WorldWideScience

Sample records for techniques unique properties

  1. Uniqueness property for quasiharmonic functions

    Directory of Open Access Journals (Sweden)

    Sevdiyor A. Imomkulov

    2014-10-01

    Full Text Available In this paper we consider a class of continuous functions, called quasiaharmonic functions, admitting best approximations by harmonic polynomials. In this class we prove a uniqueness theorem by analogy with the analytic functions.

  2. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  3. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Harris (Ohio State University)

    2008-06-24

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  4. Unique properties of Drosophila spermatocyte primary cilia

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Riparbelli

    2013-09-01

    The primary cilium is an essential organelle required for animal development and adult homeostasis that is found on most animal cells. The primary cilium contains a microtubule-based axoneme cytoskeleton that typically grows from the mother centriole in G0/G1 phase of the cell cycle as a membrane-bound compartment that protrudes from the cell surface. A unique system of bidirectional transport, intraflagellar transport (IFT, maintains the structure and function of cilia. While the axoneme is dynamic, growing and shrinking at its tip, at the same time it is very stable to the effects of microtubule-targeting drugs. The primary cilia found on Drosophila spermatocytes diverge from the general rules of primary cilium biology in several respects. Among these unique attributes, spermatocyte cilia assemble from all four centrioles in an IFT-independent manner in G2 phase, and persist continuously through two cell divisions. Here, we show that Drosophila spermatocyte primary cilia are extremely sensitive to microtubule-targeting drugs, unlike their mammalian counterparts. Spermatocyte cilia and their axonemes fail to assemble or be maintained upon nocodazole treatment, while centriole replication appears unperturbed. On the other hand, paclitaxel (Taxol, a microtubule-stabilizing drug, disrupted transition zone assembly and anchoring to the plasma membrane while causing spermatocyte primary cilia to grow extensively long during the assembly/elongation phase, but did not overtly affect the centrioles. However, once assembled to their mature length, spermatocyte cilia appeared unaffected by Taxol. The effects of these drugs on axoneme dynamics further demonstrate that spermatocyte primary cilia are endowed with unique assembly properties.

  5. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  6. Unique microstructure and excellent mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    Jincheng Liu

    2006-11-01

    Full Text Available Amongst the cast iron family, ADI has a unique microstructure and an excellent, optimised combination of mechanical properties. The main microstructure of ADI is ausferrite, which is a mixture ofextremely fine acicular ferrite and stable, high carbon austenite. There are two types of austenite in ADI:(1 the coarser and more equiaxed blocks of austenite between non-parallel acicular structures, which exist mainly in the last solidified area, and (2 the thin films of ustenite between the individual ferriteplatelets in the acicular structure. It is this unique microstructure, which gives ADI its excellent static and dynamic properties, and good low temperature impact toughness. The effect of microstructure on the mechanical properties is explained in more detail by examining the microstructure at the atomic scale. Considering the nanometer grain sizes, the unique microstructure, the excellent mechanical properties,good castability, (which enables near net shape components to be produced economically and in large volumes, and the fact that it can be 100% recycled, it is not overemphasized to call ADI a high-tech,nanometer and “green” material. ADI still has the potential to be further improved and its production and the number of applications for ADI will continue to grow, driven by the resultant cost savings over alternative materials.

  7. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Science.gov (United States)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan; Liang, Guozheng

    2017-07-01

    Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO2 and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91-95%, about 29-14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and modified fibers. The excellent comprehensive properties of BL-AFs demonstrate that the green method provided in this study is facile and effective to completely solve the bottlenecks of aramid fibers, and developing higher performance organic fibers.

  8. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    Science.gov (United States)

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  9. Unique Properties of the Rabbit Prion Protein Oligomer.

    Directory of Open Access Journals (Sweden)

    Ziyao Yu

    Full Text Available Prion diseases, also known as transmissible spongiform encephalopathies (TSEs, are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO, the intermediate of the conformational transformation from the host-derived cellular form (PrPC to the disease-associated Scrapie form (PrPSc, exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO and human prion protein oligomer (recHuPrPO under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl. Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits.

  10. Extremozymes--biocatalysts with unique properties from extremophilic microorganisms.

    Science.gov (United States)

    Elleuche, Skander; Schröder, Carola; Sahm, Kerstin; Antranikian, Garabed

    2014-10-01

    Extremozymes are enzymes derived from extremophilic microorganisms that are able to withstand harsh conditions in industrial processes that were long thought to be destructive to proteins. Heat-stable and solvent-tolerant biocatalysts are valuable tools for processes in which for example hardly decomposable polymers need to be liquefied and degraded, while cold-active enzymes are of relevance for food and detergent industries. Extremophilic microorganisms are a rich source of naturally tailored enzymes, which are more superior over their mesophilic counterparts for applications at extreme conditions. Especially lignocellulolytic, amylolytic, and other biomass processing extremozymes with unique properties are widely distributed in thermophilic prokaryotes and are of high potential for versatile industrial processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity

    International Nuclear Information System (INIS)

    Barvinsky, A.O.; Vilkovisky, G.A.

    1983-01-01

    We consider the one-loop approximation to the recently proposed unique effective action in gauge theory. The Schwinger-DeWitt technique is generalized and applied to the computation of the unique gravitational counterterms. The issue of asymptotic freedom is reexamined. (orig.)

  12. Wood of Giant Sequoia: properties and unique characteristics

    Science.gov (United States)

    Douglas D. Piirto

    1986-01-01

    Wood properties of giant sequoia (Sequoia gigantea [Lindl.] Decne.) were compared with those for other coniferous tree species. Wood properties such as specific gravity, various mechanical properties, extractive content, and decay resistance of young-growth giant sequoia are comparable to or more favorable than those of coast redwood (...

  13. A deep-sea bacterium with unique nitrifying property

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    that measurable activity was o b tained in 5 ? 7 days of incubation. Hence all exper iments were carried out for the above period. For high - pressure experi - ments a hydraulic pressure chamber (Tsurumi Suiki and Co, Model 02970, Japan) was used. The bacterial... ino - culum used for the exper i ment always contained 1.18 ? 10 10 cells l ? 1 . Experimen ts were also conducted at 1 atm. at 28 ? 2?C for comparison. Nitrifying activity can be mea s ured either by 15 N technique or colourimetric...

  14. Unique properties associated with normal martensitic transition and strain glass transition – A simulation study

    International Nuclear Information System (INIS)

    Wang, Dong; Ni, Yan; Gao, Jinghui; Zhang, Zhen; Ren, Xiaobing; Wang, Yunzhi

    2013-01-01

    Highlights: ► We model the unique properties of strain glass which is different from that of normal martensite. ► We describe the importance of point defects in the formation of strain glass and related properties. ► The role of point defect can be attributed to global transition temperature effect (GTTE) and local field effect (LFE). -- Abstract: The transition behavior and unique properties associated with normal martensitic transition and strain glass transition are investigated by computer simulations using the phase field method. The simulations are based on a physical model that assumes that point defects alter the thermodynamic stability of martensite and create local lattice distortion. The simulation results show that strain glass transition exhibits different properties from those found in normal martensitic transformations. These unique properties include diffuse scattering pattern, “smear” elastic modulus peak, disappearance of heat flow peak and non-ergodicity. These simulation predictions agree well with the experimental observations

  15. Utilising three-dimensional printing techniques when providing unique assistive devices: A case report.

    Science.gov (United States)

    Day, Sarah Jane; Riley, Shaun Patrick

    2018-02-01

    The evolution of three-dimensional printing into prosthetics has opened conversations about the availability and cost of prostheses. This report will discuss how a prosthetic team incorporated additive manufacture techniques into the treatment of a patient with a partial hand amputation to create and test a unique assistive device which he could use to hold his French horn. Case description and methods: Using a process of shape capture, photogrammetry, computer-aided design and finite element analysis, a suitable assistive device was designed and tested. The design was fabricated using three-dimensional printing. Patient satisfaction was measured using a Pugh's Matrix™, and a cost comparison was made between the process used and traditional manufacturing. Findings and outcomes: Patient satisfaction was high. The three-dimensional printed devices were 56% cheaper to fabricate than a similar laminated device. Computer-aided design and three-dimensional printing proved to be an effective method for designing, testing and fabricating a unique assistive device. Clinical relevance CAD and 3D printing techniques can enable devices to be designed, tested and fabricated cheaper than when using traditional techniques. This may lead to improvements in quality and accessibility.

  16. Ballroom dancing is more intensive for the female partners due to their unique hold technique.

    Science.gov (United States)

    Vaczi, M; Tekus, E; Atlasz, T; Cselko, A; Pinter, G; Balatincz, D; Kaj, M; Wilhelm, M

    2016-09-01

    In this study, we tested the hypotheses that, relative to the maximum capacities, ballroom dancing is more intensive for females than males, and that the hold technique (female vs. male) regulates dancing intensity. Ten dance couples were tested in a maximal treadmill test, competition simulation, and stationary dance hold position. Peak heart rate and relative oxygen consumption were measured during the tests, except that oxygen consumption was not measured during competition simulation. Regardless of gender, heart rate increased similarly in the treadmill test and in the competition simulation. In the treadmill test, females achieved an oxygen consumption of 78% of the males (p ballroom dancers perform at their vita maxima during competition simulation. Using heart rate as an intensity indicator, ballroom dancing is more intensive for females because of their unique hold technique.

  17. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  18. Utilizing Iron's Attractive Chemical and Magnetic Properties in Microrocket Design, Extended Motion, and Unique Performance.

    Science.gov (United States)

    Karshalev, Emil; Chen, Chuanrui; Marolt, Gregor; Martín, Aída; Campos, Isaac; Castillo, Roxanne; Wu, Tianlong; Wang, Joseph

    2017-06-01

    All-in-one material for microrocket propulsion featuring acid-based bubble generation and magnetic guidance is presented. Electrochemically deposited iron serves as both a propellant, toward highly efficient self-propulsion in acidic environments, and as a magnetic component enabling complete motion control. The new microrockets display longer lifetime and higher propulsion efficiency compared to previously reported active metal zinc-based microrockets due to the chemical properties of iron and the unique structure of the microrockets. These iron-based microrockets also demonstrate unique and attractive cargo towing and autonomous release capabilities. The latter is realized upon loss of the magnetic properties due to acid-driven iron dissolution. More interestingly, these bubble-propelled microrockets assemble via magnetic interactions into a variety of complex configurations and train structures, which enrich the behavior of micromachines. Modeling of the magnetic forces during the microrocket assembly and cargo capture confirms these unique experimentally observed assembly and cargo-towing behaviors. These findings provide a new concept of blending propellant and magnetic components into one, toward simplifying the design and fabrication of artificial micro/nanomachines, realizing new functions and capabilities for a variety of future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  20. Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties

    Science.gov (United States)

    Nakada, Tokio

    2012-04-01

    Although CIGS solar cells consist of a polycrystalline thin film grown on a glass substrate, more than 20% conversion efficiency has been achieved. The efficiency has reached the same level as polycrystalline silicon solar cells. This high efficiency has not yet been observed in other thin film solar cells including thin film Si and CdTe. Therefore, it is important to understand the mechanisms that allow CIGS solar cells to exhibit high conversion efficiencies. This paper discusses the origin of the high efficiency and demonstrates that it is caused by the unique material properties of CIGS films.

  1. Universal Property of Quantum Gravity implied by Uniqueness Theorem of Bekenstein-Hawking Entropy

    Directory of Open Access Journals (Sweden)

    Hiromi Saida

    2011-09-01

    Full Text Available This paper consists of three parts. In the first part, we prove that the Bekenstein-Hawking entropy is the unique expression of black hole entropy. Our proof is constructed in the framework of thermodynamics without any statistical discussion. In the second part, intrinsic properties of quantum mechanics are shown, which justify the Boltzmann formula to yield a unique entropy in statistical mechanics. These properties clarify three conditions, one of which is necessary and others are sufficient for the validity of Boltzmann formula. In the third part, by combining the above results, we find a reasonable suggestion from the sufficient conditions that the potential of gravitational interaction among microstates of underlying quantum gravity may not diverge to negative infinity (such as Newtonian gravity but is bounded below at a finite length scale. In addition to that, from the necessary condition, the interaction has to be repulsive within the finite length scale. The length scale should be Planck size. Thus, quantum gravity may become repulsive at Planck length. Also, a relation of these suggestions with action integral of gravity at semi-classical level is given. These suggestions about quantum gravity are universal in the sense that they are independent of any existing model of quantum gravity.

  2. Electrospun Collagen: A Tissue Engineering Scaffold with Unique Functional Properties in a Wide Variety of Applications

    Directory of Open Access Journals (Sweden)

    Balendu Shekhar Jha

    2011-01-01

    Full Text Available Type I collagen and gelatin, a derivative of Type I collagen that has been denatured, can each be electrospun into tissue engineering scaffolds composed of nano- to micron-scale diameter fibers. We characterize the biological activity of these materials in a variety of tissue engineering applications, including endothelial cell-scaffold interactions, the onset of bone mineralization, dermal reconstruction, and the fabrication of skeletal muscle prosthetics. Electrospun collgen (esC consistently exhibited unique biological properties in these functional assays. Even though gelatin can be spun into fibrillar scaffolds that resemble scaffolds of esC, our assays reveal that electrospun gelatin (esG lacks intact α chains and is composed of proinflammatory peptide fragments. In contrast, esC retains intact α chains and is enriched in the α 2(I subunit. The distinct fundamental properties of the constituent subunits that make up esC and esG appear to define their biological and functional properties.

  3. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    Science.gov (United States)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large

  4. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    International Nuclear Information System (INIS)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-01-01

    How protein–protein interaction affects protein–nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein–nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD–protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD–protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD–His-tag interaction and protein–protein interaction can result in unique properties of protein–nanoparticle assembly for the first time

  5. Pannexin1 channel proteins in the zebrafish retina have shared and unique properties.

    Directory of Open Access Journals (Sweden)

    Sarah Kurtenbach

    Full Text Available In mammals, a single pannexin1 gene (Panx1 is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo.

  6. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? International biodeterioration & biodegradation

    Science.gov (United States)

    S. N. Kartal; Frederick Green; Carol A. Clausen

    2009-01-01

    Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood...

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    Science.gov (United States)

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. A Unique Surgical Technique for Tracheostomy in Heterotopic Ossification: A Case Report.

    Science.gov (United States)

    Cheng, Esther; Thorpe, Eric

    2016-11-01

    To describe a technique for tracheostomy in heterotopic ossification that has not yet been described in the literature. We report a case of difficult tracheostomy while using conventional techniques in a 68-year-old patient who underwent mitral valve replacement requiring warfarin therapy three months prior. Imaging revealed heterotopic ossification overlying the trachea. A literature review was performed to identify similar cases or techniques. Extensive surgical planning was pursued after the initial attempted tracheostomy failed, and the airway was eventually accessed using a lighted intubation stylet for guidance and a drill. Heterotopic ossification has been described after orthopedic and abdominal surgeries. We identified one case report in the literature of tracheostomy performed in the setting of heterotopic ossification by an unspecified mechanism. There are few reported cases of tracheobronchial calcification in cardiac patients receiving warfarin therapy; however, these patients had characteristic imaging findings that were not consistent with those of our patient. We illustrate a safe and effective technique for tracheostomy in heterotopic ossification that has not been reported. Coordination with the anesthesia service was paramount for a successful operation. © The Author(s) 2016.

  9. A unique approach for reducing specimen labeling errors: combining marketing techniques with performance improvement.

    Science.gov (United States)

    Simpson, J B

    2001-01-01

    Challenged with persistent specimen labeling errors that were resistant to improvement efforts, our organization selected "reducing specimen labeling errors" as an indicator for a hospital-wide error reduction goal. Modeling quality improvement guidelines published in the institute of Medicine's report "To Err is Human, Building a Safer Health System," a multidisciplinary task force "error proofed" processes. The task force created new standards and crafted an implementation plan using an internal marketing strategy to change current practices and reinforce patient safety as a core value within our institution. This unique approach reduced errors by 41% and provided learning opportunities that will be valuable in more challenging patient safety initiatives such as medication error reduction.

  10. Unique Phrenic Nerve-Sparing Regional Anesthetic Technique for Pain Management after Shoulder Surgery

    Directory of Open Access Journals (Sweden)

    Jason K. Panchamia

    2017-01-01

    Full Text Available Background. Ipsilateral phrenic nerve blockade is a common adverse event after an interscalene brachial plexus block, which can result in respiratory deterioration in patients with preexisting pulmonary conditions. Diaphragm-sparing nerve block techniques are continuing to evolve, with the intention of providing satisfactory postoperative analgesia while minimizing hemidiaphragmatic paralysis after shoulder surgery. Case Report. We report the successful application of a combined ultrasound-guided infraclavicular brachial plexus block and suprascapular nerve block in a patient with a complicated pulmonary history undergoing a total shoulder replacement. Conclusion. This case report briefly reviews the important innervations to the shoulder joint and examines the utility of the infraclavicular brachial plexus block for postoperative pain management.

  11. Neutron diffraction tomography: a unique, 3D inspection technique for crystals using an intensifier TV system

    International Nuclear Information System (INIS)

    Davidson, J.B.; Case, A.L.

    1978-01-01

    The application of phosphor-intensifier-TV techniques to neutron topography and tomography of crystals is described. The older, analogous x-ray topography using wavelengths approximately 1.5A is widely used for surface inspection. However, the crystal must actually be cut in order to see diffraction anomalies beneath the surface. Because 1.5-A thermal neutrons are highly penetrating, much larger and thicker specimens can be used. Also, since neutrons have magnetic moments, they are diffracted by magnetic structures within crystals. In neutron volume topography, the entire crystal or a large part of it is irradiated, and the images obtained are superimposed reflections from the total volume. In neutron tomography (or section topography), a collimated beam irradiates a slice (0.5 to 10 mm) of the crystal. The diffracted image is a tomogram from this part only. A series of tomograms covering the crystal can be taken as the specimen is translated in steps across the narrow beam. Grains, voids, twinning, and other defects from regions down to 1 mm in size can be observed and isolated. Although at present poorer in resolution than the original neutron and film methods, the TV techniques are much faster and, in some cases, permit real-time viewing. Two camera systems are described: a counting camera having a 150 mm 6 Li-ZnS screen for low-intensity reflections which are integrated in a digital memory, and a 300-mm system using analog image storage. Topographs and tomograms of several crystals ranging in size from 4 mm to 80 mm are shown

  12. Imparting the unique properties of DNA into complex material architectures and functions

    Science.gov (United States)

    Xu, Phyllis F.; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W.; Nakatsuka, Matthew A.; Goodwin, Andrew P.; Cha, Jennifer N.

    2014-01-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA’s ability to control a material’s architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors. PMID:25525408

  13. Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Manjot; Krishnan, Unni; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-02-01

    Boron carbide: A traditional ceramic material shows unique properties when explored in nano-range. Specially designed boron-based nanocomposite has been synthesized by reflux method. The addition of SnO2 in base matrix increases the defect states in boron carbide and shows unique catalytic properties. The calculated texture coefficient and Nelson-Riley factor show that the synthesized nanocomposite has large number of defect states. Also this composite is explored for the first time for catalysis degradation of industrial used dyes. The degradation analysis of industrial pollutants such as Novacron red Huntsman (NRH) and methylene blue (MB) dye reveals that the composite is an efficient catalyst. Degradation study shows that 1 g/L catalyst concentration of B4C/SnO2 degrades NRH and MB dye up to approximately 97.38 and 79.41%, respectively, in 20 min under sunlight irradiation. This water-insoluble catalyst can be recovered and reused.

  14. Unique Medicinal Properties of Withania somnifera: Phytochemical Constituents and Protein Component.

    Science.gov (United States)

    Dar, Parvaiz A; Singh, Laishram R; Kamal, Mohammad A; Dar, Tanveer A

    2016-01-01

    Withania somnifera is an important medicinal herb that has been widely used for the treatment of different clinical conditions. The overall medicinal properties of Withania somnifera make it a viable therapeutic agent for addressing anxiety, cancer, microbial infection, immunomodulation, and neurodegenerative disorders. Biochemical constituents of Withania somnifera like withanolideA, withanolide D, withaferin A and withaniamides play an important role in its pharmacological properties. Proteins like Withania somnifera glycoprotein and withania lectin like-protein possess potent therapeutic properties like antimicrobial, anti-snake venom poison and antimicrobial. In this review, we have tried to present different pharmacological properties associated with different extract preparations, phytochemical constituents and protein component of Withania somnifera. Future insights in this direction have also been highlighted.

  15. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    Science.gov (United States)

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-02-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.

  16. Understanding the Unique Properties of Organometal Trihalide Perovskite with Single Crystals

    Science.gov (United States)

    Huang, Jinsong

    Organometal Trihalide Perovskite has been discovered to be all-round optoelectronic materials many types of electronic devices. The understanding of this family of materials is however limited yet due to the complicated grain structures in polycrystalline films which are generally used in most of the devices. In this contribution, I will present our recent progress in understanding the fundamental properties, including optoelectronic properties and electromechanical properties, using the high quality organometal trihalide perovskite single crystals. I will report the crystallographic orientation dependent charge transport and collection, surface and bulk charge recombination process, and direction measuring of carrier diffusion length using the lasing induced photocurrent scanning. The polarity of the organometal trihalide perovskite crystals will also be examined. We thank financial support from SunShot Initiative at Department of Energy under Award DE-EE0006709, and from National Science Foundation Grant DMR-1505535 and Grant DMR-1420645, and from Office of Naval Research under Award N00014-15-1-2713.

  17. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation

    NARCIS (Netherlands)

    Pereira, L.; Mehboob, F.; Stams, A.J.M.; Mota, M.M.; Rijnaarts, H.H.M.; Alves, M.M.

    2015-01-01

    The impact of nanotechnology in all areas of science and technology is evident. The expanding availability of a variety of nanostructures with properties in the nanometer size range has sparked widespread interest in their use in biotechnological systems, including the field of environmental

  18. Curcumolide, a unique sesquiterpenoid with anti-inflammatory properties from Curcuma wenyujin.

    Science.gov (United States)

    Dong, Jianyong; Shao, Weiwei; Yan, Pengcheng; Cai, Xiaoqing; Fang, Lianglian; Zhao, Xiaowei; Lin, Weiwei; Cai, Yuan

    2015-01-15

    Curcumolide, a novel sesquiterpenoid with a unique 5/6/5 tricyclic skeleton, was isolated from Curcuma wenyujin. The structure and absolute configuration were elucidated by extensive NMR, ECD data analysis, and a single-crystal X-ray study. This molecule exhibited significant anti-inflammatory effects in LPS-induced RAW 264.7 macrophages. It suppressed LPS-induced NF-κB activation, including the nuclear translocation and DNA binding activity of NF-κB, and decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), nitric oxide (NO) and reactive oxygen species (ROS) production. Therefore, Curcumolide may have therapeutic potential for treating inflammatory diseases by inhibiting NF-κB activation and pro-inflammatory mediator production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  20. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties.

    Science.gov (United States)

    Becker, María Inés; Fuentes, Alejandra; Del Campo, Miguel; Manubens, Augusto; Nova, Esteban; Oliva, Harold; Faunes, Fernando; Valenzuela, María Antonieta; Campos-Vallette, Marcelo; Aliaga, Alvaro; Ferreira, Jorge; De Ioannes, Alfredo E; De Ioannes, Pablo; Moltedo, Bruno

    2009-03-01

    Hemocyanin, the oxygen transporter metallo-glycoprotein from mollusks, shows strong relationship between its notable structural features and intrinsic immunomodulatory effects. Here we investigated the individual contribution of CCHA and CCHB subunits from Concholepas hemocyanin (CCH) to in vivo humoral immune response and their pre-clinical evaluation as immunotherapeutic agent in a mice bladder cancer model, in relation to their biochemical properties. To this end, subunits were purified and well characterized. Homogeneous subunits were obtained by anionic exchange chromatography, and its purity assessed by electrophoretic and immunochemical methods. While each CCH subunit contains eight functional units showing partial cross reaction, the vibrational spectral analysis showed several spectral differences, suggesting structural differences between them. In addition, we demonstrated differences in the carbohydrate content: CCHA had a 3.6% w/w sugar with both N- and O-linked moieties. In turn, CCHB had a 2.5% w/w sugar with N-linked, while O-linked moieties were nearly absent. Considering these differences, it was not possible to predict a priori whether the immunogenic and immunotherapeutic properties of subunits might be similar. Surprisingly, both subunits by itself induced a humoral response, and showed an antitumor effect in the bladder carcinoma cell line MBT-2. However, when immunologic parameters were analyzed, CCHA showed better efficiency than CCHB. No allergic reactions or any toxic effects were observed in mice treated with CCHA, sustaining its potential therapeutic use. Our study supports that CCHA subunit accounts for the most important features involved in the immunogenicity of CCH, such as better hydrophilicity and higher content of carbohydrates.

  1. Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition.

    Science.gov (United States)

    Diroll, Benjamin T; Guo, Peijun; Schaller, Richard D

    2018-02-14

    Methylammonium (MA) and formamidinium (FA) lead halides are widely studied for their potential as low-cost, high-performance optoelectronic materials. Here, we present measurements of visible and IR absorption, steady state, and time-resolved photoluminescence from 300 K to cryogenic temperatures. Whereas FAPbI 3 nanocrystals (NCs) are found to behave in a very similar manner to reported bulk behavior, colloidal nanocrystals of MAPbI 3 show a departure from the low-temperature optical behavior of the bulk material. Using photoluminescence, visible, and infrared absorption measurements, we demonstrate that unlike single crystals and polycrystalline films NCs of MAPbI 3 do not undergo optical changes associated with the bulk tetragonal-to-orthorhombic phase transition, which occurs near 160 K. We find no evidence of frozen organic cation rotation to as low as 80 K or altered exciton binding energy to as low as 3 K in MAPbI 3 NCs. Similar results are obtained in MAPbI 3 NCs ranging from 20 to over 100 nm and in morphologies including cubes and plates. Colloidal MAPbI 3 NCs therefore offer a window into the properties of the solar-relevant, room-temperature phase of MAPbI 3 at temperatures inaccessible with single crystals or polycrystalline samples. Exploiting this phenomenon, these measurements reveal the existence of an optically passive photoexcited state close to the band edge and persistent slow Auger recombination at low temperature.

  2. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Xu, Chen; Huang, Shan; Lin, Youmin; Tolic, Nikola; Roscioli, Kristyn M.; Santschi, Peter H.; Jaffe, Peter R.

    2016-04-19

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands

  3. Neurons Responsive to Global Visual Motion Have Unique Tuning Properties in Hummingbirds.

    Science.gov (United States)

    Gaede, Andrea H; Goller, Benjamin; Lam, Jessica P M; Wylie, Douglas R; Altshuler, Douglas L

    2017-01-23

    Neurons in animal visual systems that respond to global optic flow exhibit selectivity for motion direction and/or velocity. The avian lentiformis mesencephali (LM), known in mammals as the nucleus of the optic tract (NOT), is a key nucleus for global motion processing [1-4]. In all animals tested, it has been found that the majority of LM and NOT neurons are tuned to temporo-nasal (back-to-front) motion [4-11]. Moreover, the monocular gain of the optokinetic response is higher in this direction, compared to naso-temporal (front-to-back) motion [12, 13]. Hummingbirds are sensitive to small visual perturbations while hovering, and they drift to compensate for optic flow in all directions [14]. Interestingly, the LM, but not other visual nuclei, is hypertrophied in hummingbirds relative to other birds [15], which suggests enhanced perception of global visual motion. Using extracellular recording techniques, we found that there is a uniform distribution of preferred directions in the LM in Anna's hummingbirds, whereas zebra finch and pigeon LM populations, as in other tetrapods, show a strong bias toward temporo-nasal motion. Furthermore, LM and NOT neurons are generally classified as tuned to "fast" or "slow" motion [10, 16, 17], and we predicted that most neurons would be tuned to slow visual motion as an adaptation for slow hovering. However, we found the opposite result: most hummingbird LM neurons are tuned to fast pattern velocities, compared to zebra finches and pigeons. Collectively, these results suggest a role in rapid responses during hovering, as well as in velocity control and collision avoidance during forward flight of hummingbirds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Unique and shared techniques in cognitive-behavioural and short-term psychodynamic psychotherapy: a content analysis of randomised trials on depression

    Science.gov (United States)

    Barth, Jürgen; Michlig, Nadja; Munder, Thomas

    2014-01-01

    Randomised controlled trials (RCTs) of psychotherapeutic interventions assume that specific techniques are used in treatments, which are responsible for changes in the client's symptoms. This assumption also holds true for meta-analyses, where evidence for specific interventions and techniques is compiled. However, it has also been argued that different treatments share important techniques and that an upcoming consensus about useful treatment strategies is leading to a greater integration of treatments. This makes assumptions about the effectiveness of specific interventions ingredients questionable if the shared (common) techniques are more often used in interventions than are the unique techniques. This study investigated the unique or shared techniques in RCTs of cognitive-behavioural therapy (CBT) and short-term psychodynamic psychotherapy (STPP). Psychotherapeutic techniques were coded from 42 masked treatment descriptions of RCTs in the field of depression (1979–2010). CBT techniques were often used in studies identified as either CBT or STPP. However, STPP techniques were only used in STPP-identified studies. Empirical clustering of treatment descriptions did not confirm the original distinction of CBT versus STPP, but instead showed substantial heterogeneity within both approaches. Extraction of psychotherapeutic techniques from the treatment descriptions is feasible and could be used as a content-based approach to classify treatments in systematic reviews and meta-analyses. PMID:25750827

  5. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    Science.gov (United States)

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  6. Web-based KAP Intervention on Office Ergonomics: A Unique Technique for Prevention of Musculoskeletal Discomfort in Global Corporate Offices

    Science.gov (United States)

    Madhwani, Kishore P.; Nag, P. K.

    2017-01-01

    Aims: The purpose of this study was to evaluate web-based Knowledge, Attitude and Practice (KAP) intervention on office ergonomics – a unique method for prevention of musculoskeletal discomfort (MSD) – in corporate offices that influences behavior modification. Background: With the increasing use of computers, laptops and hand-held communication devices globally among office employees, creating awareness on office ergonomics has become a top priority. Emphasis needs to be given on maintaining ideal work postures, ergonomic arrangement of workstations, optimizing chair functions, as well as performing desk stretches to reduce MSD arising from the use of these equipment, thereby promoting safe work practices at offices and home, as in the current scenario many employees work from home with flexible work hours. Hence, this justifies the importance of our study. Objective: To promote safe working by exploring cost-effective communication methods to achieve behavior change at distant sites when an on-site visit may not be feasible. Materials and Methods: An invitation was sent by the Medical and Occupational Health Team of a multinational corporation to all employees at their offices in Sri Lanka, Singapore, and Malaysia to take up an online Nordic questionnaire, a screening tool for musculoskeletal symptoms, shared in local languages on two occasions – baseline evaluation (n = 240) and a follow-up evaluation after 3 months (n = 203). After completing the baseline questionnaire, employees were immediately trained on correct postures and office ergonomics with animation graphics. The same questionnaire was sent again after a 12-week gap only to those employees who responded to the baseline questionnaire on initial assessment. Statistical Analysis Used: Data collected were analyzed using the Statistical Package for the Social Sciences (SPSS) version 20.0 software and variables were compared using odds ratio as well as Chi-square test. Results: Of the 203 employees

  7. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  8. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid.

    Science.gov (United States)

    Kim, Sang Yoon; Song, Hajin; Sang, Mee Kyung; Weon, Hang-Yeon; Song, Jaekyeong

    2017-10-10

    The bacterial strain Bacillus velezensis GH1-13, isolated from rice paddy soil in Korea, has been shown to promote plant growth and have strong antagonistic activities against pathogens. Here, we report the complete genome sequence of GH1-13, revealing that it possesses a single 4,071,980-bp circular chromosome with 46.2% GC-content. The chromosome encodes 3,930 genes, and we have also identified a unique plasmid in the strain that encodes a further 104 genes (71,628bp and 31.7% GC-content). The genome was found to contain various enzyme-encoding operons, including indole-3-acetic acid (IAA) biosynthesis proteins, 2,3-butanediol dehydrogenase, various non-ribosomal peptide synthetases, and several polyketide synthases. These properties are responsible for the promotion of plant growth and the biosynthesis of secondary metabolites. They therefore have multiple beneficial effects that could be applied to agriculture. Through curing, we found that the unique plasmid of GH1-13 has important roles in the production of phytohormones, such as IAA, and in shaping phenotypic and physiological characteristics. The plasmid therefore likely influences the biological activities of GH1-13. The complete genome sequence of B. velezensis GH1-13 contributes to our understanding of this beneficial strain and will encourage research into its development for agricultural or biotechnological applications, enhancing productivity and crop quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Data mining techniques for thermophysical properties of refrigerants

    International Nuclear Information System (INIS)

    Kuecueksille, Ecir Ugur; Selbas, Resat; Sencan, Arzu

    2009-01-01

    This study presents ten modeling techniques within data mining process for the prediction of thermophysical properties of refrigerants (R134a, R404a, R407c and R410a). These are linear regression (LR), multi layer perception (MLP), pace regression (PR), simple linear regression (SLR), sequential minimal optimization (SMO), KStar, additive regression (AR), M5 model tree, decision table (DT), M5'Rules models. Relations depending on temperature and pressure were carried out for the determination of thermophysical properties as the specific heat capacity, viscosity, heat conduction coefficient, density of the refrigerants. Obtained model results for every refrigerant were compared and the best model was investigated. Results indicate that use of derived formulations from these techniques will facilitate design and optimize of heat exchangers which is component of especially vapor compression refrigeration system

  10. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  11. Signal Morphing techniques and possible application to Higgs properties measurements

    CERN Document Server

    Ecker, Katharina Maria; The ATLAS collaboration

    2016-01-01

    One way of describing deviations from the Standard Model is via Effective Field Theories or pseudo-observables, where higher order operators modify the couplings and the kinematics of the interaction of the Standard Model particles. Generating Monte Carlo events for every testable set of parameters for such a theory would require computing resources beyond the ones currently available in ATLAS. Up to now, Matrix-Element based reweighting techniques have been often used to model Beyond Standard Model process starting from Standard Model simulated events. In this talk, we review the advantages and the limitations of morphing techniques to construct continuous probability model for signal parameters, interpolating between a finite number of distributions obtained from the simulation chain. The technique will be exemplified by searching for deviations from the Standard Model predictions in Higgs properties measurements.

  12. Controllable supramolecular structures and luminescent properties of unique trimeric Zn(II) 8-hydroxyquinolinates tuned by functional substituents.

    Science.gov (United States)

    Yuan, Guozan; Huo, Yanping; Nie, Xiaoli; Jiang, Hong; Liu, Bin; Fang, Xiaoming; Zhao, Fenghua

    2013-02-28

    We reported here the self-assembly of two supramolecular structures based on similar trimeric Zn(II) units that are built from novel 2-substituted 8-hydroxyquinoline ligands and coordination Zn(II) ions. The aggregation behavior of zinc salt and ligand in solution was investigated by a variety of techniques, including (1)H NMR, UV-vis and photoluminescence (PL). In the solid state, the supramolecular structures can be controlled by the substituted groups (-NO(2) and -F) via intermolecular interaction, such as π···π stacking, C-H···O, and C-F···F-C interactions. As a result, the two trimeric Zn(II) complexes exhibit disparate photophysical properties. The present research holds great promise in the development of novel multinuclear Zn(II) materials, and may contribute to the understanding of structure-property relationships.

  13. Unique Cell Adhesion and Invasion Properties of Yersinia enterocolitica O:3, the Most Frequent Cause of Human Yersiniosis

    Science.gov (United States)

    Uliczka, Frank; Pisano, Fabio; Schaake, Julia; Stolz, Tatjana; Rohde, Manfred; Fruth, Angelika; Strauch, Eckhard; Skurnik, Mikael; Batzilla, Julia; Rakin, Alexander; Heesemann, Jürgen; Dersch, Petra

    2011-01-01

    Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment. PMID:21750675

  14. The "Individualised Accounting Questions" Technique: Using Excel to Generate Quantitative Exercises for Large Classes with Unique Individual Answers

    Science.gov (United States)

    Nnadi, Matthias; Rosser, Mike

    2014-01-01

    The "individualised accounting questions" (IAQ) technique set out in this paper encourages independent active learning. It enables tutors to set individualised accounting questions and construct an answer grid that can be used for any number of students, with numerical values for each student's answers based on their student enrolment…

  15. Small specimen technique for assessing mechanical properties of metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E., E-mail: rmlobo@ipen.br, E-mail: morcelliae@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  16. Small specimen technique for assessing mechanical properties of metallic components

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E.

    2017-01-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  17. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  18. Tubuliform silk protein: A protein with unique molecular characteristics and mechanical properties in the spider silk fibroin family

    Science.gov (United States)

    Tian, M.; Lewis, R. V.

    2006-02-01

    Orb-web weavers can produce up to six different types of silk and a glue for various functions. Tubuliform silk is unique among them due to its distinct amino acid composition, specific time of production, and atypical mechanical properties. To study the protein composing this silk, tubuliform gland cDNA libraries were constructed from three orb-weaving spiders Argiope aurantia, Araneus gemmoides, and Nephila clavipes. Amino acid composition comparison between the predicted tubuliform silk protein sequence (TuSp1) and the corresponding gland protein confirms that TuSp1 is the major component in tubuliform gland in three spiders. Sequence analysis suggests that TuSp1 shares no significant similarity with its paralogues, while it has conserved sequence motifs with the most primitive spider, Euagrus chisoseus silk protein. The presence of large side-chain amino acids in TuSp1 sequence is consistent with the frustrated β-sheet crystalline structure of tubuliform silk observed in transmission electron microscopy. Repeat unit comparison within species as well as among three spiders exhibits high sequence conservation. Parsimony analysis based on carboxy terminal sequence shows that Argiope and Araneus are more closely related than either is to Nephila which is consistent with phylogenetic analysis based on morphological evidence.

  19. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties*

    Science.gov (United States)

    Campos, Bruna Medeia; Alvarez, Thabata Maria; Zanphorlin, Letícia Maria; Ematsu, Gabriela Cristina; Barud, Hernane; Polikarpov, Igor; Ruller, Roberto; Gilbert, Harry J.; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2016-01-01

    Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs. PMID:27621314

  20. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Schmidt, Matthias; Musat, Niculina [Helmholtz Centre for Environmental Research–UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Swanson, Juliet S.; Reed, Donald T. [Los Alamos National Laboratory, Repository Science and Operations, 1400 University Drive, Carlsbad, NM, 88220 (United States); Stumpf, Thorsten [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Cherkouk, Andrea, E-mail: a.cherkouk@hzdr.de [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2017-04-05

    Highlights: • First prolonged kinetics study of uranium to halophilic archaea was performed. • An atypical time-dependent bioassociation behavior of uranium was observed. • Unique combination of spectroscopic and microscopic methods was used. • In situ ATR FT-IR showed association of U(VI) to phosphoryl and carboxylate groups. • Time-dependent changes of U(VI) localization could be monitored by SEM/EDX. - Abstract: The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.

  1. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    International Nuclear Information System (INIS)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten; Cherkouk, Andrea

    2017-01-01

    Highlights: • First prolonged kinetics study of uranium to halophilic archaea was performed. • An atypical time-dependent bioassociation behavior of uranium was observed. • Unique combination of spectroscopic and microscopic methods was used. • In situ ATR FT-IR showed association of U(VI) to phosphoryl and carboxylate groups. • Time-dependent changes of U(VI) localization could be monitored by SEM/EDX. - Abstract: The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.

