are those that have a uniform distribution of conjugated polymer and fullerene throughout the nanoparticle volume such that electrons and holes are easily transported out of the particle.

  12. Experimental Equipment and Basic Technological Methods of Obtaining Cavitation Protective Coatings on Working Surfaces of Steam Turbine Blades Made of Titanium Alloy VT6 in Order to Replace Imports of Similar Products

    Directory of Open Access Journals (Sweden)

    Bilous, V.A.


    Full Text Available The experimental equipment and basic technological methods of obtaining сavitation protective coatings on the working surfaces of blades of steam turbines from titanium alloy VT6 have been created. The selection and the basis of the composition and conditions of synthesis of optimal coating for hardening blades have been justified. The parameters of deposition process of coatings on the blade model have been worked, the experimental technological deposition process of hardening coatings has been created. The tests of titanium alloy VT6 samples with the preferred coatings in simulation conditions close to operational have been conducted. The coatings on the blade model of length up to 130 cm and weight up to 30 kg have been deposited. The velocity of the TiN coating depositing was 10 mkm/h.

  13. Seafood Technology

    DEFF Research Database (Denmark)

    Børresen, Torger

    This presentation will fill the total picture of this conference between fisheries and aquaculture, blue biotech and bioconservation, by considering the optimal processing technology of marine resources from the raw material until the seafood reaches the plate of the consumer. The situation today...... must be performed such that total traceability and authenticity of the final products can be presented on demand. The most important aspects to be considered within seafood technology today are safety, healthy products and high eating quality. Safety can be divided into microbiological safety...... and not presenting any safety risk per se. Seafood is healthy due to the omega-3 fatty acids and the nutritional value of vitamins, peptides and proteins. The processing technology must however be performed such that these valuable features are not lost during production. The same applies to the eating quality. Any...

  14. Smart technology

    International Nuclear Information System (INIS)

    Bruckner, D.G.


    The success of smart technology in the pursuit of the Gulf War has accentuated the awareness of how the Safeguards and Security disciplines are changing in response to new weaponry. Throughout the Department of Energy Integrated Complex (IC) Safeguards and Security efforts such as: Protection Programs Operations; Materials, Controls and Accountability; Information Security; Computer Security; Operational Security; Personnel Security, Safeguards and/or Security (S and S) surveys, and Inspections and Evaluations are undergoing a reassessment and refocusing. Some of this is in response to such things as the DOE initiated Freeze Report and the Drell Report. An important aspect is also technological, adjusting the way business is done in light of the weapons, tools and processes/procedures becoming available. This paper addresses the S and S issues with the promise of using smart technology to develop new approaches and equipment across the IC

  15. Technology transfer

    International Nuclear Information System (INIS)



    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  16. Support to NPP operation and maintenance technology risk management. A concept for establishing criteria and procedure for the selection of components with respect to their importance. Stage 3.1. NPP equipment reliability management

    International Nuclear Information System (INIS)

    Stvan, F.


    A proposal was developed for a procedure using the deterministic approach to the assessment of components from the operational point of view and other aspects that cannot be directly and readily quantified and of the probabilistic approach for the assessment of component importance with respect to nuclear safety. A specific PSA study performed for the Dukovany NPP was employed. The structure of the report is as follows: (1) Aspects of component selection; (2) Introductory procedure; (3) Criteria for the selection of components with respect to their importance (4) Assessing the priority of use of the assets - effect on production, safety, and profit; (5) Assessment of the risk aspect of the assets - effect on major processes; (6) Assessment of the level of use of the assets; (7) Assessment of the structure of the assets - optimal structure for maintenance in relation to the major processes; (8) Assessment of the criteria for estimating the importance of the components; (9) Probabilistic assessment of importance from the safety aspect by means of PSA; and (10) Deterministic assessment of importance from the safety aspect. (P.A.)

  17. The Importance of Being Earnest


    Barbas, Helena Maria D. Freitas Mesquita


    UID/SOC/04647/2013 Video games are driving technological and societal advancements that serve gamers and non-gamers alike from entertainment to edutainment. Video game software is one of the fastest growing industries in the worldwide economy. 75% of the most frequent gamers believe that playing video games provides mental stimulation or education. Recent cognitive theories confirm that gameplay affects the brain. So, inspired by Oscar Wilde’s “boutade” on his comedy The Importance of bein...

  18. Conducting a Technology Audit (United States)

    Flaherty, William


    Technology is a critical component in the success of any high-functioning school district, thus it is important that education leaders should examine it closely. Simply put, the purpose of a technology audit is to assess the effectiveness of the technology for administrative or instructional use. Rogers Public Schools in Rogers, Arkansas, recently…

  19. Technological Style is History

    DEFF Research Database (Denmark)

    Blond, Lasse

    The effort to comprehend innovation across cultures and time highlights the importance of the explicating factors external to technology. It becomes relevant to nuance or differentiate the understanding of social and cultural responses to adopted technologies by recognizing that technology shapes...

  20. Technology Transfer (United States)

    Smith, Nanette R.


    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  1. Brief: Managing computing technology

    International Nuclear Information System (INIS)

    Startzman, R.A.


    While computing is applied widely in the production segment of the petroleum industry, its effective application is the primary goal of computing management. Computing technology has changed significantly since the 1950's, when computers first began to influence petroleum technology. The ability to accomplish traditional tasks faster and more economically probably is the most important effect that computing has had on the industry. While speed and lower cost are important, are they enough? Can computing change the basic functions of the industry? When new computing technology is introduced improperly, it can clash with traditional petroleum technology. This paper examines the role of management in merging these technologies

  2. Price corrected domestic technology assumption-a method to assess pollution embodied in trade using primary official statistics only. with a case on CO2 emissions embodied in imports to Europe

    NARCIS (Netherlands)

    Tukker, A.; Koning,; Wood, R.; Moll, S.; Bouwmeester, M.C.


    Environmentally extended input output (EE IO) analysis is increasingly used to assess the carbon footprint of final consumption. Official EE IO data are, however, at best available for single countries or regions such as the EU27. This causes problems in assessing pollution embodied in imported

  3. Fundamentals of technology roadmapping

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.; Bray, O.H.


    Technology planning is important for many reasons. Globally, companies are facing many competitive problems. Technology roadmapping, a form of technology planning can help deal with this increasingly competitive environment. While it has been used by some companies and industries, the focus has always been on the technology roadmap as a product, not on the process. This report focuses on formalizing the process so that it can be more broadly and easily used. As a DOE national security laboratory with R&D as a major product, Sandia must do effective technology planning to identify and develop the technologies required to meet its national security mission. Once identified, technology enhancements or new technologies may be developed internally or collaboratively with external partners. For either approach, technology roadmapping, as described in this report, is an effective tool for technology planning and coordination, which fits within a broader set of planning activities. This report, the second in a series on technology roadmapping, develops and documents this technology roadmapping process, which can be used by Sandia, other national labs, universities, and industry. The main benefit of technology roadmapping is that it provides information to make better technology investment decisions by identifying critical technologies and technology gaps and identifying ways to leverage R&D investments. It can also be used as a marketing tool. Technology roadmapping is critical when the technology investment decision is not straight forward. This occurs when it is not clear which alternative to pursue, how quickly the technology is needed, or when there is a need to coordinate the development of multiple technologies. The technology roadmapping process consists of three phases - preliminary activity, development of the technology roadmap, and follow-up activity.

  4. Photo-induced site-specific nitridation of plasma-deposited B 10C 2H x films: A new pathway toward post-deposition doping of semiconducting boron carbides (United States)

    Behera, Swayambhu; Wilks, Justin; Dowben, Peter A.; Driver, M. Sky; Caruso, A. N.; Kelber, Jeffry A.


    We show that dopant impurities can be introduced in a controlled, site-specific manner into pre-deposited semiconducting boron carbide films. B―N bond formation has been characterized by X-ray photoelectron spectroscopy for semiconducting B 10C 2H x films exposed to vacuum ultraviolet photons in the presence of NH 3. Core level photoemission data indicate that B―NH 2 bonds are formed at B sites bonded to other boron atoms (B―B), and not at boron atoms adjacent to carbon atoms (B―C) or at carbon atom sites. Nitridation obeys diffusion-limited kinetics. These results indicate that dopant species can be introduced in a controlled, site-specific manner into pre-deposited boron carbide films, as opposed to currently required dopant incorporation during the deposition process.

  5. The Human Technology

    DEFF Research Database (Denmark)

    Fausing, Bent

    towards this very special and lost humanity. Without the technology, no special humanity is the prophecy. This personification or anthropomorphism is important for the branding of new technology. The technology is seen as creating a technotranscendens towards a more qualified humanity, which is in contact...... with fundamental human values like intuition, vision and sensing; all the qualities the technology, the industrialisation and rationalisation, or in short modernity, has been criticized for having taken away from human existence. What technology has taken away now comes back through new technology as an aid...

  6. Laser Technology. (United States)

    Gauger, Robert


    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  7. New Mobile Technologies

    DEFF Research Database (Denmark)

    Tan, Su-En; Henten, Anders


    This paper takes a look at Clayton Christensen 's theory of disruptive technologies and how Christensen's theory relates to other innovation theories. It also proposes a new layer of analysis to this theory to better link the technology analysis to the market analysis of any given technology...... product. This layer suggests that complementarity and substitutability are important criteria for technologies to be market disruptions or sustaining changes....

  8. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

    KAUST Repository

    Lin, Yen-Hung


    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

  9. Secret of success for invention technology

    International Nuclear Information System (INIS)

    Kim, Gwan Hyeong


    This book deals with importance, meaning, history of invention technology, technique of invention technology, and invention in connection with the duties. It covers importance, meaning, flow of invention technology development, basis of invention technology development, development, development investment, development workforce of invention technology, and development of invention technology introduction. It also contains outline, research, management of technology development information, outline, research, management of patent information, and reality of invention technology research development.

  10. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong


    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  11. Sonochemical synthesis, characterization, thermal and semiconducting behavior of nano-sized azidopentaamminecobalt(III) complexes containing anion, CrO42-or Cr2O72. (United States)

    Bala, Ritu; Behal, Jagriti; Shah, Nikesh A; Rathod, K N; Prakash, Vinit; Khunt, Ranjan C


    New nano-sized cobalt(III) coordination complexes, [Co(NH 3 ) 5 N 3 ]CrO 4 (1N) and [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 (2N) were synthesized using an innovative sonochemical methodology based on reaction between [Co(NH 3 ) 5 N 3 ]Cl 2 and potassium salt of CrO 4 2- or Cr 2 O 7 2- in aqueous medium. These complexes were also compared with their respective bulks which were synthesized under identical conditions in the absence of sonicaion. All the complexes were characterized by elemental analysis and spectroscopic techniques (UV-visible and IR). Morphology and particle size of nano-sized complexes was determined by SEM and Zeta-sizer respectively. TGA was used for comparative thermal stability and XRD to identify the phase difference between nano structures and bulk complexes. Furthermore, the electrical property was investigated and all complexes were found to be electrical semiconducting materials and 2N shows better result than others. The single crystals X-ray structure study of new [Co(NH 3 ) 5 N 3 ]Cr 2 O 7 revealed the presence of discrete ions, [Co(NH 3 ) 5 N 3 ] 2+ and Cr 2 O 7 2- , crystallizes in monoclinic, space group P c , with R=0.0636 in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels

    International Nuclear Information System (INIS)

    Lee, Jae-Bong; Yoon, Sang-In


    The beneficial effect of nitrogen alloying on the corrosion resistance of stainless steels has been attributed to the increase of the local pH within the active sites and the enhanced repassivation of the metastable pits. In order to better understand the effect of nitrogen alloying, in situ capacitance measurements and potentiostatic polarization were conducted for 316L and 316LN stainless steels with different nitrogen contents in deaerated 0.1 M Na 2 SO 4 and 0.1 M NaCl aqueous solutions. The Mott-Schottky plots obtained from the in situ capacitance measurements offered information on the donor concentration and the thickness of the space charge region within the passive film. The metastable pitting susceptibility was investigated by performing potentiostatic polarization tests. The results showed that nitrogen alloying decreased the donor densities and the number of metastable pits, while the absorption of chloride ions on the passive film had the opposite effect. Auger electron spectroscopy (AES) analysis demonstrated that nitrogen alloying enriched the chromium within the passive film. The relationship between the semiconducting properties of the passive film and the metastable pitting susceptibility was elucidated.

  13. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. (United States)

    Cao, Ziyang; Feng, Liangzhu; Zhang, Guobing; Wang, Junxia; Shen, Song; Li, Dongdong; Yang, Xianzhu


    Near-infrared (NIR) light-induced photothermal therapy (PTT) has attracted much interest in recent years. In the NIR region, tissue penetration ability of the second biological near-infrared window (1000-1350 nm) is recognized to be stronger than that of the first window (650-950 nm). However, NIR light absorbers in the second NIR region (NIR-II) have been scant even though various NIR light absorbers in the first NIR region (NIR-I) have been widely explored. In this work, a thieno-isoindigo derivative-based semiconducting polymer, PBTPBF-BT, were formulated into PEGylated nanoparticles. The obtained nanoparticle NP PBTPBF-BT exhibited strong absorption in NIR-II region, inherent high photothermal conversion efficacy, and excellent photostability. The in vitro and in vivo PTT study employing 1064 nm laser in NIR-II window revealed that NP PBTPBF-BT could efficiently ablate tumor cell at a power density of 0.42 W/cm 2 (the skin tolerance threshold value). Moreover, NP PBTPBF-BT with excellent photostability exhibited enhanced photoacoustic (PA) imaging of tumor in living mice, suggesting the great probability of using NP PBTPBF-BT for in vivo PA imaging-guided PTT in the NIR-II window. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films (United States)

    Liu, Meng; Gong, Yongshuai; Li, Zhilin; Dou, Meiling; Wang, Feng


    High-quality semi-conducting antimony sulfide (Sb2S3) thin films were directly deposited on the indium tin oxide (ITO) substrates by a green and facile one-step approach based on a hydrothermal reaction and post-annealing process without any assistance of complexing agents. The obtained Sb2S3 films possessed a relatively ideal S/Sb atomic ratio and a compact and continuous surface as the grain size of Sb2S3 was increased by high temperature annealing. The Sb2S3 film annealed at 450 °C exhibited the improved optical and electrical performances, with a narrow band gap of 1.63 eV, an electrical resistivity of 1.3 × 104 Ω cm, a carrier concentration of 7.3 × 1013 cm-3 and a carrier mobility of 6.4 cm2 V-1 s-1. This environmentally friendly synthetic route is promising for the preparation of high-quality Sb2S3 films to be used as absorber layer materials for high-performance solar cells.

  15. X-ray powder diffraction, phase transitions and optical characterization of the Cu(In1-xGa x)3Te5 semiconducting system

    International Nuclear Information System (INIS)

    Guevara, R.; Marin, G.; Delgado, J.M.; Wasim, S.M.; Rincon, C.; Perez, G. Sanchez


    Ingots of several compositions of the Cu(In 1-x Ga x ) 3 Te 5 semiconducting system were prepared by the Vertical Bridgman technique. X-ray powder diffraction, differential thermal analysis and optical absorption studies were used to characterize the fundamental structural aspects and phase transitions and determine the energy band gap E G of this alloy system. It is found that a solid solution with a tetragonal chalcopyrite-related structure is formed over the entire range of composition for temperatures below 620 deg. C. The parameters a and c at room temperature of the tetragonal unit cell were found to vary linearly with composition x from 6.1639(4) and 12.346(6) A for x = 0, to 5.93231(8) and 11.825(4) A for x = 1. A phase transition to a cubic phase in the whole range of composition was observed above 620 deg. C. The energy band gap has been determined to be direct and varies linearly with composition x

  16. Pressure-induced superconductivity in the semiconducting metal-cluster compounds Ga(Ta,Nb) sub 4 (Se,S) sub 8

    CERN Document Server

    Ni Bing Fa


    The effect of pressure on the electronic and structural properties of GaNb sub 4 Se sub 8 , GaNb sub 4 S sub 8 and GaTa sub 4 Se sub 8 has been investigated. Measurements of the magnetic susceptibility and electrical resistance at ambient pressure showed anomalies at low temperatures (GaNb sub 4 Se sub 8 and GaNb sub 4 S sub 8 : 35 K; GaTa sub 4 Se sub 8 : 55 K). These are suggested to be related to a structural distortion of a lower symmetry which results in a change of the population of spin states. The analysis of the temperature dependence of the electrical resistance as a function of increasing pressure shows a transition from semiconducting to metallic behavior in GaNb sub 4 Se sub 8 (p>22.5 GPa) and in GaTa sub 4 Se sub 8 (p>13 GPa) but not in GaNb sub 4 S sub 8 up to p=31 GPa. This has been explained to be due to stronger localized Nb(4d)-states (larger energy gap) than in GaNb sub 4 Se sub 8 and Ta(5d)-states in GaTa sub 4 Se sub 8. Most interesting is the observation of a pressure-induced supercondu...

  17. Technology Programme

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo


    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  18. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)


    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  19. A importância da Tecnologia da Informação na indústria de construção naval: um estudo de caso The importance Information Technology in the industry of naval construction: a case study

    Directory of Open Access Journals (Sweden)

    Newton Narciso Pereira


    Full Text Available Este artigo tem por objetivo apresentar como o uso da Tecnologia da Informação (TI pode trazer impactos na indústria de construção naval. A base teórica visa estabelecer como a TI fornece suporte no dia-a-dia dos estaleiros no Desenvolvimento de Novos Produtos (DNP "embarcações" e no Gerenciamento de Projetos (GP, maximizando a redução de custos e de tempo de projeto e construção de embarcações, melhorando a qualidade do produto final. O artigo foi realizado com a abordagem metodológica de estudo de caso, tendo como base dados levantados a partir de pesquisa de campo, com realização de entrevistas e visitas às instalações do estaleiro para colher as informações e elaborar o estudo de caso.This article has for objective to present the use of the Information Technology in the industry of naval construction.The theoretical bases aims at to establish as IT supplies to support in the shipyards day-by-day of the in the New Development Product (NDP "boats" and in the Project Management (PM maximizing the costs reduction and time of project and construction of boats, improving the final product quality. The paper was developed through case study methodological approach and based in data taken from field research, performed through interviews and visits to shipyard installations in order to gather information and elaborate a case study.