  2. The Spiritual Form of Ancient Art and Culture - Bharatanatyam (Visual Art Depicted Using Unique Techniques on Scratchboard (Fine Art Medium

    Directory of Open Access Journals (Sweden)

    Arpitha Parthasarathy

    2017-03-01

    Full Text Available The most ancient form of dance that is prevailing todays is a form of classical Indian dance, Bharatanatyam. In Sanskrit (and Devanagri, bharatanatyam means "Indian dance", is believed to have divine origin and is of the most ancient form of classical dance. Bharatanatyam is a two thousand-year-old dance form, originally practiced in the temples of ancient India. The art today remains purely devotional even today and this performing art is yet to gain awareness and interest in the western world. This dance form has various implications in improving the higher order thinking in children and provides health benefits in adults apart from cultural preservation. The current study uses scratchboard as a medium to display the artistic movements and emotions. Scratchboard, a fine art is one means by which the visual art is expressed in this current study using sharp tools, namely X-acto 11 scalpel and tattoo needles. This unique medium made up of a masonite hardboard coated with soft clay and Indian ink has been used to not only show the details of the ancient dance form and expression but also to comprehend and transcribe both visual art and fine art. It is for the first time that scratchboard medium has been the innovatively used to show various textures of flower, glistening gold jewels, hand woven silk and the divine expression in the same art ‘devotion’. The current study was carried out in-order to perpetuate, conserve and disseminate these classic forms of visual art and fine art.

  3. Cultivation Techniques and Medicinal Properties of Pleurotus spp.

    Directory of Open Access Journals (Sweden)

    Andrej Gregori

    2007-01-01

    Full Text Available The genus Pleurotus (oyster mushroom comprises some most popular edible mushrooms due to their favourable organoleptic and medicinal properties, vigorous growth and undemanding cultivation conditions. It can be cultivated on log and a wide variety of agroforestry (by-products, weeds and wastes for the production of food, feed, enzymes and medicinal compounds, or for waste degradation and detoxification. Many different techniques and substrates have been successfully utilized for mushroom cultivation and biomass production by means of solid-state and submerged liquid fermentation. However, in contrast to submerged liquid fermentation, solid-state fermentation is not often used in large scale due to severe engineering problems. Various Pleurotus species have been shown to possess a number of medicinal properties, such as antitumour, immunomodulatory, antigenotoxic, antioxidant, anti-inflammatory, hypocholesterolaemic, antihypertensive, antiplatelet-aggregating, antihyperglycaemic, antimicrobial and antiviral activities. These therapeutic activities are exhibited by extracts or isolated compounds from Pleurotus spp. fermentation broth, mycelia and fruiting bodies. In particular, polysaccharides appear to be potent antitumour and immuno-enhancing substances, besides possessing other beneficial activities. However, the biochemical mechanisms of these therapeutic activities still remain largely unknown. This review focuses on recent advances in the biotechnology of Pleurotus spp., with emphasis on the production of fruiting bodies, the production of mycelium and bioactive compounds by solid-state and submerged liquid fermentation. The medicinal properties of this mushroom are also outlined.

  4. Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties

    Science.gov (United States)

    Lum, Jordan S.; Stobbe, David M.; Borden, Mark A.; Murray, Todd W.

    2018-03-01

    Phospholipid-coated microbubbles are being developed for several biomedical applications, but little is known about the effect of temperature on the viscoelastic properties of the shell. Here, we report on the use of a photoacoustic technique to study the shell properties of individual microbubbles as a function of temperature. The microbubbles were driven into small-amplitude oscillations by ultrasound waves generated from the absorption of an intensity-modulated infrared laser, and these oscillations were detected by forward-light scattering of a second blue laser. The drive laser modulation frequency was swept to determine the resonant response of 2-4 μm radius microbubbles. Lipid shell elasticity and viscosity were determined by modeling the microbubble response as a linear harmonic oscillator. The results from slow heating showed a linear decrease in elasticity and viscosity between 21 and 53 °C and a corresponding increase in the maximum oscillation amplitude. Rapid heating to 38 °C, on the other hand, showed a transient response in the viscoelastic properties, suggesting shell rupture and reformation during microbubble growth and subsequent dissolution. These effects are important for biomedical applications, which require warming of the microbubbles to body temperature.

  5. Electronic properties of Be and Al by Compton scattering technique

    International Nuclear Information System (INIS)

    Aguiar, J.C.; Di Rocco, H.O.

    2011-01-01

    In this work, electronic properties of beryllium and aluminum are examined by using Compton scattering technique. The method is based on the irradiation of samples using a beam narrow of mono- energetic photons of 59.54 keV product of radioactive decay of Am -241 . Scattered radiation is collected by a high resolution semiconductor detector positioned at an angle of 90°. The measured spectrum is commonly called Compton profile and contains useful information about the electronic structure of the material. The experimental results are compared with theoretical calculations such as density functional theory showing a good agreement. However, these results show some discrepancies with many libraries used in codes such as Monte Carlo simulation. Since these libraries are based on the values tabulated by Biggs, Mendelsohn and Mann 1975 thus overestimating the scattered radiation on the material. (authors) [es

  6. High Resolution MR-Elastography : a Unique Tool to Study the Rheological Properties of Tissue In Vivo and the Origin of Its Multiscale Behaviour

    Science.gov (United States)

    Larrat, Benoit; Tanter, Mickael; Fink, Mathias; Sinkus, Ralph

    2008-07-01

    Although the rheology of soft tissue samples is subject to extensive studies, mainly via rheometer measurements, only a few papers discuss the mechanical behaviour of living biological tissues. This is mainly due to the lack of a reliable and accurate technique to quantitatively assess the stress-strain relationship in vivo. In this study, we show that MR-Elastography with its full 3D potential gives unique access to the frequency dependency of the complex shear modulus. In-vivo multi-frequent experiments were conducted in rat brain, fibrotic rat liver and human breast tissue. Additionally, a full physically-motivated model, in agreement with the causality principle, has been developed to explain the observed dispersion properties and finite element simulations were conducted to understand their microscopic origin. MR-Elastography can be efficiently used to study rheology in vivo. The frequency behaviour of the macroscopic viscoelastic parameters gives additional information about the microscopic structure of the material. The observed power-law leads to the hypothesis that an underlying self-similar network is responsible for it. Simulations show that the vascular network is a potential candidate. If proven, this could lead to a contrast provided on a macroscopic scale sensitive to changes on the level of the microscopic vascular architecture. Furthermore, at low frequency, the apparent loss modulus seems to originate from the multiple scattering at the micro level rather than from the intrinsic viscosity.

  7. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  8. Microwave/RESIS technique for measurement of heavy ion properties

    Science.gov (United States)

    Lundeen, Stephen; Keele, Julie; Woods, Shannon; Smith, Chris; Fehrenbach, Charles

    2012-06-01

    The subtle but distinctive patterns of binding energies of high-L Rydberg electrons bound to heavy positive ions reveal the ion properties, such as polarizabilities and permanent moments, that control the long-range interactions between ion and the Rydberg electron. A specialized experimental technique, Resonant Excitation Stark Ionization Spectroscopy (RESIS), facilitates study of these fine structure patterns in a wide variety of Rydberg systems. The simplest RESIS measurements use a Doppler-tuned CO2 laser to selectively detect individual high-L Rydberg states in a fast Rydberg beam by resonant excitation to a much higher level, followed by Stark ionization and collection of the resulting ion. Much more precise studies use the selective RESIS excitation to detect direct microwave transitions between Rydberg levels of the same n. Recent microwave/RESIS studies of this type have determined many properties of the ions Th^4+[1], Th^3+[2], and Ni^+[3]. Details of this method will be described, with particular attention to studies of multiply-charged Rydberg ions.[4pt] [1] Chris S. Smith et. al., DAMOP 2012[0pt] [2] Julie A. Keele, et. al., DAMOP 2012[0pt] [3] Shannon L. Woods, et. al. DAMOP 2012

  9. Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response.

    Science.gov (United States)

    Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S

    2017-11-01

    Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Uniqueness and stability analysis of hydrogeophysical inversion for time-lapse ground-penetrating radar estimates of shallow soil hydraulic properties

    NARCIS (Netherlands)

    Jadoon, K.Z.; Slob, E.; Vanclooster, M.; Vereecken, H.; Lambot, S.

    2008-01-01

    Precise measurement of soil hydraulic properties at field scales is one of the prerequisites to simulate subsurface flow and transport processes, which is crucial in many research and engineering areas. In our study, we numerically analyze uniqueness and stability for integrated hydrogeophysical

  11. Property Integration: Componentless Design Techniques and Visualization Tools

    DEFF Research Database (Denmark)

    El-Halwagi, Mahmoud M; Glasgow, I.M.; Eden, Mario Richard

    2004-01-01

    maintaining intra- and interstream conservation of the property-based clusters. The property integration problem is mapped into the cluster domain. This dual problem is solved in terms of clusters and then mapped to the primal problem in the property domain. Several new rules are derived for graphical...

  12. Unique Gene-Silencing and Structural Properties of 2;#8242;-Fluoro-Modified siRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Manoharan, Muthiah; Akinc, Akin; Pandey, Rajendra K.; Qin, June; Hadwiger, Philipp; John, Matthias; Mills, Kathy; Charisse, Klaus; Maier, Martin A.; Nechev, Lubomir; Greene, Emily M.; Pallan, Pradeep S.; Rozners, Eriks; Rajeev, Kallanthottathil G.; Egli, Martin (Binghamton); (Alnylam Pharm.); (Vanderbilt)

    2015-10-15

    With little or no negative impact on the activity of small interfering RNAs (siRNAs), regardless of the number of modifications or the positions within the strand, the 2'-deoxy-2'-fluoro (2'-F) modification is unique. Furthermore, the 2'-F-modified siRNA (see crystal structure) was thermodynamically more stable and more nuclease-resistant than the parent siRNA, and produced no immunostimulatory response.

  13. Ordered mesoporous ferrosilicate materials with highly dispersed iron oxide nanoparticles and investigation of their unique magnetic properties.

    Science.gov (United States)

    Srinivasu, Pavuluri; Suresh, Koppoju; Datt, Gopal; Abhayankar, Ashutosh C; Rao, Pothuraju Nageswara; Lakshmi Kantam, Mannepalli; Bhargava, Suresh K; Tang, Jing; Yamauchi, Yusuke

    2014-11-07

    Ordered mesoporous ferrosilicate materials with highly dispersed iron oxide nanoparticles are directly synthesized through a hydrothermal approach under acidic conditions. The obtained samples possess a high surface area (up to 1236 m(2) g(-1)) and a large pore volume (up to 1.1 cm(3) g(-1)). By changing the amount of iron content, the magnetic properties can be tuned.

  14. Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    NARCIS (Netherlands)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different

  15. Unique energetic properties of Adenosine Tri-Phosphate in comparison to similar compounds using density functional theory

    Science.gov (United States)

    Muraszko, Kevin; Halloran, Thomas; Malinovskaya, Svetlana; Leopold, Philip

    2015-05-01

    Adenosine Tri-Phosphate (ATP) is arguably the most critical compound to all life known on Earth, serving as the main energy transport and storage in cellular biology. Why in particular did nature ``choose'' ATP instead of a similar compound? We are seeking to answer this question by comparing the energetic properties of ATP to similar compounds. We discuss 3-D models for ATP, variants of the molecule based on all of the separate nucleobases, and ATP's twin molecule Adenosine Di-Phosphate. All calculations were done using Density Functional Theory. The results showed that purine compounds like Adenosine and Guanosine produce similar bond angles, making these viable unlike the other nucleobases. We have analyzed the chiral properties of ATP by comparing the ground-state-energies of ATP-cis and ATP-trans and have shown that ATP-cis is the more energetically favorable of the two. This is consistent with observations in nature.

  16. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    Science.gov (United States)

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  17. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification.

    Science.gov (United States)

    Luo, Yu; Zheng, Yitao; Jiang, Zhengbing; Ma, Yushu; Wei, Dongzhi

    2006-11-01

    A lipase-producing bacterium strain B68 screened from soil samples of China was identified as Pseudomonas fluorescens. With GenomeWalker, the open reading frame of lipase gene lipB68, encoding 476 amino acids, was cloned and expressed in Escherichia coli BL21 (DE3). By affinity chromatography, the recombinant LipB68 protein was purified to the purity of 95%. As a member of lipase subfamily I.3, LipB68 has a unique optimum temperature of 20 degrees C, which was the lowest in this subfamily. In chiral resolution, LipB68 effectively catalyzed the transesterification of both alpha-phenylethanol and alpha-phenylpropanol at 20 degrees C, achieving E values greater than 100 and 60 after 120 h, respectively. Among all the known catalysts in biodiesel production, LipB68 produced biodiesel with a yield of 92% after 12 h, at the lowest temperature of 20 degrees C, and is the first one of the I.3 lipase subfamily reported to be capable of catalyzing the transesterification reaction of biodiesel production. Since lipase-mediated biodiesel production is normally carried out at 35-50 degrees C, the availability of a highly active lipase with a low optimal temperature can provide substantial savings in energy consumption. Thus, this novel psychrophilic lipase (LipB68) may represent a highly competitive energy-saving biocatalyst.

  18. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yu; Zheng Yitao; Jiang Zhengbing; Ma Yushu; Wei Dongzhi [East China Univ. of Science and Tech., Shanghai (China). State Key Lab. of Bioreactor Engineering

    2006-11-15

    A lipase-producing bacterium strain B68 screened from soil samples of China was identified as Pseudomonas fluorescens. With GenomeWalker, the open reading frame of lipase gene lipB68, encoding 476 amino acids, was cloned and expressed in Escherichia coli BL21 (DE3). By affinity chromatography, the recombinant LipB68 protein was purified to the purity of 95%. As a member of lipase subfamily I.3, LipB68 has a unique optimum temperature of 20 C, which was the lowest in this subfamily. In chiral resolution, LipB68 effectively catalyzed the transesterification of both a-phenylethanol and a-phenylpropanol at 20 C, achieving E values greater than 100 and 60 after 120 h, respectively. Among all the known catalysts in biodiesel production, LipB68 produced biodiesel with a yield of 92% after 12 h, at the lowest temperature of 20 C, and is the first one of the I.3 lipase subfamily reported to be capable of catalyzing the transesterification reaction of biodiesel production. Since lipasemediated biodiesel production is normally carried out at 35-50 C, the availability of a highly active lipase with a low optimal temperature can provide substantial savings in energy consumption. Thus, this novel psychrophilic lipase (LipB68) may represent a highly competitive energy-saving biocatalyst. (orig.)

  19. Property management tools and techniques : models for the effective management of real property assets at state departments of transportation

    Science.gov (United States)

    2012-09-30

    The Federal Highway Administrations (FHWA) Office of Real Estate Services (HEPR) sponsored the research reported on here to review tools and techniques that SDOTs are using to manage, or inventory, their real property assets. The report is based o...

  20. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  1. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  2. Asphaltene characterization : sensitivity of asphaltene properties to extraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Alboudwarej, H.; Svrcek, W.; Yarranton, H. [Calgary Univ., AB (Canada); Akbarzadeh, K. [Shiraz Univ., Shiraz (Iran, Islamic Republic of)

    2001-06-01

    A study was conducted in which asphaltenes from three source oils (Athabasca, Cold Lake and Lloydminster) were examined and washed to remove the trapped resinous material. The effect of different degrees of washing on asphaltene properties was then examined, with particular emphasis on properties that are used in the modeling and measurement of asphaltene phase behaviour, such as yield, molar mass, density and solubility. It was determined that the degree of washing is an important consideration in the extraction of asphaltenes because in all cases, as the degree of washing increased, density and molar mass also increased but the solubility of the extracted asphaltenes decreased significantly. This paper presented a new washing method using a soxhlet apparatus. It was found to remove the largest amount of resinous material and yielded asphaltenes with very different properties from conventionally washed asphaltenes, which made it possible to conduct sensitive comparisons of the asphaltenes. 10 refs., 1 tab., 7 figs.

  3. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-01-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs. PMID:27686869

  4. Application of infrared technique in research of mechanical properties

    International Nuclear Information System (INIS)

    Huang, Y.; Shih, C.H.

    1985-08-01

    The infrared technique as a new method is more useful for research of materials science. This paper simply describes the techniques of infrared temperature measurement and thermography and provides the experimental data of some metals and alloys during the deformation and the fatigue process by use of the infrared sensing method. It is shown that the conventional tensile data can be correlated with infrared radiational energy change during the tensile pulling. The temperature field of metal during elastic-plastic deformation can be calculated by finite element analysis, and the thermoelastic effect of metal can be shown by thermography. The infrared technique can be used to predict the fatigue damage, monitor their propagations and give the alarm at fracture. Finally, it must be pointed out that the irreversibility of infrared emission of metal can be used as a basis of nondestructive testing. (author)

  5. Introduction to Microwave Active Techniques and Backscatter Properties

    NARCIS (Netherlands)

    Hoogeboom, P.; Lidicky, L.

    2008-01-01

    The present article introduces active microwave techniques that are used for remote sensing of the European seas, focusing on RAdio Detection And Ranging (RADAR) and Synthetic Aperture Radar (SAR). In section 1 the ranging principle and associated topics are introduced. As an example of this

  6. Magnetic properties of iron nanoparticles prepared by exploding wire technique

    OpenAIRE

    Alqudami, Abdullah; Annapoorni, S.; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2006-01-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to ...

  7. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.

    Science.gov (United States)

    Jones, Stephanie H; King, Martin D; Ward, Andrew D

    2013-12-21

    A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.

  8. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Kainari, a Unique Greek Traditional Herbal Tea, from the Island of Lesvos: Chemical Analysis and Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Evangelia Bampali

    2018-01-01

    Full Text Available The chemical composition, as well as the total phenolic content (TPC and the potential antioxidant and antimicrobial activity, of three Kainari-herbal tea samples from different areas of Lesvos Island (Greece was evaluated. The rich aroma of the mixtures was studied through GC-MS, as well as through Headspace Solid-Phase Microextraction (HS-SPME/GC-MS analyses. Cinnamon, clove, nutmeg, pepper, and ginger were identified as main ingredients, while, throughout the chemical analysis of the volatiles of one selected sample, several secondary metabolites have been isolated and identified on the basis of GC-MS as well as spectral evidence as eugenol, cinnamic aldehyde and myristicin, cinnamyl alcohol, alpha-terpinyl acetate, and β-caryophyllene. Furthermore, two food dyes, azorubine and amaranth, were also isolated and identified from the infusions. The total phenolic content was estimated and the free radical scavenging activity was determined by DPPH and ABTS assays and the antimicrobial activity of the extracts was tested showing a very interesting profile against all the assayed microorganisms. Due to its very pleasant aroma and taste properties as well as to its bioactivities, Kainari-herbal tea could be further proposed as functional beverage.

  10. Unique virulence properties of Yersinia enterocolitica O:3--an emerging zoonotic pathogen using pigs as preferred reservoir host.

    Science.gov (United States)

    Valentin-Weigand, Peter; Heesemann, Jürgen; Dersch, Petra

    2014-10-01

    Enteropathogenic Yersinia enterocolitica bioserotype 4/O:3 are the most frequent cause of human yersiniosis worldwide with symptoms ranging from mild diarrhea to severe complications of mesenteric lymphadenitis, liver abscesses and postinfectious extraintestinal sequelae. The main reservoir host of 4/O:3 strains are pigs, which represent a substantial disease-causing potential for humans, as they are usually asymptomatic carriers. Y. enterocolitica O:3 initiates infections by tight attachment to the intestinal mucosa. Colonization of the digestive tract is frequently followed by invasion of the intestinal layer primarily at the follicle-associated epithelium, allowing the bacteria to propagate in the lamina propria and disseminate into deeper tissues. Molecular characterization of Y. enterocolitica O:3 isolates led to the identification of (i) alternative virulence and fitness factors and (ii) small genetic variations which cause profound changes in their virulence gene expression pattern (e.g. constitutive expression of the primary invasion factor InvA). These changes provoke a major difference in the virulence properties, i.e. reduced colonization of intestinal tissues in mice, but improved long-term colonization in the pig intestine. Y. enterocolitica O:3 strains cause also a considerably lower level of proinflammatory cytokine IL-8 and higher levels of the anti-inflammatory cytokine IL-10 in porcine primary macrophages, as compared to murine macrophages, which could contribute to limiting inflammation, immunopathology and severity of the infection in pigs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Uniqueness of bounded observables

    Energy Technology Data Exchange (ETDEWEB)

    Navara, M. [Czech Technical Univ., Praha (Czech Republic). Dept. of Math.

    1995-09-01

    By an application of a new construction technique we construct a {sigma}-orthomodular lattice with a strongly order-determining set of states and two bounded observables whose expectations are equal at each state. This answers negatively the uniqueness problem for bounded observables, formulated by S. Gudder. (orig.).

  12. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  13. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  14. Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: Enhanced dielectric and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aepuru, Radhamanohar [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Bhaskara Rao, B.V.; Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025 (India); Panda, H.S., E-mail: himanshusp@diat.ac.in [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2015-11-01

    Flower like radial zinc oxide (RZnO) was prepared by using a facile solvothermal method and used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. Structural informations of the samples are analyzed by X-ray diffraction and correlated with high resolution transmission electron microscopy along with high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). For the first time, stability studies are carried out by solvent relaxation nuclear magnetic resonance experiments. Dielectric studies of the PVDF and PVDF-RZnO nanocomposites are reported over the wide range of frequency (0.01 Hz–1 MHz) and temperature (25–90 °C). Dielectric property of the PVDF-RZnO nanocomposites was significantly improved wrt filler percentage in PVDF. Unique negative permittivity was observed in the composites having higher filler content (>40 wt%) typically at low frequencies. First time, it is observed that the higher RZnO content in PVDF results the formation of pseudo conducting network and hence improved the electromagnetic shielding efficiency (85%) than PVDF and PVDF-commercial ZnO composites. - Highlights: • Radial ZnO-PVDF nanocomposites were fabricated by using solution casting. • Pseudo conducting network is confirmed through cryo-fracture morphology study. • Stability study of the nano fillers was performed in the polymer matrix. • Unique negative permittivity behavior of the nanocomposites was observed. • EMI shielding property of the radial ZnO-PVDF nanocomposites was performed.

  15. Safe-by-Design Ligand-Coated ZnO Nanocrystals Engineered by an Organometallic Approach: Unique Physicochemical Properties and Low Toxicity toward Lung Cells.

    Science.gov (United States)

    Wolska-Pietkiewicz, Małgorzata; Tokarska, Katarzyna; Grala, Agnieszka; Wojewódzka, Anna; Chwojnowska, Elżbieta; Grzonka, Justyna; Cywiński, Piotr J; Kruczała, Krzysztof; Sojka, Zbigniew; Chudy, Michał; Lewiński, Janusz

    2018-03-15

    The unique physicochemical properties and biocompatibility of zinc oxide nanocrystals (ZnO NCs) are strongly dependent on the nanocrystal/ligand interface, which is largely determined by synthetic procedures. Stable ZnO NCs coated with a densely packed shell of 2-(2-methoxyethoxy)acetate ligands, which act as miniPEG prototypes, with average core size and hydrodynamic diameter of 4-5 and about 12 nm, respectively, were prepared by an organometallic self-supporting approach, fully characterized, and used as a model system for biological studies. The ZnO NCs from the one-pot, self-supporting organometallic procedure exhibit unique physicochemical properties such as relatively high quantum yield (up to 28 %), ultralong photoluminescence decay (up to 2.1 μs), and EPR silence under standard conditions. The cytotoxicity of the resulting ZnO NCs toward normal (MRC-5) and cancer (A549) human lung cell lines was tested by MTT assay, which demonstrated that these brightly luminescent, quantum-sized ZnO NCs have a low negative impact on mammalian cell lines. These results substantiate that the self-supporting organometallic approach is a highly promising method to obtain high-quality, nontoxic, ligand-coated ZnO NCs with prospective biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Unique Optoelectronic Structure and Photoreduction Properties of Sulfur-Doped Lead Chromates Explaining Their Instability in Paintings.

    Science.gov (United States)

    Rahemi, Vanoushe; Sarmadian, Nasrin; Anaf, Willemien; Janssens, Koen; Lamoen, Dirk; Partoens, Bart; De Wael, Karolien

    2017-03-21

    Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artist's material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr 1-x S x O 4 , with 0 ≤ x ≤ 0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO 4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the coprecipitate with lead sulfate (PbCr 1-x S x O 4 ) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that, when the the sulfur(S)-content in chrome yellow increases, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photoactivity is the result. However, the photoactivity relative to the Cr content and, thus, Cr reduction of sulfur-rich PbCr 1-x S x O 4 is found to be much higher compared to the sulfur-poor or nondoped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as a function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its coprecipitates are p-type semiconductors, which explains the observed reduction reaction. Because understanding this phenomenon is

  17. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Sonia Chelouah

    Full Text Available F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II. The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of

  18. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  19. Improving the dissolution properties of spironolactone using liquisolid technique

    Directory of Open Access Journals (Sweden)

    Jafar Akbari

    2015-09-01

    Full Text Available In this study the effect of liquisolid technique on the dissolution profile of spironolactone was evaluated. Different formulations of spironolactone liquisolid compacts were prepared using various amounts of non-volatile vehicles (Poly ethylene glycol 400 and glycerin. The ratio of microcrystalline cellulose (as carrier to silica (as coating powder material was 20 for all formulations. After preparing tablets by direct compression with constant compression load, the release profiles were evaluated by USP paddle method. Differential scanning calorimeter (DSC and FTIR were used to evaluate any interaction between spironolactone and other ingredients. The liquisolid tablets exhibited significantly higher dissolution rates in comparison with conventionally direct compressed tablets. Furthermore results showed dissolution rate enhancement of liquisolid tablets by increase in the amounts of non-volatile vehicles. Differential scanning calorimetry showed that, the drug has got solubilized in the liquid vehicle. FT-IR spectroscopy studies of pure spironolactone, liquisolid compacts, glycerin and PEG400 supported solubilization of the drug in the liquid vehicle too. The FT-IR spectra also showed that no interactions have been occurred between spironolactone and other ingredients. In conclusion the liquisolid technique can be a suitable method in order to prepare rapid release tablets of poorly water-soluble drugs such as spironolactone.

  20. Estimation of soil hydraulic properties with microwave techniques

    Science.gov (United States)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  1. TECHNIQUES FOR THE STUDY OF THE ELECTRONIC PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA, M.; RODRIGUEZ, J.A.

    2006-06-30

    The electronic structure of a solid is affected by size and altered from the continuous electronic levels forming a band, characteristic of bulk or microsized solids, to discrete-like or quantized levels. This is drastically observed when the particle size goes down to the nano-meter range and is the origin of the so-called ''quantum confinement'' terminology referring to this phenomenon. From a solid state point of view, electronic states of confined materials can be considered as being a superposition of bulk-like states with a concomitant increase of the oscillator strength. The valence/conduction band-width and position observables of a solid oxide are functions of the crystal potential and this, in turn, is perturbed by effect of the size in two ways; a short-range effect induced by the presence of ions with a different coordination number and bond distance, and a large-range one, induced by changes in the Madelung potential of the oxide. Theoretical analyses for oxides show a redistribution of charge when going from large periodic structures to small clusters which is roughly considered small for ionic solids and significantly important for covalent ones. Chapter 1 of this book describes the most recent theoretical frameworks employed to deal with these physical phenomena while here we will describe their influence in physico-chemical observables obtained by spectroscopical techniques.

  2. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites

    Science.gov (United States)

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So

    2002-01-01

    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  3. Continuous recording of the transport properties oa a superconducting tape using an AC magnetic field technique

    NARCIS (Netherlands)

    ten Haken, Bernard; Budde, R.A.M.; ten Kate, Herman H.J.; Bentzon, Michael D.; Vase, Per

    1999-01-01

    The transport properties of superconductors are commonly characterized by means of a 4-probe measuring technique and the critical current is determined on a certain criterion for the electrical field. An alternative method to investigate the transport properties is to measure the magnetic response

  4. Defensive secretion of rice bug,Leptocorisa oratorius fabricius, (Hemiptera: Coreidae): A unique chemical combination and its toxic, repellent, and alarm properties.

    Science.gov (United States)

    Gunawardena, N E; Bandumathie, M K

    1993-04-01

    Defensive secretion produced by adult males and females ofLeptocorisa oratorius, Fabricius (Hemiptera: Coreidae) living on the host plant,Oriza sativa, was analyzed by a combined gas chromatography-mass spectroscopy technique. Both male and female secretions consisted of two major components: (E)-2-octenal andn-octyl acetate, 76% and 16% (w/w), respectively. The remaining 8% were trace compounds, some of which were identified as hexyl acetate, 3-octenal, 1-octanol, and (Z)-3-octenyl acetate. In a survey among 38 coreid defensive secretions, (E)-2-octenal andn-octyl acetate were found to occur rarely in addition to coreid-specific compounds, while their combination as primary constituents was found to be unique. Toxicity and repellency of this secretion were evaluated using two household pests,Anoplolepis longipes andSitotroga cerealella, as test insects, and lethal concentration (LC50) values of 0.24 ppm and 0.14 ppm, respectively, and repellencies of 63% and 58%, respectively, were obtained. Comparing the above values with those of a pentatomid bug,Coridius janus, evaluated under the same conditions, it was apparent that this secretion has potential as a repellent to enemies ofL. oratorius but not as a toxicant to attack them. Bioassay on the alarm activity of this secretion revealed that it elicits alarm responses, alerting and dispersing aggregated male and femaleL. oratorius: this is followed by "self-coating" activities. In addition, some unique behaviors were also noted among alarmedL. oratorius.

  5. Manufacturing techniques and material properties of forged integral closure head for PWRRV

    International Nuclear Information System (INIS)

    Kataoka, Hideo; Kutomi, Yasuhiro; Iwamura, Toshihiko; Kawaguchi, Seiichi; Nagasako, Hiroyuki; Funakoshi, Yoshihiko; Tokuno, Katsuhiko.

    1997-01-01

    A prototype forged integral closure head for PWR Reactor Vessels was manufactured, and evaluation tests on material properties were carried out in order to verify that an integral closure head for nuclear use can be manufactured. As a result of this work, the key techniques and quality assurance activities on the manufacturing of an integral closure head were verified and the reliability of the material properties was confirmed. Based on these results, the integral closure head was applied to the Reactor Vessel head replacement of Takahama Unit No.2 Nuclear Power Plant. This paper describes the manufacturing techniques and material properties of the forged integral closure head for PWR Reactor Vessels. (author)

  6. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  7. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  8. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  9. Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers.

    Science.gov (United States)

    Yoshii, Ryousuke; Hirose, Amane; Tanaka, Kazuo; Chujo, Yoshiki

    2014-12-31

    In this article, we report the unique optical characteristics of boron diiminates in the solid states. We synthesized the boron diiminates exhibiting aggregation-induced emission (AIE). From the series of optical measurements, it was revealed that the optical properties in the solid state should be originated from the suppression of the molecular motions of the boron diiminate units. The emission colors were modulated by the substitution effects (λ(PL,crystal) = 448-602 nm, λ(PL,amorphous) = 478-645 nm). Strong phosphorescence was observed from some boron diiminates deriving from the effects of two imine groups. Notably, we found some of boron diiminates showed crystallization-induced emission (CIE) properties derived from the packing differences from crystalline to amorphous states. The 15-fold emission enhancement was observed by the crystallization (Φ(PL,crystal) = 0.59, Φ(PL,amorphous) = 0.04). Next, we conjugated boron diiminates with fluorene. The synthesized polymers showed good solubility in the common solvents, film formability, and thermal stability. In addition, because of the expansion of main-chain conjugation, the peak shifts to longer wavelength regions were observed in the absorption/emission spectra of the polymers comparing to those of the corresponding boron diiminate monomers (λ(abs) = 374-407 nm, λ(PL) = 509-628 nm). Furthermore, the absorption and the emission intensities were enhanced via the light-harvesting effect by the conjugation with fluorene. Finally, we also demonstrated the dynamic reversible alterations of the optical properties of the polymer thin films by exposing to acidic or basic vapors.

  10. Comparison of spatial interpolation techniques to predict soil properties in the colombian piedmont eastern plains

    Directory of Open Access Journals (Sweden)

    Mauricio Castro Franco

    2017-07-01

    Full Text Available Context: Interpolating soil properties at field-scale in the Colombian piedmont eastern plains is challenging due to: the highly and complex variable nature of some processes; the effects of the soil; the land use; and the management. While interpolation techniques are being adapted to include auxiliary information of these effects, the soil data are often difficult to predict using conventional techniques of spatial interpolation. Method: In this paper, we evaluated and compared six spatial interpolation techniques: Inverse Distance Weighting (IDW, Spline, Ordinary Kriging (KO, Universal Kriging (UK, Cokriging (Ckg, and Residual Maximum Likelihood-Empirical Best Linear Unbiased Predictor (REML-EBLUP, from conditioned Latin Hypercube as a sampling strategy. The ancillary information used in Ckg and REML-EBLUP was indexes calculated from a digital elevation model (MDE. The “Random forest” algorithm was used for selecting the most important terrain index for each soil properties. Error metrics were used to validate interpolations against cross validation. Results: The results support the underlying assumption that HCLc captured adequately the full distribution of variables of ancillary information in the Colombian piedmont eastern plains conditions. They also suggest that Ckg and REML-EBLUP perform best in the prediction in most of the evaluated soil properties. Conclusions: Mixed interpolation techniques having auxiliary soil information and terrain indexes, provided a significant improvement in the prediction of soil properties, in comparison with other techniques.

  11. A new simple technique for improving the random properties of chaos-based cryptosystems

    Science.gov (United States)

    Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Celma, S.

    2018-03-01

    A new technique for improving the security of chaos-based stream ciphers has been proposed and tested experimentally. This technique manages to improve the randomness properties of the generated keystream by preventing the system to fall into short period cycles due to digitation. In order to test this technique, a stream cipher based on a Skew Tent Map algorithm has been implemented on a Virtex 7 FPGA. The randomness of the keystream generated by this system has been compared to the randomness of the keystream generated by the same system with the proposed randomness-enhancement technique. By subjecting both keystreams to the National Institute of Standards and Technology (NIST) tests, we have proved that our method can considerably improve the randomness of the generated keystreams. In order to incorporate our randomness-enhancement technique, only 41 extra slices have been needed, proving that, apart from effective, this method is also efficient in terms of area and hardware resources.

  12. A new simple technique for improving the random properties of chaos-based cryptosystems

    Directory of Open Access Journals (Sweden)

    M. Garcia-Bosque

    2018-03-01

    Full Text Available A new technique for improving the security of chaos-based stream ciphers has been proposed and tested experimentally. This technique manages to improve the randomness properties of the generated keystream by preventing the system to fall into short period cycles due to digitation. In order to test this technique, a stream cipher based on a Skew Tent Map algorithm has been implemented on a Virtex 7 FPGA. The randomness of the keystream generated by this system has been compared to the randomness of the keystream generated by the same system with the proposed randomness-enhancement technique. By subjecting both keystreams to the National Institute of Standards and Technology (NIST tests, we have proved that our method can considerably improve the randomness of the generated keystreams. In order to incorporate our randomness-enhancement technique, only 41 extra slices have been needed, proving that, apart from effective, this method is also efficient in terms of area and hardware resources.

  13. Sound absorption properties of porous composites fabricated by a hydrogel templating technique

    NARCIS (Netherlands)

    Rutkevicius, M.; Mehl, G.H.; Paunov, V.N.; Qin, Q.; Rubini, P.A.; Stoyanov, S.D.; Petkov, J.

    2013-01-01

    We have used a hydrogel templating technique followed by the subsequent evaporation of water present to fabricate porous cement and porous PDMS composites, and we have analyzed their sound absorption properties. All experiments were carried out with hydrogel slurries of broad bead size

  14. Fibre-optical techniques for measuring various properties of shock waves

    NARCIS (Netherlands)

    Prinse, W.C.; Esveld, R.J. van; Oostdam, R. van; Rooijen, M. van; Bouma, R.H.B.

    1999-01-01

    For the past years we have developed several optical techniques to measure properties of shock waves. The fibre optic probe (FOP) is developed to measure the shock-wave velocity and/or the detonation velocity inside an explosive. The space resolution can be as small as 0.5 mm. Single fibres are used

  15. THE RESEARCH TECHNIQUES FOR ANALYSIS OF MECHANICAL AND TRIBOLOGICAL PROPERTIES OF COATING-SUBSTRATE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kinga CHRONOWSKA-PRZYWARA

    2014-06-01

    Full Text Available The article presents research techniques for the analysis of both mechanical and tribological properties of thin coatings applied on highly loaded machine elements. In the Institute of Machine Design and Exploitation, AGH University of Science and Technology students of the second level of Mechanical Engineering study tribology attending laboratory class. Students learn on techniques for mechanical and tribological testing of thin, hard coatings deposited by PVD and CVD technologies. The program of laboratories contains micro-, nanohardness and Young's modulus measurements by instrumental indentations and analysys of coating to substrate adhesion by scratch testing. The tribological properties of the coating-substrate systems are studied using various techniques, mainly in point contact load conditions with ball-on-disc and block-on-ring tribomiters as well as using ball cratering method in strongly abrasive suspensions.

  16. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.

    Science.gov (United States)

    Senanayake, Sanjaya D; Stacchiola, Dario; Rodriguez, Jose A

    2013-08-20

    Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation states (Ce⁴⁺ and Ce³⁺). Cu(111), meanwhile, is

  17. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique.

    Science.gov (United States)

    Lopez-Diaz, D; Merino, C; Velázquez, M M

    2015-11-11

    Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP) and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  18. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  19. Structure and Thermophysical Properties of Molten BaGe Using Electrostatic Levitation Technique

    Science.gov (United States)

    Ishikura, Akiko; Mizuno, Akitoshi; Watanabe, Masahito; Masaki, Tadahiko; Ishikawa, Takehiko; Yoda, Shinichi

    2008-12-01

    BaGe alloys with two compositions near their eutectic point form open framework structures called the clathrate structure. These BaGe compounds with the clathrate structure can be made by rapid solidification from their liquid state. However, the formation mechanism of the clathrate structure has not been clarified due to lack of information on their liquid-state structure and properties. Since BaGe alloy melts have very high reactivity, it is difficult to measure the thermophysical properties of them by ordinary methods using a container. Therefore, a containerless technique must be used to measure the thermophysical properties of BaGe melts. Using the electrostatic levitation (ESL) technique as a containerless technique, the thermophysical properties (density, surface tension, and viscosity) of BaGe melts around the eutectic composition were measured in order to clarify the formation mechanism of the clathrate structure, and also the structure of them was observed by using the high-energy X-ray diffraction method combined with ESL. From experimental results, it was observed that the short-range order based on the clathrate structure exists even in the liquid state at the clathrate-forming compositions.

  20. Property-driven functional verification technique for high-speed vision system-on-chip processor

    Science.gov (United States)

    Nshunguyimfura, Victor; Yang, Jie; Liu, Liyuan; Wu, Nanjian

    2017-04-01

    The implementation of functional verification in a fast, reliable, and effective manner is a challenging task in a vision chip verification process. The main reason for this challenge is the stepwise nature of existing functional verification techniques. This vision chip verification complexity is also related to the fact that in most vision chip design cycles, extensive efforts are focused on how to optimize chip metrics such as performance, power, and area. Design functional verification is not explicitly considered at an earlier stage at which the most sound decisions are made. In this paper, we propose a semi-automatic property-driven verification technique. The implementation of all verification components is based on design properties. We introduce a low-dimension property space between the specification space and the implementation space. The aim of this technique is to speed up the verification process for high-performance parallel processing vision chips. Our experimentation results show that the proposed technique can effectively improve the verification effort up to 20% for the complex vision chip design while reducing the simulation and debugging overheads.

  1. Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T)

    Science.gov (United States)

    Rinehart, Stephen

    2010-01-01

    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate materials.

  2. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  3. Structural and optical properties of zinc oxide film using RF-sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, A. J.; Jaafar, M. S.; Ghazai, Alaa J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Pinang (Malaysia); Physics Department, Science College, Thi-Qar University (Iraq)

    2012-11-27

    This paper reports the fabrication of zinc oxide (ZnO) film using RF-sputtering technique. Determination of the structural properties using High Resolution X-ray Diffraction (HRXRD) confirmed that ZnO film deposited on silicon (Si) substrate has a high quality. This result is in line with the Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) which were used to image the morphology of the film, in which a rough surface was demonstrated. Photoluminescence (PL) emission is included to study the optical properties of ZnO film that shows two PL peak in the UV region at 371 nm and in visible region at 530 nm respectively.