  20. Chain-like nanostructures from anisotropic self-assembly of semiconducting metal oxide nanoparticles with a block copolymer. (United States)

    Wang, Junzheng; Winardi, Suminto; Sugawara-Narutaki, Ayae; Kumamoto, Akihito; Tohei, Tetsuya; Shimojima, Atsushi; Okubo, Tatsuya


    A facile method is reported for the preparation of chain-like nanostructures by anisotropic self-assembly of TiO(2) and SnO(2) nanoparticles with the aid of a block copolymer in an aqueous medium. Well-defined crystallographic orientations between neighbouring nanoparticles are observed in TiO(2) nanochains, which is important for tailoring the grain boundaries and thus enhancing charge transport.

  1. Emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee


    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  2. Solar Cooker Technological Change

    DEFF Research Database (Denmark)

    Ahmad, Bashir


    The challenges which solar cooking technology is facing right now is discussed. Based on a field study in Madras and Gujarat, it is asserted that there is an important incompatibility between the technology and the every day real-life conditions of the "users" of solar cooker. An evaluation report...... on a solar cooker technology in Burkina Faso supports the findings of the study. It is concluded that the users and other important actors have to be incorporated in the technological development process of solar cookers in the future....

  3. Technological Networks (United States)

    Mitra, Bivas

    The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. However, recent years have witnessed a substantial new movement in network research. The focus of the research is shifting away from the analysis of small graphs and the properties of individual vertices or edges to consideration of statistical properties of large scale networks. This new approach has been driven largely by the availability of technological networks like the Internet [12], World Wide Web network [2], etc. that allow us to gather and analyze data on a scale far larger than previously possible. At the same time, technological networks have evolved as a socio-technological system, as the concepts of social systems that are based on self-organization theory have become unified in technological networks [13]. In today’s society, we have a simple and universal access to great amounts of information and services. These information services are based upon the infrastructure of the Internet and the World Wide Web. The Internet is the system composed of ‘computers’ connected by cables or some other form of physical connections. Over this physical network, it is possible to exchange e-mails, transfer files, etc. On the other hand, the World Wide Web (commonly shortened to the Web) is a system of interlinked hypertext documents accessed via the Internet where nodes represent web pages and links represent hyperlinks between the pages. Peer-to-peer (P2P) networks [26] also have recently become a popular medium through which huge amounts of data can be shared. P2P file sharing systems, where files are searched and downloaded among peers without the help of central servers, have emerged as a major component of Internet traffic. An important advantage in P2P networks is that all clients provide resources, including bandwidth, storage space, and computing power. In this chapter, we discuss these technological networks in detail. The review

  4. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard


    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  5. Taming Technology (United States)

    Branscomb, Lewis M.


    Reviews aspects of technology in our society: technology as a force for social change; reasons for the frustration and dissatisfaction with technology; how technology decentralizes power; the individual's influence; resolving conflicts in the ionized" society; regulation of technology; corporate responsibility; and the potential pitfalls for the…

  6. Thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vaney, J.B., E-mail: [Université de Lorraine, CNRS, Institut Jean Lamour, Parc de Saurupt, F-54042 NANCY Cedex (France); Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Piarristeguy, A.; Pradel, A. [Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Alleno, E. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France); Lenoir, B.; Candolfi, C.; Dauscher, A. [Université de Lorraine, CNRS, Institut Jean Lamour, Parc de Saurupt, F-54042 NANCY Cedex (France); Gonçalves, A.P.; Lopes, E.B. [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa/CFMCUL, Estrada Nacianal 10, P-2686-953 Sacavém (Portugal); Delaizir, G. [SPCTS, UMR CNRS 73125, Centre Européen de la Céramique, 87068 Limoges (France); Monnier, J. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France); Ribes, M. [Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Godart, C. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France)


    We report on the thermal behavior and thermoelectric properties of bulk chalcogenide glasses in the systems Cu{sub x}As{sub 40−x}Te{sub 60} (20≤x≤32.5) and Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y}, (0≤y≤9) synthesized by conventional melt-quenching techniques. The thermal stability of these glasses was probed by differential scanning calorimetry to determine the characteristic T{sub g} and ΔT temperatures, both of which increasing noticeably with y. Thermoelectric properties were found to be mainly influenced by the Cu concentration with respect to the Se content. The thermal conductivity is practically composition-independent throughout the compositional range covered. A maximum ZT value of 0.02 at 300 K increasing to 0.06 at 375 K was achieved for the composition Cu{sub 30}As{sub 10}Te{sub 54}Se{sub 6}. - Graphical abstract: Effect of substitution of Te by Se and As by Cu on thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses. - Highlights: • We studied substitution of Te by Se in Cu–As–Te thermoelectric chalcogenide glasses. • Cu–As–Te–Se glasses were prepared by conventional melt-quenching method. • Se inclusion increases thermal stability in Cu–As–Te glasses. • Increasing copper concentration enhances thermoelectric properties. • ZT of 0.02 was achieved at 300 K and 0.06 at 375 K.

  7. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. (United States)

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A


    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

  8. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)


    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  9. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.


    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  10. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Gong, Yongshuai; Li, Zhilin; Dou, Meiling, E-mail:; Wang, Feng, E-mail:


    Highlights: • A green and facile hydrothermal approach for Sb{sub 2}S{sub 3} films was developed. • The film possessed a relatively ideal S/Sb atomic ratio and a compact surface. • The grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. • The film annealed at 450 °C showed the improved optical and electrical performance. - Abstract: High-quality semi-conducting antimony sulfide (Sb{sub 2}S{sub 3}) thin films were directly deposited on the indium tin oxide (ITO) substrates by a green and facile one-step approach based on a hydrothermal reaction and post-annealing process without any assistance of complexing agents. The obtained Sb{sub 2}S{sub 3} films possessed a relatively ideal S/Sb atomic ratio and a compact and continuous surface as the grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. The Sb{sub 2}S{sub 3} film annealed at 450 °C exhibited the improved optical and electrical performances, with a narrow band gap of 1.63 eV, an electrical resistivity of 1.3 × 10{sup 4} Ω cm, a carrier concentration of 7.3 × 10{sup 13} cm{sup −3} and a carrier mobility of 6.4 cm{sup 2} V{sup −1} s{sup −1}. This environmentally friendly synthetic route is promising for the preparation of high-quality Sb{sub 2}S{sub 3} films to be used as absorber layer materials for high-performance solar cells.

  11. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. (United States)

    Maji, Basudeb; Samanta, Suman K; Bhattacharya, Santanu


    Single-stranded DNA (ss-DNA) oligomers (dA20, d[(C3TA2)3C3] or dT20) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA20 takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d[(C3TA2)3C3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at ∼90 °C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.

  12. Achievement report for fiscal 1996 on the research and development of technologies for important region. Development of control system technology for combustion with energy use rationalized, etc.; 1996 nendo juyo chiiki gijutsu kenkyu kaihatsu seika hokokusho. Energy shiyo gorika nensho nado seigyo system gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)



    The goal is to develop basic technologies to build an SiC device capable of service amid high-temperature surroundings for the advancement and optimization of combustion control systems. In an SiC semiconductor, the Si-C bond is broken when irradiated with ions, and this makes the occurrence of thermal oxidation easy to occur. In the study to form SiC into single-crystal substrates, a substrate with warpage of 10 micrometers or less and surface coarseness of 10 nanometers or less is realized. In the development of sensor technologies, the high-speed CVD (chemical vapor deposition) method is applied for the growth of crystals further on a 3C-SiC layer epitaxially grown by MBE (molecular beam epitaxy) surface control, which improves on layer characteristics. Element technologies are developed for the construction of a 3-terminal element (FET: field effect transistor), which is for the construction of a high-temperature, high-speed SiC device. An effort is made at achieving 3C-SiC hetero-epitaxial growth, etc., on a 3-inch Si substrate using an SiC crystal film formation experimenting apparatus, which aims at constructing a control device. Concerning the combustion control system, the relations between the air/fuel ratio and the emission spectra of radicals OH, CH, and C2 in a flame are made clear. Also referred to are the basic studies being conducted at research institutes such as universities and a survey of technological trends abroad.

  13. The Importance of Systematics

    Indian Academy of Sciences (India)


    Feb 18, 1999 ... cal control of pests which is itself a very important aspect of applied bioiogy. When natural enemies are being sought or transferred from one region to another, in order to bring about biological control of a pest, the correct identification of both the pest and natural enemy species is of utmost importance. Tax-.

  14. Assistive Technology (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  15. Sport Technology

    CSIR Research Space (South Africa)

    Kirkbride, T


    Full Text Available Technology is transforming the games themselves and at times with dire consequences. Tony Kirkbride, Head: CSIR Technology Centre said there are a variety of sports technologies and there have been advances in material sciences and advances...

  16. Recent Developments in Chalcopyrite Solar Cell and Module Technologies (United States)

    Ishizuka, Shogo; Komaki, Hironori; Yoshiyama, Takashi; Mizukoshi, Kazuyuki; Yamada, Akimasa; Niki, Shigeru

    Chalcopyrite Cu(In, Ga)Se2(CIGS) and related compounds belong to the semiconducting I-III-VI2 materials family and are most promising thin film solar cells which have demonstrated up to 20% cell efficiencies and over 15% module efficiencies to date. Many CIGS companies in EU, US, and Japan have started several ten MW/year scale commercial production and have announced to increase their production capacities further within a couple of years. In this review, recent developments in highly efficient CIGS module technologies and issues to be solved for further development are discussed. Recent progress in the development of reliable alkali incorporation control techniques which is required to demonstrate high cell efficiencies from flexible CIGS cells fabricated on alkali-free substrates is also introduced. The mechanism behind the beneficial effects of alkali doping into CIGS absorber layers is also discussed.

  17. Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting W S2 and Mo S2 (United States)

    Shang, Jingzhi; Cong, Chunxiao; Shen, Xiaonan; Yang, Weihuang; Zou, Chenji; Peimyoo, Namphung; Cao, Bingchen; Eginligil, Mustafa; Lin, Wei; Huang, Wei; Yu, Ting


    Owing to unique electronic, excitonic, and valleytronic properties, atomically thin transition metal dichalcogenides are becoming a promising two-dimensional (2D) semiconductor system for diverse electronic and optoelectronic applications. In an ideal 2D semiconductor, efficient carrier transport is very difficult because of lacking free charge carriers. Doping is necessary for electrically driven device applications based on such 2D semiconductors, which requires investigation of electronic structure changes induced by dopants. Therefore probing correlations between localized electronic states and doping is important. Here, we address the electronic nature of broad bound exciton bands and their origins in exfoliated monolayer (1L) W S2 and Mo S2 through monitoring low-temperature photoluminescence and manipulating electrostatic doping. The dominant bound excitons in 1L W S2 vary from donor to acceptor bound excitons with the switching from n - to p -type doping. In 1L Mo S2 , two localized emission bands appear which are assigned to neutral and ionized donor bound excitons, respectively. The deep donor and acceptor states play critical roles in the observed bound exciton bands, indicating the presence of strongly localized excitons in such 2D semiconductors.

  18. Rover Technologies (United States)

    National Aeronautics and Space Administration — Develop and mature rover technologies supporting robotic exploration including rover design, controlling rovers over time delay and for exploring . Technology...

  19. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik


    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  20. How Technology Influences Interior Design. (United States)

    McDavitt, Tish


    Examines telecommunication technology's influences on interior school design and effective learning, and discusses how to implement this technology into the school. Building the infrastructure to support telecommunications in an educational setting and the importance of effective lighting are discussed. (GR)

  1. The Human Technology

    DEFF Research Database (Denmark)

    Fausing, Bent

     Bent Fausing  "The Humane Technology", abstract (for The Two Cultures: Balancing Choices and Effects Oxford University July 20-26, 2008). The paper will investigate the use of technology in everyday aesthetics such as TV-commercials for mobile phones for Nokia, which slogan is, as it is well known......, "Nokia - connecting people". Which function does this technology get in narratives, images, interactions and affects here?      The mobile phone and its digital camera are depicted as being able to make a unique human presence and interaction. The medium, the technology is a necessary helper to get...... towards this very special and lost humanity. Without the technology, no special humanity is the prophecy. This personification or anthropomorphism is important for the branding of new technology. The technology is seen as creating a technotranscendens towards a more qualified humanity, which is in contact...

  2. Learning Languages through Technology (United States)

    Hanson-Smith, Elizabeth, Ed.; Rilling, Sarah, Ed.


    While posing important questions about how learning proceeds with new technologies, this volume demonstrates how teachers captivate the imagination of learners, from schoolchildren to postgraduates, by providing real-world purposes for language. The authors are from educational institutions in many regions of the world, and describe technology use…

  3. Technologically important properties of lactic acid bacteria isolated ...

    African Journals Online (AJOL)



    Jul 18, 2007 ... facultatively heterofermentative lactobacilli. Lactic acid bacteria were identified on the basis of phenotypic characters as Lactococcus lactis subsp. lactis, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum and.

  4. Importance of real gas effects in entry technology (United States)

    Deiwert, George S.


    Critical issues concerning real gas effects in hypervelocity flows where the thermochemical nonequilibrium effects are pronounced, are described. Emphasis is on the development and validation of benchmark analysis tools. Approaches to develop and/or enhance phenomenological models, including test techniques to acquire databases, and incorporate them into computational flow field simulation codes are described. The performance characteristics of shock tubes, ballistic ranges and arc heated wind tunnels, state of the art diagnostics are included. The following aerothermodynamic phenomena are discussed: aerodynamic parameters, viscous interactions, turbulent transition, forebody heating/heat transfer, radiative heating, Lee-Base flows and low density real gas.

  5. Strategic materials: Technologies to reduce US import vulnerability (United States)


    Three nations, South Africa, Zaire, and the U.S.S.R., account for over half of the world's production of chromium, cobalt, manganese, and platinum group metals. These metals are essential in the production of high-temperature alloys, steel and stainless steel, industrial and automotive catalysts, electronics, and other applications that are critical to the U.S. economy and the national defense. With minor exceptions, there is no domestic mine production of any of the four metals. Government actions to assure secure supplies of metals critical to the United States have been limited largely to reliance on the national defense stockpile to ensure the availability of materials required for national defense in time of war, leaving it to the free market to provide a diversity of suppliers for the industrial economy. An overall strategy to reduce U.S. reliance on uncertain sources of supply of strategic materials should be based on a combination of three technical approaches: increase the diversity of the world supply of strategic metals through the development of promising deposits; decrease demand for strategic metals through the implementation of improved manufacturing processes and recycling of strategic materials from scrap and waste; and identify and test substitute materials for current applications and develop new materials with reduced strategic material content for future applications.

  6. An Assessment of the Importance of Technologies to Military Capabilities. (United States)



  7. Handbook of vacuum technology

    CERN Document Server


    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  8. Recombinant protein production technology (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  9. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz


    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  10. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov


    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  11. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov


    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  12. Information Technology (United States)


    The first wave delivered a range of services to most areas of the world through a vast, carefully constructed global network. Cellular technology ...Information Technology and Services Alliance. Digital Planet 2002: The Global Information Economy. February 2002. Yegyazarian, Anush. Sales Taxes...Information Technology ABSTRACT: The information technology (IT) industry affects virtually every industry in the n economy. During the late 90

  13. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su


    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  14. Life cycle assessment (LCA) methodology: importance in the integration of the fuel cell technology type PEMFC (proton exchange membrane fuel cells); Metodologia da analise de ciclo de vida: importancia na insercao da tecnologia de celula a combustivel do tipo PEMFC (membrana polimerica trocadora de protons)

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, Sandra Harumi; Seo, Emilia Satoshi Miyamaru [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)). Centro de Ciencia e Tecnologia de Materiais], e-mail:


    To improve the standard of society's quality of life, it is necessary to improve the quality of distributed energy and its inherent services within a sustainability process. Among different technological routes that produce more sustainable energy are the fuel cells - also known as combustible batteries. The Global Environment Facility (GEF) has identified the fuel cells as a potential technology to reduce, in the future, the effect of greenhouse gases in both developed and developing countries. Although there are various types of fuel cells, the most used technology for research studies on fuel cells is the Polymer Electrolyte Fuel Cells (FEMFC). However, economic issues - related to the high cost of the membrane's materials and of the catalysts of groups of platinum metals - are still some of the obstacles that need to be overcome for this technology to be more accessible. There are also socio-environmental aspects related to the impacts caused by the extraction, the use and the destination of these metals. Taking in consideration the challenges of complying with the demands of the market and the society as well as with the growing tendency of more rigid patterns of environmental control, the objective of the present work is to show the tool of environmental management - Life Cycle Assessment (LCA) - and its importance on the pursuit for socio-economic and environmental alternatives feasible to the recycling of the catalysts of platinum of the PEMFC. This way, it intends to collaborate to the progress of the knowledge about environmental and socio-economic subjects related to the productive process of the PEMFC. (author)

  15. Irradiation technology - industrial use

    International Nuclear Information System (INIS)

    Zyball, A.


    The most important applications of the radiation technology are the crosslinking of polymers and sterilisation. Although extensive experience about the use of this technology is available and powerful and dependable radiation facilities can be obtained, as yet the radiation technology has not found the acceptance it deserves in the industry. The main reason therefore has to do with how the question of radiation or the term radiation is presented to the industry and among the population. This paper will deal with considerations and ways in which the industrial use of the radiation technology can be expanded. (author)

  16. Why phosphorites are important ?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Why phosphorites are important ? Phosphorus is the. 10th abundant element in the earth crust. Essential element of nutritive value. Used for fertilisers, phosphoric acid. Host for U, V, F and REEs. Palaeoceanography.

  17. Imported coal remains flexible

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, F.


    The new law on coal tariff quotas is one year old. During this period hard coal imports increased by 1 million tons, in spite of the slowed down economic activities and the wait-and-see attitude of consumers. The author gives a first survey.

  18. Importance of Gait Training (United States)

    ... or it could be to learn a new skill such as walking step-over-step up stairs, walking on uneven terrain, or even running. It is important that the prosthetist and therapist remain in close communication when gait train- ing is occurring since any ...