  4. The Influence of Various Deposition Techniques on the Photoelectrochemical Properties of the Titanium Dioxide Thin Fil

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Dzik, P.; Veselý, M.; Baudyš, M.; Krýsa, J.; Šolcová, Olga

    2013-01-01

    Roč. 65, č. 3 (2013), s. 452-458 ISSN 0928-0707 R&D Projects: GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GP104/09/P165 Institutional support: RVO:67985858 Keywords : titanium dioxide * photoelectrochemical properties * deposition techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.547, year: 2013

  5. A steady-state technique for studying the properties of free-burning wood fires

    Science.gov (United States)

    Wallace L. Fons; H.D. Bruce; W.Y. Pong

    1961-01-01

    A laboratory study was set up by the U.S. Forest Service with the ultimate objective of determining model laws for properties of wood fires, including rate of spread. This is a report of the first phase of the work, the development of a suitable bed of solid fuel and the technique of study. The bed chosen for initial study is in the form of long cribs of wood sticks...

  6. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  7. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    Science.gov (United States)

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics.

  8. Determining Engineering Properties of the Shallow Lunar Subsurface using Seismic Surface Wave Techniques

    Science.gov (United States)

    Yeluru, P. M.; Baker, G. S.

    2008-12-01

    The geology of Earth's moon has previously been examined via telescopic observations, orbiting spacecraft readings, lunar sample analysis, and also from some geophysical data. Previous researchers have examined layering of the moon and models exist explaining the velocity variations in the mantle and core. However, no studies (or datasets) currently exist regarding the engineering properties of the shallow (channel Analysis of Surface Wave (MASW), has greatly increased our ability to map subsurface variations in physical properties. The MASW method involves deployment of multiple seismometers to acquire 1-D or 2-D shear wave velocity profiles that can be directly related to various engineering properties. The advantage of this technique over drilling boreholes or any other geophysical technique is that it is less intensive, non-invasive, more cost- effective, and more robust because strong surface-wave records are almost guaranteed. In addition, data processing and analysis is fairly straightforward, and the MASW method allows for analysis of a large area of interest as compared to drilling boreholes. A new scheme using randomly distributed geophones (likely deployed from a mortar-type device) instead of a conventional linear array will be presented. A random array is necessary for lunar exploration because of the logistical constraints involved in deploying a linear or circular array robotically or by astronaut. Initial results indicate that robust dispersion curves (and thus subsurface models of engineering properties) can be obtained from the random array geometry. This random geometry will also be evaluated (a) for potential improvements in the resolution of the dispersion image and (b) as more accurate method for assessing azimuthal variations in the subsurface geology. Based on the extreme logistics imposed by lunar exploration and the anticipated engineering needs of lunar exploration, information obtained on the moon using this technique should prove to be

  9. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay, E-mail: drguptavinay@gmail.com, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  10. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  11. Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells

    International Nuclear Information System (INIS)

    Liu, Junchen; Wang, Yi; Deng, Qiang; Zhu, Licai; Chao, Hui; Li, Hong

    2016-01-01

    Highlights: • Ru(II)PTPP/CdS shows two Ru(II)-based oxidation peaks at 0.296 V and 0.830 V. • Photoelectrocatalytic oxidation of UA exhibits good linear responses. • The butoxy chain endows Ru(II)PTPP with multifunctional catalytic properties. • Ru(II)PTPP on CF electrode can remarkably promote the reduction of oxygen. • The assembled cell has I SC of 0.136 mA cm −2 and P max of 31.50 μW cm −2 . - Abstract: This paper reports the photoelectrocatalytic activities of a ruthenated porphyrin [Ru(phen) 2 (IP-C 4 O-TPP)] 2+ (denoted as Ru(II)PTPP, phen = 1,10-phenanthroline, IP = imidazo[4,5-f][1,10]phenanthroline and TPP = 5,10,15,20-tetraphenylporphyrin) containing a covalently-linked butoxy chain (-C 4 O-) between IP and TPP moieties by means of various electrochemical techniques in combination with absorption spectroscopy and scanning electronic microscopy. Ru(II)PTPP is assembled on the surface of CdS nanoparticles, showing two Ru(II)-based peaks at 0.296 V and 0.830 V, where uric acid (UA) can be photoelectrocatalytically oxidized in a linear range of 0.01-10.0 mmol L −1 . The −C 4 O- chain endows the Ru(II)PTPP/carbon felt (CF) electrode with favorable dioxygen (O 2 ) binding sites to achieve a couple of new redox peaks at −0.213 V, where O 2 involves electrocatalytic reduction reactions. While employing 5.0 mmol L −1 UA as fuel, and 60 mL min −1 O 2 as oxidant, the proposed photoelectrochemical fuel cell shows open-circuit photovoltage of 0.656 V, short-circuit photocurrent density of 0.136 mA cm −2 , and maximum power density of 31.50 μW cm −2 at 0.497 V under visible-light illumination of 0.18 mW cm −2 . The present study provides an interesting platform for the utilization of renewable energy sources.

  12. Mechanical properties of ultra thin metallic films revealed by synchrotron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Patric Alfons

    2007-07-20

    A prerequisite for the study of the scaling behavior of mechanical properties of ultra thin films is a suitable testing technique. Therefore synchrotron-based in situ testing techniques were developed and optimized in order to characterize the stress evolution in ultra thin metallic films on compliant polymer substrates during isothermal tensile tests. Experimental procedures for polycrystalline as well as single crystalline films were established. These techniques were used to systematically investigate the influence of microstructure, film thickness (20 to 1000 nm) and temperature (-150 to 200 C) on the mechanical properties. Passivated and unpassivated Au and Cu films as well as single crystalline Au films on polyimide substrates were tested. Special care was also dedicated to the microstructural characterization of the samples which was very important for the correct interpretation of the results of the mechanical tests. Down to a film thickness of about 100 to 200 nm the yield strength increased for all film systems (passivated and unpassivated) and microstructures (polycrystalline and singlecrystalline). The influence of different interfaces was smaller than expected. This could be explained by a dislocation source model based on the nucleation of perfect dislocations. For polycrystalline films the film thickness as well as the grain size distribution had to be considered. For smaller film thicknesses the increase in flow stress was weaker and the deformation behavior changed because the nucleation of perfect dislocations became unfavorable. Instead, the film materials used alternative mechanisms to relieve the high stresses. For regular and homogeneous deformation the total strain was accommodated by the nucleation and motion of partial dislocations. If the deformation was localized due to initial cracks in a brittle interlayer or local delamination, dislocation plasticity was not effective enough to relieve the stress concentration and the films showed

  13. Study of structure and thermophysical properties of molten BaGe by using electrostatic levitation technique

    Science.gov (United States)

    Ishikura, Akiko; Masaki, Tadahiko; Ishikawa, Takehiko; Koike, Noriyuki; Kohara, Shinji; Mizuno, Akitoshi; Watanabe, Masahito

    2006-03-01

    BaGe alloys with two compositions around their eutectic point form open framework structures called clathrate structure. However, the formation mechanism of clathrate structure has not yet been clarified due to lack of study and understanding of their liquid state structure and properties. Therefore, in order to clarify the formation mechanism of the clathrate structure, thermophysical properties (density, surface tension, and viscosity) of BaGe alloys melts around eutectic compositions were measured by using the electrostatic levitation (ESL) technique and also the structure of them was observed by using the high-energy X-ray diffraction method combined with the ESL. We found that from experimental results, the short range order based on the clathrate structure would exist even in the liquid state at the clathrate forming compositions.

  14. Thermal properties of carbon nanowall layers measured by a pulsed photothermal technique

    International Nuclear Information System (INIS)

    Achour, A.; Belkerk, B. E.; Ait Aissa, K.; Gautron, E.; Carette, M.; Jouan, P.-Y.; Brizoual, L. Le; Scudeller, Y.; Djouadi, M.-A.; Vizireanu, S.; Dinescu, G.

    2013-01-01

    We report the thermal properties of carbon nanowall layers produced by expanding beam radio-frequency plasma. The thermal properties of carbon nanowalls, grown at 600 °C on aluminium nitride thin-film sputtered on fused silica, were measured with a pulsed photo-thermal technique. The apparent thermal conductivity of the carbon at room temperature was found to increase from 20 to 80 Wm −1 K −1 while the thickness varied from 700 to 4300 nm, respectively. The intrinsic thermal conductivity of the carbon nanowalls attained 300 Wm −1 K −1 while the boundary thermal resistance with the aluminium nitride was 3.6 × 10 −8 Km 2 W −1 . These results identify carbon nanowalls as promising material for thermal management applications.

  15. Physical and chemical properties of gels. Application to protein nucleation control in the gel acupuncture technique

    Science.gov (United States)

    Moreno, Abel; Juárez-Martínez, Gabriela; Hernández-Pérez, Tomás; Batina, Nikola; Mundo, Manuel; McPherson, Alexander

    1999-09-01

    In this work, we present a new approach using analytical and optical techniques in order to determine the physical and chemical properties of silica gel, as well as the measurement of the pore size in the network of the gel by scanning electron microscopy. The gel acupuncture technique developed by García-Ruiz et al. (Mater. Res. Bull 28 (1993) 541) García-Ruiz and Moreno (Acta Crystallogr. D 50 (1994) 484) was used throughout the history of crystal growth. Several experiments were done in order to evaluate the nucleation control of model proteins (thaumatin I from Thaumatococcus daniellii, lysozyme from hen egg white and catalase from bovine liver) by the porous network of the gel. Finally, it is shown how the number and the size of the crystals obtained inside X-ray capillaries is controlled by the size of the porous structure of the gel.

  16. Photoluminescence properties of ZnO thin films grown by using the hydrothermal technique

    International Nuclear Information System (INIS)

    Sahoo, Trilochan; Jang, Leewoon; Jeon, Juwon; Kim, Myoung; Kim, Jinsoo; Lee, Inhwan; Kwak, Joonseop; Lee, Jaejin

    2010-01-01

    The photoluminescence properties of zinc-oxide thin films grown by using the hydrothermal technique have been investigated. Zinc-oxide thin films with a wurtzite symmetry and c-axis orientation were grown in aqueous solution at 90 .deg. C on sapphire substrates with a p-GaN buffer layer by using the hydrothermal technique. The low-temperature photoluminescence analysis revealed a sharp bound-exciton-related luminescence peak at 3.366 eV with a very narrow peak width. The temperature-dependent variations of the emission energy and of the integrated intensity were studied. The activation energy of the bound exciton complex was calculated to be 7.35 ± 0.5 meV from the temperature dependent quenching of the integral intensities.

  17. Investigation of thermal and optical properties of thin WO3 films by the photothermal Deflection Technique

    International Nuclear Information System (INIS)

    Gaied, I; Yacoubi, N; Dabbous, S; Nasrallah, T Ben

    2010-01-01

    Owing to its novel physical properties, as well as its technological implication in many fields, the thermal and optical properties of WO 3 thin films are studied here. These thin films are prepared from Ammonium Tungstate and deposited on a glass substrate at 400 0 C by the Spray Pyrolysis Technique. The thermal properties (Thermal conductivity and thermal diffusivity) were studied by the Photothermal Deflection method in its uniform heating case instead of traditionally a non uniform heating one by comparing the experimental amplitude and phase variations versus square root modulation frequency to the corresponding theoretical ones. The best coincidence between theory and experience is obtained for well-defined values of thermal conductivity and thermal diffusivity. The optical properties (optical absorption spectrum and gap energy) were measured using the Photothermal Deflection Spectroscopy (PDS) by drawing the amplitude and phase variation versus wavelength in experimental way and versus absorption coefficient in theoretical one at a fixed modulation frequency. By comparing point by point the normalised experimental and corresponding theoretical amplitude variation, one can deduce the optical absorption spectrum. Using the Tauc law for energies above the gap we can deduce the gap energy. We notice that these films show low thermal conductivity and high transparency in the visible range.

  18. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: mohamed_s_gaafar@hotmail.com [Ultrasonic Department, National Institute for Standards, Giza (Egypt); Physics Department, Faculty of Science, Majmaah University, Zulfi (Saudi Arabia); Abdeen, Mostafa A.M., E-mail: mostafa_a_m_abdeen@hotmail.com [Dept. of Eng. Math. and Physics, Faculty of Eng., Cairo University, Giza (Egypt); Marzouk, S.Y., E-mail: samir_marzouk2001@yahoo.com [Arab Academy of Science and Technology, Al-Horria, Heliopolis, Cairo (Egypt)

    2011-02-24

    Research highlights: > Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). > The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb{sup 5+} ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. > Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. > The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb{sub 2}O{sub 5}-(1 - x)TeO{sub 2}, 0.1PbO-xNb{sub 2}O{sub 5}-(0.9 - x)TeO{sub 2}, 0.2PbO-xNb{sub 2}O{sub 5}-(0.8 - x)TeO{sub 2} and 0.05Bi{sub 2}O{sub 3}-xNb{sub 2}O{sub 5}-(0.95 - x)TeO{sub 2} were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb{sub 2}O{sub 5} as a network modifier provides oxygen ions to change [TeO{sub 4}] tbps into [TeO{sub 3}] tps.

  19. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    International Nuclear Information System (INIS)

    Gaafar, M.S.; Abdeen, Mostafa A.M.; Marzouk, S.Y.

    2011-01-01

    Research highlights: → Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). → The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb 5+ ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. → Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. → The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb 2 O 5 -(1 - x)TeO 2 , 0.1PbO-xNb 2 O 5 -(0.9 - x)TeO 2 , 0.2PbO-xNb 2 O 5 -(0.8 - x)TeO 2 and 0.05Bi 2 O 3 -xNb 2 O 5 -(0.95 - x)TeO 2 were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb 2 O 5 as a network modifier provides oxygen ions to change [TeO 4 ] tbps into [TeO 3 ] tps.

  20. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    Science.gov (United States)

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  1. Towards Measurement of Polarization Properties of Skin using the Ellipsometry Technique

    Directory of Open Access Journals (Sweden)

    Pejhman Ghassemi

    2009-03-01

    Full Text Available Introduction: The human skin is an active medium from the optical point of view. Therefore, the diagnostic and therapeutic techniques employing light are increasing. Current optical techniques are based on the measurement of the intensity of reflected absorbed or backscattered light from or within skin. Studies have shown that biological tissues, and in particular skin, demonstrate polarization properties. Scattering of light from the surface of skin or the layers within it is a function of incident polarization. Therefore, by changing the polarization of the incident light and measuring the backscattered light, we can study those skin properties which affect the state of polarization. Material and methods: We have implemented a scattering ellipsometry system in order to investigate the polarization properties of a phantom representing skin. Using the Stocks vector defining the state of polarization and measuring the elements of the Mueller matrix representing the phantom under study, we have shown that by changing the reflection and scattering properties of the sample, polarization characteristics of the backscattered light will be affected. Results: The results of this investigation showed that some elements of the Mueller matrix of the phantom under study were affected by the polarization state of the incident light and the scattering component within the phantom. Therefore, these elements have the potential of being used as polarization markers of the biological tissue. Discussion and conclusion: Upon interaction of polarized light with the skin tissue, the backscattered light will contain optical and polarization information about the skin. Using a simple laboratory-made phantom, we have shown that by analyzing the polarization information within the backscattered light we can study the cause, and possibly the disease, which affected the polarization characteristics of the skin.

  2. The Discovery and Properties of a Newly Discovered Compact Lensing Cluster CLIO at z=0.42: A unique JWST target

    Science.gov (United States)

    Conselice, Christopher; Griffiths, Alex; Alpaslan, Mehmet; Frye, Brenda; Zitrin, Adi; Diego, Jose; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon; Robotham, Aaron; Windhorst, Rogier; Wyithe, Stuart

    2018-01-01

    We present the results of a new study of a unique compact lensing cluster we name CLIO at redshift z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identied for follow up observations due to its almost unique combination of high mass and dark matter halo concentration, as well as having observed lensing arcs from ground based imaging. Using deep FORS2 and Spitzer imaging in combination with MUSE optical spectroscopy we identify 89 cluster members and background sources out to z = 5.79. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. We furthermore measure the total mass of CLIO to be 4$\\times 10^{14}$ solar masses . We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of ~7%. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 hour JWST `Webb Medium-Deep Field' (WMDF) GTO program.

  3. Endocrinology in Thailand: Unique challenges, unique solutions

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available Thailand is a developing country in Southeast Asia with a nationally acknowledged requirement for improvement of the medical system. At present, endocrinology is a specific branch of medicine that is taught in few medical schools. There are very few endocrinologists in Thailand, who are unable to cope with the large number of patients with endocrinology problems. Primary care for common endocrine disorders, such as diabetes mellitus and thyroid disease, is still the domain of general practitioners. In this article, the author will present unique challenges and unique solutions of endocrinology practice in Thailand.

  4. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Liu, Chenhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093 (China); Zhang, Libo, E-mail: libozhang77@163.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); and others

    2017-05-15

    Highlights: • Cavity perturbation technique is employed to measure the dielectric properties. • Microwave absorption capability of ZnO is poor from 20 °C to 850 °C. • Dielectric properties of spent absorbent and zinc sulfate are influenced by temperature especially in high temperature stage. • Penetration depths and heating curve indicate spent adsorbent and ZnO·2ZnSO{sub 4}, ZnSO{sub 4} are excellent microwave absorber. • The pore structures of spent adsorbent are improved significantly by microwave-regeneration directly. - Abstract: Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450 MHz from 20 °C to approximately 1000 °C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO{sub 4} and ZnO at about 750 °C and 860 °C. Microwave absorption capability of ZnSO{sub 4} increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20 °C to 400 °C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO{sub 4}, ZnSO{sub 4} and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.

  5. Mechanical and metallurgical properties of dissimilar metal joints using novel joining techniques

    Science.gov (United States)

    Ashcroft, Emma Jane

    In recent years there have been significant new developments in welding processes for joining stainless steel and dissimilar metals. This is associated with the rise in interest of using stainless steel in the automotive industry from both car manufacturers and stainless steel producers. The main reason for using stainless steel within the automotive industry is the combination of formability and high strength but also the improved corrosion resistance when compared to zinc coated mild steel. This research explores the mechanical and metallurgical properties of dissimilar metal joining and determines a relationship between the fatigue properties and weld geometry. The research focuses on the relatively unexplored joining techniques of Laser Hybrid Welding and Cold Metal Transfer applied to joining stainless steel grades Hy-Tens 1000 and LDX 2101 to Dogal 260RP-X mild steel. The joints are assessed in terms of tensile, fatigue and metallurgical properties. Experimental results and analysis show that the fatigue properties of both laser hybrid welding and cold metal transfer joints are a linear relationship with a negative gradient to value of the root angle on the mild steel side of the joints, as the angle at the root decreases the fatigue life increases.It was found that when joining the material combinations outlined in this research with Laser Hybrid Welding the resulting solidified weld pool was chemically inhomogeneous. However, welds produced using Cold Metal Transfer resulted in a chemically homogenous weld pool and consistent microhardness. Comparisons with laser welding show that laser hybrid welding and cold metal transfer can produce joints with mechanical properties comparable to welding methods currently being used in the automotive industry, for example, laser welding.

  6. Classification of traditional Chinese pork bacon based on physicochemical properties and chemometric techniques.

    Science.gov (United States)

    Guo, Xin; Huang, Feng; Zhang, Hong; Zhang, Chunjiang; Hu, Honghai; Chen, Wenbo

    2016-07-01

    Sixty-seven pork bacon samples from Hunan, Sichuan Guangdong, Jiangxi, and Yunnan Provinces in China were analyzed to understand their geographical properties. Classification was performed by determining their physicochemical properties through chemometric techniques, including variance analysis, principal component analysis (PCA), and discriminant analysis (DA). Results showed that certain differences existed in terms of nine physicochemical determinations in traditional Chinese pork bacon. PCA revealed the distinction among Hunan, Sichuan, and Guangdong style bacon. Meanwhile, seven key physicochemical determination criteria were identified in line with DA and could be reasonably applied to the classification of traditional Chinese pork bacon. Furthermore, the ratio of overall correct classification was 97.76% and that of cross-validation was 91.76%. These findings indicated that chemometric techniques, together with several physicochemical determination, were effective for the classification of traditional Chinese pork bacon with geographical features. Our study provided a theoretical reference for the classification of traditional Chinese pork bacon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study of the mechanical properties of CeO{sub 2} layers with the nanoindentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joanjosep_roa@ub.ed [Centro DIOPMA, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Quimica, Universidad de Barcelona, C/Marti i Franques, 1, 08028, Barcelona (Spain); Gilioli, E.; Bissoli, F.; Pattini, F.; Rampino, S. [IMEM-CNR, Area delle Scienze 37/A, 43010 Fontanini-Parma (Italy); Capdevila, X.G.; Segarra, M. [Centro DIOPMA, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Quimica, Universidad de Barcelona, C/Marti i Franques, 1, 08028, Barcelona (Spain)

    2009-11-02

    The mechanical properties of CeO{sub 2} layers that are undoped or doped with other elements (e.g. Zr and Ta) are a topic of special interest specially in the manufacturing of superconductor buffer layers by pulsed electron deposition. Nowadays, the trend is to produce small devices (i.e. coated conductors), and the correct mechanical characterization is critical. In this sense, nanoindentation is a powerful technique widely employed to determine the mechanical properties of small volumes. In this study, the nanoindentation technique allow us determine the hardness (H) and Young's modulus (E) by sharp indentation of different buffer layers to explore the deposition process of CeO{sub 2} that is undoped or doped with Zr and Ta, and deposited on Ni-5%W at room temperature. This study was carried out on various samples at different ranges of applied loads (from 0.5 to 500 mN). Scanning electron microscopy images show no cracking for CeO{sub 2} doped with Zr, as the doping agent increases the toughness fracture of the CeO{sub 2} layer. This system, presents better mechanical stability than the other studied systems. Thus, the H for Zr-CeO{sub 2} is around 2.75 . 10{sup 6} Pa, and the elastic modulus calculated using the Bec et al. and Rar et al. models equals 249 . 10{sup 6} Pa and 235 . 10{sup 6} Pa respectively.

  8. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    Science.gov (United States)

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  9. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  10. Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique

    Energy Technology Data Exchange (ETDEWEB)

    Turba, K., E-mail: krystof.turba@ec.europa.eu [Institute for Energy, Joint Research Centre, European Commission, Westerduinweg 3, NL-1755 LE, Petten (Netherlands); Hurst, R.C.; Haehner, P. [Institute for Energy, Joint Research Centre, European Commission, Westerduinweg 3, NL-1755 LE, Petten (Netherlands)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Small punch testing is used to assess creep and fracture properties of MA956 ODS steel. Black-Right-Pointing-Pointer MA956 exhibits strong anisotropy in both DBTT and creep resistance at 725 Degree-Sign C. Black-Right-Pointing-Pointer High DBTT and susceptibility to thermal embrittlement potentially dangerous for applications. - Abstract: The small punch testing technique was used to assess both creep and fracture properties of the MA956 oxide dispersion strengthened ferritic steel. The anisotropy in mechanical properties was addressed, as well as the alloy's susceptibility to thermal embrittlement. Strong anisotropy was found in the material's creep resistance at 725 Degree-Sign C for longer rupture times. Anisotropic behavior was also observed for the ductile-brittle transition temperature (DBTT). The origin of the anisotropy can be related to the strongly directional microstructure which enables a large amount of intergranular cracking during straining at both high and low temperatures. The DBTT of the alloy is very high, and can be further increased by at least 200 Degree-Sign C after 1000 h of ageing at 475 Degree-Sign C, due to the formation of the Cr-rich {alpha} Prime phase. The particularly high susceptibility of the MA956 to thermal embrittlement is mainly a consequence of its high chromium content.

  11. Predicting the Mechanical Properties of Viscose/Lycra Knitted Fabrics Using Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Ismail Hossain

    2016-01-01

    Full Text Available The main objective of this research is to predict the mechanical properties of viscose/lycra plain knitted fabrics by using fuzzy expert system. In this study, a fuzzy prediction model has been built based on knitting stitch length, yarn count, and yarn tenacity as input variables and fabric mechanical properties specially bursting strength as an output variable. The factors affecting the bursting strength of viscose knitted fabrics are very nonlinear. Hence, it is very challenging for scientists and engineers to create an exact model efficiently by mathematical or statistical model. Alternatively, developing a prediction model via ANN and ANFIS techniques is also difficult and time consuming process due to a large volume of trial data. In this context, fuzzy expert system (FES is the promising modeling tool in a quality modeling as FES can map effectively in nonlinear domain with minimum experimental data. The model derived in the present study has been validated by experimental data. The mean absolute error and coefficient of determination between the actual bursting strength and that predicted by the fuzzy model were found to be 2.60% and 0.961, respectively. The results showed that the developed fuzzy model can be applied effectively for the prediction of fabric mechanical properties.

  12. Application of nonlinear optical techniques for the investigation of molecular properties and collisional processes

    International Nuclear Information System (INIS)

    Bischel, W.K.

    1975-09-01

    Molecular collisional processes were studied by using two different nonlinear optical techniques utilizing CO 2 lasers. The first study used the techniques of saturation spectroscopy to study the momentum transfer in one direction which occurs when CO 2 collides with itself, H 2 , Ne, NH 3 , and CH 3 F. Average CO 2 velocity changes determined from these experiments were typically 1 / 10 the thermal velocity or less. A theoretical model was also developed to explain the experimental observations of CO 2 with foreign gas perturbers. Generally good agreement between this model and the data was obtained. The second technique utilized the high-resolution capabilities of Doppler-free two-photon absorption (DFTPA) for the study of molecular properties and collisional processes in the two molecules CH 3 F and NH 3 . The first observation of DFTPA in molecular systems using two fixed-frequency CO 2 optical fields in combination with molecular Stark tuning is reported. The pressure broadening coefficient and the pressure shift of the O → ν 3 transition were measured; broadening coefficients for the foreign gas perturbers of He and CF 3 I were determined. A self-broadening coefficient of the O → 2ν 2 transition was also measured; foreign gas broadening coefficients for the collision partners H 2 , D 2 , He, Ne, and Xe were determined. Spectroscopic information was also obtained about these two molecular systems. (62 figures, 33 tables, 182 references) (U.S.)

  13. Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Dhakate, S.R.; Mathur, R.B.; Dhami, T.L. [National Physical Laboratory, New Delhi (India). Engineering Material Division, Carbon Technology Unit; Kakati, B.K. [Tezpur University, Assam (India). Department of Energy

    2007-12-15

    Bipolar plate is an important key component of fuel cell on the basis of its manifold function. In this direction a lot of effort is going on worldwide to make light-weight and cost-effective bipolar plate for fuel cell application. In the present investigation effort was made to develop graphite-composites bipolar plate by compression molding technique to achieve the requisite goal. The composites plates were prepared by using different reinforcing fillers such as natural graphite, synthetic graphite, carbon black, carbon fibers with phenolic resin as polymer matrix precursor in its liquid and powder form. The composition of different filler constituent adjusted in between 5 and 40 vol%. The composite plates prepared with appropriate proportion of filler components were characterized for physical and mechanical properties. It is found that no single reinforcing filler constituent composites plate gives the requisite properties for being used as bipolar plate in the PEM fuel cell. The judicious combination of reinforcing constituents gives the properties which are required for bipolar plate to use in fuel cell. By controlling the ratio of reinforcing constituents, one can able to achieve properties such as bulk density {proportional_to}1.85gcm{sup -3}, electrical conductivity >150Scm{sup -1}, shore hardness >65, bending strength >60MPa, modulus >10GPa and compressive >70MPa by applying the pressure (100kgcm{sup -2}) during compression molding. I-V characteristic of the composite bipolar plate, with optimum combination of reinforcing constituent, is found to be adequate as per the US-DOE target for composite bipolar plate. (author)

  14. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique.

    Science.gov (United States)

    El-Ghannam, Ahmed; Hart, Amanda; White, Dean; Cunningham, Larry

    2013-10-01

    Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  15. Investigation of the effects of type of crusher on coarse aggregates shape properties using three-dimensional Laser Scanning Technique

    CSIR Research Space (South Africa)

    Komba, Julius J

    2016-07-01

    Full Text Available materials and therefore performance. Recent studies have demonstrated that laser scanning technique can be employed to better quantify the three-dimensional (3- D) shape properties of aggregate materials used in pavements. In this paper, the shape properties...

  16. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties.

    Directory of Open Access Journals (Sweden)

    Deepshi Thakral

    Full Text Available The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4 that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.

  17. Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique

    Directory of Open Access Journals (Sweden)

    Chmielewski Marcin

    2017-01-01

    Full Text Available The presented paper investigates the relationship between the microstructure and thermal properties of copper-silicon carbide composites obtained through hot pressing (HP and spark plasma sintering (SPS techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal-ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

  18. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  19. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)

    2015-10-15

    The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)

  20. Comparative studies on mechanical properties of WC-Co composites sintered by SPS and conventional techniques

    Directory of Open Access Journals (Sweden)

    Pristinskiy Yuri

    2017-01-01

    Full Text Available Spark plasma sintering (SPS is an extremely fast solidification technique for compounds that are difficult to sinter within the material group metals, ceramics, or composites thereof, SPS uses a uniaxial pressure and a very rapid heating cycle to consolidate these materials. With SPS the main benefit is the ability to control the WC grain size due to the short sintering times at high temperature. Additionally, its allows to avoid negative reactions between WC and cobalt and to minimize the formation of undesirable phases in sintered composites. The WC-6wt.% Co cermet prepared by SPS processing achieves the enhanced mechanical properties with the hardness of 18.3 GPa and the fracture toughness of 15.5 MPa·m1/2 in comparison to standard reference tungsten carbide/cobalt material.

  1. Ti(IV)-doped γ-Fe2O3 nanoparticles possessing unique textural and chemical properties: Enhanced suppression of phase transformation and promising catalytic activity

    Science.gov (United States)

    Khaleel, Abbas; Parvin, Maliha; AlTabaji, Moahmmed; Al-zamly, Ahmed

    2018-03-01

    Nanostructured Ti(IV)-doped γ-Fe2O3 was prepared via a sol-gel method, and the effect of doping on the phase stability, textural properties, and catalytic activity was investigated. Well-dispersed 10% Ti in γ-Fe2O3 structure was found to significantly suppress its conversion to α-Fe2O3. While undoped product contained both phases, γ- and α-Fe2O3, at 400 °C, its doped counterpart contained γ-Fe2O3 as the sole phase at temperatures as high as 500 °C and partial conversion started only at 550 °C. Doping also resulted in modified textural properties, including smaller particles, larger surface areas, and higher mesoporosity, as well as enhanced reducibility and catalytic activity.

  2. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    Directory of Open Access Journals (Sweden)

    Michael P Schwartz

    Full Text Available Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s and primary human dermal fibroblasts (hDFs with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM arrays and proteolytic 3-dimensional (3D migration was investigated using matrix metalloproteinase (MMP-degradable poly(ethylene glycol (PEG hydrogels ("synthetic extracellular matrix" or "synthetic ECM". In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18. Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  3. Hot Press as a Sustainable Direct Recycling Technique of Aluminium: Mechanical Properties and Surface Integrity.

    Science.gov (United States)

    Yusuf, Nur Kamilah; Lajis, Mohd Amri; Ahmad, Azlan

    2017-08-03

    Meltless recycling technique has been utilized to overcome the lack of primary resources, focusing on reducing the usage of energy and materials. Hot press was proposed as a novel direct recycling technique which results in astoundingly low energy usage in contrast with conventional recycling. The aim of this study is to prove the technical feasibility of this approach by characterizing the recycled samples. For this purpose, AA6061 aluminium chips were recycled by utilizing hot press process under various operating temperature (T s = 430, 480, and 530 °C) and holding times (t s = 60, 90, and 120 min). The maximum mechanical properties of recycled chip are Ultimate tensile strength (UTS) = 266.78 MPa, Elongation to failure (ETF) = 16.129%, while, for surface integrity of the chips, the calculated microhardness is 81.744 HV, exhibited at T s = 530 °C and t s = 120 min. It is comparable to theoretical AA6061 T4-temper where maximum UTS and microhardness is increased up to 9.27% and 20.48%, respectively. As the desired mechanical properties of forgings can only be obtained by means of a final heat treatment, T5-temper, aging after forging process was employed. Heat treated recycled billet AA6061 (T5-temper) are considered comparable with as-received AA6061 T6, where the value of microhardness (98.649 HV) at 175 °C and 120 min of aging condition was revealed to be greater than 3.18%. Although it is quite early to put a base mainly on the observations in experimental settings, the potential for significant improvement offered by the direct recycling methods for production aluminium scrap can be clearly demonstrated. This overtures perspectives for industrial development of solid state recycling processes as environmentally benign alternatives of current melting based practices.

  4. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    Directory of Open Access Journals (Sweden)

    Hae Ri Kim

    2016-07-01

    Full Text Available The microstructures and mechanical properties of cobalt-chromium (Co-Cr alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures or dumbbell- (mechanical properties specimens made of Co-Cr alloys were prepared using casting (CS, milling (ML, selective laser melting (SLM, and milling/post-sintering (ML/PS. For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6. The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.

  5. Influence of Heartwood on Wood Density and Pulp Properties Explained by Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Carla Iglesias

    2017-01-01

    Full Text Available The aim of this work is to develop a tool to predict some pulp properties e.g., pulp yield, Kappa number, ISO brightness (ISO 2470:2008, fiber length and fiber width, using the sapwood and heartwood proportion in the raw-material. For this purpose, Acacia melanoxylon trees were collected from four sites in Portugal. Percentage of sapwood and heartwood, area and the stem eccentricity (in N-S and E-W directions were measured on transversal stem sections of A. melanoxylon R. Br. The relative position of the samples with respect to the total tree height was also considered as an input variable. Different configurations were tested until the maximum correlation coefficient was achieved. A classical mathematical technique (multiple linear regression and machine learning methods (classification and regression trees, multi-layer perceptron and support vector machines were tested. Classification and regression trees (CART was the most accurate model for the prediction of pulp ISO brightness (R = 0.85. The other parameters could be predicted with fair results (R = 0.64–0.75 by CART. Hence, the proportion of heartwood and sapwood is a relevant parameter for pulping and pulp properties, and should be taken as a quality trait when assessing a pulpwood resource.

  6. Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique.

    Directory of Open Access Journals (Sweden)

    Veluchamy Prabhawathi

    Full Text Available Porous biomaterial is the preferred implant due to the interconnectivity of the pores. Chances of infection due to biofilm are also high in these biomaterials because of the presence of pores. Although biofilm in implants contributes to 80% of human infections, there are no commercially available natural therapeutics against it. In the current study, glutaraldehyde cross linked lipase was transferred onto a activated porous polycaprolactam surface using Langmuir-Blodgett deposition technique, and its thermostability, slimicidal, antibacterial, biocompatibility and surface properties were studied. There was a 20% increase in the activity of the covalently crosslinked lipase when compared to its free form. This immobilized surface was thermostable and retained activity and stability until 100°C. There was a 2 and 7 times reduction in carbohydrate and 9 and 5 times reduction in biofilm protein of Staphylococcus aureus and Escherichia coli respectively on lipase immobilized polycaprolactam (LIP when compared to uncoated polycaprolactam (UP. The number of live bacterial colonies on LIP was four times less than on UP. Lipase acted on the cell wall of the bacteria leading to its death, which was confirmed from AFM, fluorescence microscopic images and amount of lactate dehydrogenase released. LIP allowed proliferation of more than 90% of 3T3 cells indicating that it was biocompatible. The fact that LIP exhibits antimicrobial property at the air-water interface to hydrophobic as well as hydrophilic bacteria along with lack of cytotoxicity makes it an ideal biomaterial for biofilm prevention in implants.

  7. Physical and kinematic properties of cryopreserved camel sperm after elimination of semen viscosity by different techniques.

    Science.gov (United States)

    El-Bahrawy, Khalid; Rateb, Sherif; Khalifa, Marwa; Monaco, Davide; Lacalandra, Giovanni

    2017-12-01

    This investigation aimed to determine the influence of using different techniques for liquefaction of semen on post-thaw physical and dynamic characteristics of camel spermatozoa. A total of 144 ejaculates were collected from 3 adult camels, Camelus dromedarius, twice-weekly over 3 consecutive breeding seasons. A raw aliquot of each ejaculate was evaluated for physical and morphological properties, whereas the remaining portion was diluted (1:3) with glycerolated Tris lactose egg yolk extender, and was further subjected to one of the following liquefaction treatments: control (untreated), 5μl/ml α-amylase, 0.1mg/ml papain, 5u/ml bromelain, or 40-kHz nominal ultrasound frequency. The post-thaw objective assessment of cryopreserved spermatozoa, in all groups, was performed by a computer-assisted sperm analysis (CASA) system. The results revealed that all liquefaction treatments improved (P<0.05) post-thaw motility, viability and sperm motion criteria. However, an adverse effect (P<0.05) was observed in acrosome integrity, sperm cell membrane integrity and percent of normal sperm in all enzymatically-treated specimens compared to both control and ultrasound-treated semen. These results elucidate the efficiency of utilizing ultrasound technology for viscosity elimination of camel semen. In addition, developing enzymatic semen liquefaction techniques is imperious to benefit from when applying assisted reproductive technologies, particularly AI and IVF, in camels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluating interfacial adhesion properties of Pt/Ti thin-film by using acousto-optic technique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Sung [Graduate School of Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Didie, David; Yoshida, Sanichiro [Dept. of Chemistry and Physics, Southeastern Louisiana University, Hammond (United States); Park, Ik Keun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    We propose an acousto-optic technique for the nondestructive evaluation of adhesion properties of a Pt/Ti thin-film interface. Since there are some problems encountered when using prevailing techniques to nondestructively evaluate the interfacial properties of micro/nano-scale thin-films, we applied an interferometer that combined the acoustic and optical methods. This technique is based on the Michelson interferometer but the resultant surface of the thin film specimen makes interference instead of the mirror when the interface is excited from the acoustic transducer at the driving frequency. The thin film shows resonance-like behavior at a certain frequency range, resulting in a low-contrast fringe pattern. Therefore, we represented quantitatively the change in fringe pattern as a frequency spectrum and discovered the possibility that the interfacial adhesion properties of a thin film can be evaluated using the newly proposed technique.

  9. Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements

    Science.gov (United States)

    Jastrzębska, A. M.; Karcz, J.; Letmanowski, R.; Zabost, D.; Ciecierska, E.; Zdunek, J.; Karwowska, E.; Siekierski, M.; Olszyna, A.; Kunicki, A.

    2016-01-01

    The aim of this study was to describe the influence of the modification of electrostatic properties of RGO/Al2O3 core-shell nanocomposite flakes. The amount of crystalline form of aluminum oxide was very small. It existed mostly in amorphous phase in the form of covalently bonded to GO surface. The morphological, structural and physicochemical investigations results showed that spherical Al2O3 nanoparticles (ca. 41 nm) in gamma phase completely covered the surface of curly-shaped RGO flakes and acted as a spreader between individual flakes. The high BET specific surface area of the analyzed composite (119.71 m2/g) together with very low open porosity (0.479 cm3/g) indicated that RGO/Al2O3 nanocomposite flakes showed low tendency to agglomeration. The zeta potential curves obtained for RGO/Al2O3 core-shell nanocomposite flakes were differing from curves obtained for GO and Al2O3 suspensions in distilled water and neutral environment. The specific electrostatic properties of the core-shell system of RGO/Al2O3 flakes had an influence on its surface charge (zeta potential) which was measured by applying an external electric field. The FTIR and Raman investigations results also confirmed that the Cdbnd O species were not taking part in the surface amphoteric reactions resulting in the formation of electrostatic surface charge.

  10. Development of a novel cup cake with unique properties of essential oil of betel leaf (Piper betle L.) for sustainable entrepreneurship.

    Science.gov (United States)

    Roy, Arnab; Guha, Proshanta

    2015-08-01

    Betel vine (Piper betle L.) is a root climber with deep green heart shaped leaves. It belongs to the Piperaceae family. There is a huge wastage of the leaves during glut season and it can be reduced by various means including extraction of medicinal essential oil which can be considered as GRAS (generally recognized as safe) materials. Therefore, attempts were made to develop a novel cup cake by incorporating essential oil of betel leaf. The textural properties of the cakes were measured by texture analyzer instrument; whereas the organoleptic properties were adjudged by human preferences using sensory tables containing 9-point hedonic scale. Price estimation was done considering all costs and charges. Finally, all parameters of the developed cake were compared with different cup cakes available in the market for ascertaining consumer acceptability of the newly developed product in terms of quality and market price. Results revealed that the Novel cup cake developed with 0.005 % (v/w) essential oil of betel leaf occupied the 1st place among the four developed novel cup cakes. However, it occupied 4th place among the nine cup cakes in the overall preference list prepared based on the textural and organoleptic qualities, though its market price was calculated to be comparable to all the leading cupcakes available in the market. This indicates that manufacturing of novel cup cake with essential oil of betel leaf would be a profitable and self-sustaining entrepreneurship.

  11. Unique properties of α-NaFeO{sub 2}: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution

    Energy Technology Data Exchange (ETDEWEB)

    Monyoncho, Evans; Bissessur, Rabin, E-mail: rabissessur@upei.ca

    2013-07-15

    Graphical abstract: - Highlights: • Facile de-intercalating Na from NaFeO2. • Formation of layered sodium hydrogen carbonate hydrate. • Intercalation chemistry on layered sodium hydrogen carbonate hydrate. - Abstract: We report on a versatile method for the de-intercalation of Na from α-NaFeO{sub 2} by using water to produce α-Na{sub 1−x}FeO{sub 2}, where x ≈ 1. This de-intercalation technique provides an excellent route to ion exchange Na with other metal ions in α-NaFeO{sub 2}. The hydrolysis mechanism is provided. We show that the extracted solution captures CO{sub 2} from the atmosphere leading to the formation of sodium hydrogen carbonate hydrate crystals. The lamellar structure of the hydrate crystals was confirmed by powder X-ray diffraction, and were found Na-deficient via elemental analysis. Intercalation of guest molecules such as polymers, alcohols, and inorganic ions into the gallery space of the newly formed sodium hydrogen carbonate hydrate crystals was demonstrated by the use of powder X-ray diffraction technique. The reported materials were also characterized by Mössbauer spectroscopy, thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  12. Ligand design for alkali-metal-templated self-assembly of unique high-nuclearity CuII aggregates with diverse coordination cage units: crystal structures and properties.

    Science.gov (United States)

    Du, Miao; Bu, Xian-He; Guo, Ya-Mei; Ribas, Joan

    2004-03-19

    The construction of two unique, high-nuclearity Cu(II) supramolecular aggregates with tetrahedral or octahedral cage units, [(mu(3)-Cl)[Li subset Cu(4)(mu-L(1))(3)](3)](ClO(4))(8)(H(2)O)(4.5) (1) and [[Na(2) subset Cu(12)(mu-L(2))(8)(mu-Cl)(4)](ClO(4))(8)(H(2)O)(10)(H(3)O(+))(2)](infinity) (2) by alkali-metal-templated (Li(+) or Na(+)) self-assembly, was achieved by the use of two newly designed carboxylic-functionalized diazamesocyclic ligands, N,N'-bis(3-propionyloxy)-1,4-diazacycloheptane (H(2)L(1)) or 1,5-diazacyclooctane-N,N'-diacetate acid (H(2)L(2)). Complex 1 crystallizes in the trigonal R3c space group (a = b = 20.866(3), c = 126.26(4) A and Z = 12), and 2 in the triclinic P1 space group (a = 13.632(4), b = 14.754(4), c = 19.517(6) A, alpha = 99.836(6), beta = 95.793(5), gamma = 116.124(5) degrees and Z = 1). By subtle variation of the ligand structures and the alkali-metal templates, different polymeric motifs were obtained: a dodecanuclear architecture 1 consisting of three Cu(4) tetrahedral cage units with a Li(+) template, and a supramolecular chain 2 consisting of two crystallographically nonequivalent octahedral Cu(6) polyhedra with a Na(+) template. The effects of ligand functionality and alkali metal template ions on the self-assembly processes of both coordination supramolecular aggregates, and their magnetic behaviors are discussed in detail.

  13. Spatial Distribution Analysis of Soil Properties in Varzaneh Region of Isfahan Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    F. Mahmoodi

    2016-02-01

    Full Text Available Introduction: Use of remote sensing for soil assessment and monitoring started with the launch of the first Landsat satellite. Since then many other polar orbiting Earth-observation satellites such as the Landsat series, have been launched and their imagery have been used for a wide range of soil mapping. The broad swaths and regular revisit frequencies of these multispectral satellites mean that they can be used to rapidly detect changes in soil properties. Arid and semi-arid lands cover more than 70 percent of Iran and are very prone to desertification. Due to the broadness, remoteness, and harsh condition of these lands, soil studies using ground-based techniques appear to be limited. Remote sensing imagery with its cost and time-effectiveness has been suggested and used as an alternative approach for more than four decades. Flood irrigation is one of the most common techniques in Isfahan province in which 70% of water is lost through evaporation. This system has increased soil salinization and desert-like conditions in the region. For principled decision making on agricultural product management, combating desertification and its consequences and better use of production resources to achieve sustainable development; understanding and knowledge of the origin, amount and area of salinity, the percentage of calcite, gypsum and other mineral of soil in each region is essential. Therefore, this study aimed to map the physical and chemical characteristics of soils in Vazaneh region of Isfahan province, Iran. Materials and Methods : Varzaneh region with 75000 ha located in central Iran and lies between latitudes 3550234 N and 3594309 N and longitudes 626530 E to 658338 E. The climate in the study area is characterized by hot summers and cold winters. The mean daily maximum temperature ranges from 35°C in summer to approximately 17°C in winter and mean daily minimum temperature ranges from 5°C in summer to about -24.5°C in winter. The mean

  14. Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes.

    Science.gov (United States)

    Maestrelli, Francesca; Capasso, Gaetano; González-Rodríguez, Maria L; Rabasco, Antonio M; Ghelardini, Carla; Mura, Paola

    2009-01-01

    This study aimed to investigate the influence of the preparation conditions on the performance of an ethosomal formulation for topical delivery of the local anesthetic agent, benzocaine (BZC). Ethosomes were prepared with different techniques, such as thin-layer evaporation, freezing and thawing, reverse-phase evaporation, extrusion and sonication, obtaining, respectively, multilayer vesicles (MLVs), frozen and thawed MLV (FATMLV), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs). The obtained vesicles were characterized for morphology, size, zeta potential, and entrapment efficiency (EE%), and their stability was monitored during storage at 4 degrees C. In vitro permeation properties from gels incorporating drug ethosomal dispersions were evaluated in vitro by using artificial lipophilic membranes, while their anesthetic effect was determined in vivo on rabbits. The results suggested that the vesicle preparation method plays an important role in affecting the properties and effectiveness of ethosomal formulations. MLVs and LUVs exhibited higher drug EE% and better stability than FATMLV and SUV vesicles. The In vitro drug permeation rate was directly related to the vesicle EE% and varied in the order MLV>LUV approximately FATMLV>SUV. The therapeutic efficacy of BZC ethosomal formulations was significantly improved with respect to the corresponding BZC solution. The best results, in terms of enhanced intensity of anesthetic effect, were given by formulations containing MLVs and LUVs, and the order of effectiveness was MLV approximately LUV>FATMLV approximately SUV, rather similar to that found in permeation studies. On the contrary, unexpectedly, the effectiveness order in increasing the duration of drug action was SUV> or =MLV>LUV approximately FATMLV. The highest efficacy of SUVs was probably due to the more intimate contact with the epithelium due to their greatest surface area, which allowed the longest extension of drug therapeutic

  15. Mechanical properties of nickel-titanium rotary instruments produced with a new manufacturing technique.

    Science.gov (United States)

    Gambarini, G; Plotino, G; Grande, N M; Al-Sudani, D; De Luca, M; Testarelli, L

    2011-04-01

    To investigate whether flexibility and cyclic fatigue resistance was increased for nickel-titanium instruments produced by a new manufacturing technique. Forty K3 tip size 25, 0.06 taper (SybronEndo) nickel-titanium rotary instruments were randomly selected and divided into two groups (n = 20). One group served as control, being the commercially available instruments produced with a traditional grinding process (K3). The second group of instruments (K4 prototypes) were then subjected to a proprietary thermal treatment after the grinding process. Finally, each group was randomly divided into two subgroups of 10 instruments each, to perform the stiffness test and the cyclic fatigue test. All data were recorded and subjected to statistical evaluation using Student's t-test. Significance was set at the 95% confidence level. For the stiffness test, a statistically significant difference (P < 0.05) was noted between K3 and K4 prototype instruments. K4 prototype instruments were significantly more flexible when compared to K3 instruments (59.3 ± 4.3 vs. 98.1 ± 6.4 g cm(-1) ). For the cyclic fatigue test, a significant difference (P < 0.05) was noted between K3 and K4 prototype instruments. K4 prototype instruments demonstrated a significant increase in the mean number of cycles to failure (NCF) when compared to K3 instruments (1198 ± 279 vs. 542 ± 81 NCF). The new manufacturing technique resulted in the K4 prototype instruments having enhanced mechanical properties, compared to K3 instruments, manufactured with a traditional grinding process. © 2010 International Endodontic Journal.

  16. Investigation of some physical properties of ZnO nanofilms synthesized by micro-droplet technique

    Directory of Open Access Journals (Sweden)

    N. Hamzaoui

    Full Text Available In this paper, ZnO nanocrystals were synthesized using a simple micro-droplets technique from a solution prepared by dissolving zinc acetate di-hydrate [Zn(CH3COO2, 2H2O] in methanol. Microdroplets were deposited on glass substrates heated at 100 °C, the obtained samples of ZnO films were investigated by XRD, AES, AFM, ellipsometry and PL. XRD patterns reveal the wurtzite structure of ZnO where the lattice parameters a and c, calculated from XRD signals, show a nanometric character of ZnO nanoparticles. The chemical composition of ZnO film surfaces was verified by Auger electron spectroscopy (AES. From Auger signals, oxygen (O-KLL and zinc (Zn-LMM Auger transitions indicate well the presence of Zn-O bonding. The surface topography of the samples was measured by atomic force microscopy (AFM where ZnO nanoparticles of average size ranging between 20 and 80 nm were determined. Some optical properties as dielectric constants, refractive index, extinction coefficient as well as the optical band gap were determined from ellipsometry analysis. The dispersion of the refractive index was discussed in terms of both Cauchy parameters and Wemple & Di-Dominico single oscillator model. The photoluminescence (PL measurements exhibited two emission peaks. The first at 338 nm, corresponding to the band gap of ZnO, is due to excitonic emission while the second around 400 nm, is attributed to the single ionized oxygen vacancies. Keywords: ZnO nanoparticles, Micro droplets technique, AFM, Auger spectroscopy, Ellipsometry, Photoluminescence (PL

  17. The micellar and surface properties of a unique type of two-headed surfactant--pentaerythritol based di-cationic surfactants.

    Science.gov (United States)

    Karpichev, Yevgen; Jahan, Nusrat; Paul, Nawal; Petropolis, Christian P; Mercer, Tyler; Grindley, T Bruce; Marangoni, D Gerrard

    2014-06-01

    The surface properties of some families of cationic two-headed surfactants based on a pentaerythritol backbone are described. The compounds have the following general structure (1), where R' are head groups and R are linear alkyl groups ranging from octyl to tetradecyl. The syntheses of these compounds has been published in detail previously. Critical micelle concentrations (cmc values) of these two-headed surfactants have been determined and compared to conventional ionic surfactants and gemini surfactants of similar structure. In addition, the surface activity of these two-headed surfactants, expressed as the C20 value and the surface tension at the cmc, have been determined. Transmission electron microscopy has been used to examine the morphology of the aggregates formed by these amphiphiles. In general, when compared to conventional ionic and two-headed surfactants, these new two-headed surfactants exhibit a remarkable efficiency in the tendency to self-assemble and are significantly more surface active than their conventional counterparts [structure: see text]. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques.

    Science.gov (United States)

    Koutsoukis, Theodoros; Zinelis, Spiros; Eliades, George; Al-Wazzan, Khalid; Rifaiy, Mohammed Al; Al Jabbari, Youssef S

    2015-06-01

    The aim of this study was to review the effect of selective laser melting (SLM) procedure on the properties of dental structures made of Co-Cr alloys and to evaluate its quality and compare it to those produced by conventional casting and milling fabrication techniques. A computerized database search using PubMed and Scopus was conducted for peer-reviewed scientific research studies regarding the use of SLM in Co-Cr dental alloys with no restrictions for publication years. The search engines provided hundreds of results, and only 48 scientific research papers, case studies, or literature reviews were considered relevant for this review. The innovative manufacturing concept of SLM offers many advantages compared with casting and milling fabrication techniques. SLM provides different microstructure from casting and milling with minimal internal porosity and internal fitting, marginal adaptation, and comparable bond strength to porcelain. Mechanical and electrochemical properties of SLM structures are enhanced compared to cast, while clinical longevity of single-metal ceramic crowns is comparable to Au-Pt dental alloy. The SLM technique provides dental prosthetic restorations more quickly and less expensively without compromising their quality compared with restorations prepared by casting and milling techniques. The current SLM devices provide metallic restorations made of Co-Cr alloys for removable and fixed partial dentures without compromising the alloy or restoration properties at a fraction of the time and cost, showing great potential to replace the aforementioned fabrication techniques in the long term; however, further clinical studies are essential to increase the acceptance of this technology by the worldwide dental community. © 2015 by the American College of Prosthodontists.

  19. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    Science.gov (United States)

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of

  20. Development of optical properties restoring techniques of materials irradiated under hard radiation

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Beliakova, E.; Red'kin, A.

    1996-01-01

    The target of the proposed project is a substantiation of the possibility of restoring of optical properties of materials irradiated under hard radiation by methods in a basis of which is elimination of radiating defects ( c olor centers ) using combined thermal/optical annealing techniques with utilizing of powerful sources of coherent and non-coherent radiation.The main tasks of the Project are: - measurement of transmission coefficient of the restored samples of various optical materials as a function of power, spectral structure of radiation and annealing duration. - investigation of possibility of definition of criterion of choice of regime annealing for determined optical materials on the basis of analysis of the experimental data and physics of the phenomenon of derivation and annihilation of C olor centers . The Project fulfillment will allow to: - determine regimes of optical and combined thermal/ optical annealing (temperature, spectral range, duration and intensity of radiation); - receive the data of transmission coefficients of various materials as a function of irradiation power and regimes optical and optical and thermal/optical annealing; - formulate the main requirements for optical materials selection for operation in fields of strong neutron and gamma radiation

  1. Thermoluminescence properties of undoped diamond films deposited using HF CVD technique

    Directory of Open Access Journals (Sweden)

    Paprocki K.

    2018-03-01

    Full Text Available Natural diamond has been considered as a perspective material for clinical radiation dosimetry due to its tissuebiocompatibility and chemical inertness. However, the use of natural diamond in radiation dosimetry has been halted by the high market price. The recent progress in the development of CVD techniques for diamond synthesis, offering the capability of growing high quality diamond layers, has renewed the interest in using this material in radiation dosimeters having small geometricalsizes. Polycrystalline CVD diamond films have been proposed as detectors and dosimeters of β and α radiation with prospective applications in high-energy photon dosimetry. In this work, we present a study on the TL properties of undoped diamond film samples grown by the hot filament CVD (HF CVD method and exposed to β and α radiation. The glow curves for both types of radiation show similar character and can be decomposed into three components. The dominant TL peaks are centered at around 610 K and exhibit activation energy of the order of 0.90 eV.

  2. Hydrogen storage properties in multiwall carbon nanotubes using thermal desorption techniques

    International Nuclear Information System (INIS)

    Lee, J.-Y.; Liu, H.K.; Dou, S.X.

    2003-01-01

    Full text:The multi-wall carbon nanotubes (MWNTs) synthesized by plasma enhanced CVD in 0.1% CH 4 (H 2 dilution) reaction gas were shaped in curly structures with the blocked nano-pores and closed caps. On the contrary, the carbon nanotubes with different structures could be obtained in oxygen added reaction gas, showing straight MWNTs with connected pore and open caps. The hydrogen desorption properties of the carbon nanotubes with these closed and open structure were compared by thermal desertion technique. The MWNTs with closed structure desorbed hydrogen at two different temperature ranges such as 290∼325K, and 415∼420K, where the evolved hydrogen amount were 0.64 wt% and 0.03 wt%, respectively. In case of MWNTs with open structure, hydrogen as high as 1.97 wt% was released at 300∼325K. The low temperature hydrogen desertion of multi-wall carbon nanotubes with open and closed structure showed the hydrogen adsorption activation energies of ∼16.52 kJ/mol and 18.49 kJ/mol, respectively. The high temperature hydrogen desorption observed only in carbon nanotube with closed and defective structure was as high desorption activation energy as -124.4 kJ/mol

  3. Dosimetric properties of bio minerals applied to high-dose dosimetry using the TSEE technique

    International Nuclear Information System (INIS)

    Vila, G. B.; Caldas, L. V. E.

    2014-08-01

    The study of the dosimetric properties such as reproducibility, the residual signal, lower detection dose, dose-response curve and fading of the thermally stimulated emission exo electronic (TSEE) signal of Brazilian bio minerals has shown that these materials present a potential use as radiation dosimeters. The reproducibility within ± 10% for oyster shell, mother-of-pearl and coral reef samples showed that the signal dispersion is small when compared with the mean value of the measurements. The study showed that the residual signal can be eliminated with a thermal treatment at 300 grades C/1 h. The lower detection dose of 9.8 Gy determined for the oyster shell samples when exposed to beta radiation and 1.6 Gy for oyster shell and mother-of-pearl samples when exposed to gamma radiation can be considered good, taking into account the high doses of this study. The materials presented linearity at the dose response curves in some ranges, but the lack of linearity in other cases presents no problem since a good mathematical description is possible. The fading study showed that the loss of TSEE signal can be minimized if the samples are protected from interferences such as light, heat and humidity. Taking into account the useful linearity range as the main dosimetric characteristic, the tiger shell and oyster shell samples are the most suitable for high-dose dosimetry using the TSEE technique. (Author)

  4. Dosimetric properties of bio minerals applied to high-dose dosimetry using the TSEE technique

    Energy Technology Data Exchange (ETDEWEB)

    Vila, G. B.; Caldas, L. V. E., E-mail: gbvila@ipen.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The study of the dosimetric properties such as reproducibility, the residual signal, lower detection dose, dose-response curve and fading of the thermally stimulated emission exo electronic (TSEE) signal of Brazilian bio minerals has shown that these materials present a potential use as radiation dosimeters. The reproducibility within ± 10% for oyster shell, mother-of-pearl and coral reef samples showed that the signal dispersion is small when compared with the mean value of the measurements. The study showed that the residual signal can be eliminated with a thermal treatment at 300 grades C/1 h. The lower detection dose of 9.8 Gy determined for the oyster shell samples when exposed to beta radiation and 1.6 Gy for oyster shell and mother-of-pearl samples when exposed to gamma radiation can be considered good, taking into account the high doses of this study. The materials presented linearity at the dose response curves in some ranges, but the lack of linearity in other cases presents no problem since a good mathematical description is possible. The fading study showed that the loss of TSEE signal can be minimized if the samples are protected from interferences such as light, heat and humidity. Taking into account the useful linearity range as the main dosimetric characteristic, the tiger shell and oyster shell samples are the most suitable for high-dose dosimetry using the TSEE technique. (Author)

  5. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gokhale, N.M.; Dayal, Rajiv; Lazl, Ramji

    2002-01-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO 2 . Flexural strength and fracture toughness were dependent on CeO 2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO 2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  6. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  7. Analytical and laser scanning techniques to determine shape properties of mineral aggregates

    CSIR Research Space (South Africa)

    Komba, Julius J

    2013-01-01

    Full Text Available processed to reconstruct 3-D models of the aggregate particles. The models were further analyzed to determine the form properties. In this paper, two analysis approaches, based on aggregate physical properties and spherical harmonic analysis, were employed...

  8. Fabrication and properties of samarium doped calcium sulphate thin films using spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Reghima, Meriem [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia); Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021 (Tunisia); Guasch, Cathy [Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Azzaza, Sonia; Alleg, Safia [Laboratoire de Magnétisme et Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar Annaba, B.P. 12, 23000 Annaba (Algeria); Kamoun-Turki, Najoua [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia)

    2016-10-01

    Using low cost spray pyrolysis technique, polycrystalline CaSO{sub 4} thin films were successfully grown on a glass substrate with a thickness of about 1 μm. Samarium doping has been performed on CaSO{sub 4} thin films to explore luminescence properties. The characterizations of these films were carried out using X-ray diffraction, Scanning Electron Microscopy and optical measurements. The structural analyses reveal the existence of hexagonal CaSO{sub 4} phase with a (200) preferred orientation belonging to CaS compound for substrate temperatures below 350 °C. It is shown that the crystallinity of the sprayed thin films can be improved by increasing substrate temperature up to 250 °C. Warren-Averbach analysis has been applied on X-ray diffractogram to determine structural parameters involving the phase with its amount, the grain size and the lattice parameters using Maud software. The surface topography shows a rough surface covered by densely packed agglomerated clusters having faceted and hexagonal shapes. Energy dispersive microscopy measurements confirm the presence of calcium and sulfur in equal proportions as well as high percentage of oxygen. Photoluminescence at room temperature revealed that luminescence peaks are attributed to the intrinsic emission of pure CaSO{sub 4} phase. - Highlights: • Warren Averbach analysis reveal the presence of hcp structure of CaSO{sub 4} phase. • A mixture of CaSO{sub 4} and CaHO{sub 4.5}S phases has been detected for lower T{sub s}. • For increasing T{sub s}, the CaHO{sub 4.5}S phase has been disappeared. • The origin of PL peaks has been identified.

  9. Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hay, J.C. [Oak Ridge National Lab., TN (United States); Pharr, G.M. [Rice Univ., Houston, TX (United States). Dept. of Materials Science

    1997-12-31

    This study explores the difficulties encountered when using conventional nanoindentation techniques to measure the Young`s modulus and hardness of hard films on soft substrates. In general, the indentation measurement of film/substrate systems is affected by four material properties: the Young`s modulus and hardness of the film, and the Young`s modulus and hardness of the substrate. For the particular case of a hard film on a soft substrate, there is a tendency for the material around the hardness impression to sink-in which results from the large difference in yielding of the two materials. In this study, a model system consisting of NiP on annealed Cu was used to explore the behavior. This system is interesting because the film and substrate have similar Young`s moduli, minimizing the elastic behavior as a variable. In contrast, the hardness of NiP is approximately 7--8 GPa, and that of the annealed copper is less than 1 GPa, providing a factor of 10 difference in the plastic flow characteristics. Experimental results indicate that standard analytical methods for determining the contact depth, hardness and Young`s modulus do not work well for the case of a hard film on a soft substrate. At shallow contact depths, the measured indentation modulus is close to that of the film, but at larger depths sink-in phenomena result in an overestimation of the contact area, and an indentation modulus which is less than the Young`s modulus of both the film and substrate. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide critical details of the physical processes involved, and illustrate how the standard data analyses overestimate the true contact area.

  10. Estimating biophysical properties of eucalyptus plantations using optical remote sensing techniques

    Science.gov (United States)

    Soares, Joao V.; Xavier, Alexandre C.; de Almeida, Auro C.; da Costa Freitas, Corina

    1998-12-01

    The feasibility of the inversion of optical remote sensing products to measure critical biophysical properties of Eucalyptus Forests at regional scales is investigated here. The biophysical variables used were leaf area Index, LAI, Diameter at Breast Height, DBH, Height and Age of Eucalyptus stands pertaining to a combination of different genetic materials (E. urophylla x E. grandis hybrids) and propagating systems (seeds or cuttings) and management system (planting and coppicing). The field sampling was done daily during 3 months, from April to June 1997, and covered 130 stands of minimum sizes of 9 hectares, within an Eucalyptus farming area of about 800 km2, centered at 19 degrees South, 42 degrees West, Brazil. The stands ranged from 12 to 84 months old. The measurements of LAI were done using two pairs of LAI-2000 (LICOR) under conditions of diffuse light. The Normalized Difference Vegetation Index, NDVI, and the Soil Adjusted Vegetation Index, SAVI, were derived from a LANDSAT-TM image acquired on June 5, 1997. Furthermore, a mixture model technique was applied to derive three new parameters: fraction of green vegetation, FGV, fraction of shadow, FSH, and fraction of soil, FS. Regression analysis were done between biophysical variables and remote sensing products. Linear correlation with coefficients of determination, R2, as high as 0.8 were found between LAI versus FGV and LAI versus SAVI, on all genetic materials. In general, SAVI was shown to give better estimates of LAI than NDVI, which is explained by the openings in the canopy as the Eucalyptus grow older. The correlation with the other biophysical variables (Height and DBH) were also shown to be significant, although the R2 ranged from 0.4 to 0.6. The correlation between FGV and SAVI was higher than 90% such that they can be used to estimate Eucalyptus biophysical parameters with the same statistical significance.

  11. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of anthropogenic radiation was shown.

  12. Structure of the hypothetical protein Ton1535 from Thermococcus onnurineus NA1 reveals unique structural properties by a left-handed helical turn in normal α-solenoid protein.

    Science.gov (United States)

    Jeong, Jae-Hee; Kim, Yi-Seul; Rojvirija, Catleya; Cha, Hyung Jin; Kim, Yeon-Gil; Ha, Sung Chul

    2014-06-01

    The crystal structure of Ton1535, a hypothetical protein from Thermococcus onnurineus NA1, was determined at 2.3 Å resolution. With two antiparallel α-helices in a helix-turn-helix motif as a repeating unit, Ton1535 consists of right-handed coiled N- and C-terminal regions that are stacked together using helix bundles containing a left-handed helical turn. One left-handed helical turn in the right-handed coiled structure produces two unique structural properties. One is the presence of separated concave grooves rather than one continuous concave groove, and the other is the contribution of α-helices on the convex surfaces of the N-terminal region to the extended surface of the concave groove of the C-terminal region and vice versa. © 2013 Wiley Periodicals, Inc.

  13. Manipulating microstructures and electrical properties of carbon fiber/reduced graphene oxide/nickel composite textiles with electrochemical deposition techniques

    Science.gov (United States)

    Cheng, Wei-Liang; Zhao, Quan-Liang; Shi, Fei

    2017-04-01

    Since graphene and their composites play significant roles in the catalysts, energy storage, electronics and other fields, where electron transport is highly critical, here, we introduce reduced graphene oxide (RGO) interfaces in the carbon fiber (CF) networks for preparing a novel lightweight carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon the charaterizations on the microscopic morphologies, electrical and magnetic properties, and density, the presence of RGO nanosheets and nickel nanoparticles would substantially influence the related physical properties in the resulting composite textiles. Furthermore, the key parameters, including RGO loading, deposition time, current density and annealing temperature of carbon matrices, have been studied to understand their effects on the electrochemical deposition of nickel nanoparticles. Implication of the results suggests that the RGO interface is a unique medium for essentially promoting the electrochemical deposition kinetics and active sites for growing nickel nanoparticles, which indicates a universal approach for preparing advanced lightweight composites with the presence of graphene naonstructures.

  14. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    Science.gov (United States)

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-07

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  15. Modelling fresh properties of self-compacting concrete using neural network technique

    NARCIS (Netherlands)

    Sonebi, Mohammed; Grunewald, S.; Cevik, Abdulkadir; Walraven, J.C.

    2016-01-01

    The purpose of this paper is to investigate the feasibility of using artificial neural network programming for the prediction of the fresh properties of self-compacting concrete. The input parameters of the neural network were the mix composition influencing the fresh properties of

  16. Development and analysis of noncollinear wave mixing techniques for material properties evaluation using immersion ultrasonics

    NARCIS (Netherlands)

    Demcenko, A.

    2014-01-01

    The sensitivity of ultrasonic measurements can be increased significantly by using nonlinear techniques instead of conventional linear ultrasonics. The nonlinear ultrasonics, based on a harmonic generation technique also known as collinear wave interaction, is used widely in practice due to its

  17. NASA's unique networking environment

    Science.gov (United States)

    Johnson, Marjory J.

    1988-01-01

    Networking is an infrastructure technology; it is a tool for NASA to support its space and aeronautics missions. Some of NASA's networking problems are shared by the commercial and/or military communities, and can be solved by working with these communities. However, some of NASA's networking problems are unique and will not be addressed by these other communities. Individual characteristics of NASA's space-mission networking enviroment are examined, the combination of all these characteristics that distinguish NASA's networking systems from either commercial or military systems is explained, and some research areas that are important for NASA to pursue are outlined.

  18. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    Science.gov (United States)

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  19. Is Life Unique?

    Science.gov (United States)

    Abel, David L.

    2011-01-01

    Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119

  20. Photothermal techniques applied to the study of thermal properties in biodegradable films

    Science.gov (United States)

    San Martín-Martínez, E.; Aguilar-Méndez, M. A.; Cruz-Orea, A.; García-Quiroz, A.

    2008-01-01

    The objective of the present work was to determine the thermal diffusivity and effusivity of biodegradable films by using photothermal techniques. The thermal diffusivity was studied by using the open photoacoustic cell technique. On the other hand the thermal effusivity was obtained by the photopyroelectric technique in a front detection configuration. The films were elaborated from mixtures of low density polyethylene (LDPE) and corn starch. The results showed that at high moisture values, the thermal diffusivity increased as the starch concentration was higher in the film. However at low moisture conditions (low extrusion moisture conditions (6.55%). As the moisture and starch concentration in the films were increased, the thermal effusivity diminished.

  1. Comparative study on structural and optical properties of CdS films fabricated by three different low-cost techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K. [P.G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)], E-mail: kkr1365@yahoo.com; Philominathan, P. [P.G. and Research Department of Physics, AVVM. Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu 613503 (India)

    2009-03-15

    Highly crystalline and transparent cadmium sulphide films were fabricated at relatively low temperature by employing an inexpensive, simplified spray technique using perfume atomizer (generally used for cosmetics). The structural, surface morphological and optical properties of the films were studied and compared with that prepared by conventional spray pyrolysis using air as carrier gas and chemical bath deposition. The films deposited by the simplified spray have preferred orientation along (1 0 1) plane. The lattice parameters were calculated as a = 4.138 A and c = 6.718 A which are well agreed with that obtained from the other two techniques and also with the standard data. The optical transmittance in the visible range and the optical band gap were found as 85% and 2.43 eV, respectively. The structural and optical properties of the films fabricated by the simplified spray are found to be desirable for opto-electronic applications.

  2. Effect of Coil Current on the Properties of Hydrogenated DLC Coatings Fabricated by Filtered Cathodic Vacuum Arc Technique

    Science.gov (United States)

    Liao, Bin; Ouyang, Xiaoping; Zhang, Xu; Wu, Xianying; Bian, Baoan; Ying, Minju; Jianwu, Liu

    2018-01-01

    We successfully prepared hydrogenated DLC (a-C:H) with a thickness higher than 25 μm on stainless steel using a filtered cathode vacuum arc (FCVA) technique. The structural and mechanical properties of DLC were systematically analyzed using different methods such as x-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, Vickers hardness, nanohardness, and friction and wear tests. The effect of coil current on the arc voltage, ion current, and mechanical properties of resultant films was systematically investigated. The novelty of this study is the fabrication of DLC with Vickers hardness higher than 1500 HV, in the meanwhile with the thickness higher than 30 μm through varying the coil current with FCVA technique. The results indicated that the ion current, deposition rate, friction coefficient, and Vickers hardness of DLC were significantly affected by the magnetic field inside the filtered duct.

  3. Elucidation technique on thermal properties data on material for nuclear power

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1999-01-01

    National Research Laboratory of Metrology developed a technology capable of measuring thermal diffusivity with more than 2% in precision at less than 2600degC by using laser flash method, specific heat volume and thermal emissivity with more than 3% in precision at less than 3000degC by using pulse electro-heating method, and thermal conductivity of micro specimen with 3% in precision at a range of room of room temperature to 500degC. On base of such technical potentials, this study aimed at rapidly measuring thermal properties (thermal conductivity, thermal diffusivity specific heat volume, and thermal emissivity) with precision at the highest precision in the world and ranging to ultrahigh temperature under identifying fundamental properties of materials. As a result, a data base on thermal properties capable of collecting all thermal property data obtained at this study and with excellent operability could be developed. (G.K.)

  4. Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique

    CSIR Research Space (South Africa)

    Zongo, S

    2015-08-01

    Full Text Available We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer...

  5. Comparison of optical properties of Eu3+ ions in the silica gel glasses obtained by different preparation techniques

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Sokolnicki, J.; Keller, B.; Borzechowska, M.; Strek, W.

    1996-01-01

    Silica-gel glasses doped with Eu 3+ ions were obtained by different preparation techniques. The absorption, emission and excitation spectra of the obtained glasses were measured in the range of 77-300 K. The energy levels diagrams of Eu 3+ ions were derived. An intensity analysis of f-f transitions was performed. In particular, polymeric structure behaviour of europium compounds entrapped in silica gel glasses was temperature controlled during the preparation of glasses. Their optical properties were investigated. (author)

  6. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    OpenAIRE

    Friedrich, Leandro Ferreira; Wang, Chong

    2016-01-01

    Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for co...

  7. Fabrication techniques and properties of multifilamentary Nb/sub 3/Sn conductors

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, M; Sampson, W B; Luhman, T S

    1980-01-01

    Various processing techniques for multifilamentary Nb/sub 3/Sn and V/sub 3/Ga are reviewed. The critical current of commercially produced Nb/sub 3/Sn wires manufactured by both the bronze and external diffusion techniques are compared. Critical currents for in situ and powder processed Nb/sub 3/Sn are also included. New developments which promise improvements in J/sub c/ are discussed.

  8. Application of infra-red techniques to research on mechanical properties

    OpenAIRE

    Huang, Y.; Shih, C.H.

    2013-01-01

    Infra-red techniques can serve as a new tool, particularly useful in materials science research work. This paper describes the available techniques for infra-red temperature measurement and thermography, and provides experimental data for some metals and alloys, obtained by infra-red sensing during deformation and fatigue processes. It is shown that conventional tensile data can be correlated with the change in infra-red radiation which occurs during tensile stressing. The temperature field o...

  9. Observational and laboratory studies of optical properties of black and brown carbon particles in the atmosphere using spectroscopic techniques

    Science.gov (United States)

    Nakayama, Tomoki; Matsumi, Yutaka

    2015-04-01

    Light absorption and scattering by aerosols are as an important contributor to radiation balance in the atmosphere. Black carbon (BC) is considered to be the most potent light absorbing material in the visible region of the spectrum, although light absorbing organic carbon (brown carbon or BrC) and mineral dust may also act as sources of significant absorption, especially in the ultraviolet (UV) and shorter visible wavelength regions. The optical properties of such particles depend on wavelength, particle size and shape, morphology, coating, and complex refractive index (or chemical composition), and therefore accurate in situ measurements of the wavelength dependence of the optical properties of particles are needed. Recently, cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS) have been used for the direct measurements of extinction and absorption coefficients of particles suspended in air. We have applied these techniques to the observational studies of optical properties of BC and BrC in an urban site in Japan and to the laboratory studies of optical properties of secondary organic aerosols (SOAs) generated from a variety of biogenic and anthropogenic volatile organic compounds and those of diesel exhaust particles (DEPs). In the presentation, the basic principles of these techniques and the results obtained in our studies and in the recent literatures will be overviewed. References Guo, X. et al., Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer, Atmos. Environ., 94, 428-437 (2014). Nakayama, T. et al., Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques, Atmos. Environ., 44, 3034-3042 (2010). Nakayama, T. et al., Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha

  10. Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique

    Science.gov (United States)

    Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee

    2017-08-01

    Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.

  11. DESIGN AND ANALYSIS OF LOW POWER MULTIPLY AND ACCUMULATE UNIT USING PIXEL PROPERTIES REUSABILITY TECHNIQUE FOR IMAGE PROCESSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2012-08-01

    Full Text Available The design of low power high performance Multiply and Accumulate (MAC unit is presented in this paper. The power analysis for MAC unit is carried out for image filtering application exploiting insignificant bits in pixel values. The developed technique is found to reduce dynamic power consumption by analyzing the bit patterns in the input data which reduces the switching activities. The power consumption of the developed multiplier is compared with existing multiplier techniques and found that is performs better. It is observed from the simulation using SYNOPSIS EDA tool that the proposed pixel properties reusability technique saves power up to 88% with small area over head when used in MAC unit.

  12. Uncertainty analysis technique of dynamic response and cumulative damage properties of piping system

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Aoki, Shigeru; Hara, Fumio; Hanaoka, Masaaki; Yamashita, Tadashi.

    1982-01-01

    It is a technologically important subject to establish the method of uncertainty analysis statistically examining the variation of the earthquake response and damage properties of equipment and piping system due to the change of input load and the parameters of structural system, for evaluating the aseismatic capability and dynamic structural reliability of these systems. The uncertainty in the response and damage properties when equipment and piping system are subjected to excessive vibration load is mainly dependent on the irregularity of acting input load such as the unsteady vibration of earthquakes, and structural uncertainty in forms and dimensions. This study is the basic one to establish the method for evaluating the uncertainty in the cumulative damage property at the time of resonant vibration of piping system due to the disperse of structural parameters with a simple model. First, the piping models with simple form were broken by resonant vibration, and the uncertainty in the cumulative damage property was evaluated. Next, the response analysis using an elasto-plastic mechanics model was performed by numerical simulation. Finally, the method of uncertainty analysis for response and damage properties by the perturbation method utilizing equivalent linearization was proposed, and its propriety was proved. (Kako, I.)

  13. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  14. A dual triangular pyramidal indentation technique based on FEA solutions for Material property evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo; Hyun, Hong Chul [Sogana Univ., Seoul (Korea, Republic of); Lee, Jin Haeng; Lee, Hyungyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this study, we suggest a method for material property evaluation by dual triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load displacement curves. From this, we established property evaluation formula using dual triangular pyramidal indenters having two different half included angles. The approach provides the values of elastic modulus, yield strength and strain hardening exponent within an average error of 3% for various materials.

  15. Development and application of measurement techniques for evaluating localised magnetic properties in electrical steel

    Science.gov (United States)

    Lewis, N. J.; Anderson, P. I.; Gao, Y.; Robinson, F.

    2018-04-01

    This paper reports the development of a measurement probe which couples local flux density measurements obtained using the needle probe method with the local magnetising field attained via a Hall effect sensor. This determines the variation in magnetic properties including power loss and permeability at increasing distances from the punched edge of 2.4% and 3.2% Si non-oriented electrical steel sample. Improvements in the characterisation of the magnetic properties of electrical steels would aid in optimising the efficiency in the design of electric machines.

  16. Opto-electronic properties of SnO2 layers obtained by SPD and ECD techniques

    International Nuclear Information System (INIS)

    Enesca, Alexandru; Bogatu, Cristina; Voinea, Mihaela; Duta, Anca

    2010-01-01

    The paper presents a comparative approach concerning the properties of SnO 2 thin layers obtained via spray pyrolysis deposition (SPD) and electro-chemical deposition (ECD). The influences of crystalline structure (X-ray diffraction), morphology (atomic force microscopy, contact angle) on the electric (electrical conductivity) properties of the layers were studied. The SPD samples present a porous morphology with high surface energy compared with ECD samples characterized by a dense morphology. The photocatalytic efficiency of the samples was tested in the photodegradation of methylene blue and the higher values (57%) correspond to SPD samples.