  19. Importance of Family Routines (United States)

    ... is essential, it is equally important for parents to set aside some time just for themselves, too. Additional Information from Turning Family Time into Active Time Bedtime Routines for School-Aged Children The Benefits & Tricks to Having a Family Dinner ​ Article Body Last Updated ...

  20. Importance of ECM recognition

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Importance of ECM recognition. Leishmaniasis transmitted by parasite injection into blood during blood meal of insect vector. Parasites home in macrophages of liver and spleen - adhere, penetrate, transform and replicate. Macrophage lysis - attack of neighbouring ...

  1. Benzodipyrrolidone (BDP)-based polymer semiconductors containing a series of chalcogen atoms: comprehensive investigation of the effect of heteroaromatic blocks on intrinsic semiconducting properties. (United States)

    Lee, Kyu Cheol; Park, Won-Tae; Noh, Yong-Young; Yang, Changduk


    In order to determine the effects of actual 'chalcogen atoms' on semiconducting properties for application in a variety of optoelectronic devices, a class of donor (D)-acceptor (A) polymer semiconductors, namely PBDP-Fu, PBDP-Th, and PBDP-Se, containing the recently formulated benzodipyrrolidone (BDP) accepting unit and furan (Fu), thiophene (Th), or selenophene (Se) as a donating unit has been synthesized, characterized, and used in an active layer of organic field-effect transistors (OFETs). With the LUMO levels being comparatively consistent for all three polymers (-3.58 to -3.60 eV) due to the dominant BDP contribution to the polymer backbone, the HOMO energies are somewhat sensitive to the structurally distinctive feature of the donor counits used. Utilizing a combination of X-ray diffraction (XRD) and atomic force microscopy (AFM), it is apparent that further crystalline domains occur with edge-on orientation for the polymers (PBDP-Th and PBDP-Se) with relatively heavier chalcogen atoms such as Th and Se, compared with PBDP-Fu which has a rather amorphous nature. Investigation of their OFET performance indicates that all the polymers show well balanced ambipolar operations. The desirable morphological structures of both the PBDP-Th and PBDP-Se result in higher mobilities in OFETs than those of PBDP-Fu. In particular, 200 °C annealed PBDP-Se OFETs results in ambipolarity being mobile for both holes of up to 1.7 × 10(-2) cm(2)/V·s and electrodes of up to 1.9 × 10(-2) cm(2)/V·s. In addition, OFETs with PBDP-Th show nearly equivalent charge carrier mobilities for both holes (μ(h) = 1.2 × 10(-2) cm(2)/V·s) and electrons (μ(e) = 1.1 × 10(-2) cm(2)/V·s). Consequently, we systematically demonstrate how the manipulation of existing heteroaromatics can modulate the electronic properties of conjugated D-A polymers, elucidating structure-property relationships that are desirable for the rational design of next generation materials.

  2. Network analysis of semiconducting Zn1-xCdxS based photosensitive device using impedance spectroscopy and current-voltage measurement (United States)

    Datta, Joydeep; Das, Mrinmay; Dey, Arka; Halder, Soumi; Sil, Sayantan; Ray, Partha Pratim


    ZnCdS is an intermediate ternary alloy type semiconducting material which has huge tunable structural, optical and electrical properties. Here, we have synthesized Zn1-xCdxS compound and characterized its structural, optical and charge transport properties. It is seen that the particle size is greatly influenced by the amount of alloy concentration of cadmium. The performance of semiconductor device such as Schottky diode depends mainly on the charge transportation through the metal-semiconductor junction. So, we have fabricated Al/Zn1-xCdxS/ITO device and investigated the bias dependent impedance properties through equivalent circuit network analysis to study the electron lifetime and interfacial region resistance. The result of network analysis indicates that the charge transportation through Al- Zn0.6Cd0.4S is better than the other fabricated devices. For further explanation, we have studied the capacitance-voltage (C-V) characteristic under dark and current-voltage (I-V) characteristic under dark and light. We have investigated barrier height, depletion layer width and employed SCLC (space charge limited current) theory in I-V characteristics to determine mobility, transit time and diffusion length. The mobility and diffusion length for Zn0.6Cd0.4S fabricated device are derived as 23.01 m2 V-1 s-1 and 4.4 μm respectively while both the values are less for the other devices. These values are enhanced upon illumination for all the devices but superiority comes from the Al/Zn0.6Cd0.4S/ITO device and it leads us to measure the photosensitivity, responsivity, specific detectivity. As expected, the photosensing parameters are enhanced for the Zn0.6Cd0.4S fabricated device. So, this literature not only explores the metal semiconductor charge transportation using impedance spectroscopy (IS) network analysis and SCLC theory but also explain it from the structural point of view.

  3. Responsible technology acceptance

    DEFF Research Database (Denmark)

    Toft, Madeleine Broman; Schuitema, Geertje; Thøgersen, John


    on private consumers’ acceptance of having Smart Grid technology installed in their home. We analyse acceptance in a combined framework of the Technology Acceptance Model and the Norm Activation Model. We propose that individuals are only likely to accept Smart Grid technology if they assess usefulness......As a response to climate change and the desire to gain independence from imported fossil fuels, there is a pressure to increase the proportion of electricity from renewable sources which is one of the reasons why electricity grids are currently being turned into Smart Grids. In this paper, we focus...... in terms of a positive impact for society and the environment. Therefore, we expect that Smart Grid technology acceptance can be better explained when the well-known technology acceptance parameters included in the Technology Acceptance Model are supplemented by moral norms as suggested by the Norm...

  4. [Myiases of economic importance]. (United States)

    Touré, S M


    A simplified list of the principal Diptera capable of causing myiasis is followed by a brief presentation of the biology, lesions inflicted, and methods of treatment and control of the myiases of economic importance. Cochliomyiasis caused by Cochliomyia hominivorax is of greatest interest, in view of the damage and losses caused by this disease. A brief account of the outbreak of infestation in Libya illustrates the danger of this parasite. Other important traumatic myiases are described: that due to Chrysomya bezziana, which causes an African myiasis similar to cochliomyiasis, and those due to Lucilia cuprina and related species. Hypodermyiasis (warble fly infestation) and oestrosis (nasal bot fly infestation in sheep) still cause major economic losses in domestic animals, justifying their inclusion in control campaigns. The same applies to stomach bot flies of the family Gasterophilidae. The account of each myiasis includes notes on parasiticides which have been found to be effective. Given the rapidity with which a parasite can now be transported from one continent to another, it is important for Veterinary Services to be well-informed and vigilant.

  5. Photoluminescence quenching of semiconducting polymer ...

    Indian Academy of Sciences (India)

    ing of decay time regarding polymer nanoparticles in presence of Au nanoparticles suggest the nonradiative energy transfer process. The values of energy transfer are 6·7%, 49·5% and 53·38% from PVK polymer nanoparticles to. 3 nm, 14 nm and 18 nm Au nanoparticles, respectively. Using FRET and SET equations we ...

  6. Optical properties of semiconducting nanowires

    NARCIS (Netherlands)

    Vugt, L.K. van


    Semiconductor nanowires of high purity and crystallinity hold promise as building blocks for opto-electronical devices at the nanoscale.. They are commonly grown via a Vapor-Liquid-Solid (VLS) mechanism in which metal (nano) droplets collect the semiconductor precursors to form a solution which,

  7. Import opportunities from Manitoba

    International Nuclear Information System (INIS)

    Flynn, J.


    The benefits and disadvantages for Ontario in exporting hydro electricity from Manitoba were discussed. Manitoba Hydro is already a major exporter of electricity to the United States. A history of Manitoba-Ontario electricity transactions was provided. There are currently 5,000 MW of developable hydro in Manitoba. A map of potential transmission routes was presented and transmission costs were discussed along with reliability and security issues. Benefits of a large hydro purchase from Manitoba were considered to be: long term source of supply; predetermined prices; no air emissions; proven technology; a balanced portfolio; and, a high dispatch capability. In addition, the fact that hydro is a low impact, renewable energy source was considered to be beneficial. Case studies were provided with comparisons of other energy sources. Factors that should be considered in determining trade relations between the two provinces include long lived assets with a minimum 20 year contract; the potential to reduce emissions in Ontario; and, the fact that the regulatory process is long and uncertain. It was noted that it is currently easier to get approval for a coal-fired power plant than for low emission hydro. tabs., figs

  8. Metallic and semi-conducting resistivity behaviour of La0.7Ca0.3- x K x MnO3 ( x = 0.05, 0.1) manganites (United States)

    Varshney, Dinesh; Dodiya, Neha


    The temperature dependence of electrical resistivity, ρ, of ceramic La0.7Ca0.3- x K x MnO3 ( x = 0.05, 0.1) is investigated in metallic and semi-conducting phase. The metallic resistivity is attributed to be caused by electron-phonon, electron-electron and electron-magnon scattering. Substitutions affect average mass and ionic radii of A-site resulting in an increase in Debye temperature θ D attributed to hardening of lattice with K doping. The optical phonon modes shift gradually to lower mode frequencies leading to phonon softening. Estimated resistivity compared with reported metallic resistivity, accordingly ρ diff. = [ ρ exp. - { ρ 0 + ρ e-ph (= ρ ac + ρ op)}], infers electron-electron and electron-magnon dependence over most of the temperature range. Semi-conducting nature is discussed with variable range hopping and small polaron conduction model. The decrease in activation energies and increase in density of states at the Fermi level with enhanced Ca doping is consistently explained by cationic disorder and Mn valence.

  9. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...

  10. Living Technology

    DEFF Research Database (Denmark)


    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  11. Import, Offshoring and Wages

    DEFF Research Database (Denmark)

    Fosse, Henrik Barslund; Maitra, Madhura

    Offshoring firms are found to pay higher average wages than purely domestic firms. We provide a unifying empirical approach by capturing the different channels through which offshoring may explain this wage difference: (i) due to change in the composition of workers (skill composition effect) (ii...... of skill composition and rent sharing available in typical firm level datasets - like ratio of educated to uneducated workers and sales per employee.......) because all existing workers get higher pay (rent sharing effect). Using Danish worker-firm data we explain how much each channel contributes to higher wages. To estimate the causal effect of offshoring on wages we use China’s accession to the WTO in December 2001 - and the soon after boom in Chinese...... exports - as positive exogenous shocks to the incentive to offshore to China. Both skill composition and rent sharing effects are found to be important in explaining the resultant gain in wages. We also show that the firm’s timing in the offshoring process determines the relative importance of a channel...

  12. Risk communication importance

    International Nuclear Information System (INIS)

    Cunha, Raquel Dalledone Siqueira da; Andrade, Delvonei Alves de


    Risk Communication has shown its importance in the elaboration of emergency plans in the Chemical industry. In the 90's, the UNEP developed the APELL (Awareness and Preparedness for Emergency at Local Level) plan, a risk management methodology used by dangerous chemical facilities. The methodology comprises the commitment of both Government and the community located in the risk area in the development of the emergency plan. In the nuclear sector, there is no similar methodology developed so far. However, establishing a communication channel between the nuclear segment and the community is essential. In Brazil, the construction of Angra 3 and the RMB (Multi Purpose Reactor) project stand as nuclear initiatives that improve the importance of a good communication to the public. Security issues of these projects are natural sources of concernment to the public, which is aggravated by events such as the Fukushima disaster. Without an effective communication about what means the presence of nuclear plants and reactors in a specific area, the interested public will only have an alarmist vision of the subject, given by those against these facilities. (author)

  13. Earthing Technology

    NARCIS (Netherlands)

    Blok, Vincent


    In this article, we reflect on the conditions under which new technologies emerge in the Anthropocene and raise the question of how to conceptualize sustainable technologies therein. To this end, we explore an eco-centric approach to technology development, called biomimicry. We discuss opposing

  14. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer


    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  15. Considerations on Accounting Intelligent Systems Importance

    Directory of Open Access Journals (Sweden)


    Full Text Available Managers begin to realize the importance of artificial intelligence technologies for their organizations. Knowledge is today seen as the main organizational resource and that is what intelligent systems are about: manipulating knowledge. In this paper we highlight the main reasons that an accountant can bring to his managers to emphasize this idea: intelligent systems are really needful in modern accounting.

  16. Considerations on Accounting Intelligent Systems Importance




    Managers begin to realize the importance of artificial intelligence technologies for their organizations. Knowledge is today seen as the main organizational resource and that is what intelligent systems are about: manipulating knowledge. In this paper we highlight the main reasons that an accountant can bring to his managers to emphasize this idea: intelligent systems are really needful in modern accounting.

  17. Consumer Views: Importance of Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on the importance of fuel economy amongst other vehicle attributes and views on which alternative fuel types would be the best and worst replacements for gasoline.

  18. Technology Integration Experiences of Teachers (United States)

    Çoklar, Ahmet Naci; Yurdakul, Isil Kabakçi


    Teachers are important providers of educational sustainability. Teachers' ability to adapt themselves to rapidly developing technologies applicable to learning environments is connected with technology integration. The purpose of this study is to investigate teachers' technology integration experiences in the course of learning and teaching…

  19. Apheresis technologies: an international perspective. (United States)

    Malchesky, P S; Bambauer, R; Horiuchi, T; Kaplan, A; Sakurada, Y; Samuelsson, G


    The developments in apheresis techniques and their clinical applications world-wide are technologically driven. In the past, apheresis survey statistics have high-lighted both the differences by region in clinical practice and in the types of technologies utilized. Such differences have provided a basis for the scientific and clinical assessments of these apheresis technologies and their clinical outcomes and have stimulated the marketing and business development of new technologies world-wide. A review of the regional practices and technologies utilized provides a perspective on the future role of apheresis and its developments in clinical practice. While technology is a driving force for the development of new techniques for clinical practice, it is not the only market force. For technology introduction, several other important issues need to be considered. Regulations at the local and, most importantly, the federal level impact the timing for new technology introduction. Reimbursement by healthcare payers is critically important from the initiation of the development of a technology through its clinical use. Clinical trials are critically important to show the safety and clinical- and cost-effectiveness of the technology in order for payers to provide reimbursement for its use, but these trials are sometimes long and costly. Research funding availability at the governmental and commercial levels critically impacts new technology investigation and its introduction. Apheresis technology developments offer new hopes and promises for the clinical team; however, their development, introduction, and utilization will be influenced by the prevailing market forces.

  20. Most important human aluminoses

    Energy Technology Data Exchange (ETDEWEB)

    Avtsyn, A.P.


    Aluminoses are widespread forms of trace element deficiency of various severity. The organism is protected against a possible pathogenic influence of aluminum by a number of physiological mechanisms the most important among which is a regular urine excretion. A complex of pathological symptoms develops if serious homeostasis disturbances take place e. g. when renal deficiency or direct penetration of the trace element occur. The following forms of aluminosis should be distinguished: 1) simple accumulation in central nervous system which occurs in persons over 65 years; 2) aluminum accumulation in Alzheimer disease, in severe form of presenile and senile dementia; 3) dialysis aluminum encephalopathy; 4) non-dialysis infantile encephalopathy; 5) aluminum encephalopathy in total parenteral nutrition; 6) iatrogenic dialysis aluminum osteodystrophy; 7) jatrogenic peritoneal aluminosis; 8) aluminum pneumoconiosis of an occupational origin; 9) bronchospastic syndrome in aluminum smelter workers.

  1. Mexico: Imports or exports?

    International Nuclear Information System (INIS)

    Estrada, J.


    This presentation provides an overview of Mexico's energy sector. Proven oil reserves place Mexico in ninth position in the world and fourth largest in natural gas reserves. Energy is one of the most important economic activities of the country, representing 3 per cent of Gross Domestic Product (GDP). Oil exports represent 8.4 per cent of total exports. Approximately 40 per cent of total public investment is earmarked for energy projects. The author discusses energy resources and energy sector limitations. The energy sector plan for the period 2001-2006 is discussed. Its goals are to ensure energy supply, to develop the energy sector, to stimulate participation of Mexican enterprises, to promote renewable energy sources, and to strengthen international energy cooperation. The regulatory framework is being adapted to increase private investment. Some graphs are presented, displaying the primary energy production and primary energy consumption. Energy sector reforms are reviewed, as are electricity and natural gas reforms. The energy sector demand for 2000-2010 and investment requirements are reviewed, as well as fuel consumption for power generation. The author discusses the National Pipeline System (SNG) and the bottlenecks caused by pressure efficiency in the northeast, flow restriction on several pipeline segments, variability of the Petroleos Mexicanos (PEMEX) own use, and pressure drop on central regions. The entire prospect for natural gas in the country is reviewed, along with the Strategic Gas Program (PEG) consisting of 20 projects, including 4 non-associated natural gas, 9 exploration and 7 optimization. A section dealing with multiple service contracts is included in the presentation. The authors conclude by stating that the priority is a national energy policy to address Mexico's energy security requirements, to increase natural gas production while promoting the diversification of imports, and a regulatory framework to be updated in light of current

  2. Health care technology assessment (United States)

    Goodman, Clifford


    The role of technology in the cost of health care is a primary issue in current debates concerning national health care reform. The broad scope of studies for understanding technological impacts is known as technology assessment. Technology policy makers can improve their decision making by becoming more aware, and taking greater advantage, of key trends in health care technology assessment (HCTA). HCTA is the systematic evaluation of the properties, impacts, and other attributes of health care technologies, including: technical performance; clinical safety and efficacy/effectiveness; cost-effectiveness and other economic attributes; appropriate circumstances/indications for use; and social, legal, ethical, and political impacts. The main purpose of HCTA is to inform technology-related policy making in health care. Among the important trends in HCTA are: (1) proliferation of HCTA groups in the public and private sectors; (2) higher standards for scientific evidence concerning technologies; (3) methodological development in cost analyses, health-related quality of life measurement, and consolidation of available scientific evidence (e.g., meta-analysis); (4) emphasis on improved data on how well technologies work in routine practice and for traditionally under-represented patient groups; (5) development of priority-setting methods; (6) greater reliance on medical informatics to support and disseminate HCTA findings.

  3. Traditions of technology

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, A.