  17. Magnetic and electric properties of C-Co thin films prepared by vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Tembre, A.; Clin, M.; Picot, J.-C. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Dellis, J.-L., E-mail: jean-luc.dellis@u-picardie.fr [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Henocque, J. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Bouzerar, R. [Laboratoire de Physique des Systemes Complexes, Universite de Picardie Jules Verne, 33 rue Saint leu, 80039 Amiens (France); Djellab, K. [Plate-forme de Microscopie Electronique, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)

    2011-09-15

    Highlights: > Cobalt doped carbon thin films have been deposited by pulsed anodic electric arc technique. > The films are composed of well-crystallized cobalt layers and complex graphitic microstructure. > An insulating to a metallic state transition at 60 K is observed. > The magnetic susceptibility measurements show anomalous behaviour around 60 K. - Abstract: Cobalt doped carbon thin films have been deposited by a pulsed anodic electric arc technique. The films were characterized by high resolution transmission electron microscopy, electric measurements under dc magnetic fields, and ac magnetic susceptibility measurements within a temperature range 15-300 K. An insulating to a metallic state transition at a critical temperature around 60 K was observed.

  18. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  19. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior...

  20. Numerical path integration technique for the calculation of transport properties of proteins.

    Science.gov (United States)

    Kang, Eun-Hee; Mansfield, Marc L; Douglas, Jack F

    2004-03-01

    We present a new technique for the computation of both the translational diffusivity and the intrinsic viscosity of macromolecules, and apply it here to proteins. Traditional techniques employ finite element representations of the surface of the macromolecule, taking the surface to be a union of spheres or of polygons, and have computation times that are O(m(3)) where m is the number of finite elements. The new technique, a numerical path integration method, has computation times that are only O(m). We have applied the technique to approximately 1000 different protein structures. The computed translational diffusivities and intrinsic viscosities are, to lowest order, proportional respectively to N(-1/3)(R) and N(0)(R), where N(R) is the number of amino acid residues in the protein. Our calculations also show some correlation with the shape of the molecule, as represented by the ratio m(2)/m(3), where m(2) and m(3) are, respectively, the middle and the smallest of the three principal moments of inertia. Comparisons with a number of experimental results are also performed, with results generally consistent to within experimental error.

  1. Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments

    DEFF Research Database (Denmark)

    Kantz, Steffi; Söhn, Matthias; Troeller, Almut

    2015-01-01

    PURPOSE: The impact of multileaf collimator (MLC) design and IMRT technique on plan quality and delivery improvements for head-and-neck and meningioma patients is compared in a planning study. MATERIAL AND METHODS: Ten previously treated patients (5 head-and-neck, 5 meningioma) were re...

  2. On some surprising statistical properties of a DNA fingerprinting technique called AFLP

    NARCIS (Netherlands)

    Gort, G.

    2010-01-01

    AFLP is a widely used DNA fingerprinting technique, resulting in band absence - presence profiles, like a bar code. Bands represent DNA fragments, sampled from the genome of an individual plant or other organism. The DNA fragments travel through a lane of an electrophoretic gel or microcapillary

  3. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    Science.gov (United States)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  4. Effects of various mixing techniques on physical properties of white mineral trioxide aggregate.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Garcia-Godoy, Franklin; Gutmann, James L; Lotfi, Mehrdad; Asatourian, Armen

    2014-06-01

    The aim of this study was to evaluate the effects of three different mixing techniques on surface microhardness, initial setting time, and phase formation of white mineral trioxide aggregate. Twenty-one cylindrical glass tubes were selected and divided into three groups of seven in each (n = 7). White mineral trioxide aggregate (WMTA) in groups A, B, and C were mixed by conventional, trituration, and ultrasonic techniques, respectively. Cements were mixed and packed into the glass tubes and incubated at 37°C for 3 days. After incubation, samples were subjected to microhardness evaluation, and four specimens from each group were prepared and observed under a scanning electron microscopy and X-ray diffraction. For setting time assessment, WMTA was mixed in three parts again, and Gilmore needle test was performed until the initial setting time of cement. Data were analyzed by one-way anova and post hoc Tukey's test. Samples mixed by trituration technique significantly showed the highest microhardness (P mineral trioxide aggregate in comparison with ultrasonic technique. Trituration resulted in better hydration and crystallization, which prevents clustering of powder and reduces voids and setting time of mixed cement. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique

    DEFF Research Database (Denmark)

    Feijoo, J.; Ottosen, Lisbeth M.; Pozo-Antonio, J.S.

    2015-01-01

    such as sand disaggregation and superficial detachments. These problems can be solved by conservation technologies, which are aimed to decrease the salt concentration in rocks (desalination).The present study aimed to investigate the efficiency of electrokinetic techniques for desalination of two different...... in the granite samples (favored a faster desalination process)....

  6. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique

    NARCIS (Netherlands)

    Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A.

    1998-01-01

    We have used an isotropic osmotic stress technique to assess the swelling pressures of human articular cartilage over a wide range of hydrations in order to determine from these measurements, for the first time, the tensile stress in the collagen network, P(c), as a function of hydration. Osmotic

  7. A line array based near field imaging technique for characterising acoustical properties of elongated targets

    NARCIS (Netherlands)

    Driessen, F.P.G.

    1995-01-01

    With near field imaging techniques the acoustical pressure waves at distances other than the recorded can be calculated. Normally, acquisition on a two dimensional plane is necessary and extrapolation is performed by a Rayleigh integral. A near field single line instead of two dimensional plane

  8. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  9. Investigation of Mechanical and Wear Properties of LM24/Silicate/Fly Ash Hybrid Composite Using Vortex Technique

    Directory of Open Access Journals (Sweden)

    B. R. Senthil Kumar

    2016-01-01

    Full Text Available This work has investigated to find the influence of silicate on the wear behavior of LM 24/4 wt.% fly ash hybrid composite. The investigation reveals the effectiveness of incorporation of silicate in the composite for gaining wear reduction. Silicate particles with fly ash materials were incorporated into aluminum alloy matrix to accomplish reduction in wear resistance and improve the mechanical properties. The LM24/silicate/fly ash hybrid composite was prepared with 4 wt.% fly ash particles with 4, 8, 12, 16, 20, and 24 wt.% of silicate using vortex technique. Tribological properties were evaluated under different load (15, 30, 45, 60, and 75 N; sliding velocity (0.75, 1.5, 2.25, and 3 m/sec condition using pin on disc apparatus and mechanical properties like density, hardness, impact strength, and tensile strength of composites were investigated. In addition, the machining of the aluminum hybrid composite was studied using Taguchi L9 orthogonal array with analysis of variance. The properties of the hybrid composites containing 24 wt.% silicates exhibit the superior wear resistance and mechanical properties.

  10. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation.

    Science.gov (United States)

    Han, Song-I; Joo, Young-Don; Han, Ki-Ho

    2013-03-07

    This paper presents an effective electrorotation technique for measuring the dielectric properties of cells using a superposed electrical signal, which can simultaneously generate negative quadrupolar dielectrophoretic (nQDEP) force and electrorotational (ROT) torque. The proposed technique involves a three-dimensional (3D) octode, which includes four electrodes arranged in a crisscross pattern on the top and bottom of a microchannel, respectively. A single cell was trapped in the center of the 3D octode by the nQDEP force and simultaneously rotated by the ROT torque. Using the proposed electrorotation technique, ROT spectra of human leukocyte subpopulations (T and B lymphocytes, granulocytes, and monocytes) and metastatic human breast (SkBr3) and lung (A549) cancer cell lines were accurately measured without any disturbance. Torque on the cells generated by the ROT signal was analyzed theoretically based on the single-shell dielectric model for the cells. Furthermore, the dielectric properties of the cells, such as area-specific membrane capacitance and cytoplasm conductivity, were extracted using the measured ROT spectra and the analyzed torque.

  11. Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array.

    Science.gov (United States)

    Li, Yue; Luo, Shenglian; Wei, Zhendong; Meng, Deshui; Ding, Mingyue; Liu, Chengbin

    2014-03-07

    Electrodeposition is a very versatile tool to fabricate multicomponent TiO2 nanotube array (NTA) composites. However, the understanding of the correlation between the component structure and the fabrication technique has not been clearly investigated yet, though it has been observed that the performance of composites is bound up with the component structure. In this work, the photoelectrochemical properties of In2S3-TiO2 NTA composites prepared by CV electrodeposition, potentiostatic electrodeposition and pulse electrodeposition, respectively, were investigated. The results revealed that the as-prepared photoelectrodes exhibited electrodeposition technique-dependent properties, and the pulse prepared In2S3-TiO2 yielded the highest and stable photocurrent response, consequently exhibiting a superior photocatalytic activity in the degradation of p-nitrophenol (PNP). This may be attributed to the homogeneous, ultra-fine structure of In2S3 nanoparticles (NPs), which brings about a high charge separation efficiency. Furthermore, the trapping tests showed that both radicals and holes were the main active species in the photocatalytic degradation of PNP. This work not only provided a firm basis for maximizing photocatalytic activity via tuning fabrication techniques but also gave a deep insight into the photocatalytic mechanism.

  12. Ethanol as a solvent and hot extraction technique preserved the antioxidant properties of tamarind (Tamarindus indica seed

    Directory of Open Access Journals (Sweden)

    Nushrat Yeasmen

    2015-09-01

    Full Text Available The influence of two extraction solvents (ethanol and acetone and two extraction techniques i.e., hot extraction at 400C and cold extraction at 260C were investigated on the phenolic content and antioxidant activity of extracts from Tamarindus indica seed. The antioxidant activity of T. indica was determined by evaluating 1,1-Diphenyl-2-picrylhydrazyl (DPPH scavenging activity, ferric reducing power assay (FRAP and ascorbic acid equivalent content (AAC. The tested sample showed appreciable amounts of total phenolic contents (51.45-71.68 mg GAE/gm of dry extract, DPPH scavenging capacity (61.18-71.17%, IC50 values (98.30-248.60, reducing power (0.6377-0.7702 and total antioxidant capacity (22.75-43.80 AAE/gm at different solvents and techniques. Current study data shown higher extract yields, phenolic contents, scavenging activity, reducing power and antioxidant activity using ethanol solvent compared to the respective acetone solvent. In addition, higher extract yields and other properties were obtained by hot extraction at 400C compared to the cold extraction at 260C. Present study suggests that ethanol as a solvent and hot extraction technique could be better to preserve the antioxidant properties of tamarind seed. [J Adv Vet Anim Res 2015; 2(3.000: 332-337

  13. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    Science.gov (United States)

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Design, development and applications of novel techniques for studying surface mechanical properties

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.

  15. Processing And Properties Of MAX Phases – Based Materials Using SHS Technique

    Directory of Open Access Journals (Sweden)

    Chlubny L.

    2015-06-01

    Full Text Available Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.

  16. Antioxidant Properties of ?Natchez? and ?Triple Crown? Blackberries Using Korean Traditional Winemaking Techniques

    OpenAIRE

    Joh, Youri; Maness, Niels; McGlynn, William

    2017-01-01

    This research evaluated blackberries grown in Oklahoma and wines produced using a modified traditional Korean technique employing relatively oxygen-permeable earthenware fermentation vessels. The fermentation variables were temperature (21.6°C versus 26.6°C) and yeast inoculation versus wild fermentation. Wild fermented wines had higher total phenolic concentration than yeast fermented wines. Overall, wines had a relatively high concentration of anthocyanin (85–320 mg L−1 malvidin-3-monogluco...

  17. Unique solution to periodic boundary value problems

    Directory of Open Access Journals (Sweden)

    Yong Sun

    1991-01-01

    Full Text Available Existence of unique solution to periodic boundary value problems of differential equations with continuous or discontinuous right-hand side is considered by utilizing the method of lower and upper solutions and the monotone properties of the operator. This is subject to discussion in the present paper.

  18. Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique

    International Nuclear Information System (INIS)

    Sun, Y.F.; Fujii, H.; Takaki, N.; Okitsu, Y.

    2013-01-01

    Highlights: ► Dissimilar Al/Fe joint was obtained by flat spot friction stir welding technique. ► The surface of the sound Al/Fe joint is smooth without any internal defects. ► No intermetallic compound layer but amorphous area is formed at the weld interface. ► The sound Al/Fe welds show high shear tensile load and fracture through plug mode. ► The probe length exerts little effect on the welds’ microstructure and properties. - Abstract: The 6061-T6 Al alloy and mild steel plate with a thickness of 1 mm were successfully welded by the flat spot friction stir welding technique, which contains two steps during the entire welding process. The rotating tools with different probe lengths of 1.0, 1.3 and 1.5 mm were used in the first step, during which a conventional spot FSW was conducted above a round dent previously made on the back plate. However, sound Al/Fe welds with similar microstructure and mechanical properties can still be obtained after the second step, during which a probe-less rotating tool was used to flatten the weld surface. The sound welds have smooth surface without keyholes and other internal welding defects. No intermetallic compound layer but some areas with amorphous atomic configuration was formed along the Al/Fe joint interface due to the lower heat input. The shear tensile failure load can reach a maximum value of 3607 N and fracture through plug mode. The probe length has little effect on the weld properties, which indicates that the tool life can be significantly extended by this new spot welding technique

  19. Evaluation of different drying techniques on the nutritional and biofunctional properties of a traditional fermented sheep milk product.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Obaidat, Mohammad M; Gammoh, Sana; Ereifej, Khalil; Al-Ismail, Khaild; Althnaibat, Rami M; Kubow, Stan

    2016-01-01

    The purpose of this study was to evaluate the effect of solar and freeze drying techniques on the physicochemical, nutritional and biofunctional properties of salted or unsalted Jameed from fermented sheep milk product. The highest yield of Jameed was obtained via the salted-solar drying process. As measured by colorimetry, salted freeze-dried Jameed showed improved consumer characteristics in terms of increased lightness and decreased red and yellow color components. When unsalted Jameed was prepared by solar or freeze drying, additional major peptide bands were detected by SDS-PAGE treatments as compared to the solar or freeze drying of the salted Jameed. Use of salt in the preparation of solar dried Jameed also led to the highest ACE inhibitory activities whereas antioxidant activity was lowest in unsalted solar dried Jameed. The study findings indicate that both greater yield and better overall nutritional and biofunctional properties were associated with solar dried salted Jameed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation of electromagnetic properties of BiFeO3 by Time Differential Perturbed Angular Correlation (TDPAC) technique at ISOLDE

    CERN Document Server

    Efe, Ipek

    2017-01-01

    Time differential perturbed angular correlation (TDPAC) technique is one of the most sensitive techniques to study about the electric and magnetic fields at the individual lattice points. It benefits from the hyperfine interactions between the probe atom and its neighborhood. Multiferroic materials have been intensively studied to promote and understand the possibility of controlling magnetic properties by electric fields instead of magnetic fields which opens the path to faster, smaller, and more energy-efficient spintronic devices, such as memory elements, high-frequency magnetic devices, and micro-electro-mechanical systems, for data-storage technologies. BiFeO3 is one of the famous and important multiferroic materials since it shows both antiferromagnetic and ferroelectric behavior at room temperature. In this study, we report on the first time-differential perturbed angular correlation (TDPAC) measurements carried out on polycrystalline BiFeO3 samples using the nuclear probe 181Hf(181Ta) after implantati...

  1. Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interference lithography

    KAUST Repository

    Yang, Yung-Lang

    2010-03-01

    This study presents the wetting properties, including hydrophilicity, hydrophobicity and anisotropic behavior, of water droplets on the silicon wafer surface with periodical nanopatterns and hierarchical structures. This study fabricates one- and two-dimensional periodical nanopatterns using laser interference lithography (LIL). The fabrication of hierarchical structures was effectively achieved by combining photolithography and LIL techniques. Unlike conventional fabrication methods, the LIL technique is mainly used to control the large-area design of periodical nanopatterns in this study. The minimum feature size for each nanopattern is 100 nm. This study shows that the wetting behavior of one-dimensional, two-dimensional, and hierarchical patterns can be obtained, benefiting the development of surface engineering for microfluidic systems. © 2010 Elsevier B.V. All rights reserved.

  2. Pseudoproxy Experiments Using the BARCAST Reconstruction Technique: Effects on Spatiotemporal Persistence Properties

    Science.gov (United States)

    Nilsen, T.; Divine, D.; Rypdal, M.; Werner, J.; Rypdal, K.

    2016-12-01

    A modified two-dimensional stochastic-diffusive energy balance model (EBM) defined on a sphere was used for generating pseudoproxy/instrumental data and target data for surface temperature. The EBM is described in Rypdal et al. (2015). The target field has prescribed long-range memory (LRM) properties in time, and a frequency-dependent autocorrelation function in space. The Bayesian hierarchical model BARCAST, was used to generate surface temperature field reconstructions of an area corresponding to the European landmass for the past millennium. BARCAST has a built-in multivariate AR(1) model for the evolution of the temperature field, with an exponential, spatial covariance function, (Tingley & Huybers, 2010). The AR(1) process has a short-range memory, and we seek to find out how the competing spatiotemporal models influence the persistence of the reconstruction. A number of pseudoproxy experiments were performed with a fixed proxy network, using different signal-to-noise ratios (SNR) and colors of noise, (white/red). To study the persistence properties, the power-law relation of the power spectral density for LRM processes was used: S(f) f-β. The spectral exponent β was estimated both for local data and the spatial mean of the full region. The local β for the target varies between (0.1, 0.4), and for the spatial mean β 0.6. Results for the reconstructions show that the local and global memory is influenced by the noise color and level. Low noise levels or absence of noise results in reconstructions that exhibit similar properties as the target, while for higher noise levels the reconstructions have memory properties of a white/red character, (SNR=0.3 by standard deviation). Since an SNR of 0.5-0.25 is considered realistic for real proxy records, this implies that estimates of temporal persistence from proxy-based reconstructions reflect the proxy noise to a high degree, and not the signal as desired. Rypdal et al., 2015: Spatiotemporal Long-Range Persistence

  3. Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-06-01

    Full Text Available using the “Properties Tree” tool in the software. The software allows users to merge scans for increased quality, change the shape around curved surfaces, sharpen edges, extend shapes, add thicknesses and perform Boolean operations on polygon surfaces......VVVVV   321 1 (5) In the 3-D laser scanning system, the surface area of a particle is determined using triangulation method from the matrix of mesh points of triangular elements. The laser scanning software divides the surface mesh of modelled aggregate...

  4. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    OpenAIRE

    M. Barzegar; M. B. Rahmani; H. Haratizadeh

    2012-01-01

    Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin  layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG) and vapor of ethanol (C2H5OH)...

  5. Agricultural Soil Spectral Response and Properties Assessment: Effects of Measurement Protocol and Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Asa Gholizadeh

    2017-10-01

    Full Text Available Soil spectroscopy has shown to be a fast, cost-effective, environmentally friendly, non-destructive, reproducible and repeatable analytical technique. Soil components, as well as types of instruments, protocols, sampling methods, sample preparation, spectral acquisition techniques and analytical algorithms have a combined influence on the final performance. Therefore, it is important to characterize these differences and to introduce an effective approach in order to minimize the technical factors that alter reflectance spectra and consequent prediction. To quantify this alteration, a joint project between Czech University of Life Sciences Prague (CULS and Tel-Aviv University (TAU was conducted to estimate Cox, pH-H2O, pH-KCl and selected forms of Fe and Mn. Two different soil spectral measurement protocols and two data mining techniques were used to examine seventy-eight soil samples from five agricultural areas in different parts of the Czech Republic. Spectral measurements at both laboratories were made using different ASD spectroradiometers. The CULS protocol was based on employing a contact probe (CP spectral measurement scheme, while the TAU protocol was carried out using a CP measurement method, accompanied with the internal soil standard (ISS procedure. Two spectral datasets, acquired from different protocols, were both analyzed using partial least square regression (PLSR technique as well as the PARACUDA II®, a new data mining engine for optimizing PLSR models. The results showed that spectra based on the CULS setup (non-ISS demonstrated significantly higher albedo intensity and reflectance values relative to the TAU setup with ISS. However, the majority of statistics using the TAU protocol was not noticeably better than the CULS spectra. The paper also highlighted that under both measurement protocols, the PARACUDA II® engine proved to be a powerful tool for providing better results than PLSR. Such initiative is not only a way to

  6. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    Science.gov (United States)

    Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique. RBCs with microhybrid (Filtek Z250), 'nanohybrid' (Grandio) and 'nanofilled' (Filtek Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n=30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated. Agglomerated fillers ('nanoclusters') exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P<0.05). The mean force at first fracture of the nanoclusters was greater (1702+/-909 microN) than spheroidal and irregular particles (1389+/-1342 and 1356+/-1093 microN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797+/-555 MPa) was also greater than spheroidal (587+/-439 MPa) or irregular (552+/-275 MPa) fillers. The validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The 'nanoclusters' exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.

  7. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    International Nuclear Information System (INIS)

    Sheng, Chan Kok; Mahmood Mat Yunus, W.; Yunus, Wan Md. Zin Wan; Abidin Talib, Zainal; Kassim, Anuar

    2008-01-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity

  8. Optimization of Micro-Alloying Elements for Mechanical Properties in Normalized Cast Steel Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-06-01

    Full Text Available In this study, Taguchi method is used to find out the effect of micro alloying elements like vanadium, niobium and titanium on the hardness and tensile strength of the normalized cast steel. Based on this method, plan of experiments were made by using orthogonal arrays to acquire the data on hardness and tensile strength. The signal to noise ratio and analysis of variance (ANOVA are used to investigate the effect of these micro alloying elements on these two mechanical properties of the micro alloyed normalized cast steel. The results indicated that in the micro alloyed normalized cast steel both these properties increases when compared to non-micro-alloyed normalized cast steel. The effect of niobium addition was found to be significantly higher to obtain higher hardness and tensile strength when compared to other micro alloying elements. The maximum hardness of 200HV and the maximum tensile strength of 780 N/mm2 were obtained in 0.05%Nb addition micro alloyed normalized cast steel. Micro-alloyed with niobium normalized cast steel have the finest and uniform microstructure and fine pearlite colonies distributed uniformly in the ferrite. The optimum condition to obtain higher hardness and tensile strength were determined. The results were verified with experiments.

  9. Size Controlled CaF2 Nanocubes and Their Dosimetric Properties Using Photoluminescence Technique

    Directory of Open Access Journals (Sweden)

    Najlaa D. Alharbi

    2015-01-01

    Full Text Available A new synthetic chemical coprecipitation route for the preparation of well-crystallized size controlled nano- and microcrystalline cubes of CaF2 is reported. Crystalline cubes in the range of 2 μm–20 nm could be synthesized and their sizes were controlled by varying the solvent : cosolvent ratio. The as-synthesized CaF2 nanocubes were characterized by different techniques. Photoluminescence (PL emission spectrum of CaF2 nanocrystalline powder showed strong emission band at 415 nm. Moreover, the effect of Eu as a dopant on the emission spectrum of CaF2 was investigated. This dopant was found to get incorporated in its Eu2+ and Eu3+ forms. The as-produced nanocubes were exposed to UV irradiation and the corresponding PL emission was studied. Excellent results are obtained, where CaF2:Eu nanocubes were found to be highly sensitive and might be suitable for esteeming the doses of UV irradiation using the PL technique.

  10. Properties of ion implanted Ti-6Al-4V processed using beamline and PSII techniques

    International Nuclear Information System (INIS)

    Walter, K.C.; Woodring, J.S.; Nastasi, M.; Munson, C.M.; Williams, J.M.; Poker, D.B.

    1996-01-01

    The surface of Ti-6Al-4V (Ti64) alloy has been modified using beamline implantation of boron. In separate experiments, Ti64 has been implanted with nitrogen using a plasma source ion implantation (PSII) technique utilizing either ammonia (NH 3 ), nitrogen (N 2 ), or their combinations as the source of nitrogen ions. Beamline experiments have shown the hardness of the N-implanted surface saturates at a dose level of ∼ 4 x 10 17 at/cm 2 at ∼ 10 GPa. The present work makes comparisons of hardness and tribological tests of (1) B implantation using beamline techniques, and (2) N implanted samples using ammonia and/or nitrogen gas in a PSII process. The results show that PSII using N 2 or NH 3 gives similar hardness as N implantation using a beamline process. The presence of H in the Ti alloy surface does not affect the hardness of the implanted surface. Boron implantation increased the surface hardness by as much as 2.5x at the highest dose level. Wear testing by a pin-on-disk method indicated that nitrogen implantation reduced the wear rate by as much as 120x, and boron implantation reduced the wear rate by 6.5x. Increased wear resistance was accompanied by a decreased coefficient of friction

  11. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    Science.gov (United States)

    Nepomnyashchaya, E. K.; Prokofiev, A. V.; Velichko, E. N.; Pleshakov, I. V.; Kuzmin, Yu I.

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe3O4) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  12. A technique to measure optical properties of brownout clouds for modeling terahertz propagation.

    Science.gov (United States)

    Fiorino, Steven T; Deibel, Jason A; Grice, Phillip M; Novak, Markus H; Spinoza, Julian; Owens, Lindsay; Ganti, Satya

    2012-06-01

    Brownout, the loss of visibility caused by dust resultant of helicopter downwash, is a factor in the large majority of military helicopter accidents. As terahertz radiation readily propagates through the associated dust aerosols and is attenuated by atmospheric water vapor within short distances, it can provide low-profile imaging that improves effective pilot visibility. In order to model this application of terahertz imaging, it is necessary to determine the optical properties of obscurants at these frequencies. We present here a method of empirical calculation and experimental measurement of the complex refractive index of the obscuring aerosols. Results derived from terahertz time-domain spectral measurements are incorporated into the AFIT CDE Laser Environmental Effects Definition and Reference (LEEDR) software.

  13. Study of the optical properties of aerosols in the Sao Paulo State by LIDAR Raman technique

    International Nuclear Information System (INIS)

    Costa, Renata Facundes da

    2010-01-01

    The investigation reported in this dissertation has been divided in two parts. The first part was made to carry out an independent calibration of a Raman LIDAR system for water vapor in the CLA installed using a methodology that was developed at Howard University, based on a careful analysis of the efficiency of the optical system components aimed at determining the efficiency and displaying the spectral response of the system. After this study, which led to a better understanding of the eld of instrumental system, the second part, presents a preliminary study of the optical properties of aerosols in the troposphere by evaluating parameters such as, for example, the vertical profiles of aerosol extinction, SR and LR, using a mobile Raman LIDAR system developed by Raymetrics LIDAR Systems, during campaigns conducted in some research institutes in the State of Sao Paulo. (author)

  14. Application of various techniques for predicting coke CSR from coal blend properties through laboratory scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dash, P.S.; Guha, M.; Chakraborty, D.; Krishnan, S.H.; Banerjee, P.K. [Tata Steel, Jamshedpur (India)

    2005-07-01

    The study is aimed to fulfill the need of a model that will predict the coke properties from coal blend characteristics so that optimisation of coal blends for producing desired quality of stamp charged coke could be done easily, quickly and with lesser number of carbonisation tests in a 7-kg test oven. To achieve the above goal, different coal blends were formulated to realise sufficient change in each of the blend variables and tests were conducted in the laboratory. The input variables, data and output variables coke strength after reaction (CSR) and coke reactivity index (CSRI) data were generated. Regression analyses and artificial neural network models with different number of hidden number of hidden layers and nodes were used to predict the coke CSR from various combinations of 8 input variables. From the results obtained through all these analyses, it can be concluded that coke CSR can be predicted with reasonable accuracy from coal blend characteristics. 7 refs., 7 figs., 7 tabs.

  15. Structural and optical properties of Zn–In–Te thin films deposited by thermal evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Güllü, H.H.; Bayraklı, Ö.; Candan, İ. [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey); Coşkun, E. [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey); Department of Physics, Çanakkale Onsekiz Mart University, 17100 Çanakkale (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, GUNAM, 06800 Ankara (Turkey)

    2013-07-25

    Highlights: •The new ternary compound Zn–In–Te (ZIT) has been studied for photovoltaic device applications as an absorber layer. •ZIT thin films were deposited by thermal evaporation of stoichiometric sintered polycrystalline powder. •The optical constants were calculated by using different methods, (SOM), Envelope Model (EM) and Cauchy Method. •Urbach energies were calculated and the increasing band tail energies were observed with increasing annealing temperature. -- Abstract: Annealing effects on structural and optical properties of the thermally evaporated Zn–In–Te (ZIT) thin films have been investigated. The structural and the compositional analyses were carried out by means of X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA). The as-grown and annealed ZIT films had polycrystalline structure and the preferred orientation changed from (2 2 0) to (1 1 2) direction with increasing annealing temperature. The optical properties and constants were determined by transmittance measurements in the wavelength range of 200–2000 nm. The effect of annealing on the optical parameters was determined by using Single Oscillator Model (SOM), Envelope Model (EM) and Cauchy Method. The absorbance studies revealed that the films had three distinct transitions in the high absorption region because of the tetragonal distortion, and that was used to evaluate the splitting energies of crystal-field and spin–orbit splitting. The fundamental optical band gap values were found to be lying in the range of 1.51 and 1.72 eV and the notable change of the band gaps due to annealing temperatures was observed. Finally, the Urbach energies were calculated and it was observed that the band tail energies were increasing with increasing annealing temperature.

  16. A study of some properties for substituted Li-ferrite using positron annihilation lifetime technique

    Directory of Open Access Journals (Sweden)

    E. Hassan Aly

    2015-01-01

    Full Text Available Positron annihilation lifetime spectroscopy (PALS is used to investigate polycrystalline substituted Li-ferrite samples. The dray ceramic technique was used to prepare all investigated samples. The variation of positron annihilation parameters I1%, I2%, τ1, and τ2 has been demonstrated with porosity and the initial permeability against the ionic radii of substituted ions for Li ferrite. The grain size (G.S. increased with increasing the ionic radii of the substituted ions for Li-ferrite. The correlation between I2 and τ2 has opposite behavior with the ionic radii of the substituted ions. Whereas the correlation between I1 and τ1; has nearly the same behavior with the ionic radii of the substituted ions except for V and Gd samples. There is mostly a direct correlation between the electrical resistivity and I2 values except for Sm sample with increasing the ionic radii of substituted ions.

  17. Humidity sensing properties of WO{sub 3} thick film resistor prepared by screen printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Garde, Arun S, E-mail: arungarde@yahoo.co.in

    2014-12-25

    Highlights: • Polycrystalline WO{sub 3} Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm{sup −1} shows stretching vibrations attributed to W-OH of adsorbed H{sub 2}O. • Absorption peaks in the range 879–650 cm{sup −1} are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO{sub 3} thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm{sup −1} clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm{sup −1} are attributed to the stretching W-O-W bonds (i.e. ν [W-O{sub inter}-W]). The peak located at 983 cm{sup −1} belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO{sub 3} thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO{sub 3} film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO{sub 3} film sensors have been evaluated.

  18. Reflection electron energy loss spectroscopy as efficient technique for the determination of optical properties of polystyrene intermixed with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deris, Jamileh [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Hajati, Shaaker, E-mail: Hajati@mail.yu.ac.ir [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Department of Semiconductors, Materials and Energy Research Center, Karaj 3177983634 (Iran, Islamic Republic of)

    2017-01-15

    Highlights: • Reflection Electron Energy Loss Spectroscopy of nano-metalized polymer. • Determination of real part of the dielectric function of nanostructured sample. • Determination of imaginary part of the dielectric function of nanostructured sample. • Determination of refractive index and coefficient of extinction of the sample. • Determination of reflection and absorption coefficients of nano-metalized Polymer. - Abstract: The electronic properties (electron inelastic cross section, energy loss function) of a nano-metalized polystyrene obtained by reflection electron energy loss spectroscopy (REELS) in a previous study [J. Deris, S. Hajati, S. Tougaard, V. Zaporojtchenko, Appl. Surf. Sci. 377 (2016) 44–47], which relies on the Yubero-Tougaard method, were used in the complementary application of Kramers-Kronig transformation to determine its optical properties such as the real part (ε{sub 1}) and imaginary part (ε{sub 2}) of the dielectric function (ε), refractive index (n), coefficients of extinction (k), reflection (R) and absorption (μ). The degree of intermixing of polystyrene thin film and gold nanoparticles of sizes 5.5 nm was controlled by annealing the sample to achieve a morphology in which the nanoparticles were homogeneously distributed within polystyrene. It is worth noting that no data are available on the optical properties of metalized polymers such as gold nanoparticles intermixed with polystyrene. Therefore, this work is of high importance in terms of both the sample studied here and the method applied. The advantage of the method applied here is that no information on the lateral distribution of the nanocomposite sample is required. This means that the REELS technique has been presented here to suitably, efficiently and easily obtain the optical properties of such nano-metalized polymer in which the metal nanoparticles have been vertically well distributed (homogeneous in depth). Therefore, for vertically homogeneous and

  19. Influence of Freeze Concentration Technique on Aromatic and Phenolic Compounds, Color Attributes, and Sensory Properties of Cabernet Sauvignon Wine.

    Science.gov (United States)

    Wu, Yan-Yan; Xing, Kai; Zhang, Xiao-Xu; Wang, Hui; Wang, Yong; Wang, Fang; Li, Jing-Ming

    2017-06-02

    Red wines produced in the Xinjiang region of China possess poor color density, and lack fruity notes and elegance. The freeze concentration technique, as a well-established concentration method for liquid food systems, was applied to the Cabernet Sauvignon ( Vitis vinifera L.) wine-making process, aiming to investigate its effect on wine quality improvement. Results showed that the freeze concentration treatment did not significantly alter the physicochemical properties of the wine, except for an increase of glycerol and alcoholic content. This technique increased ester contents, as well as decreasing the amount of volatile acids. Higher alcohol contents were also increased, but within an acceptable content range. All taken into consideration, the freeze concentration treated wine showed better fragrance characters according to sensory evaluation. The non-anthocyanin composition was altered by this application, however, the difference disappeared after the aging process. Fortunately, sensory evaluation showed that the treated wine possessed better mouthfeel properties. Anthocyanin contents were enhanced, and effectively stabilized the fresh wine color attributes, resulting in an improvement in appearance of the treated wine. All results considered, it can be concluded that freeze concentration treatment could be a good choice to improve wine quality.

  20. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    Science.gov (United States)

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.

  1. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    Directory of Open Access Journals (Sweden)

    Ciobanu Carmen

    2012-03-01

    Full Text Available Abstract Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs. The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.

  2. Influence of the ytterbium doping technique on the luminescent properties of ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2015-02-15

    Luminescent properties of the ytterbium doped zinc selenide crystals with 0.00–8.00 at % concentrations of the Yb impurity within the temperature interval from 6 K to 300 K were studied. Ytterbium doping was performed within three technological processes: during the growth by chemical vapor transport method and by thermal diffusion from the Bi+Yb or Zn+Yb melt. The influence of ytterbium impurity concentration on spectral position and intensity of the various photoluminescent bands in ZnSe emission spectra in visible and infrared range is analyzed. A tendency of ytterbium ions to form associates with background defects was demonstrated. A strong dependence between ytterbium influence on the zinc selenide emission spectra and concentration of selenium vacancies was shown. - Highlights: • Co-doping of ZnSe crystals with Yb and Bi or I impurities was studied. • Influence of Yb concentration on ZnSe emission spectra in visible and infrared range was analyzed. • Tendency of Yb to form associates with background defects was discussed. • Impact of V{sub Se} on formation of Yb-based emission centers was demonstrated.

  3. Properties of parameter estimation techniques for a beta-binomial failure model. Final technical report

    International Nuclear Information System (INIS)

    Shultis, J.K.; Buranapan, W.; Eckhoff, N.D.

    1981-12-01

    Of considerable importance in the safety analysis of nuclear power plants are methods to estimate the probability of failure-on-demand, p, of a plant component that normally is inactive and that may fail when activated or stressed. Properties of five methods for estimating from failure-on-demand data the parameters of the beta prior distribution in a compound beta-binomial probability model are examined. Simulated failure data generated from a known beta-binomial marginal distribution are used to estimate values of the beta parameters by (1) matching moments of the prior distribution to those of the data, (2) the maximum likelihood method based on the prior distribution, (3) a weighted marginal matching moments method, (4) an unweighted marginal matching moments method, and (5) the maximum likelihood method based on the marginal distribution. For small sample sizes (N = or < 10) with data typical of low failure probability components, it was found that the simple prior matching moments method is often superior (e.g. smallest bias and mean squared error) while for larger sample sizes the marginal maximum likelihood estimators appear to be best

  4. Structure and Properties of Diamond-Like Carbon Films Deposited by PACVD Technique on Light Alloys

    Directory of Open Access Journals (Sweden)

    Tański T.

    2016-09-01

    Full Text Available The investigations presented in this paper describe surface treatment performed on samples of heat-treated cast magnesium and aluminium alloy. The structure and chemical composition as well as the functional and mechanical properties of the obtained gradient/monolithic films were analysed by high resolution transmission electron microscopy and scanning electron microscopy, Raman spectroscopy, the ball-on-disk tribotester and scratch testing. Moreover, investigation of the electrochemical corrosion behaviour of the samples was carried out by means of potentiodynamic polarisation curves in 1-M NaCl solution. The coatings produced by chemical vapour deposition did not reveal any delamination or defects and they adhere closely to the substrate. The coating thickness was in a range of up to 2.5 microns. Investigations using Raman spectra of the DLC films confirmed a multiphase character of the diamond-like carbon layer, revealing the sp2 and sp3 electron hybridisation responsible for both the hardness and the friction coefficient. The best wear resistance test results were obtained for the magnesium alloy substrate - AZ61, for which the measured value of the friction path length was equal to 630 m.

  5. Efficient numerical technique for calculating the properties of interacting dimers in the Peierls-Hubbard model

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We develop a method to compute the Green's function for two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. The method is based on a variational approximation to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and is shown to agree with exact digaonalization calculations. We show that the properties of bipolarons arising in such models is qualitatively different from those of the well-studied Holstein bipolarons. In particular, we show that depending on the particle statistics, strongly bound bipolarons may or may not form. In the case of hard-core bosons, we demonstrate novel effects for dimers such as sharp transitions and self-trapping. In the case of soft-core particles/ spinfull fermions, we show that the mediated interactions lead to overscreeing of the bare Hubbard U repulsion resulting in the formation of strongly bound bipolarons. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  6. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques

    Science.gov (United States)

    Pervaiz, Erum; Gul, I. H.

    2012-11-01

    Nanocrystalline cobalt ferrites with nominal composition CoCrxFe2-xO4 ranging from x=0.0 to 0.5 with step increment of 0.25 were prepared by sol-gel auto combustion and chemical co-precipitation techniques. A comparative study of structural, electrical and magnetic properties of these ferrites has been measured using different characterization techniques. Structural and micro-structural studies were measured using X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy and atomic force microscopy. Crystallite sizes of the series are within the range of 12-29±2 nm. Lattice parameters decrease by increasing Cr3+ concentration. FTIR confirms the presence of two lattice absorption bands. DC electrical resistivity increases to a value of ˜1010 Ω-cm with increase in Cr3+ concentration, but the most significant increase is in samples prepared by sol-gel combustion. Dielectric properties have been measured as a function of frequency at room temperature. Dielectric loss decreases to 0.1037 and 0.0108 at 5 MHz for chemical co-precipitation and sol-gel combustion, respectively. Impedance measurements further helped in analyzing the electrical properties and to separate the grain and grain boundary resistance effects using a complex impedance analysis. Magnetic parameters were studied using a vibrating sample magnetometer in the applied field of 10 kOe. The saturation magnetization decreased from 63 to 10.8 emu/gm with increase in Cr3+ concentration.

  7. Z-depth integration: a new technique for manipulating z-depth properties in composited scenes

    Science.gov (United States)

    Steckel, Kayla; Whittinghill, David

    2014-02-01

    This paper presents a new technique in the production pipeline of asset creation for virtual environments called Z-Depth Integration (ZeDI). ZeDI is intended to reduce the time required to place elements at the appropriate z-depth within a scene. Though ZeDI is intended for use primarily in two-dimensional scene composition, depth-dependent "flat" animated objects are often critical elements of augmented and virtual reality applications (AR/VR). ZeDI is derived from "deep image compositing", a capacity implemented within the OpenEXR file format. In order to trick the human eye into perceiving overlapping scene elements as being in front of or behind one another, the developer must manually manipulate which pixels of an element are visible in relation to other objects embedded within the environment's image sequence. ZeDI improves on this process by providing a means for interacting with procedurally extracted z-depth data from a virtual environment scene. By streamlining the process of defining objects' depth characteristics, it is expected that the time and energy required for developers to create compelling AR/VR scenes will be reduced. In the proof of concept presented in this manuscript, ZeDI is implemented for pre-rendered virtual scene construction via an AfterEffects software plug-in.

  8. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  9. Effects of different packaging techniques on the microbiological and physicochemical properties of coated pumpkin slices

    Directory of Open Access Journals (Sweden)

    Filiz AKSU

    2016-01-01

    Full Text Available Abstract In this study the effects of zein film coating along with benzoic acid on the quality of sliced pumpkin samples, which were packaged with different techniques were investigated. The samples were allocated into different groups and were treated with different processes. Following processing, the samples were stored at +4 °C for twenty days. Physicochemical and microbiological analyses were carried out on the samples once every five days during the storage period. According to color analysis, the L* value was observed to have significantly decreased in the processed and packaged samples in comparison with the control group. Besides, a* and b* values increased in all groups. It was determined that zein film alone did not exhibit the expected effectiveness against moisture loss in the samples. According to the results of microbiological analysis, a final decrease at approximately 1.00 log level was determined in total count of mesophilic aerobic bacteria (TMAB in the group which was vacuum packaged in PVDC with zein coating when compared with the initial TMAB. Furthermore, no molding occurred in zein-coated group on the last day of the storage period, while massive mold growth was noted in the group which was packaged without any pretreatment procedure.

  10. Manufacturing technique and properties of integral type forgings for steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Murai, Etsuo

    1992-01-01

    The use of integral type steel forgings for the construction of pressure vessel enhances the structural integrity of components and makes the fabrication of components and the execution of in-service inspection (ISI) easier than those fabrication from plate and casting materials. Such steel forgings have been realized for steam generator (SG) for nuclear power plant as follows: (1) Forged shell ring: change from welding fabrication of formed plates to forging; (2) Forged conical shell ring: ditto; (3) Forged head integral with nozzles(s) : (i) Primary head: change from casting to forging; (ii) Secondary head: change from welding fabrication of formed plates to forging. These steel forgings have been realized by recent development in manufacturing technologies, such as steel making, forging processes and heat treatment which are vital to the quality of steel forgings. Some examples of recent typical high quality steel forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced, and the main points of the manufacturing technique and the quality attained are also described. (author)

  11. Characterisation of the properties of bubbles in the aluminium hydrogen system using SANS and USANS techniques

    International Nuclear Information System (INIS)

    Buckley, C.; Birnbaum, H.K.; Hollar, E.; Bellmann, D.; Staron, P.; Udovic, T.J.

    1999-01-01

    Full text: Aluminum foils of 98.6 and 99.99% purity were charged with hydrogen using a gas plasma method, resulting in the introduction of a large amount of hydrogen. X-ray diffraction measurements indicated that within experimental error, there was a zero change in lattice parameter after plasma charging. This result indicates that hydrogen does not enters the lattice interstitially, but instead forms an H-vacancy complex at the surface which diffuses into the volume. Inelastic neutron scattering (INS), and transmission and scanning electron microscopy (TEM and SEM) results show that the H-vacancy complexes cluster together to form H 2 bubbles. The nature and agglomeration of the bubbles were studied using ultra small angle and small angle neutron scattering (USANS and SANS) technique. The USANS and SANS results indicated scattering from a wide range of bubble sizes from 2 molecules. Precision density measurements were used to determine the volume concentration of vacancy sites, and this result was compared with that calculated from the SANS and USANS experiment. The pressure of H 2 in a bubble of average volume, the lattice expansion and the number of vacancies per hydrogen were calculated from the SANS and USANS data, and these results are compared to the parameters determined from experiment

  12. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  13. Reverse osmosis as a potential technique to improve antioxidant properties of fruit juices used for functional beverages.

    Science.gov (United States)

    Gunathilake, K D P P; Yu, Li Juan; Rupasinghe, H P Vasantha

    2014-04-01

    Reverse osmosis (RO) as a potential technique to improve the antioxidant properties of cranberry, blueberry and apple juices was evaluated for the formulation of a functional beverage. The effects of temperature (20-40 °C) and trans-membrane pressure (25-35 bars) on physico-chemical and antioxidant properties of fruit juices were evaluated to optimize the operating parameters for each fruit juice. There was no significant effect on any quality parameters of fruit juices under studied operating parameters of RO. However, total soluble solid, total acidity and colour (a(∗)) of the concentrated juices increased in proportion to their volumetric concentrations. Antioxidant capacity measured by FRAP assay of concentrated apple, blueberry and cranberry juice was increased by 40%, 34%, and 30%, respectively. LDL oxidation inhibition by concentrated blueberry and cranberry juice was increased up to 41% and 45%, respectively. The results suggest that RO can be used for enhancing the health promoting properties of fruit juices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique.

    Science.gov (United States)

    Graf, Gesche; Kocherbitov, Vitaly

    2013-08-29

    The high-resolution humidity scanning QCM-D technique enables investigation of hydration of soft matter films using a quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with a humidity module. Based on a continuous increase of relative humidity, properties of soft matter films can be investigated depending on the water content of the surrounding atmosphere. Determination of complete water sorption isotherms is possible via analysis of the overtone dependence of the resonance frequencies. Rheological properties are monitored via measurement of the dissipation. The glass transition can be identified from the change of viscoelastic properties of the film reflected in changes of the dissipation. A high-resolution water sorption isotherm of lysozyme was measured and compared with results from water sorption calorimetry. Analysis of the rheological behavior during hydration of lysozyme films revealed the presence of two separate sharp transitions at the water activities 0.67 and 0.91, which are connected to the glass transition. In previous works, only the existence of a broad glass transition has been reported so far. Combining the QCM-D data with Raman scattering data presented earlier, a new mechanism of isothermal glass transition in lysozyme is proposed.

  15. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  16. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique.

    Science.gov (United States)

    Baker, Stephen R; Banerjee, Soham; Bonin, Keith; Guthold, Martin

    2016-02-01

    Due to its low cost, biocompatibility and slow bioresorption, poly-ε-caprolactone (PCL) continues to be a suitable material for select biomedical engineering applications. We used a combined atomic force microscopy (AFM)/optical microscopy technique to determine key mechanical properties of individual electrospun PCL nanofibers with diameters between 440-1040nm. Compared to protein nanofibers, PCL nanofibers showed much lower adhesion, as they slipped on the substrate when mechanically manipulated. We, therefore, first developed a novel technique to anchor individual PCL nanofibers to micrometer-sized ridges on a substrate, and then mechanically tested anchored nanofibers. When held at constant strain, tensile stress relaxed with fast and slow relaxation times of 1.0±0.3s and 8.8±3.1s, respectively. The total tensile modulus was 62±26MPa, the elastic (non-relaxing) component of the tensile modulus was 53±36MPa. Individual PCL fibers could be stretched elastically (without permanent deformation) to strains of 19-23%. PCL nanofibers are rather extensible; they could be stretched to a strain of at least 98%, and a tensile strength of at least 12MPa, before they slipped off the AFM tip. PCL nanofibers that had aged for over a month at ambient conditions became stiffer and less elastic. Our technique provides accurate nanofiber mechanical data, which are needed to guide construction of scaffolds for cells and other biomedical devices. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  18. Response of the soil physical properties to restoration techniques in limestone quarries

    Science.gov (United States)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Vignozzi, Nadia; Solé-Benet, Albert

    2016-04-01

    , especially in treatments with organic amendments and woodchip mulch. While in plots with this mulch, the wetting front only reaches a few centimetres in depth. This was probably due to the preferential orientation of woodchips pores parallel to the soil surface, which decreases the percolation to deeper soil layers. Neither treatment reached a wetting front like RS but, in view of the parameters related to good physical soil properties (pores distribution, infiltration and wetting front depth) the combination of SA-NM can allow a high soil moisture content to facilitate the plant cover establishment. It is right to conclude that sewage sludge is the most adequate treatment for restoring areas degraded by mining activities in a semiarid climate.

  19. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  20. Symbols are not uniquely human.

    Science.gov (United States)

    Ribeiro, Sidarta; Loula, Angelo; de Araújo, Ivan; Gudwin, Ricardo; Queiroz, João

    2007-01-01

    Modern semiotics is a branch of logics that formally defines symbol-based communication. In recent years, the semiotic classification of signs has been invoked to support the notion that symbols are uniquely human. Here we show that alarm-calls such as those used by African vervet monkeys (Cercopithecus aethiops), logically satisfy the semiotic definition of symbol. We also show that the acquisition of vocal symbols in vervet monkeys can be successfully simulated by a computer program based on minimal semiotic and neurobiological constraints. The simulations indicate that learning depends on the tutor-predator ratio, and that apprentice-generated auditory mistakes in vocal symbol interpretation have little effect on the learning rates of apprentices (up to 80% of mistakes are tolerated). In contrast, just 10% of apprentice-generated visual mistakes in predator identification will prevent any vocal symbol to be correctly associated with a predator call in a stable manner. Tutor unreliability was also deleterious to vocal symbol learning: a mere 5% of "lying" tutors were able to completely disrupt symbol learning, invariably leading to the acquisition of incorrect associations by apprentices. Our investigation corroborates the existence of vocal symbols in a non-human species, and indicates that symbolic competence emerges spontaneously from classical associative learning mechanisms when the conditioned stimuli are self-generated, arbitrary and socially efficacious. We propose that more exclusive properties of human language, such as syntax, may derive from the evolution of higher-order domains for neural association, more removed from both the sensory input and the motor output, able to support the gradual complexification of grammatical categories into syntax.

  1. Optical property of La1-xSrxTiO3+δ coatings deposited by plasma spraying technique

    Science.gov (United States)

    Zhu, Jinpeng; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi

    2015-11-01

    Perovskite La1-xSrxTiO3+δ oxide is used in various industrial applications because of its excellent physical and chemical properties, which beneficially affects the lifetime and performance of electronic and optical devices. This study illustrates the effects of the spray parameters on particles molten state, microstructure, and optical reflectivity from room temperature up to 1000 °C of single-phase La1-xSrxTiO3+δ (x = 0.1) coating deposited by atmospheric plasma spraying technique. The phase structure and surface morphology of the coating were examined using X-ray diffraction and scanning electron microscopy analysis, respectively, whereas the optical property coating was characterized by UV-visible-near infrared spectroscopy. Results show that plasma spray parameters significantly influenced the microstructure and optical performance of the La1-xSrxTiO3+δ coating, and oxygen deficiency during spraying considerably reduced the coating reflectivity. A high-reflectivity coating can be prepared by adopting optimized plasma spraying parameters and subsequent heat treatment.

  2. Structural and magnetic properties of nickel nanowires grown in porous anodic aluminium oxide template by electrochemical deposition technique

    Science.gov (United States)

    Nugraha Pratama, Sendi; Kurniawan, Yudhi; Muhammady, Shibghatullah; Takase, Kouichi; Darma, Yudi

    2018-03-01

    We study the formation of nickel nanowires (Ni NWs) grown in porous anodic aluminium oxide (AAO) template by the electrochemical deposition technique. Here, the initial AAO template was grown by anodization of aluminium substrate in sulphuric acid solution. The cross-section, crystal structure, and magnetic properties of Ni NWs system were characterized by field-emission SEM, XRD, and SQUID. As a result, the highly-ordered Ni NWs are observed with the uniform diameter of 27 nm and the length from 31 to 163 nm. Based on XRD spectra analysis, Ni NWs have the face-centered cubic structure with the lattice parameter of 0.35 nm and average crystallite size of 17.19 nm. From SQUID measurement at room temperature, by maintaining the magnetic field perpendicular to Ni NWs axis, the magnetic hysteresis of Ni NWs system show the strong ferromagnetism with the coercivity and remanence ratio of ∼148 Oe and ∼0.23, respectively. The magnetic properties are also calculated by means of generalized gradient approximation methods. From the calculation result, we show that the ferromagnetism behavior comes from Ni NWs without any contribution from AAO template or the substrate. This study opens the potential application of Ni NWs system for novel functional magnetic devices.

  3. Concentration influence on structural and optical properties of SnO2 thin films synthesized by the spin coating technique.

    Science.gov (United States)

    Belhamri, Soumia; Hamdadou, Nasr-Eddine

    2016-10-01

    Tin dioxide is an n-type semiconductor, with wide band gap 3.6 eV and special properties such as high optical transmission in the visible range, the infrared reflection and chemical stability. The objective of our work is to study the effect of solution concentration on the properties of SnO2 thin films, which were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, UV-visible spectroscopy after annealing for one hour at 500°C. X ray diffraction spectra (XRD) showed that the films deposited at different concentrations (0.7 mol/l, 1 mol/l, 1.5 mol/l) are polycrystalline with a rutile type tetragonal. The grains have two preferred orientations along the directions (110) and (101) corresponding to 2θ = 26,744° and 34,113° respectively. We have also noted that the grain size change between 20 and 40 nm. The peak of diffraction becomes less intense when the solution concentration is more than 0.7 mol / l. The opticall transmittance of the films in the visible spectrum was in the range of 59 - 44%.

  4. Effect of nitrogen gas flow rate on the tribological properties of TiN coated HSS using CAE PVD technique

    International Nuclear Information System (INIS)

    Mubarak, A.; Hamzah, E.; Toff, M.R.M.

    2005-01-01

    High-Speed Steel (HSS) is a material that used in various Hi-Tech industries for many reasons. The aim of this study is to investigate the tribological properties of TiN (Titanium Nitride)-coated HSS. Using Physical Vapour Deposition (PVD) Cathodic Arc Evaporation (CAE) technique coated samples. The goal of this work is to determine usefulness of TiN coatings in order to improve tribological properties of HSS, as vastly use in cutting tool industry for various applications. A Pin-on-Disc test showed that the minimum value recorded for friction coefficient was reduced from 0.294 to 0.239 when the nitrogen gas flow rate was increased from 100 sccm to 200 sccm. The decrease in friction coefficient resulted from the reduction in macrodroplets by increasing the nitrogen gas flow rate during deposition. The worn surface morphology of the TiN coated HSS was observed on a Field Emission Scanning Electron Microscope (FE-SEM), and the elemental composition on the wear scar were investigated by means of EDXS. (Author)

  5. Electrical properties of Au/CdZnTe/Au detectors grown by the boron oxide encapsulated Vertical Bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Turturici, A.A. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Abbene, L., E-mail: leonardo.abbene@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Gerardi, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Benassi, G. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, 42019 Reggio Emilia (Italy); Bettelli, M.; Calestani, D. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Zambelli, N. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, 42019 Reggio Emilia (Italy); Raso, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Zappettini, A. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Principato, F. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2016-09-11

    In this work we report on the results of electrical characterization of new CdZnTe detectors grown by the Boron oxide encapsulated Vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with gold electroless contacts, have different thicknesses (1 and 2.5 mm) and the same electrode layout, characterized by a central anode surrounded by a guard-ring electrode. Investigations on the charge transport mechanisms and the electrical contact properties, through the modeling of the measured current–voltage (I–V) curves, were performed. Generally, the detectors are characterized by low leakage currents at high bias voltages even at room temperature: 34 nA/cm{sup 2} (T=25 °C) at 10,000 V/cm, making them very attractive for high flux X-ray measurements, where high bias voltage operation is required. The Au/CdZnTe barrier heights of the devices were estimated by using the interfacial layer-thermionic-diffusion (ITD) model in the reverse bias voltage range. Comparisons with CdZnTe detectors, grown by Traveling Heater Method (THM) and characterized by the same electrode layout, deposition technique and resistivity, were also performed.

  6. A unique theory of all forces

    International Nuclear Information System (INIS)

    Di Vecchia, Paolo

    1997-01-01

    In discussing the construction of a consistent theory of quantum gravity unified with the gauge interactions we are naturally led to a string theory. We review its properties and the five consistent supersymmetric string theories in ten dimensions. We finally discuss the evidence that these theories are actually special limits of a unique 11-dimensional theory, called M-theory, and a recent conjecture for its explicit formulation as a supersymmetric Matrix theory

  7. Diabetes: Unique to Older Adults

    Science.gov (United States)

    ... Stroke Urinary Incontinence Related Documents PDF Choosing Wisely: Diabetes Tests and Treatments Download Related Video Join our e-newsletter! Aging & Health A to Z Diabetes Unique to Older Adults This section provides information ...

  8. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  9. In-depth investigation on physicochemical and thermal properties of magnesium (II gluconate using spectroscopic and thermoanalytical techniques

    Directory of Open Access Journals (Sweden)

    Mahendra Kumar Trivedi

    2017-10-01

    Full Text Available Magnesium gluconate is a classical organometallic pharmaceutical compound used for the prevention and treatment of hypomagnesemia as a source of magnesium ion. The present research described the in-depth study on solid state properties viz. physicochemical and thermal properties of magnesium gluconate using sophisticated analytical techniques like PXRD, PSA, FT-IR, UV–Vis spectroscopy, TGA/DTG, and DSC. Magnesium gluconate was found to be crystalline in nature along with the crystallite size ranging from 14.10 to 47.35 nm. The particle size distribution was at d(0.1=6.552 µm, d(0.5=38.299 µm, d(0.9=173.712 µm and D(4,3=67.122 µm along with the specific surface area of 0.372 m2/g. The wavelength for the maximum absorbance was at 198.0 nm. Magnesium gluconate exhibited 88.51% weight loss with three stages of thermal degradation process up to 895.18 °C from room temperature. The TGA/DTG thermograms of the analyte indicated that magnesium gluconate was thermally stable up to around 165 °C. Consequently, the melting temperature of magnesium gluconate was found to be 169.90 °C along with the enthalpy of fusion of 308.7 J/g. Thus, the authors conclude that the achieved results from this study are very useful in pharmaceutical and nutraceutical industries for the identification, characterization and qualitative analysis of magnesium gluconate for preformulation studies and also for developing magnesium gluconate based novel formulation.

  10. In-depth investigation on physicochemical and thermal properties of magnesium (II) gluconate using spectroscopic and thermoanalytical techniques.

    Science.gov (United States)

    Trivedi, Mahendra Kumar; Dixit, Neena; Panda, Parthasarathi; Sethi, Kalyan Kumar; Jana, Snehasis

    2017-10-01

    Magnesium gluconate is a classical organometallic pharmaceutical compound used for the prevention and treatment of hypomagnesemia as a source of magnesium ion. The present research described the in-depth study on solid state properties viz. physicochemical and thermal properties of magnesium gluconate using sophisticated analytical techniques like PXRD, PSA, FT-IR, UV-Vis spectroscopy, TGA/DTG, and DSC. Magnesium gluconate was found to be crystalline in nature along with the crystallite size ranging from 14.10 to 47.35 nm. The particle size distribution was at d(0.1)=6.552 µm, d(0.5)=38.299 µm, d(0.9)=173.712 µm and D(4,3)=67.122 µm along with the specific surface area of 0.372 m 2 /g. The wavelength for the maximum absorbance was at 198.0 nm. Magnesium gluconate exhibited 88.51% weight loss with three stages of thermal degradation process up to 895.18 °C from room temperature. The TGA/DTG thermograms of the analyte indicated that magnesium gluconate was thermally stable up to around 165 °C. Consequently, the melting temperature of magnesium gluconate was found to be 169.90 °C along with the enthalpy of fusion of 308.7 J/g. Thus, the authors conclude that the achieved results from this study are very useful in pharmaceutical and nutraceutical industries for the identification, characterization and qualitative analysis of magnesium gluconate for preformulation studies and also for developing magnesium gluconate based novel formulation.

  11. Assessment of plastic flow and fracture properties with small specimens test techniques for IFMIF-designed specimens

    International Nuclear Information System (INIS)

    Spaetig, P.; Campitelli, E.N.; Bonade, R.; Baluc, N.

    2005-01-01

    The primary mission of the International Fusion Material Irradiation Facility (IFMIF) is to generate a material database to be used for the design of various components, for the licensing and for the assessment of the safe operation of a demonstration fusion reactor. IFMIF is an accelerator-based high-energy neutron source whose irradiation volume is quite limited (0.5 l for the high fluence volume). This requires the use of small specimens to measure the irradiation-induced changes on the physical and mechanical properties of materials. In this paper, we developed finite element models to better analyze the results obtained with two different small specimen test techniques applied to the tempered martensitic steel F82H-mod. First, one model was used to reconstruct the load-deflection curves of small ball punch tests, which are usually used to extract standard tensile parameters. It was shown that a reasonable assessment of the overall plastic flow can be done with small ball punch tests. Second, we investigated the stress field sensitivity at a crack tip to the constitutive behavior, for a crack modeled in plane strain, small-scale yielding and fracture mode I conditions. Based upon a local criterion for cleavage, that appears to be the basis to account for the size and geometry effects on fracture toughness, we showed that the details of the constitutive properties play a key role in modeling the irradiation-induced fracture toughness changes. Consequently, we suggest that much more attention and efforts have to be paid in investigating the post-yield behavior of the irradiated specimens and, in order to reach this goal, we recommend the use of not only tensile specimens but also that of compression ones in the IFMIF irradiation matrices. (author)

  12. Strict monotonicity and unique continuation of the biharmonic operator

    Directory of Open Access Journals (Sweden)

    Najib Tsouli

    2012-01-01

    Full Text Available In this paper, we will show that the strict monotonicity of the eigenvalues of the biharmonic operator holds if and only if some unique continuation property is satisfied by the corresponding eigenfunctions.

  13. Effect of sol concentration on the properties of ZnO thin films prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Dutta, M.; Mridha, S.; Basak, D.

    2008-01-01

    ZnO thin films are deposited on the glass substrates by sol-gel drain coating technique by varying the concentration of the sol. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were used to investigate the effect of sol concentration on the crystallinity and surface morphology of the films. The results show that with increase in sol concentration, the value of full width at half maximum (FWHM) of (0 0 2) peak decreases while the strain first increases and then decreases. The sol with higher concentration results in the increase in the grain size. The studies on the optical properties show that the band gap value increases from 3.27 to 3.3 eV when the sol concentration changes from 0.03 to 0.1 M. The photoconductivity studies reveal that the film for 0.05 M sol shows the maximum photoresponse for ultraviolet (UV) wavelength (<400 nm) which is co-related with the deep-level defects. The growth and decay of the photocurrent is found to be slowest for the same film

  14. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jotania, R.B. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India)], E-mail: rbjotania@gmail.com; Khomane, R.B. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India); Chauhan, C.C. [Department of Physics, Gujarat University, Ahmedabad 380 009, Gujarat (India); Menon, S.K. [Department of Chemistry, Gujarat University, Ahmedabad 380 009, Gujarat (India); Kulkarni, B.D. [Chemical Engineering Division, National Chemical Laboratory, Pune 411008, Maharastra (India)

    2008-03-15

    The preparation of W-type hexaferrite particles with the composition BaCa{sub 2}Fe{sub 16}O{sub 27} by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa{sub 2}Fe{sub 16}O{sub 27} hexaferrites has been studied. The value of saturation magnetization (M{sub s}) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization (M{sub s}=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization (M{sub s}=24.60 emu/g) compared to the normal sample.

  15. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E., E-mail: ezaleta@fis.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Camargo-Martinez, J.; Ramirez-Garibo, A. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Perez-Arrieta, M.L. [Universidad Autonoma de Zacatecas, Unidad Academica de Fisica, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, Mexico (Mexico); Balderas-Xicohtencatl, R.; Rivera-Alvarez, Z. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo, Mexico, D.F. (Mexico); Falcony, C. [Centro de Investigacion y de Estudios Avanzados-IPN, Departamento de Fisica, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07000, Mexico, D.F. (Mexico)

    2012-12-01

    Indium chloride doped zinc oxide (ZnO:In) thin films were deposited onto glass substrates using zinc acetate by Ultrasonic Spray Pyrolysis technique. The effect of substrate temperature, deposition time and acetic acid added to the spraying solution on the structural, electrical and optical properties of these ZnO:In films is reported. The films were in all cases polycrystalline with a hexagonal (wurtzite) structure, a transparency over 80% and resistivity of the order of 10{sup -3}-10{sup -2} Ohm-Sign {center_dot}cm. The resistivity was dependent on the volume % of acetic acid added to the spraying solution. The minimum resistivity value was obtained with a 5 vol.% acetic acid (pH = 3.71) at substrate temperature of 450 Degree-Sign C. The deposition rates obtained were as high as 180 A{center_dot}min{sup -1} at a substrate temperature of 450 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Conductive ZnO:In thin films were deposited by Ultrasonic Spray Pyrolysis (USP). Black-Right-Pointing-Pointer USP is of low cost, high growth rates and scalable for industrial applications. Black-Right-Pointing-Pointer USP is appropriate for the deposition of metallic oxide films. Black-Right-Pointing-Pointer We studied the effect of acetic acid, time deposition and substrate temperature. Black-Right-Pointing-Pointer Zinc acetate and indium chloride were used as precursor materials.

  16. L-glutamine: Dynamical properties investigation by means of INS, IR, RAMAN, 1H NMR and DFT techniques

    Science.gov (United States)

    Pawlukojć, A.; Hołderna-Natkaniec, K.; Bator, G.; Natkaniec, I.

    2014-10-01

    Vibrational spectra of L-glutamine in the solid state were studied using the inelastic neutron scattering (INS), infrared (IR), Raman and 1H NMR spectroscopy techniques. DFT calculation using CASTEP code with the periodic boundary conditions was used to determine and describe the normal modes in the vibrational spectra of pure L-glutamine. An excellent agreement between the calculated and experimental INS, IR and Raman data has been found. Bands assigned to the stretching vibrations of the NH3+ group in hydrogen bonds are observed at 2400, 2618 and 2619 cm-1, while the NH3+ torsion vibration mode is observed at 441 cm-1. The band at 2041 cm-1 is assigned to combinations of the NH3+ bending symmetry vibration and the CO2- rocking vibration and can be used as an "indicator band" for the identification of the NH3+ groups in amino acid. For the L-glutamine an activation energy needed for the NH3+ group reorientation was obtained as 7.4 kcal/mol. It was found, that the combination three spectroscopic methods (INS, IR and Raman) with calculations for the crystal state proved to be an effective tool to investigate dynamical properties of amino acid crystals.

  17. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  18. Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique

    Science.gov (United States)

    Yeap, Kong Boon; Zeng, Kaiyang; Jiang, Haiyan; Shen, Lu; Chi, Dongzhi

    2007-06-01

    This article presents studies on using a wedge indentation technique to determine interfacial adhesion properties of low-k dielectric films, namely, methyl-silsesquioxane (MSQ) and black diamond (BD™)films, both on a Si substrate. Interfacial crack initiation and propagation processes in the MSQ/Si system are studied by using focused-ion-beam sectioning of the indentation impressions created by wedge tips with 90° and 120° of inclusion angles, respectively. Furthermore, the indentation induced stress is found to be proportional to the ratio of the indentation volume and the interface delamination crack volume for both plane strain and nonplane strain cases. With this analysis, the interface toughness of the MSQ/Si and BD/Si system, in terms of the strain energy release rate, is determined. The interface toughness for the MSQ/Si system is found to be a value of 1.89±0.28J/m2 for the 90° wedge tip indentation and 1.92±0.08J/m2 for the 120° wedge tip indentation. In addition, using the 120° wedge tip, the interface toughnesses of the BD films on the Si substrate with 200 and 500nm thicknesses are found to be the values of 6.62±1.52 and 6.35±2.27J/m2, respectively.

  19. Improved magnetic and electrical properties of Cu doped Fe–Ni invar alloys synthesized by chemical reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sajjad, E-mail: sajjadhaleli@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ziya, Amer Bashir [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ibrahim, Ather; Atiq, Shabbar [Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ahmad, Naseeb [Department of Physics, Government College University, Faisalabad (Pakistan); Shakeel, Muhammad [Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-12-01

    Fe–Ni–Cu invar alloys of various compositions (Fe{sub 65}Ni{sub 35−x}Cu{sub x}, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24–40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann–Franz law. - Graphical abstract: M–H loops of Fe{sub 65}Ni{sub 35−x}Cu{sub x} x =0, 0.2, 0.6, 1, 1.4, 1.8 nano-invar alloys. - Highlights: • A simple method has been employed for the synthesis of invar alloys. • The magnetic properties has been enhanced by the Cu content. • The electrical conductivity has been improved.

  20. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique

    Directory of Open Access Journals (Sweden)

    Mohamed Shaban

    2016-09-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs were prepared using the sol–gel method. Cotton fibers were loaded with ZnO nanoparticles using sol–gel spin coating technique. The prepared ZnO NPs and ZnO-coated cotton were characterized by scanning electron microscope (SEM and energy dispersive X-ray spectroscopy (EDX. The self-cleaning property of ZnO-coated cotton and the photocatalytic removal of methyl orange dye from the contaminated water and cotton fibers were studied by measuring the optical absorbance after exposure to sunlight and Philips 200W lamp illumination. The results showed that the cotton loaded with ZnO nanoparticles could efficiently decompose 73% of methyl orange dye in the sunlight and 30.7% in the lamp illumination after 12 hours. ZnO nanoparticles decomposed methyl orange dye by 92.7% in the sunlight and 26.4% in the lamp illumination after 7 hours.

  1. L-glutamine: Dynamical properties investigation by means of INS, IR, RAMAN, {sup 1}H NMR and DFT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojć, A., E-mail: andrzej@jinr.ru [Institute of Nuclear Chemistry and Technology, Dorodna 16 str., 03-195 Warsaw (Poland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Hołderna-Natkaniec, K. [Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland); Bator, G. [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw (Poland); Natkaniec, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland)

    2014-10-31

    Graphical abstract: - Highlights: • The L-glutamine was investigated by INS, IR, Raman and {sup 1}H NMR spectroscopy. • DFT calculations for the solids state model were performed. • The NH{sub 3}{sup +} torsional vibration mode is observed in the INS spectra. • Activation energy for the NH{sub 3}{sup +} group reorientation is obtained. - Abstract: Vibrational spectra of L-glutamine in the solid state were studied using the inelastic neutron scattering (INS), infrared (IR), Raman and {sup 1}H NMR spectroscopy techniques. DFT calculation using CASTEP code with the periodic boundary conditions was used to determine and describe the normal modes in the vibrational spectra of pure L-glutamine. An excellent agreement between the calculated and experimental INS, IR and Raman data has been found. Bands assigned to the stretching vibrations of the NH{sub 3}{sup +} group in hydrogen bonds are observed at 2400, 2618 and 2619 cm{sup −1}, while the NH{sub 3}{sup +} torsion vibration mode is observed at 441 cm{sup −1}. The band at 2041 cm{sup −1} is assigned to combinations of the NH{sub 3}{sup +} bending symmetry vibration and the CO{sub 2}{sup -} rocking vibration and can be used as an “indicator band” for the identification of the NH{sub 3}{sup +} groups in amino acid. For the L-glutamine an activation energy needed for the NH{sub 3}{sup +} group reorientation was obtained as 7.4 kcal/mol. It was found, that the combination three spectroscopic methods (INS, IR and Raman) with calculations for the crystal state proved to be an effective tool to investigate dynamical properties of amino acid crystals.

  2. A multi-technique comparison of the electronic properties of pristine and nitrogen-doped polycrystalline SnO2.

    Science.gov (United States)

    Livraghi, S; Barbero, N; Agnoli, S; Barolo, C; Granozzi, G; Sauvage, F; Giamello, E

    2016-08-10

    Nitrogen doped tin(iv) oxide (SnO2) materials in the form of nanometric powders have been prepared by precipitation with ammonia. Their properties have been compared with those of undoped materials obtained in a similar way using various physical techniques such as photoelectron spectroscopies (XPS and UPS), UV-Vis-NIR spectroscopy and electron paramagnetic resonance (EPR). Nitrogen doping leads to the formation of various nitrogen containing species, the more relevant of which is a nitride-type ionic species, based on the substitution of a lattice oxygen atom with a nitrogen atom. This species exists in two forms, paramagnetic (hole centre, formally N(2-)) and diamagnetic (N(3-)). The mutual ratio of the two species varies according to the oxidation state of the material. The doped solid, like most of the semiconducting oxides, tends to lose oxygen forming oxygen vacancies upon annealing under vacuum and leaving an excess of electrons in the solid. The stoichiometry of the solid can thus be markedly changed depending on the external conditions. Excess electrons are present both as itinerant electrons in the conduction band and as Sn(ii) states lying close to the valence band maximum. The presence of nitride-type centres, which are low energy states located below the top of the valence band, decreases the energy cost for the formation of oxygen vacancies by O2 release from the lattice. This particular feature of the doped system represents a severe limit to the preparation of a p-type SnO2via nitrogen doping.

  3. L-glutamine: Dynamical properties investigation by means of INS, IR, RAMAN, 1H NMR and DFT techniques

    International Nuclear Information System (INIS)

    Pawlukojć, A.; Hołderna-Natkaniec, K.; Bator, G.; Natkaniec, I.

    2014-01-01

    Graphical abstract: - Highlights: • The L-glutamine was investigated by INS, IR, Raman and 1 H NMR spectroscopy. • DFT calculations for the solids state model were performed. • The NH 3 + torsional vibration mode is observed in the INS spectra. • Activation energy for the NH 3 + group reorientation is obtained. - Abstract: Vibrational spectra of L-glutamine in the solid state were studied using the inelastic neutron scattering (INS), infrared (IR), Raman and 1 H NMR spectroscopy techniques. DFT calculation using CASTEP code with the periodic boundary conditions was used to determine and describe the normal modes in the vibrational spectra of pure L-glutamine. An excellent agreement between the calculated and experimental INS, IR and Raman data has been found. Bands assigned to the stretching vibrations of the NH 3 + group in hydrogen bonds are observed at 2400, 2618 and 2619 cm −1 , while the NH 3 + torsion vibration mode is observed at 441 cm −1 . The band at 2041 cm −1 is assigned to combinations of the NH 3 + bending symmetry vibration and the CO 2 - rocking vibration and can be used as an “indicator band” for the identification of the NH 3 + groups in amino acid. For the L-glutamine an activation energy needed for the NH 3 + group reorientation was obtained as 7.4 kcal/mol. It was found, that the combination three spectroscopic methods (INS, IR and Raman) with calculations for the crystal state proved to be an effective tool to investigate dynamical properties of amino acid crystals

  4. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Uddin, M.M., E-mail: mohi@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh); Chowdhury, F.U.-Z. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Haque, S.M. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2017-02-15

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant. - Highlights: • Sn-substituted Ni-Zn ferrites with cubic spinel structure have been synthesized. • a{sub th} is calculated and well compared with a{sub expt}. • Dielectric unusual behavior has been successfully explained by the Rezlescu model. • Long τ (ns) is determined, can be utilized for memory and spintronics devices.

  5. Multi-platform in-situ and remote sensing techniques to derive Saharan dust properties during AMISOC-TNF 2013

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Andrey, Javier; Adame, José Antonio; Sorribas, Mar; Gómez, Laura; Cuevas, Emilio; Gil-Ojeda, Manuel

    2014-10-01

    In the framework of AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project, a multiinstrumented campaign was performed in the Canary Islands area in summer-time from 01 July to 11 August 2013. Both ground-based remote-sensing and airborne in-situ measurements were performed under dust loading conditions. Saharan dusty (DD) conditions were reported during 57% of the overall campaign period. Particular DD cases corresponded to a 2-day period with a progressively arriving Saharan dust intrusion over Tenerife on 31 July (weak incidence) and 01 August (strong incidence). As reference, the non-dusty (ND) situation on 30 July was also examined. Vertical size distributions (SD) for particles within an extended fine-to-coarse (0.16-2.8 μm) mode were provided by using aircraft aerosol PCASP sonde measurements. Extinction profiles and Lidar ratio (LR) values were derived from Micro Pulse Lidar measurements. Despite no MAXDOAS aerosol profiling retrievals were available, the potential of this technique has also been introduced. A good agreement is found between the optical and microphysical properties, showing dust particles confined in a wide layer of around 4.5 km thickness from 1.5 to 6 km height. Dust incidence mostly affected the Free Troposphere (FT). LR ranged between 50 and 55 sr, showing typical values for Saharan dust particles. In general, the dust impact on mass concentration was enhanced due to the increase of larger particles, affecting both the Boundary layer (BL) and FT, but showing differences depending on the dusty case. MAXDOAS profiles are expected to be included in an extended version of this work.

  6. Study of the lime influence on the thermal and optical properties of pericarp films of nixtamalized corn by means of the photoacoustic techniques

    International Nuclear Information System (INIS)

    Cruz-Orea, A.; Sinencio, F. Sanchez; Falcony, C.; Hernandez, R. A. Munoz; Calderon, A.; Tomas, S. A.; Mendoza-Barrera, C.

    1999-01-01

    We present a study of the influence of Ca(OH) 2 in the thermal and optical properties on pericarp films obtained from nixtamalized corn grains. The nixtamalization process was performed using alkaline solutions with different Ca(OH) 2 concentrations. For this study we have used Photoacoustic techniques and complementary analysis of optical microscopy and x-ray diffraction

  7. Analysis of unique beta transitions

    DEFF Research Database (Denmark)

    Eman, B.; Krmpotic, F.; Tadic, D

    1967-01-01

    The Heidelberg group measurements [For abstr. see Phys. Rev. Nucl. Sci. Vol. 15 (1965)] of unique forbidden transitions have been analysed. It has been found that experimental shape factors can be reproduced only with the induced pseudoscalar form factor d <0, and/or with the induced G-non-conser...

  8. Rufus Choate: A Unique Orator.

    Science.gov (United States)

    Markham, Reed

    Rufus Choate, a Massachusetts lawyer and orator, has been described as a "unique and romantic phenomenon" in America's history. Born in 1799 in Essex, Massachusetts, Choate graduated from Dartmouth College and attended Harvard Law School. Choate's goal was to be the top in his profession. Daniel Webster was Choate's hero. Choate became…

  9. Determination of Residual Stresses and Mechanical Properties using Neutron, X-ray Diffraction, Micro- and Nanoindentation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Cecilia

    2003-12-01

    The existence of residual stresses in engineering materials can significantly affect subsequent lifetime by augmenting or impeding failure. Consequently, for an accurate assessment of engineering lifetimes, there is a need to quantify residual stresses. Furthermore, knowledge of the origin of these stresses in conjunction with mechanical properties such as hardness and fracture toughness, among others, can be used to improve functionality by tailoring the microstructure through processing. In this work, neutron, x-ray diffraction, micro- and nanoindentation techniques were used for residual stress determination and mechanical characterization of WC-Co functionally graded composites, a Co-based Haynes 25 alloy weld, compressed steel and compacted Fe-brass powders. The neutron and x-ray diffraction techniques were used to assess residual strains and stresses while the instrumented indentation techniques were used to determine hardness, fracture toughness and elastic modulus. In each of these engineering materials, valuable insight relating to the overall mechanical performance was obtained. X-ray diffraction was used to determine thermal residual stresses that develop in a functionally graded WC-Co composite, commonly used as tool bits. Microstresses in the graded zone were attributed to the thermal mismatch between WC and the Co phase. The compressive macrostresses were determined to be a result of the compositional gradient. Micro- and nanoindentation experiments were used to determine hardness as a function of depth in two WC-Co functionally graded materials (FGMs). A relationship between hardness and Co phase content was established and explained for the two graded and five homogeneous samples. An experimental and simulation study of residual stresses was made in the vicinity of a gas tungsten arc weld in a Co-based Haynes 25 alloy used in a satellite component. The experimental measurements were made by neutron diffraction on the recently commissioned

  10. Unique Signal Override Plug electromagnetic test report

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, R.H.