    Modern technology, with about 300 years of history behind it, has become the dominant tradition by marginalizing the other traditions of technology in the West and in the rest of the world. Important roles have been played in this marginalization by the ideology of Englightenment, by the Industrial Revolution, and nineteenth and twentieth century colonialism. They have blurred the difference between science and technology, underwritten the mechanomorphic world-image and promoted the concept of a value-free, ethically unrestrained technology. However, the present crises of technological consciousness has brought to the fore alternative traditions of technology, not as ethnotechnologies from which a universal, secular, modern technology can draw lessons, but as a competing philosophies of universality which can provide correctives to the alienating, exploitative, and dehumanizing role of modern science and technology. An alternative ideology of science is needed for this as well as a new legitimacy for the traditional technosystems and their cultural environments. Such a legitimacy will have to be based on a different set of values relating to the man--nature and man--man relationships and a deeper understanding of the politics of technology in its cross-national and cross-cultural contexts.

  4. Imported coenurosis in sheep

    International Nuclear Information System (INIS)

    Schweizer, G.; Grünenfelder, F.; Sydler, T.; Rademacher, N.; Braun, U.; Deplazes, P.


    Thirteen sheep from a milk producing farm in the Canton of Grisons that presented chronic coenurosis were examined and subjected to treatment trials at the veterinary hospital in Zurich. Symptoms were first observed around two months after the import of two dogs from Italy (Abruzza) of which one was infected with Taenia multiceps and Echinococcus granulosus. The most frequently observed clinical symptoms of the sheep were reduced general condition, circling, reduced menace reflex, apathy, unsteady gait and head tilt. Analyses of cerebrospinal fluid revealed an increased leucocyte count in 3 sheep and eosinophilia in 4 sheep. In 4 animals that underwent computertomography, one or more hypodense, definable lesions were found in the brain. In 2 sheep surgical treatment and in 10 animals medical treatment with either Praziquantel (n=8) or Oxfendazol (n=2) was attempted. Only one animal treated with Praziquantel needed not to be euthanized. At necropsy, one or two coenurus cysts could be found either in a side ventricle (n=2), in the cerebellum (n=3) or in the cerebrum (n=7). The locations corresponded with the clinical findings. Despite Praziquantel or Oxfendazol treatment, living protoscoleces could be found in the parasite cysts [de

  5. Technology '90

    International Nuclear Information System (INIS)


    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  6. Working around technologies

    DEFF Research Database (Denmark)

    Dupret, Katia


    expressions of professionals’ active encounter with the complexity of work situations, and can therefore be important signs of professional ethical judgement. Drawing on science and technology studies and the concept of invisible work, the study discusses workaround situations that arise in health care work......This study discusses how professionalism and work ethics influence how health care professionals work around new technologies. When people avoid using technologies, they are not necessarily ceasing to engage in their work activities. The workaround strategies presented here are rather practical...... in Denmark. The aim and contribution of the study is twofold. First, it attempts to revitalise the discussion on technology workaround strategies as responsible professionalism. Second, it will direct attention to and contribute to an understanding of how the normativity embedded in technological development...

  7. Globalization, technology and inequality


    Gancia, Gino


    What are the effects of international integration on inequality, both between and within countries? The growing evidence that technology is the main determinant of wage and income differences may seem to imply that the forces of globalization only play a secondary role. Such a conclusion is however premature, in that it neglects the effect of international integration on technology itself. This opuscle summarizes recent and ongoing research studying how two important aspects of globalization,...

  8. FY 1998 annual report on the industrial science/technology research and development projects coordinated with academic circles. Report on semiconducting device production process by catalytic chemical vapor deposition method (Semiconducting device production process by catalytic chemical vapor deposition method); 1998 nendo Cat-CVD ho ni yoru handotai device seizo process seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    Described herein are results of the research conducted to establish the fundamental techniques for, and deepen understanding of the basic aspects of, the catalytic chemical vapor deposition (Cat-CVD) method. The Cat-CVD processes for formation of insulating thin films are modeled by simulation of the thermal fluids. It is found that uniformity of the film greatly depends on gas flows. The substrate temperature controlling method and catalyst structures are investigated for the Cat-CVD method using a test unit for fundamental studies, where the effects of the heat radiated from the catalyst and the gases heated by the catalyst on substrate temperature are followed. For research and development of optical techniques for monitoring film deposition by the Cat-CVD method, a Cat-CVD unit for analyzing purposes is designed and preliminary tests are conducted, to develop the monitoring unit. For development of fundamental techniques for forming insulating films by the Cat-CVD method, the basic properties of the SiNx films and method for forming ultrapure thin films are investigated. For the fundamental research on forming thin films by the Cat-CVD method on ferroelectric metallic oxides, changed PZT characteristics by reducing, active species are followed. (NEDO)

  9. Concerning technology: thinking with Heidegger. (United States)

    Zitzelsberger, Hilde M


    In human lives, technology holds sway in mundane and extraordinary ways, such as in the ways we work, entertain, transport, and feed ourselves, and importantly in the ways we encounter and manage health, disease, illness, and death. A significant area of Heidegger's later work is questioning technology. Unlike many current inquiries that centre on contemporary technology's function, utility, and positive transformations, Heidegger offers a radical way of thinking about technology through developing an inquiry that uncovers technology's essence of revealing. In this article, Heidegger's thinking about technological modes of revealing in regard to bodies, health, and illness is explored. In Heidegger's view, the ordered revealing of modern technology has overshadowed other modes of revealing. This article highlights how remembering concealment and unconcealment in its many modes can be relevant to nurses and others involved in health care. Through tracing Heidegger's thinking about technology, a more critical approach to the effects and outcomes of modern technologies within health care systems can be generated.

  10. Digital security technology simplified. (United States)

    Scaglione, Bernard J


    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  11. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.


    In the current Fusion Technology Programme of the European Community the KfK association is working at present on 16 R and D contracts. Most of the work is strongly oriented towards the Next European Torus. Direct support to NET is given by three KfK delegates being member of the NET study group. In addition to the R and D contracts the association is working on 11 NET study contracts. Though KfK contributes to all areas defined in fusion technology, the main emphasis is put on superconducting magnet and breeding blanket development. Other important fields are tritium technology, materials research, and remote handling. (orig./GG)

  12. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research scope: The scope of the project is to study technological implementation processes by using Weick's sensemaking concept (Weick, 1995). The purpose of using a social constructivist approach to investigate technological implementation processes is to find out how new technologies transform...... patterns of social action and interaction in organisations (Barley 1986; 1990, Orlikowski 2000). Current research in the field shows that new technologies affect organisational routines/structures/social relationships/power relations/dependencies and alter organisational roles (Barley 1986; 1990, Burkhardt......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...

  13. Technology and medicine. (United States)

    Booth, C


    Technology, which is older than science, has been of vital importance in the development of modern medicine. Even so, there are voices of dissent to be heard. The disenchantment with technology expressed by Aldous Huxley in Brave new world has been echoed by contemporary writers on the technology of modern medicine. Medicine is seen by some to have been dehumanized by technology, and techniques that are expensive are thought to be consuming a greater proportion of health resources than they deserve. The practice of medicine has, nevertheless, been transformed by modern technology and diagnostic techniques and therapeutic measures undreamed of a few short decades ago are now commonplace. There is no reason why these developments should be any more dehumanizing than the use of similar techniques in modern transportation or communication, nor is their expense out of proportion when compared with other demands on the nation's purse. British workers have been at the forefront of many recent advances. Yet, even though the National Health Service provides a ready market for the products of British medical technology, the nation depends to an inordinate degree on imported products. In the development of appropriate medical technology there is an urgent need for better communication between inventors, scientists, industrialists and the National Health Service. At the same time there is an equal need for improved evaluation of untried techniques. The pressure for a central integrating body to coordinate resources could well be supported by the establishment of evaluation units in the different health authorities in this country.

  14. Technological risks

    International Nuclear Information System (INIS)

    Klinke, A.; Renn, O.


    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  15. Technological risks

    Energy Technology Data Exchange (ETDEWEB)

    Klinke, A.; Renn, O. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)


    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  16. Technology alliances

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Boczar, P.G.; Kugler, G.


    In the field of nuclear technology, Canada and Korea developed a highly successful relationship that could serve as a model for other high-technology industries. This is particularly significant when one considers the complexity and technical depth required to design, build and operate a nuclear reactor. This paper will outline the overall framework for technology transfer and cooperation between Canada and Korea, and will focus on cooperation in nuclear R and D between the two countries

  17. Chemistry Technology (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  18. Influence of hydrogen partial pressure on semi-conductive properties of oxides formed on nickel base alloys in primary water of PWRs; Influence de la pression partielle en hydrogene sur les proprietes semiconductrices des oxydes formes sur les alliages a base de nickel dans l'eau primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Loucif, A.; Petit, J.P.; Galerie, A.; Wouters, Y. [SIMaP, Universite de Grenoble, 38 - Saint Martin d' Heres (France); Galonne, O. [AREVA NP Centre technique Le Creusot, 71 - Le Creusot (France); Fournier, L. [AREVA NP, Tour AREVA, 92 - Paris la Defense (France); Combrade, P.