    1990-10-01

    The MC4039 Unique Signal Override Plug (USOP) provides the unique signal for the B90 when fielded on aircraft that are not equipped with unique signal capability. Since the USOP is field installed, the concern is that it might be susceptible to electromagnetic radiation prior to installation on the weapon. This report documents a characterization of the USOP, evaluates various techniques for attaching electromagnetic shields, and evaluates the susceptibility of a fully assembled passive-USOP. Tests conducted evaluated the electromagnetic susceptibility of the passive, unconnected USOP. During normal operation the USOP is powered directly from the weapon. During the course of this test program two prototypes were developed. The prototype 1 USOP internal circuitry contains one SA3727 chip, five diodes, three resistors, and two capacitors; these are mounted on a circular circuit board and contained inside a metal back shell cover, which serves as an electromagnetic shield. The prototype 2 design incorporated four changes. The manufacturer of the SA3727 chip was changed from Lasarray to LSI Logic, the circuit board ground was tied to the case ground through a straight wire, Cl was changed from 1 microfarad to 0.1 microfarads. and the circuit board was changed, as required. 2 refs., 17 figs., 3 tabs. (JF)

  11. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    Science.gov (United States)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  12. A comparison of conventional mechanical testing techniques with innovative testing techniques for the evaluation of mechanical properties of NPP structural materials

    International Nuclear Information System (INIS)

    Liddell, P.A.; Kopriva, R.

    2015-01-01

    The innovative testing methods of Small Punch (SP) and Automated Ball Indentation (ABI) tests are based on the determination of material properties from sub-sized samples. These methods are promising to evaluate the components of nuclear power plants since they preserve the structural integrity of the component. The SP test is a semi-destructive method that employs miniaturised plate-shaped samples of various geometries. The method is based on the penetration of a sample with a semi-spherical punch. The sample deflection is measured throughout the test. The ABI test is a fully automatic test based on multiple indentations at a single penetration location on a polished sample surface with a spherical indenter of various diameters. The purpose of the test is to determine the tensile properties of materials in a non-destructive and localised fashion. A comparison has been made between SP, ABI and conventional tensile tests on the measurement of yield strength for the A533B (JRQ) ferritic steel which is a base metal of the pressure vessels of western PWR. The results show an excellent correlation for both innovative methods and the conventional tensile tests

  13. Kosovo case: A unique arbitrariness

    Directory of Open Access Journals (Sweden)

    Nakarada Radmila

    2007-01-01

    Full Text Available The end of Cold war, contrary to expectations has brought new conflicts and forms of violence, new divisions and new relativizations of the international legal order. Taking as an example the endeavors to resolve the Kosovo conflict, the author attempts to indicate the broader implications of the international efforts to constitute an independent state on part of the territory of an existing sovereign state. The arguments used to justify the redefinition of the borders of the Serbian state without its consent, the moral, democratic, peace arguments, are reviewed. Particular attention is paid to the argument that Kosovo is a unique case and therefore unique rules should be applied. The author seeks to understand the deeper significance of these efforts, concluding that dismantling the present international legal order is not only a potential danger but a possible aim.

  14. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  15. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  16. Study of Structural, Optical and Electrical Properties of InAs/InAsSb Superlattices Using Multiple Characterization Techniques

    Science.gov (United States)

    Shen, Xiaomeng

    InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy. The effects of different growth conditions on the structural quality were thoroughly investigated. Lattice-matched condition was successfully achieved and material of exceptional quality was demonstrated. After growth optimization had been achieved, structural defects could hardly be detected, so different characterization techniques, including etch-pit-density (EPD) measurements, cathodoluminescence (CL) imaging and X-ray topography (XRT), were explored, in attempting to gain better knowledge of the sparsely distributed defects. EPD revealed the distribution of dislocation-associated pits across the wafer. Unfortunately, the lack of contrast in images obtained by CL imaging and XRT indicated their inability to provide any quantitative information about defect density in these InAs/InAsSb T2SLs. The nBn photodetectors based on mid-wave infrared (MWIR) and long-wave infrared (LWIR) InAs/InAsSb T2SLs were fabricated. The significant difference in Ga composition in the barrier layer coupled with different dark current behavior, suggested the possibility of different types of band alignment between the barrier layers and the absorbers. A positive charge density of 1.8 x 1017/cm3 in the barrier of MWIR nBn photodetector, as determined by electron holography, confirmed the presence of a potential well in its valence band, thus identifying type-II alignment. In contrast, the LWIR nBn photodetector was shown to have type-I alignment because no sign of positive charge was detected in its barrier. Capacitance-voltage measurements were performed to investigate the temperature

  17. Investigation of the effects of particle size on the mechanical properties of porous and tin infiltrated niobium rods fabricated by a thermoplastic-powder metallurgy technique

    International Nuclear Information System (INIS)

    Noman, A.

    1978-12-01

    An investigation was made of the influence of particle size on the properties of both porous and tin infiltrated niobium rods fabricated by a thermoplastic-powder metallurgy technique. The residual porosity, extrusion pressure, tensile strength, and ductility were found to be dependent on the particle size distribution. All of these parameters were found to increase with increasing particle size. The influence of sintering time at a temperature of 2250 0 C was also studied. With increasing sintering time, the residual porosity and tensile strength decreased, whereas the ductility increased. The procedures for fabricating infiltrated niobium rods and the various tests employed to determine their properties are described

  18. The Uniqueness of Milton Friedman

    OpenAIRE

    J. Daniel Hammond

    2013-01-01

    That there is no Milton Friedman today is not a mystery; the mystery is how Milton Friedman could have been. The facts of Friedman’s biography make him unique among twentieth-century public figures. He had extensive knowledge and expertise in mathematics and statistics. Yet he became a critic of ‘formal’ theory, exemplified by mathematical economics, that failed to engage with real-world facts and data, and of econometric modeling that presumed more knowledge of economic structure than Friedm...

  19. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique

    NARCIS (Netherlands)

    W.L. den Ouden; G. Perry; S.M. Highstein; C.I. de Zeeuw (Chris); S.K.E. Koekkoek (Bas)

    2002-01-01

    textabstractClassical eye-blink conditioning in mutant mice can be used to study the molecular mechanisms underlying associative learning. To measure the kinetic and frequency domain properties of conditioned (tone - periorbital shock procedure) and unconditioned eyelid responses

  20. Denture identification using unique identification authority of India barcode

    OpenAIRE

    Sudhindra Mahoorkar; Anoop Jain

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  1. Denture identification using unique identification authority of India barcode.

    Science.gov (United States)

    Mahoorkar, Sudhindra; Jain, Anoop

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  2. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    Science.gov (United States)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  4. Microstructure and associated properties of YBa2Cu3Ox superconductors prepared by melt-processing techniques

    International Nuclear Information System (INIS)

    Balachandran, U.; Zhong, W.; Youngdahl, C.A.; Poeppel, R.B.

    1993-03-01

    From the standpoint of applications, melt-processed bulk YBa 2 Cu 3 O x (YBCO) superconductors are of considerable interest. We have studied the microstructure and levitation force of melt-processed YBCO, YBCO plus Y 2 BaCuO 5 , and YBCO plus Pt samples. Large single crystalline samples, grown using a seeding technique, were also studied. The levitation force is highest in melt-processed samples made by the seeding technique. 6 figs, 24 refs

  5. Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed

    Directory of Open Access Journals (Sweden)

    Mirhosseini Hamed

    2013-01-01

    Full Text Available Abstract Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed. Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum.

  6. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  7. Effect of annealing temperature on electrical properties of poly (methyl methacrylate): titanium dioxide nanocomposite films using spin coating deposition technique

    International Nuclear Information System (INIS)

    Ismail, L N; Habibah, Z; Herman, S H; Rusop, M

    2014-01-01

    Nanocomposite poly (methyl methacrylate) :titanium dioxide (PMMA :TiO 2 ) film were deposited on glass substrate. The effect of annealing temperature, especially on electrical, dielectric and the morphological properties of the thin films were investigated by current-voltage (I-V) measurement, impedance spectroscopy, and FESEM. The annealing temperature is varies from 120°C, 140°C, 160°C, 180°C and 200°C. The electrical properties results showing when nanocomposite film annealed at '20°C produce the lowest current. Meanwhile, when the annealing temperature increased, the current increased drastically and this indicates the PMMA:TiO 2 nanocomposite film are no longer having insulating properties. The dielectric properties also indicate that film annealed at 120°C has the best dielectric properties compared to other temperature. The FESEM results show that as the temperature increased, the PMMA:TiO 2 nanocomposite film started to create a phase separation between the PMMA matrix and TiO 2 nanoparticles

  8. Material Properties of Various Cast Aluminum Alloys Made Using a Heated Mold Continuous Casting Technique with and without Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2015-08-01

    Full Text Available This work was carried out to develop high-quality cast aluminum alloys using a new casting technology. For this purpose, commercial Al alloys were created by heated mold continuous casting (HMC with ultrasonic vibration (UV. With the HMC process, the grain size and the crystal orientation of the Al alloys were controlled, i.e., fine grains with a uniformly organized lattice formation. In addition, an attempt was made to modify the microstructural formation by cavitation. These microstructural characteristics made excellent mechanical properties. Using UV in the continuous casting process, more fine and spherical grains were slightly disordered, which was detected using electron backscattered diffraction. The mechanical properties of the UV HMC Al alloys were slightly higher than those for the related cast Al alloys without UV. Moreover, the severe vibration caused higher mechanical properties. The lattice and dislocation characteristics of the cast samples made with and without UV processes were analyzed systematically using electron backscattered diffraction.

  9. Opto-electronic properties of SnO{sub 2} layers obtained by SPD and ECD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Enesca, Alexandru, E-mail: aenesca@unitbv.ro; Bogatu, Cristina; Voinea, Mihaela; Duta, Anca

    2010-11-01

    The paper presents a comparative approach concerning the properties of SnO{sub 2} thin layers obtained via spray pyrolysis deposition (SPD) and electro-chemical deposition (ECD). The influences of crystalline structure (X-ray diffraction), morphology (atomic force microscopy, contact angle) on the electric (electrical conductivity) properties of the layers were studied. The SPD samples present a porous morphology with high surface energy compared with ECD samples characterized by a dense morphology. The photocatalytic efficiency of the samples was tested in the photodegradation of methylene blue and the higher values (57%) correspond to SPD samples.

  10. Property (

    CERN Document Server

    Ershov, Mikhail; Kassabov, Martin

    2017-01-01

    The authors introduce and study the class of groups graded by root systems. They prove that if \\Phi is an irreducible classical root system of rank \\geq 2 and G is a group graded by \\Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \\Phi of rank \\geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\\mathrm St}_{\\Phi}(R) and the elementary Chevalley group \\mathbb E_{\\Phi}(R) have property (T). They also show that there exists a group with property (T) which maps onto all finite simple groups of Lie type and rank \\geq 2, thereby providing a "unified" proof of expansion in these groups.

  11. Effect of dispersion preparation technique of calcium carbonate (CaCO3) fillers on mechanical properties of natural rubber (NR) latex films

    Science.gov (United States)

    Suki, Fairus Mazlia Mat; Rashid, Azura A.

    2017-07-01

    The calcium carbonate fillers are added to natural rubber (NR) latex compound in order to reduce the cost of the compound. The CaCO3 powder need to be prepared in dispersion form before added into the latex medium to avoid the instability of the NR latex compound. The ball milling is a conventional dispersion preparation technique used to prepare the dispersions for powder ingredients for latex compound. The combination of ultrasonic and ball milling technique has shown the reduction in particle size of the resulted dispersions. In this study, effect of ultrasonic parameters (duration, speed, concentration) together with ball milling technique (duration, speed) was carried out. The effect of dispersion preparation technique on CaCO3 particle was examined by means of particle size and zeta potential measurement. In addition, the morphology of the CaCO3 particle also were investigated by using transmission electron microscopy (TEM) and the mechanical properties of NR latex film were investigated based on tensile and tear test. The results showed that a combination of both ultrasonic and ball milling has produced smaller particle size. It was also found that, smaller size CaCO3 particles greatly influenced the mechanical properties of calcium carbonate/natural rubber latex (CaCO3/NRL) films. This is due to the ability of the CaCO3 to be homogeneously dispersed in NR latex compounds which able to improve the mechanical properties of the NR latex films together as well as to reduce the cost of the compound.

  12. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  13. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy

    Czech Academy of Sciences Publication Activity Database

    Doležal, P.; Zapletal, J.; Fintová, Stanislava; Trojanová, Z.; Greger, M.; Roupcová, Pavla; Podrábský, T.

    2016-01-01

    Roč. 9, č. 11 (2016), s. 1-15, č. článku 880. ISSN 1996-1944 Institutional support: RVO:68081723 Keywords : biodegradable magnesium alloy * Mg-Zn-Ca * squeeze casting * ECAP processing * microstructure * mechanical properties Subject RIV: JP - Industrial Processing Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/11/880

  14. Marine Particulate Absorption Techniques and Applications in the Study of Inherent and Apparent Optical Properties of the Ocean

    Science.gov (United States)

    1992-01-01

    Inherent optical properties of marine particles. Poster presenteed at Nato Advanced Studies Institute on Individual cell and particle analysis in... motivated by observations that variance of Ed(;.) is similar in spectral shape to Kd(A) (BOOTH er al., 1987). A simple statistical algorithm is

  15. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  16. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: technique for order preference by similarity to ideal solution to determine optimum concentration.

    Science.gov (United States)

    Karaman, Safa; Toker, Ömer Said; Yüksel, Ferhat; Çam, Mustafa; Kayacier, Ahmed; Dogan, Mahmut

    2014-01-01

    In the present study, persimmon puree was incorporated into the ice cream mix at different concentrations (8, 16, 24, 32, and 40%) and some physicochemical (dry matter, ash, protein, pH, sugar, fat, mineral, color, and viscosity), textural (hardness, stickiness, and work of penetration), bioactive (antiradical activity and total phenolic content), and sensory properties of samples were investigated. The technique for order preference by similarity to ideal solution approach was used for the determination of optimum persimmon puree concentration based on the sensory and bioactive characteristics of final products. Increase in persimmon puree resulted in a decrease in the dry matter, ash, fat, protein contents, and viscosity of ice cream mix. Glucose, fructose, sucrose, and lactose were determined to be major sugars in the ice cream samples including persimmon and increase in persimmon puree concentration increased the fructose and glucose content. Better melting properties and textural characteristics were observed for the samples with the addition of persimmon. Magnesium, K, and Ca were determined to be major minerals in the samples and only K concentration increased with the increase in persimmon content. Bioactive properties of ice cream samples improved and, in general, acetone-water extracts showed higher bioactivity compared with ones obtained using methanol-water extracts. The technique for order preference by similarity to ideal solution approach showed that the most preferred sample was the ice cream containing 24% persimmon puree. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    Science.gov (United States)

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Cationic effect on dye-sensitized solar cell properties using electrochemical impedance and transient absorption spectroscopy techniques

    Science.gov (United States)

    Gupta, Ravindra Kumar; Bedja, Idriss

    2017-06-01

    Redox-couple polymer electrolytes, (poly(ethylene oxide)-succinonitrile) blend/MI-I2, where M  =  Li or K, were prepared by the solution cast method. Owing to the plasticizing property of K+ ions, the K+ ion-based electrolyte exhibited better electrical conductivity than the Li+ ion-based electrolyte, which did however exhibit better photovoltaic properties. Electrochemical impedance spectroscopy revealed faster redox species diffusions and interfacial processes in the Li+ ion-based dye-sensitized solar cells than in the K+ ion-based ones. Transient absorption spectroscopy ascertained faster dye-regeneration by the Li+ ion-based electrolyte than the K+ ion-based electrolyte.

  20. Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique

    OpenAIRE

    Hong-sheng Ding; Guo-tian Wang; Rui-run Chen

    2017-01-01

    The present work focused on the Ni3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25Al alloy. Ni3Al intermetallics were prepared at different withdrawal rates by directional solidification (DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni3Al and NiAl phases. The primary dendritic spacing (λ) decreases ...

  1. Mechanical properties of thin silicon films deposited on glass and plastic substrates studied by depth sensing indentation technique

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Sládek, P.; Sťahel, P.; Buršík, Jiří

    2006-01-01

    Roč. 352, 9-20 (2006), s. 1242-1245 ISSN 0022-3093 R&D Projects: GA ČR(CZ) GA106/05/0274; GA ČR(CZ) GA202/05/0777 Institutional research plan: CEZ:AV0Z20410507 Keywords : amorphous semiconductors * silicon * mechanical properties Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.362, year: 2006

  2. Comparative Study of Antibacterial Properties of Polystyrene Films with TiOx and Cu Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Popok, Vladimir; Jeppesen, Cesarino; Fojan, Peter

    2018-01-01

    Background: Antibacterial materials are of high importance for medicine, food production and conservation. Among these materials, polymer films with metals nanoparticles (NPs) are of considerable attention for many practical applications. Results: The paper describes a novel approach...... in formation of the particles with semiconducting properties required for catalysis of reactive oxygen species. Cu NPs are used as deposited. Partial NP embedding into polystyrene is realised in controllable manner using thermal annealing in order to improve surface adhesion and make the particles resistant...

  3. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring.

    Science.gov (United States)

    Demattê, José Alexandre Melo; Horák-Terra, Ingrid; Beirigo, Raphael Moreira; Terra, Fabrício da Silva; Marques, Karina Patrícia Prazeres; Fongaro, Caio Troula; Silva, Alexandre Christófaro; Vidal-Torrado, Pablo

    2017-07-15

    Wetlands are important ecosystems characterized by redoximorphic environments producing typical soil forming processes and organic carbon accumulation. Assessments and management of these areas are dependent on knowledge about soil characteristics and variability. By reflectance spectroscopy, information about soils can be obtained since their spectral behaviors are directly related to their chemical, physical, and mineralogical properties reflecting the pedogenetic processes and environment conditions. Our aims were: (a) to characterize the main soil classes of wetlands regarding their spectral behaviors in VIS-NIR-SWIR (350-2500 nm) and relate them to pedogenesis and environmental conditions, (b) to determine spectral ranges (bands) with greater expression of the main soil properties, (c) to identify spectral variations and similarities between hydromorphic soils from wetlands and other soils under different moisture conditions, and (d) to propose spectral models to quantify some chemical and physical soil properties used as environmental quality indicators. Nine soil profiles from the Pantanal region (Mato Grosso State, Brazil) and one from the Serra do Espinhaço Meridional (Minas Gerais State, Brazil) were investigated. Spectral morphology interpretation allowed identifying horizon differences regarding shape, absorption features and reflectance intensity. Some pedogenetic processes of wetland soils related to organic carbon accumulation and oxide iron variation were identified by spectra. Principal Component Analysis allowed discriminating soils from wetland and outside this area (oxidic environment). Quantification of organic carbon was possible with R 2 of 0.90 and low error. Quantification of clay content was masked by soils with organic carbon content over 2% where it was not possible to quantify with high R 2 and low error both properties when dataset has soil samples with high organic carbon content. By reflectance spectroscopy, important

  4. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy

    Directory of Open Access Journals (Sweden)

    Pavel Doležal

    2016-10-01

    Full Text Available New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP. Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys.

  5. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy.

    Science.gov (United States)

    Doležal, Pavel; Zapletal, Josef; Fintová, Stanislava; Trojanová, Zuzanka; Greger, Miroslav; Roupcová, Pavla; Podrábský, Tomáš

    2016-10-28

    New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys.

  6. Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol-gel technique

    KAUST Repository

    Omri, Karim

    2013-08-01

    Mn doped ZnO nanoparticles with different doping concentration (1, 2, 3, 4, 5 at.%) were prepared by sol-gel method using supercritical drying conditions of ethyl alcohol. The structural, morphological, optical and magnetic properties of the as-prepared nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV measurements and superconducting quantum interference device (SQUID). The structural properties showed that the undoped and Mn doped ZnO nanoparticles exhibit hexagonal wurtzite structure. From the optical studies, the transmittance in UV region was decreased with the increase of Mn concentration. For Mn doped ZnO nanoparticles the optical band gap varies between 3.34 eV and 3.22 eV. It was found that the doping Mn 2+ ions have a significant influence on the optical properties. The magnetic characterization of the samples with 1% and 5% Mn concentrations reveal diamagnetic behavior for the first one and the presence of both paramagnetic and ferromagnetic behavior for the second. The room ferromagnetic component is due to the presence of the secondary phase ZnOMn3 which is confirmed by XRD study. © 2013 Elsevier Ltd. All rights reserved.

  7. On the Uniqueness of FROG Methods

    Science.gov (United States)

    Bendory, Tamir; Sidorenko, Pavel; Eldar, Yonina C.

    2017-05-01

    The problem of recovering a signal from its power spectrum, called phase retrieval, arises in many scientific fields. One of many examples is ultra-short laser pulse characterization in which the electromagnetic field is oscillating with ~10^15 Hz and phase information cannot be measured directly due to limitations of the electronic sensors. Phase retrieval is ill-posed in most cases as there are many different signals with the same Fourier transform magnitude. To overcome this fundamental ill-posedness, several measurement techniques are used in practice. One of the most popular methods for complete characterization of ultra-short laser pulses is the Frequency-Resolved Optical Gating (FROG). In FROG, the acquired data is the power spectrum of the product of the unknown pulse with its delayed replica. Therefore the measured signal is a quartic function of the unknown pulse. A generalized version of FROG, where the delayed replica is replaced by a second unknown pulse, is called blind FROG. In this case, the measured signal is quadratic with respect to both pulses. In this letter we introduce and formulate FROG-type techniques. We then show that almost all band-limited signals are determined uniquely, up to trivial ambiguities, by blind FROG measurements (and thus also by FROG), if in addition we have access to the signals power spectrum.

  8. Unique immunologic patterns in fibromyalgia.

    Science.gov (United States)

    Behm, Frederick G; Gavin, Igor M; Karpenko, Oleksiy; Lindgren, Valerie; Gaitonde, Sujata; Gashkoff, Peter A; Gillis, Bruce S

    2012-12-17

    Fibromyalgia (FM) is a clinical syndrome characterized by chronic pain and allodynia. The diagnosis of FM has been one of exclusion as a test to confirm the diagnosis is lacking. Recent data highlight the role of the immune system in FM. Aberrant expressions of immune mediators, such as cytokines, have been linked to the pathogenesis and traits of FM. We therefore determined whether cytokine production by immune cells is altered in FM patients by comparing the cellular responses to mitogenic activators of stimulated blood mononuclear cells of a large number of patients with FM to those of healthy matched individuals. Plasma and peripheral blood mononuclear cells (PBMC) were collected from 110 patients with the clinical diagnosis of FM and 91 healthy donors. Parallel samples of PBMC were cultured overnight in medium alone or in the presence of mitogenic activators; PHA or PMA in combination with ionomycin. The cytokine concentrations of IFN-γ, IL-5, IL-6, IL-8, IL-10, MIP-1β , MCP-1, and MIP1-α in plasma as well as in cultured supernatants were determined using a multiplex immunoassay using bead array technology. Cytokine levels of stimulated PBMC cultures of healthy control subjects were significantly increased as compared to matched non-stimulated PBMC cultures. In contrast, the concentrations of most cytokines were lower in stimulated samples from patients with FM compared to controls. The decreases of cytokine concentrations in patients samples ranged from 1.5-fold for MIP-1β to 10.2-fold for IL-6 in PHA challenges. In PMA challenges, we observed 1.8 to 4-fold decreases in the concentrations of cytokines in patient samples. The cytokine responses to mitogenic activators of PBMC isolated from patients with FM were significantly lower than those of healthy individuals, implying that cell-mediated immunity is impaired in FM patients. This novel cytokine assay reveals unique and valuable immunologic traits, which, when combined with clinical patterns, can offer

  9. Determining hydraulic parameters of a karst aquifer using unique ...

    African Journals Online (AJOL)

    Although karst aquifers constitute some of the most important water resources worldwide, generally accepted methods for reliably characterising their hydraulic properties are still elusive. This paper aims at contributing to the discussion by a first-ever attempt to utilise various sets of unique historical data derived from ...

  10. Temperature dependant thermal and mechanical properties of a metal-phase change layer interface using the time resolved pump probe technique

    International Nuclear Information System (INIS)

    Schick, V; Battaglia, J-L; Kusiak, A; Rossignol, C; Wiemer, C

    2011-01-01

    Time Resolved Pump Probe (TRPP) technique has been implemented to study the thermal and mechanical properties of Ge 2 Sb 2 Te 5 (GST) film deposited on a silicon substrate. According to the knowledge of the thermal properties of the GST layer, the temperature dependant Thermal Boundary Resistance (TBR) at the metal-GST interface is evaluated. Measuring the acoustic oscillation and more particularly its damping leads to characterize the adhesion at the metal - GST interface. This quantity can be efficiently related to the temperature dependent TBR in the 25 deg. C - 400 deg. C range. The TBR increases with temperature and follows the changes of the crystalline structure of materials. A linear relation between the acoustic reflection coefficient and the logarithm of the thermal boundary resistance is found.

  11. Development of a Composite Technique for Preconditioning of 41Cr4 Steel Used as Gear Material: Examination of Its Microstructural Characteristics and Properties

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-01-01

    Full Text Available Commercial 41Cr4 (ISO standard steel was treated by a composite technique. An intermediate layer was introduced firstly at the 41Cr4 steel surface by traditional carburizing and nitriding. Then a hard Cr coating was brush-plated on the intermediate layer. Finally, the coating layer was modified by high current pulsed electron beam (HCPEB, followed by quenching and subsequent tempering treatment. The microstructure, mechanical properties, and fracture behavior were characterized. The results show that a nanocrystalline Cr coating is formed at the 41Cr4 steel surface by the treatment of the new composite technique. Such nanocrystalline Cr coating has acceptable hardness and high corrosion resistance performance, which satisfies the demands of the gears working under high speed and corrosive environment. The composite process proposed in this study is considered as a new prospect method due to the multifunction layer design on the gear surface.

  12. Theoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems with Residual Stress Based on Pressure Blister Test Technique

    Directory of Open Access Journals (Sweden)

    Zhi-xin Yang

    2018-01-01

    Full Text Available In this study, based on the pressure blister test technique, a theoretical study on the synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress was presented, where the problem of axisymmetric deformation of a blistering film with initial stress was analytically solved and its closed-form solution was presented. The expressions to determine Poisson’s ratios, Young’s modulus, and residual stress of surface thin films were derived; the work done by the applied external load and the elastic energy stored in the blistering thin film were analyzed in detail and their expressions were derived; and the interfacial adhesion energy released per unit delamination area of thin-film/substrate (i.e., energy release rate was finally presented. The synchronous characterization technique presented here has theoretically made a big step forward, due to the consideration for the residual stress in surface thin films.

  13. Comparison of Two Surface Contamination Sampling Techniques Conducted for the Characterization of Two Pajarito Site Manhattan Project National Historic Park Properties

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tammy Ann [Montana Tech of the Univ. of Montana, Butte, MT (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-29

    Technical Area-18 (TA-18), also known as Pajarito Site, is located on Los Alamos National Laboratory property and has historic buildings that will be included in the Manhattan Project National Historic Park. Characterization studies of metal contamination were needed in two of the four buildings that are on the historic registry in this area, a “battleship” bunker building (TA-18-0002) and the Pond cabin (TA-18-0029). However, these two buildings have been exposed to the elements, are decades old, and have porous and rough surfaces (wood and concrete). Due to these conditions, it was questioned whether standard wipe sampling would be adequate to detect surface dust metal contamination in these buildings. Thus, micro-vacuum and surface wet wipe sampling techniques were performed side-by-side at both buildings and results were compared statistically. A two-tail paired t-test revealed that the micro-vacuum and wet wipe techniques were statistically different for both buildings. Further mathematical analysis revealed that the wet wipe technique picked up more metals from the surface than the microvacuum technique. Wet wipes revealed concentrations of beryllium and lead above internal housekeeping limits; however, using an yttrium normalization method with linear regression analysis between beryllium and yttrium revealed a correlation indicating that the beryllium levels were likely due to background and not operational contamination. PPE and administrative controls were implemented for National Park Service (NPS) and Department of Energy (DOE) tours as a result of this study. Overall, this study indicates that the micro-vacuum technique may not be an efficient technique to sample for metal dust contamination.

  14. Unique immunologic patterns in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Behm Frederick G

    2012-12-01

    Full Text Available Abstract Background Fibromyalgia (FM is a clinical syndrome characterized by chronic pain and allodynia. The diagnosis of FM has been one of exclusion as a test to confirm the diagnosis is lacking. Recent data highlight the role of the immune system in FM. Aberrant expressions of immune mediators, such as cytokines, have been linked to the pathogenesis and traits of FM. We therefore determined whether cytokine production by immune cells is altered in FM patients by comparing the cellular responses to mitogenic activators of stimulated blood mononuclear cells of a large number of patients with FM to those of healthy matched individuals. Methods Plasma and peripheral blood mononuclear cells (PBMC were collected from 110 patients with the clinical diagnosis of FM and 91 healthy donors. Parallel samples of PBMC were cultured overnight in medium alone or in the presence of mitogenic activators; PHA or PMA in combination with ionomycin. The cytokine concentrations of IFN-γ, IL-5, IL-6, IL-8, IL-10, MIP-1β , MCP-1, and MIP1-α in plasma as well as in cultured supernatants were determined using a multiplex immunoassay using bead array technology. Results Cytokine levels of stimulated PBMC cultures of healthy control subjects were significantly increased as compared to matched non-stimulated PBMC cultures. In contrast, the concentrations of most cytokines were lower in stimulated samples from patients with FM compared to controls. The decreases of cytokine concentrations in patients samples ranged from 1.5-fold for MIP-1β to 10.2-fold for IL-6 in PHA challenges. In PMA challenges, we observed 1.8 to 4-fold decreases in the concentrations of cytokines in patient samples. Conclusion The cytokine responses to mitogenic activators of PBMC isolated from patients with FM were significantly lower than those of healthy individuals, implying that cell-mediated immunity is impaired in FM patients. This novel cytokine assay reveals unique and valuable

  15. Uniqueness of positive solutions for cooperative Hamiltonian elliptic systems

    Directory of Open Access Journals (Sweden)

    Junping Shi

    2016-03-01

    Full Text Available The uniqueness of positive solution of a semilinear cooperative Hamiltonian elliptic system with two equations is proved for the case of sublinear and superlinear nonlinearities. Implicit function theorem, bifurcation theory, and ordinary differential equation techniques are used in the proof.

  16. Marketing the Uniqueness of Small Towns. Small Town Strategy.

    Science.gov (United States)

    Hogg, David H.; Dunn, Douglas

    A small town can strengthen its local economy as a result of business people and concerned citizens collectively identifying that community's uniqueness and then capitalizing on it via advertising, personal selling, sales promotion, or publicity. This publication relates the science of marketing to communities. Seven simple techniques are provided…

  17. Investigation of Structure and Dynamics in Disordered Materials Using Containerless Techniques with In-Situ Quantum Beam and Thermophysical Property Measurements

    Directory of Open Access Journals (Sweden)

    Shinji Kohara

    2018-02-01

    Full Text Available The use of levitation (containerless techniques can enable new scientific discoveries because deeply undercooled and metastable liquids can be achieved over a wide temperature range. This review article summarizes the state-of-art instrumentation for structure measurements at synchrotron radiation/neutron sources and for thermophysical property measurements not only on the ground but also in microgravity utilizing the International Space Station (ISS. Furthermore, we introduce recent scientific topics on high-temperature oxide liquids and oxide glasses synthesized from levitated undercooled liquids by the use of quantum beam measurements analyzed using advanced computation.

  18. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    Science.gov (United States)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  19. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    Science.gov (United States)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  20. Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques

    International Nuclear Information System (INIS)

    Bai Jing; Sun Yangshan; Xue Feng; Qiang Jing

    2012-01-01

    The microstructures, mechanical properties and creep resistance of Mg–4Al–(1–4) La alloys produced by permanent mold casting and high pressure die casting (HPDC) were investigated. In addition to solute atoms in α-Mg matrix, Al element may exist in the form of three different intermetallic phases in the present alloys depending on the experimental conditions. In both casting states, the increase of La addition results in a rise in the volume fraction of Al 11 La 3 eutectic, and simultaneously Mg 17 Al 12 phase, including divorced eutectic in as-cast state and discontinuous precipitation after creep, is suppressed until completely disappears. This leads to a gradual increase in creep resistance. The formation of more Mg 17 Al 12 phase in HPDC alloys is considered a major factor in causing their worse creep properties by comparison with that of the permanent mold casting alloys when La content is in a lower level below 2 wt.%. By contrast, the HPDC alloys show better creep resistance with La content added above 2 wt.% owing to the formation of denser network distribution of Al 11 La 3 phase along grain/dendrite boundaries as a result of more rapid solidification rate and higher solidification pressure. For the alloys studied, grain/dendrite boundary sliding is suggested to be a possible controlling mechanism responsible for creep deformation at elevated temperatures.

  1. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins.

    Science.gov (United States)

    Ayaz, Elif Aydogan; Durkan, Rukiye; Koroglu, Ayşegul; Bagis, Bora

    2014-12-30

    The aim of this study was to compare the residual monomer and microhardness of poly(methyl methacrylate) (PMMA)-based denture resins processed by using autoclave and conventional water bath techniques. To determine the amount of residual methyl methacrylate (MMA) monomer, disk-shaped specimens (n=5) were prepared from 3 different acrylic resins (Meliodent, Paladent and Qc-20). Control groups were polymerized in water bath for 30 minutes at 100°C. The study groups were prepared in an autoclave device for 60°C/30 min followed 130°C/10 min and the other group for 60°C/30 min followed by 130°C/20 min. According to standard calibration curves, ultraviolet spectrophotometry at 230 nm was used to determine the residual monomer. For the Vickers hardness measurements, disk-shaped specimens (n=5) were prepared for each test group. Hardness measurements were performed with a Vickers hardness tester under a 4.91-N press load for a 30 seconds, after immersion in distilled water at 37ºC for 48 hours. The data were analyzed by ANOVA and Tukey HSD test (phardness for all resin groups (p0.05). The autoclave polymerization technique exhibited significantly lower residual monomer content and greater hardness than conventional heat polymerization.

  2. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications

    Science.gov (United States)

    Bendjedidi, H.; Attaf, A.; Saidi, H.; Aida, M. S.; Semmari, S.; Bouhdjar, A.; Benkhetta, Y.

    2015-12-01

    Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 °C). The structural studies reveal that the SnO2 films are polycrystalline at 350, 400, 450, 500 °C with preferential orientation along the (200) and (101) planes, and amorphous at 300 °C. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10-2 Ω·cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.

  3. Antioxidant Properties of “Natchez” and “Triple Crown” Blackberries Using Korean Traditional Winemaking Techniques

    Directory of Open Access Journals (Sweden)

    Youri Joh

    2017-01-01

    Full Text Available This research evaluated blackberries grown in Oklahoma and wines produced using a modified traditional Korean technique employing relatively oxygen-permeable earthenware fermentation vessels. The fermentation variables were temperature (21.6°C versus 26.6°C and yeast inoculation versus wild fermentation. Wild fermented wines had higher total phenolic concentration than yeast fermented wines. Overall, wines had a relatively high concentration of anthocyanin (85–320 mg L−1 malvidin-3-monoglucoside and antioxidant capacity (9776–37845 µmol Trolox equivalent g−1. “Natchez” berries had a higher anthocyanin concentration than “Triple Crown” berries. Higher fermentation temperature at the start of the winemaking process followed by the use of lower fermentation/storage temperature for aging wine samples maximized phenolic compound extraction/retention. The Korean winemaking technique used in this study produced blackberry wines that were excellent sources of polyphenolic compounds as well as being high in antioxidant capacity as measured by the Oxygen Radical Absorbance Capacity (ORAC test.

  4. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  5. Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques.

    Science.gov (United States)

    Iglesias-González, T; Sánchez-González, C; Montes-Bayón, M; Llopis-González, J; Sanz-Medel, A

    2012-01-01

    The use of V(IV) complexes as insulin-enhancing agents has been increasing during the last decade. Among them, 3-hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy-4-pyrone (maltol and ethyl maltol, respectively) have proven to be especially suitable as ligands for vanadyl ions. In fact, they have passed phase I and phase II clinical trials, respectively. However, the mechanism through which those drugs exert their insulin-mimetic properties is still not fully understood. Thus, the aim of this study is to obtain an integrated picture of the absorption, biodistribution and insulin-mimetic properties of the bis(maltolato)oxovanadium (IV) (BMOV) in streptozotocin-induced hyperglycaemic rats. For this purpose, BMOV hypoglycaemic properties were evaluated by monitoring both the circulating glucose and the glycohemoglobin, biomarkers of diabetes mellitus. In both cases, the results were drug concentration dependent. Using doses of vanadium at 3 mg/day, it was possible to reduce the glycaemia of the diabetic rats to almost control levels. BMOV absorption experiments have been conducted by intestinal perfusion revealing that approximately 35% of V is absorbed by the intestinal cells. Additionally, the transport of the absorbed vanadium (IV) by serum proteins was studied. For this purpose, a speciation strategy using high-performance liquid chromatography (HPLC) for separation and inductively coupled serum mass spectrometry, ICP-MS, for detection has been employed. The obtained HPLC-ICP-MS results, confirmed by MALDI-MS data, showed evidence that V, administered orally, is uniquely bound to transferrin in rat serum.

  6. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  7. Effect of Sm doping on the physical properties of ZnO thin films deposited by spray pyrolysis technique

    Science.gov (United States)

    Velusamy, P.; Babu, R. Ramesh; Aparna, K. T.

    2017-05-01

    Undoped and Sm doped ZnO thin films have been prepared by chemical spray pyrolysis method on a glass substrate at 430°C. The physical properties of undoped and Sm doped ZnO thin films are characterized by XRD, FE-SEM, UV-VIS spectroscopy, Hall measurement and PL analysis. XRD pattern reveals that all the films are polycrystalline nature. The FE-SEM study of CdO shows the smooth and uniform surface with the spherical shaped particle. The electrical study reveals the n-type semiconductor and the optical study shows that Sm doped ZnO thin films about 92% transparency and optical band gap vary between 3.266-3.276 eV. Sm doped ZnO thin films have strong green emission behavior.

  8. Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique

    Directory of Open Access Journals (Sweden)

    Hong-sheng Ding

    2017-05-01

    Full Text Available The present work focused on the Ni3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25Al alloy. Ni3Al intermetallics were prepared at different withdrawal rates by directional solidification (DS in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni3Al and NiAl phases. The primary dendritic spacing (λ decreases with the increasing of withdrawal rate (V, and the volume fraction of NiAl phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate.

  9. The effect of radiation damage on optical and scintillation properties of BGO crystals grown by the LTG Cz technique

    CERN Document Server

    Gusev, V A; Kupriyanov, I N; Kuznecov, G N; Shlegel, V N; Antsygin, V D; Vasiliev, Y V

    2002-01-01

    BGO crystals grown by the low-thermal-gradient Czochralski technique (LTG Cz) exhibit two distinct types of behavior upon radiation damage and recovery. The crystals termed as of L-type remain colorless after gamma-radiation doses as high as 10 Mrad. As the irradiation dose increases the scintillation light output shows a weak monotonous degradation to 15-25%, saturating at around several hundreds krad doses. The crystals termed as of N-type attain yellow coloration after irradiation. The light output drops abruptly for 35-50% as early as after 1 krad and does not change further on. The present work is devoted to the study of radiation damage effects, self-recovery, optically stimulated recovery and thermo-stimulated current in the L- and N-type BGO crystals produced by LTG Cz.

  10. Preparation and Adsorption Property of Imido-acetic Acid Type Chelating Nano-fibers by Electro-spinning Technique

    Science.gov (United States)

    Yang, Jiali; Lu, Lansi; Zhang, Zhu; Liao, Minhui; He, Huirong; Li, Lingxing; Chen, Jida; Chen, Shijin

    2017-12-01

    A novel nano-fibrous adsorbent from imino-acetic acid (IDA) and polyvinyl alcohol (PVA) mixture solution was prepared by electro-spinning technique. The nano-fibrous adsorbents with imino-acetic acid functional groups were characterized and demonstrated by fourier transform infrared spectrometry (FT-IR) and the scanning electron microscopy (SEM). The effect of the adsorbents to remove heavy metals such as lead (Pb) and copper (Cu) ions from the aqueous solution was studied. The maximum adsorption percentage (SP) of the metal ions can reach 93.08% for Cu (II) and 96.69% for Pb(II), respectively. Furthermore, it shows that the adsorption procedure of the adsorbents is spontaneous and endothermic, and adsorption rate fits well with pseudo-second-order kinetic model. Most importantly, the reusability of the nanofibers for removal of metal ions was also demonstrated to be used at least five times.