    As the formation and failure of a passive film layer are mainly controlled by ion transport reactions and electron transport reactions, this study aims at using the photo-electrochemical technique to investigate the influence of hydrogen partial pressure on the semi-conductive properties of oxides formed on Inconel 600 and 690 alloys oxidized in the primary circuit of pressurize water reactors

  19. Development of the micro pixel chamber based on MEMS technology

    Directory of Open Access Journals (Sweden)

    Takemura T.


    Full Text Available Micro pixel chambers (μ-PIC are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS, however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  20. Development of the micro pixel chamber based on MEMS technology (United States)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.


    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  1. Technology Catalogue

    International Nuclear Information System (INIS)


    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  2. Technological Advancements (United States)

    Kennedy, Mike


    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  3. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman


    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  4. Technology collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jacob [Halliburton (Brazil)


    The aim of this paper is to present Halliburton's Brazilian technology center. Halliburton has technology centers in the United States, Saudi Arabia, India, Singapore and Brazil, all of which aim at delivering accelerated innovation in the oil sector. The technology centers engage in research and development activities with the help of various universities and in collaboration with the customer or supplier. The Halliburton Brazil technology center provides its customers with timely research and development solutions for enhancing recovery and mitigating reservoir uncertainty; they are specialized in finding solutions for pre- and post-salt carbonate drilling and in the enhancement of production from mature fields. This presentation showcased the work carried out by the Halliburton Brazil technology center to help customers develop their deepwater field activities.

  5. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  6. Cultural Effect on Using New Technologies


    Nazli Ebrahimi; Sharan Kaur Garib Singh; Reza Sigari Tabrizi


    One of the main concerns in the Information Technology field is adoption with new technologies in organizations which may result in increasing the usage paste of these technologies.This study aims to look at the issue of culture-s role in accepting and using new technologies in organizations. The study examines the effect of culture on accepting and intention to use new technology in organizations. Studies show culture is one of the most important barriers in adoption new technologies. The mo...

  7. Digital Actuator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst


    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  8. Fiscal 1997 survey report / R and D of important region technology. R and D of technologies giving multi-functional characteristics to C/C composites (development of high-grade surface processing technology for engine members for methane fueled air craft. 1. control technology of micro structures of ultra-high temperature members); 1997 nendo seika hokokusho juyo chiiki gijutsu kenkyu kaihatsu. Fukugo kino buzai kozo seigyo gijutsu no kenkyu kaihatsu (methane nenryo kokukiyo engine buzai no kodo hyomen kako gijutsu kaihatsu). 1. chokoon buzai micro kozo seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    For the purpose of developing members most suitable for aircraft use engines with methane as fuel, the R and D were conducted of technology to reform surfaces and interfaces of materials. In the R and D, the paper took up carbon fiber reinforced carbon composite materials (C/C composites). In the surface control and reformation technology using the ion engineering method, etc., in the sealing processing of C/C composites, tried was the formation of a C/SiC/Si3N4 composite layer which was formed by Si3N4 much smaller in thermal expansion coefficient than SiC. Further, technologies on ion injection, thin film formation, giving of oxidation resistance/corrosion resistance, improving/giving of thermal shock resistance, etc. In the multi-functional coating formation technology such as high liability and corrosion resistance, the study was carried out of the dense composite functionally-gradient layer as thermal stress relaxation layer and the fiber reinforced layer by carbon fiber using pores. Besides, studies were made of technologies of the micro structure control combination, evaluation of ultra-high temperature resistant environmental characteristics, etc. 61 refs., 198 figs., 44 tabs.

  9. Technology and environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Himi, Yasuji (Japan Environmental Sanitation Center, Kawasaki, (Japan))


    The history of environmental pollution changed with development of industrial technology and the facts that new technology always generated new pollution are explained, and necessity of Total Emission Control is emphasized. As the actual facts, those were introduced that the hydrogen chloride hazard at the initial stage of alkaline industry with the important meaning of ammonia-soda process as the solution of it, dust hazard by cement industry at its beginning in Japan and Cottrell precipitator technology for its solution, various hazards accompanied with metal refining industry. Discrepancy of view points between production technology and environmental science are explained and importance of technology belonging to the boundary domain between them was emphasized. However, it was indicated that present solutions were depend upon recovery technology and had a possibility to generate new pollution by recovered materials. For the reason, necessity of study on the interaction among chemical industries was proposed from the view of solution for byproduct with environmental pollution problem. 48 refs., 2 figs.

  10. Technology for Peacebuilding

    Directory of Open Access Journals (Sweden)

    Helena Puig Larrauri


    Full Text Available New technologies are changing how and when we learn about events and choose to respond to them. Mobile phones and the internet have altered how we engage with the world. With technology usage expanding rapidly in the developing world, new avenues of participation, engagement, and accountability are emerging. Globally, more people now have the opportunity to actively make use of these tools to participate in processes that impact their societies. This opportunity for participation is also an opportunity for engaging in new ways with peacebuilding processes. As the field of technology for peacebuilding grows, most attention has been paid to the potential of new technologies for bridging the gap between warning and response. Whilst the focus on the use of technology for early warning and response is important, there is more to this growing field. The empowerment of people to participate in localized conflict management efforts is one of the most significant innovations and opportunities created by new technologies. Technology can contribute to peacebuilding processes by offering tools that foster collaboration, transform attitudes, and give a stronger voice to communities. This article aims to give practitioners two related frameworks to understand how new technologies can enhance peacebuilding. The first section looks at the functions that technology can have in a peacebuilding program as a tool for data processing, communication, engagement, and gaming. We then examine the program areas that new technologies can best contribute to, covering early warning/early response systems, programs that allow citizens to voice their opinions and experiences, collaboration efforts, and programs aimed at transforming attitudes.

  11. AND/OR Importance Sampling


    Gogate, Vibhav; Dechter, Rina


    The paper introduces AND/OR importance sampling for probabilistic graphical models. In contrast to importance sampling, AND/OR importance sampling caches samples in the AND/OR space and then extracts a new sample mean from the stored samples. We prove that AND/OR importance sampling may have lower variance than importance sampling; thereby providing a theoretical justification for preferring it over importance sampling. Our empirical evaluation demonstrates that AND/OR importance sampling is ...

  12. Ergonomics technology (United States)

    Jones, W. L.


    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  13. Active ageing technologies

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    In the recent decade the concept of active aging has become important in the Western hemisphere. The World Health Organization and The European Union have staged active aging as a core policy area and initiated programs of physical activity, independence and prolonged working lives among...... the elderly. As part of this rearticulation of old age, many new technologies take form. This paper uses a wide concept of technologies (devices, regimes, strategies and ways of doing) and argues that technologies form active aging subjectivities, and on the other hand, that these subjectivities...... in their socio-material practices form active aging. Hence, active aging is a mutual entanglement (Callon and Rabeharisoa 2004) between technologies, practices and subjectivities. The paper is based on four months of participant observations and 17 in-depth interviews with elderly persons conducted at three...

  14. Flywheel Technology (United States)

    Ritchie, Lisa M.


    Throughout the summer of 2004, I am working on a number of different projects. While located in the Space Power and Propulsion Test Engineering branch, my main area of study is flywheel technology. I have been exposed to flywheels, their components, and their uses in today's society. I have been able to experience numerous flywheels here in the flywheel lab at NASA Glenn. My first main project was to explore the attributes and physical characteristics of a flywheel. Our branch was constructing a flywheel demonstration to be presented at the public open house taking place in June. Our Flywheel Interactive Demo, or FIDO, represents a real life multi-flywheel system here at NASA. I was given the opportunity to learn about how these flywheels store energy and are able to position a satellite. With all of this new knowledge, I was able to create the posters that explained how our demonstration worked. I also composed a step-by-step process made up of four experiments that any visitor could follow and perform on FIDO. By stepping through these experiments, the individual learns how a flywheel works. They not only read the explanation of what is happening, but they are also able to see it happen. Creating these two posters not only taught me, but also helped teach the general public during the open house, how flywheel technology is a very important part of our future. Through my research, I have learned that flywheels are able to store massive amounts of energy. They can be described as an electro-mechanical battery that stores kinetic energy while rotating. The faster it rotates, the more energy it stores. Their lifetime is about triple that of an ordinary battery. Flywheels also have the ability to combine energy storage with attitude control all in a single system. Attitude control is the ability to position a satellite as required. FIDO helps us to understand the rotational force (torque) that is applied upon a turn-table or satellite during wheel acceleration

  15. Technology Innovation (United States)

    EPA produces innovative technologies and facilitates their creation in line with the Agency mission to create products such as the stormwater calculator, remote sensing, innovation clusters, and low-cost air sensors.

  16. Videodisc technology

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, F.E. Jr.


    An overview of the technology of videodiscs is given. The emphasis is on systems that use reflection or transmission of laser light. Possible use of videodiscs for storage of bibliographic information is considered. 6 figures, 3 tables. (RWR)

  17. Technology | FNLCR (United States)

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  18. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.


    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  19. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)


    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  20. 16 CFR 1009.3 - Policy on imported products, importers, and foreign manufacturers. (United States)


    ... seq.), the Poison Prevention Packaging Act (15 U.S.C. 1471 et seq.), which were transferred to the... modern technology has brought air transport and containerized freight for rapid handling and distribution... against the customs broker even though his or her name may appear as the importer of record. However, the...