  11. Structural Properties of Zn-ZnO Core-Shell Microspheres Grown by Hot-Filament CVD Technique

    Directory of Open Access Journals (Sweden)

    R. López

    2012-01-01

    Full Text Available We report the hot-filament chemical vapor deposition (HFCVD growth of Zn-ZnO core-shell microspheres in the temperature range of 350–650°C only using ZnO pellets as raw material. The samples were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. SEM micrographs showed the presence of solid microspheres and a Zn-ZnO layer in all samples. The observed heterogeneous morphology on each sample suggested two different growth mechanisms. On the one hand, solid microspheres were formed by means of gas phase nucleation of Zn atoms. The Zn-ZnO layer was formed on the substrate as result of surface reactions. It is possible that Zn microspheres condensed during the natural cooling of the HFCVD reactor as they were observed on the Zn-ZnO layer.

  12. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  13. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    International Nuclear Information System (INIS)

    Mahapatra, Suddhasatta

    2008-01-01

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T G =300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T G D =230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  14. DNA replication in pathogens: Unique properties and possible ...

    Indian Academy of Sciences (India)

    asd

    Treatment. Amoxycillin, Clarithromycin, Tetracycline and metronidazole. Antibiotics. Ranitidine, Cimetidine, Famotidine, Omprazole,. Pantoprazole and Lansoprazole. Acid lowering drugs. Combination of the above two for two weeks is the best strategy. Vaccination: Not available yet. However, there are incidences of drug ...

  15. DNA replication in pathogens: Unique properties and possible ...

    Indian Academy of Sciences (India)

    asd

    Eukaryotic DNA Replication Initiation and Elongation. 1. 2. 3 5. 4. 6. ARS. Origin Recognition. Complex (ORC). MCM2-7. CDC6. 1. 2. 3 5. 4. ARS. Replication Initiation. ATP Hydrolysis? Yeast. 6. 2. 2. Replication Elongation. Is ORC function and cell cycle regulation is conserved in. Plasmodium falciparum?

  16. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    International Nuclear Information System (INIS)

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal; Chandra, Debraj; Bhaumik, Asim; Mondal, Anup

    2011-01-01

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH 3 COO) 2 , SC(NH 2 ) 2 and N(CH 2 CH 2 OH) 3 [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes within 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.

  17. On existence and uniqueness of solutions for variational data assimilation

    Science.gov (United States)

    Bröcker, Jochen

    2017-04-01

    Data assimilation is a term from the geosciences and refers to methods for estimating orbits of dynamical models from observations. Variational techniques for data assimilation estimate these orbits by minimising an appropriate cost functional which takes the error with respect to the observations but also deviations of the orbits from the model equations into account. Such techniques are very important in practice. In this contribution, the problem of existence and uniqueness of solutions to variational data assimilation is investigated. Under mild hypotheses a solution to this problem exists. The problem of uniqueness is investigated as well, and several results (which all have analogues in optimal control) are established in the present context. The value function is introduced as the cost of an optimal trajectory starting from a given initial condition. The necessary conditions in combination with an envelope theorem can be used to demonstrate that the solution is unique if and only if the value function is differentiable at the given initial condition. This occurs for all initial conditions except maybe on a set of Lebesgue measure zero. Several examples are studied which demonstrate that non-uniqueness of solutions cannot be ruled out altogether though, which has important consequences in practice. References: J. Bröcker, "Existence and Uniqueness For Four Dimensional Variational Data Assimilation in Discrete Time.", SIAM Journal of Applied Dynamical Systems (accepted).

  18. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M. [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Yu, Z.J.; Xu, H. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Mao, W.G., E-mail: ssamao@126.com [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Pei, Y.M.; Li, F.X. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Feng, X. [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Fang, D.N., E-mail: fangdn@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  19. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Science.gov (United States)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M.; Yu, Z. J.; Xu, H.; Mao, W. G.; Pei, Y. M.; Li, F. X.; Feng, X.; Fang, D. N.

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials.

  20. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    International Nuclear Information System (INIS)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M.; Yu, Z.J.; Xu, H.; Mao, W.G.; Pei, Y.M.; Li, F.X.; Feng, X.; Fang, D.N.

    2017-01-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  1. Effect of inclusions on mechanical properties of Nb stabilized austenitic stainless steels (316Nb) with centrifugal and sand casting techniques

    Science.gov (United States)

    Türker, Mehmet; Çapan, Levon Josef

    2018-01-01

    In this study, 316Nb stabilized austenitic stainless steel pieces were produced via sand and centrifugal casting method in order to be investigated. Heat treatments were done in two stages, and cooling was made in various quenching mediums. As-cast parts and the parts with only the highest and the lowest tensile strength were investigated. Metallographical analyses were made and the content of non-metallic inclusions was examined. Various types of carbides in microstructures were determined by means of SEM-EDX analysis. The sand casting samples had more non-metallic inclusions than the centrifugal casting ones. After the tensile tests, it was seen that these inclusions had significant effect on the mechanical properties. The tensile strength, the yield strength, the elongation and the hardness values of the centrifugal casting samples were higher than the sand casting ones. Investigating the SEM-EDX analyses, it was determined that the sand cast samples had chromium carbides in small quantities, in addition to niobium carbides. Centrifugal cast parts had niobium carbides.

  2. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique

    Directory of Open Access Journals (Sweden)

    S. Hanif

    Full Text Available In this work, powders of BiMnO3 (BMO are prepared by using co-precipitation method. The effect of sintering temperature on the physical properties is observed. The X-ray diffraction (XRD reveals monoclinic structure, while the surface morphology observed by scanning electron microscopy (SEM indicates sintering temperature dependent grain growth and an increased surface uniformity. The paramagnetic behavior is exhibited by the grown samples at room temperature (RT, which is due to the ordering temperature well below RT. The dielectric constant and the dielectric loss decay with frequency, which is due to the dipole relaxation. Moreover, Mn–O and Bi–O vibrational bands have been observed in the range 800–850 cm−1 and 500–600 cm−1, respectively. The prepared samples find potential application as a multiferroic material, with simultaneous control over both the magnetism and the dielectric characteristics. Keywords: Multiferroics, Paramagnetism, Co-precipitation, Dielectric constant, Surface morphology

  3. Influence of Nb content on the structural and optical properties of anatase TiO{sub 2} polycrystalline thin film by e-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A., E-mail: attaullah77@yahoo.com; Mahmood, Arshad; Aziz, Uzma; Rashid, Rashad; Raza, Qaiser; Ali, Zahid

    2016-09-01

    In this paper, we report the structural and optical properties of Nb-doped TiO{sub 2} thin films deposited by e-beam evaporation technique. After post annealing in air at 500 °C for 1 h, the samples were characterized by various techniques such as X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectrophotometry and spectroscopic Ellipsometer. Both XRD and Raman analyses indicate that the films were crystallized into the polycrystalline anatase TiO{sub 2} structure. However it was observed that the crystallinity of the films decreases with the addition of Nb atoms and tends to become amorphous at 20% Nb content in TiO{sub 2} film. Moreover, no new phases such as Nb{sub 2}O{sub 5}, NbO{sub 2} or Nb metal were observed. The band gap energy was found to decrease with the increasing of Nb concentration which was verified by ellipsometric study. Ellipsomtric measurements also indicate that refractive index (n) of the films decreases while extinction coefficient (k) increases with the increasing of Nb content. All these analyses elucidate that the incorporation of Nb atom into TiO{sub 2} may tune the structural and optical properties of TiO{sub 2} thin films. - Highlights: • The addition of Nb into TiO{sub 2} film has strongly influenced its physical properties. • Anatase polycrystalline Nb:TiO{sub 2} films were grown up to 15% Nb content. • The film becomes an amorphous at 20% Nb doping. • Band gap energy of TiO{sub 2} film was decreased with increasing of Nb content in the film. • The Optical constants (n, k) of Nb:TiO{sub 2} film were varied as a function of Nb content.

  4. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties.

    Science.gov (United States)

    Mocan, Andrei; Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Massafra, Chiara; Moldovan, Cadmiel; Sisea, Cristian; Petzer, Jacobus P; Petzer, Anél; Zara, Susi; Marconi, Guya Diletta; Zengin, Gokhan; Crișan, Gianina; Locatelli, Marcello

    2018-04-21

    In the present work, fourteen cultivars of Prunus domestica were analysed to investigate their phenolic pattern with the purpose of using the leaves as potential resources of bioactive compounds in the pharmaceutical and food industry. Microwave-assisted extraction (MAE), dispersive liquid-liquid microextraction and sugaring-out liquid-liquid extraction techniques were optimized in order to obtain an exhaustive multi-component panel of phenolic compounds. The best phenolic-enriched recovery was achieved using MAE in water:methanol (30:70), and this procedure was further applied for quantitative analysis of phenolic compounds in real samples. In order to prove the safeness of these extracts, the biological potential of the Prunus cultivars was tested by several in vitro antioxidant and enzyme inhibitory assays. Moreover, their cytotoxicity was evaluated on human gingival fibroblasts (HGFs), and in most of the cases the treatment with different concentrations of extracts didn't show cytotoxicity up to 500 μg/mL. Only 'Carpatin' and 'Minerva' cultivars, at 250 and 500 μg/mL, reduced partially cell viability of HGFs population. Noteworthy, Centenar cultivar was the most active for the α-glucosidase inhibition (6.77 mmolACAE/g extract), whereas Ialomița cultivar showed the best antityrosinase activity (23.07 mgKAE/g extract). Overall, leaves of P. domestica represent a rich alternative source of bioactive compounds. Copyright © 2018. Published by Elsevier Ltd.

  5. CdS QDs-chitosan microcapsules with stimuli-responsive property generated by gas-liquid microfluidic technique.

    Science.gov (United States)

    Chen, Yanjun; Yao, Rongyi; Wang, Yifeng; Chen, Ming; Qiu, Tong; Zhang, Chaocan

    2015-01-01

    This article describes a straightforward gas-liquid microfluidic approach to generate uniform-sized chitosan microcapsules containing CdS quantum dots (QDs). CdS QDs are encapsulated into the liquid-core of the microcapsules. The sizes of the microcapsules can be conveniently controlled by gas flow rate. QDs-chitosan microcapsules show good fluorescent stability in water, and exhibit fluorescent responses to chemical environmental stimuli. α-Cyclodextrin (α-CD) causes the microcapsules to deform and even collapse. More interestingly, α-CD induces obvious changes on the fluorescent color of the microcapsules. However, β-cyclodextrin (β-CD) has little influence on the shape and fluorescent color of the microcapsules. Based on the results of scanning electron microscopy, the possible mechanism about the effects of α-CD on the chitosan microcapsules is analyzed. These stimuli-responsive microcapsules are low-cost and easy to be prepared by gas-liquid microfluidic technique, and can be applied as a potential micro-detector to chemicals, such as CDs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrical transport properties of CoZn ferrite-SiO{sub 2} composites prepared by co-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)], E-mail: muislampk@yahoo.com; Aen, Faiza [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Niazi, Shahida B. [Department of Chemistry, Bahauddin Zakariya University, Multan (Pakistan); Azhar Khan, M.; Ishaque, M.; Abbas, T.; Rana, M.U. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)

    2008-06-15

    CoZn ferrite-SiO{sub 2} composites having general formula (1 - x)Co{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} + xSiO{sub 2} with x = 0.0-0.8 were prepared by co-precipitation technique. The X-ray diffraction analysis of the composites reveals that they are bi-phase. Room temperature resistivity increases from 10{sup 5} to 10{sup 9} ({omega} cm) from x = 0.0-0.8. This drastic increase in resistivity may be attributed to the presence of pores and the segregation of Si at grain boundaries. The Arrhenius plots of these samples show that resistivity decreases as the temperature increases indicating their semi conducting behavior. Arrhenius plots show a change of slope at particular temperature (except for x = 0.8) that may be attributed to their Curie temperature. It is observed that the activation energies are small in Para-region as compared to Ferri-region and is an indication of the hopping conduction mechanism. The variation of thermopower with temperature reveals that these samples are degenerate type semiconductors. The values of activation energies calculated from log {mu}{sub d} vs. 1000/T are slightly lower than the values of activation energies obtained from Arrhenius plots. This suggests that the conduction phenomenon is due to polaron hopping.

  7. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M. Thirumoorthi

    2016-03-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared by jet nebulizer spray pyrolysis technique for different Sn concentrations on glass substrates. X-ray diffraction patterns reveal that all the films are polycrystalline of cubic structure with preferentially oriented along (222 plane. SEM images show that films exhibit uniform surface morphology with well-defined spherical particles. The EDX spectrum confirms the presence of In, Sn and O elements in prepared films. AFM result indicates that the surface roughness of the films is reduced as Sn doping. The optical transmittance of ITO thin films is improved from 77% to 87% in visible region and optical band gap is increased from 3.59 to 4.07 eV. Photoluminescence spectra show mainly three emissions peaks (UV, blue and green and a shift observed in UV emission peak. The presence of functional groups and chemical bonding was analyzed by FTIR. Hall effect measurements show prepared films having n-type conductivity with low resistivity (3.9 × 10−4 Ω-cm and high carrier concentrations (6.1 × 1020 cm−3.

  8. Investigate the electrical and thermal properties of the low temperature resistant silver nanowire fabricated by two-beam laser technique

    Science.gov (United States)

    He, Gui-Cang; Dong, Xian-Zi; Liu, Jie; Lu, Heng; Zhao, Zhen-Sheng

    2018-05-01

    A two-beam laser fabrication technique is introduced to fabricate the single silver nanowire (AgNW) on polyethylene terephthalate (PET) substrate. The resistivity of the AgNW is (1.31 ± 0.05) × 10-7 Ω·m, which is about 8 times of the bulk silver resistivity (1.65 × 10-8 Ω·m). The AgNW electrical resistance is measured in temperature range of 10-300 K and fitted with the Bloch-Grüneisen formula. The fitting results show that the residue resistance is 153 Ω, the Debye temperature is 210 K and the electron-phonon coupling constant is (5.72 ± 0.24) × 10-8 Ω·m. Due to the surface scattering, the Debye temperature and the electron-phonon coupling constant are lower than those of bulk silver, and the residue resistance is bigger than that of bulk silver. Thermal conductivity of the single AgNW is calculated in the corresponding temperature range, which is the biggest at the temperature approaching the Debye temperature. The AgNW on PET substrate is the low temperature resistance material and is able to be operated stably at such a low temperature of 10 K.

  9. Impact of long term pesticide usage on soil properties using radiotracer techniques. Proceedings of a final research coordination meeting

    International Nuclear Information System (INIS)

    2001-11-01

    An important activity of the United Nations Food and Agriculture Organization (FAO) is to assist Member States to ensure that, as far as possible, pesticides are used effectively and safely. To this end, FAO has published Guidelines for the Registration and Control of Pesticides, which forms the basis of most national pesticide registration schemes. Among the recommendations is that data should be provided to show that a candidate pesticide has no unacceptable effects on non-target organisms. Soil micro-flora and fauna, because of their central role in maintaining soil fertility, are highly ranked in this context. Concern has been expressed that the data normally presented may not be adequate to predict the effects on soil micro-organisms of repeated, heavy, multiple applications of pesticides that are common in monocultures of crops, such as cotton, maize and rice. Evaluation of the effects of such pesticide regimes requires studies of a range of soil microbial activities, some of which require the use of 14 C-labelled pesticides. Therefore, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture organised a Co-ordinated Research project to assess whether or not there is a need to extend the data requirements for pesticide registration to cover such extreme agricultural practices. This TECDOC summarises the outcome of this programme and includes papers presented at the final Research Co-ordination meeting held in Hangzhou, China, 24-28 May 1999

  10. Magnetic Zn (II) ion-imprinted polymer prepared by the surface imprinting technique and its adsorption properties.

    Science.gov (United States)

    Zhang, Hui-xin; Dou, Qian; Jin, Xiu-hong; Zhang, Jie; Yang, Ting-ru; Han, Xu; Wang, Dong-dong

    2015-01-01

    A novel magnetic Zn (II) ion-imprinted polymer was prepared by the surface ion-imprinted technique by using magnetic Fe3O4@SiO2 microspheres as supporter, methacrylic acid and salicylaldoxime as monomers, ethylene glycol dimethacrylate as the crosslinker. The products were characterized by Fourier transform infrared, X-ray photoelectron spectrometer, vibrating sample magnetometer and scanning electron microscope. The adsorption experiments showed that the imprinted polymer was employed successfully in comparison with non-imprinted polymer. When the temperature was in a range of 291-297 K, the maximum adsorption was about 52.69 mg g(-1) with an optimal pH 6.0 for an equilibrium time of 40 min. The imprinted polymer possessed high selectivity and specific recognition towards Zn (II). The Langmuir adsorption model was more favourable than the Freundlich or the Temkin adsorption model. Thermodynamic experiment showed that the adsorption was a spontaneous and endothermic process for Zn (II). The mechanism for Zn (II) adsorption on the imprinted polymer was investigated.

  11. Structural and optical properties of a-Si1-xCx:H films synthesized by dc magnetron sputtering technique

    International Nuclear Information System (INIS)

    Keffous, Aissa; Cheriet, Abdelhak; Belkacem, Youcef; Gabouze, Noureddine; Boukezzata, Assia; Boukennous, Yacine; Brighet, Amer; Cherfi, Rabah; Kechouane, Mohamed; Guerbous, Lakhdar; Menous, Isa; Menari, Hamid

    2010-01-01

    Hydrogenated amorphous SiC films (a-Si 1-x C x :H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si 1-x C x :H film was realized under a mixture of argon and hydrogen gases. The a-Si 1-x C x :H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si 0.80 C 0.20 :H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si 1-x C x :H) has been investigated.

  12. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    Science.gov (United States)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  13. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  14. Influence of the deposition technique on the structural and optical properties of amorphous As-S films

    International Nuclear Information System (INIS)

    Gonzalez-Leal, J.M.; Stuchlik, M.; Vlcek, M.; Jimenez-Garay, R.; Marquez, E.

    2005-01-01

    Amorphous chalcogenide films of stoichiometric composition As 40 S 60 have been prepared by three different deposition techniques, namely, vacuum thermal evaporation, plasma-enhanced chemical vapour deposition (PECVD) and spin coating. Indications of film-thickness inhomogeneities were found in all samples. Thermally evaporated and chemically deposited samples showed wedge-shaped surface profiles, while significant surface roughness was evidenced in the spin-coated ones. Refractive-index values of the film samples were obtained, with accuracy better than 1%, by using the envelope method most suitable for each particular film surface profile. Structural information of the samples has been gained from X-ray diffraction experiments, and also inferred from the analysis of the dispersion of the refractive index, on the basis of a single-oscillator model. Analysis of the optical absorption spectra allowed both calculating the optical band gaps and estimating the localised-state tail width of these semiconducting films. In addition, information about the degree of structural randomness of these thin-film amorphous alloys was also obtained from this analysis, which is in good agreement with the conclusions derived from the X-ray diffraction results

  15. Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

    Directory of Open Access Journals (Sweden)

    M. Merikhi

    2015-10-01

    Full Text Available In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared in the same deposition conditions, one in the presence and the other in absence of magnetic field and the products were compared. The results indicate that applying the magnetic field has a significant effect on the growth process, i.e. morphology, crystal structure and magnetic properties of the films. The morphology and structure of the FeCu/Cu Nano layers were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM. The weight percentages of the elements in the deposited multilayers were determined by energy dispersive X-ray spectroscopy (EDS. Magnetic properties of thin films were studied using the vibrating sample magnetometer (VSM.

  16. Parameters dependent studies of structural, optical and electrical properties of CeO2 nanoparticles prepared via facile one-pot hydrothermal technique

    Science.gov (United States)

    Mohanty, Biswajyoti; Nayak, J.

    2017-11-01

    Cerium oxide (CeO2) nanoparticles have exceptional optical and electronic properties due to the presence of unfilled 4f orbitals in CeO2. CeO2 nanocrystals have been used in semiconductor devices due to their high thermal and chemical stability. In this work, CeO2 nanoparticles were synthesized by a facile one-pot hydrothermal technique under various experimental conditions. The effects of various process parameters on optical, structural and electrical properties of the CeO2 nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2 powders were studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD), respectively. The XRD pattern advocated that the synthesized cerium oxide nanoparticles exhibited a cubic fluorite structure. The average crystallite size estimated from the XRD peak width was 6–11 nm for the majority of the samples. The zeta sizer nano series analyzer provided a precise image of particle size distribution with a maximum at around 147.7 nm. The optical band gaps estimated from the diffused reflectance results were from 3.08 eV to 3.18 eV. A systematic variation in the photoluminescence intensity with a change in the crystallite sizes of CeO2 nanoparticles was observed. The variation of electrical property of CeO2 nanoparticles with a change in process parameters was analytically discussed.

  17. Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films

    Science.gov (United States)

    Hamran, Noramirah; Rashid, Azura A.

    2017-07-01

    Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.

  18. Comparison of metrological techniques for evaluation of the impact of a cosmetic product containing hyaluronic acid on the properties of skin surface.

    Science.gov (United States)

    Janiš, Rahula; Pata, Vladimír; Egner, Pavlína; Pavlačková, Jana; Zapletalová, Andrea; Kejlová, Kristina

    2017-06-14

    The aim of this research was to evaluate mutual interchangeability of four principally different biometric instrumental techniques designed for objective measurement of changes in the physical, mechanical, and topographical properties of the skin surface treated with commercial antiaging cosmetic products with hyaluronic acid. The following instrumental devices were used: Visioscope PC 35, Corneometer Multiprobe Adapter MPA 6, Reviscometer RVM 600, and 3D scanner Talysurf CLI 500. The comparison of the individual methods was performed using cluster analysis. The study involved 25 female volunteers aged 40-65. Measurements were taken before and after 30 daily in vivo applications of an antiaging preparation to the skin surface in the periorbital area. A slight reduction in skin surface roughness was recorded in 55% of the volunteers. On the contrary, a worsening from their initial states was detected in 25% of the subjects, while for 20%, no significant change was reported. Cluster analysis confirmed that the mentioned methodologies can be divided into two basic clusters, namely, a cluster of methods recording the changes in skin relief by means of optical techniques, and a cluster of methods investigating changes in hydration and anisotropy. In practice, the techniques in different clusters are not interchangeable and should be assessed separately.

  19. Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K.; Philominathan, P. [PG and Research Department of Physics, AVVM, Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu (India)

    2008-11-15

    Good quality CdS films were fabricated by employing a simplified spray pyrolysis technique using perfume atomizer. CdS films have been deposited from aqueous solutions of sulphur and cadmium, keeping the molar concentrations of S:Cd = 0.01:0.01, 0.02:0.02, 0.04:0.04 and 0.06:0.06 in the starting solutions. The structural studies reveal that the S:Cd concentration has a strong influence on the microstructural characteristics of the sprayed CdS films. It was found that there is a transition in the preferred orientation from (0 0 2) plane to (1 0 1) plane when S:Cd molar concentration increases. The SEM images depict that the films are uniform and homogeneous. All the films have high optical transmittance (>80%) in the visible range. The optical band gap values are found to be in the range of 2.46-2.52 eV. CdS films fabricated by this simple and economic spray technique without using any carrier gas are found to be good in structural and optical properties which are desirable for photovoltaic applications. Hence, this simplified version of spray technique can be considered as an economic alternative to conventional spray pyrolysis (using carrier gas), for the mass production of low-cost, large area CdS coatings for solar cell applications. (author)

  20. OPTICAL PROPERTIES OF Al:ZnO THIN FILM DEPOSITED BY DIFFERENT SOL-GEL TECHNIQUES: ULTRASONIC SPRAY PYROLYSIS AND DIP-COATING

    Directory of Open Access Journals (Sweden)

    Ebru Gungor

    2016-08-01

    Full Text Available Undoped and Al-doped ZnO polycrystalline thin films have been fabricated on glass substrates by using a computer-controlled dip coating (DC and ultrasonic spray pyrolysis (USP systems. The film deposition parameters of DC process were optimized for the samples. In this technique, the substrate was exposed to temperature gradient using a tube furnace. In the study, the other solvent-based technique was conventional USP. The zinc salt and Al salt concentrations in the solution were kept constant as 0.1 M and 2% of Zn salt’s molarity, respectively. The optical properties were compared for the films deposited two different techniques. The optical transmission of Al:ZnO/Glass/Al:ZnO sample dip coated and  the optical transmission of Al:ZnO/Glass sample ultrasonically sprayed were determined higher than 80% in the visible and near infrared region. Experimental optical transmittance spectra of the films in the forms of FilmA/Glass/FilmA and FilmA/glass were used to determine the optical constants. It was observed that the optical band gaps of Al doped ZnO films onto glass substrate were increases with increase of Al content and the absorption edge shifted to the shorter wavelength (blue shift compared with the undoped ZnO thin film.

  1. Estimation methods of unique devices reliability

    International Nuclear Information System (INIS)

    Fedik, I.I.; Golubev, M.P.

    1991-01-01

    In this report, the results of the approbation and choice of the methods for the probability analysis of service life and the reliability estimation of unique products including nuclear power plants. In practice, the information on nuclear power plant elements and assemblies is that their properties are not uniform. There are the data on particular tests and also the data on analogous tests. The aim of this work is the development of a methodological approach and an effective algorithm for processing these different data for the reliability estimation of the product at the stage of design and development. The typical situations of the tests and information are considered. As the result of investigation, a number of the methods which form the adaptive algorithm allowing to use practically all the information at research and development stages were chosen. The procedure of effectively using and processing the information is explained. The main features of the proposed algorithm are shown. The systematic prediction error is eliminated, and the casual error in all probability characteristics is reduced. This approach has been used for three types of nuclear power plants, and gave the good results. (K.I.)

  2. On uniqueness for some non-Lipschitz SDE

    Science.gov (United States)

    Alabert, Aureli; León, Jorge A.

    2017-06-01

    We study the uniqueness in the path-by-path sense (i.e. ω-by-ω) of solutions to stochastic differential equations with additive noise and non-Lipschitz autonomous drift. The notion of path-by-path solution involves considering a collection of ordinary differential equations and is, in principle, weaker than that of a strong solution, since no adaptability condition is required. We use results and ideas from the classical theory of ode's, together with probabilistic tools like Girsanov's theorem, to establish the uniqueness property for some classes of noises, including Brownian motion, and some drift functions not necessarily bounded nor continuous.

  3. Effect of different binders and encapsulation techniques in the structure and functional properties of microdiets for fish larvae

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2014-05-01

    Full Text Available The improvement of micro diets, for fish larvae, has been a major challenge in past years; however some problems remain without a resolution. Besides its tremendous growth rates, at early developmental stages, fish larvae present an immature digestive system and a progressive metamorphic process that suggest special nutritional requirements. It is therefore essential to provide fish larvae with easy and/or quickly metabolized protein sources, like protein hydrolisates, high bioavailable forms of vitamins and trace minerals. The low molecular weight of such compounds, in association to the high surface area of the micro-particles, makes them highly soluble and prone to water leaching losses. These nutrient losses, not only makes these nutrients unavailable to the larvae, but originate an important increase of organic matter in the rearing tanks, leading to detrimental water quality criteria. The development of high-performing micro-particulate diets for fish larvae requires a delicate balance between an adequate quantitative and qualitative nutritional supply and good water stability of the feeds, without compromising the palatability and the digestive breakdown. A series of binders, protein-based (e.g. fish gelatin, wheat gluten, spray-dried plasma and carbohydrate-based (gums, alginates, pectins, starches, dextrin, polyols were incorporated at graded levels (1, 2.5 and 5% in a standard formulation for seabream larvae. Diets were manufactured by a proprietary low-shear extrusion process and afterwards processed to obtain a 200-400 micron fraction. All diets were analyzed for the following criteria: water leaching of nitrogenous compounds, turbidimetry and particle water stability. An additionally approach relied on the use of various encapsulation techniques (spray-drying, fluid-bed drying and vacuum coating to incorporate trace minerals (Zn and Mn and amino acids (taurine, lysine and methionine. Technological results show that the beneficial

  4. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

    Science.gov (United States)

    Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen

    2014-03-01

    To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have

  5. Measurement of Thermal Properties of Rocks at Temperature up to 1,000°C with Transient Plane Source Techniques

    Science.gov (United States)

    Kim, S. K.; Lee, Y.

    2017-12-01

    A set of devices that can measure thermal properties of rocks over a temperature range from room temperature up to 1,000°C with transient plane source techniques (also known as a Hot Disk method) is introduced. It consists of a main control system (e.g., TPS 2500 S from Hot Disk), mica-insulated sensor, tubular furnace, N2 gas supplier, and pressure regulator. The TPS 2500 S is the core instrument designed for precise analysis of thermal transport properties including thermal conductivity, thermal diffusivity, and volumetric heat capacity. The mica-insulated sensor is composed of an insulated nickel double spiral, which is utilized for both transient heating and precise temperature reading; a mica insulator protects the sensor against mechanical and thermal damage at high temperatures. The tubular furnace can hold two rock core samples of 50-mm-diameter and 25-mm-height with increasing temperatures up to 1,000°C. N2 gas supplier and pressure regulator are used to keep the inside the furnace away from oxygen. Thermal properties of most rocks and minerals vary with increasing temperatures. Experimental measurements of thermal properties at high temperatures have been made mostly using laser flash, needle probe, and divided bar methods in the previous researches, and no previous measurements with the Hot Disk method have been reported yet. We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for fused silica and mafic rock samples using the introduced transient plane source apparatus. The thermal properties of fused silica have been measured mainly over the temperature range from ambient temperature to 500°C. The results seem to agree moderately with the previously reported values by Birch and Clark (Am. J. Sci., 1940). We now check the possible causes of measurement errors in our measurements and prepare to measure thermal properties of the mafic rock samples at temperatures up

  6. Word from the CSO - CERN’s unique scientific breadth

    CERN Multimedia

    2008-01-01

    Whilst we are all clearly focused on completion of the LHC and the detectors around it and look forward to a successful start of operations later this year, we should not forget that CERN has yet more to offer in addition to this highest priority programme ‘at the energy frontier’. Indeed, CERN also attracts a large scientific community seizing the opportunities offered by its other facilities. Sometimes I wonder whether we are not too modest and should not emphasize more CERN’s unique scientific breadth. ISOLDE, at the PS Booster, relies on innovative techniques to produce results at the forefront of nuclear physics very cost-effectively. nTOF has provided unique measurements of interest to nuclear technology, nuclear astrophysics and basic nuclear physics, and still has an ambitious programme ahead of it after refurbishment of the target. Another unique facility is the Antiproton Decelerator, at which the study of antimatter is being pursued with ingenious experiment...

  7. Unique Physician Identification Number (UPIN) Directory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Unique Physician Identification Number (UPIN) Directory contains selected information on physicians, doctors of Osteopathy, limited licensed practitioners and...

  8. Radio Frequency Identification (RFID) in medical environment: Gaussian Derivative Frequency Modulation (GDFM) as a novel modulation technique with minimal interference properties.

    Science.gov (United States)

    Rieche, Marie; Komenský, Tomás; Husar, Peter

    2011-01-01

    Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.

  9. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    Science.gov (United States)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  10. Influence of a new denture cleaning technique based on photolysis of H(2)O(2) the mechanical properties and color change of acrylic denture base resin.

    Science.gov (United States)

    Nakahara, Tatsuro; Harada, Akio; Yamada, Yasutomo; Odashima, Yu; Nakamura, Keisuke; Inagaki, Ryoichi; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2013-01-01

    The purpose of this study was to evaluate the influence of a disinfection technique based on photolysis of H2O2 on the mechanical properties and color change of acrylic denture base resin. Resin specimens were immersed in 1 M H2O2 irradiated with light-emitting diode (LED) light at 400 nm for 1 week. The immersion duration of 1 week (168 h) corresponded to performing approximately 500 times of 20-min cleaning. Hydroxyl radicals are potent oxidants and they were generated via the photolysis of H2O2. Oxidative damage caused by these radicals included reduced flexural strength and altered color for the acrylic resin. Nonetheless, the degraded flexural strength and altered color of acrylic resin after 500 times of cleaning in the disinfection system would be within clinically acceptable levels.

  11. Effect of the Temperature in the Mechanical Properties of Austenite, Ferrite and Sigma Phases of Duplex Stainless Steels Using Hardness, Microhardness and Nanoindentation Techniques

    Directory of Open Access Journals (Sweden)

    Gorka Argandoña

    2017-06-01

    Full Text Available The aim of this work is to study the hardness of the ferrite, austenite and sigma phases of a UNS S32760 superduplex stainless steel submitted to different thermal treatments, thus leading to different percentages of the mentioned phases. A comparative study has been performed in order to evaluate the resulting mechanical properties of these phases by using hardness, microhardness and nanoindentation techniques. In addition, optical microscopy, scanning electron microscopy (SEM and X-ray diffraction (XRD have been also used to identify their presence and distribution. Finally, the experimental results have shown that the resulting hardness values were increased as a function of a longer heat treatment duration which it is associated to the formation of a higher percentage of the sigma phase. However, nanoindentation hardness measurements of this sigma phase showed lower values than expected, being a combination of two main factors, namely the complexity of the sigma phase structure as well as the surface finish (roughness.

  12. Refinement of the microstructure and enhancement of the magnetic properties in alpha-Fe/(Nd,DY)(2)Fe14B annealing nanocomposite using the two-step technique

    DEFF Research Database (Denmark)

    Chen, Wei; Zhao, X.; Hu, J.J.

    2006-01-01

    The Nd8-xDyxFe87.5B4.5 (x = 0- 1.0) nanocomposites have been prepared by melt spinning and subsequent two-step heat treatment technique. The crystallization behaviors, microstructures and magnetic properties of the samples have been investigated. The experimental results show that the crystalliza....... A dramatic enhancement of remanence J(r) from 0.84 to 1.1 T, coercivity H-cj from 417 to 520 kA/m and energy product (BH)(m) from 76.8 to 110 kJ/m(3) have been obtained in Nd7Dy1Fe87.5B4.5 (30 vol%alpha-Fe) nanocomposite....

  13. Combination of thermal and electric properties' measurement techniques in a single setup suitable for radioactive materials in controlled environments and based on the 3ω approach

    Science.gov (United States)

    Shrestha, K.; Gofryk, K.

    2018-04-01

    We have designed and developed a new experimental setup, based on the 3ω method, to measure thermal conductivity, heat capacity, and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO2) materials, which have a wide range of thermal conductivity values (1-400 W m-1 K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals: uranium dioxide and uranium nitride. This new experimental approach for studying nuclear materials will help us to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.

  14. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H.M. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Torres, J., E-mail: njtorress@unal.edu.co [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Lopez Carreno, L.D. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., Mexico (Colombia)

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.

  15. Material properties characterization of low carbon steel using TBW and PWHT techniques in smooth-contoured and U-shaped geometries

    International Nuclear Information System (INIS)

    Aloraier, Abdulkareem S.; Joshi, Suraj; Price, John W.H.; Alawadhi, Khaled

    2013-01-01

    This paper investigates the effects of the temper bead welding (TBW) technique and post weld heat treatment (PWHT) on mechanical properties of multi-layer welding on low carbon steel specimens using Charpy V-notch impact testing and tensile testing. Several samples of two different weld geometries, viz. (i) smooth-contoured, and (ii) U-shaped were made with multiple bead layers using both TBW and PWHT techniques. Impact testing showed that at room temperature and below, TBW gave an impact toughness in the Heat Affected Zone (HAZ) better than both PWHT and the parent material. At temperatures higher than the room temperature but below 60 °C, PWHT gave better impact toughness in the HAZ. Above 60 °C, both TBW and PWHT showed impact toughness lower than that of the parent material. In tensile testing, both TBW and PWHT weld metal specimens produced acceptable results; however, TBW gave yield and tensile strengths closer to that of the actual material than PWHT. -- Highlights: • Effects of post weld heat treatment (PWHT) and temper bead welding (TBW) on properties are tested. • Charpy V-notch impact and tensile testing was performed on multi-layer welding of low carbon steel. • At room temperature and below, TBW gave better impact toughness than both PWHT and parent material. • Above room temperature but below 60 °C, PWHT gave better impact toughness than TBW. • Above 60 °C, both TBW and PWHT showed impact toughness lower than that of parent material

  16. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    International Nuclear Information System (INIS)

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  17. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana

    2010-07-01

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  18. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    Science.gov (United States)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  19. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    Science.gov (United States)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  20. A fundamental study using Monte-Carlo simulation technique on the effect on the earthquake response of subsurface layers caused by uncertainy of soil properties

    International Nuclear Information System (INIS)

    Hata, Akihito; Shiba, Yukio

    2009-01-01

    The standard for Probabilistic Safety Assessment of Nuclear Power Plant on earthquakes published by Atomic Energy Society of Japan in 2007 states that the effect of uncertainy of soil properties on the earthquake response of subsurface layers should be assessed with conducting Monte-Carlo simulations of equivalent linear analysis. This paper presents a fundamental study on the effect of uncertainty of dynamic soil properties on the earthquake response with equivalent linear approach. A series of Monte-Carlo simulations of earthquake response analysis of a simple one-dimensional soil layer model have been conducted, where uncertainty of initial shear modulus G 0 , strain dependency of G/G 0 -γ and h-γ are considered. Through a series of simulations, it is demonstrated that although the average of maximum response of the subsurface top layer increases as input earthquake motion increases, the coefficient of variance of them does not necessarily increases, and that G/G 0 -γ relationship is the most influential factor among the concerned parameters. And also, it is shown that the maximum response of ground surface plotted against the peak frequency of the frequency response function calculated with equivalent linear analysis under converged condition, distributes around the response spectrum curve of the input earthquake motion so that the maximum response can be roughly estimated from the response spectrum curve. Finally, applicability of two-point-estimate technique is examined with being compared with Monte-Carlo simulation results. (author)

  1. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  2. Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications

    Science.gov (United States)

    Ariswan; Sutrisno, H.; Prasetyawati, R.

    2017-05-01

    Thin films of SnSe and SnS semiconductors had been prepared by vacuum evaporation techniques. All prepared samples were characterized on their structure, optical, and electrical properties in order to know their application in technology. The crystal structure of SnSe and SnS was determined by X-Ray Diffraction (XRD) instrument. The morphology and chemical composition were obtained by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive of X-Ray Analysis (EDAX). The optical property such as band gap was determined by DR-UV-Vis (Diffuse Reflectance-Ultra Violet-Visible) spectroscopy, while the electrical properties were determined by measuring the conductivity by four probes method. The characterization results indicated that both SnSe and SnS thin films were polycrystalline. SnSe crystallized in an orthorhombic crystal system with the lattice parameters of a = 11.47 Å, b = 4.152 Å and c = 4.439 Å, while SnS had an orthorhombic crystal system with lattice parameters of a = 4.317 Å, b = 11.647 Å and c = 3.981 Å. Band gaps (Eg) of SnSe and SnS were 1.63 eV and 1.35 eV, respectively. Chemical compositions of both thin films were non-stoichiometric. Molar ratio of Sn : S was close to ideal which was 1 : 0.96, while molar ratio of Sn : S was 1 : 0.84. The surface morphology described the arrangement of the grains on the surface of the thin film with sizes ranging from 0.2 to 0.5 microns. Color similarity on the surface of the SEM images proved a homogenous thin layer.

  3. 77 FR 40735 - Unique Device Identification System

    Science.gov (United States)

    2012-07-10

    ... postmarket surveillance, and better security of devices through more effective detection and removal of... Drug Administration 21 CFR Parts 16, 801, 803, et al. Unique Device Identification System; Proposed..., 806, 810, 814, 820, 821, 822, and 830 [Docket No. FDA-2011-N-0090] RIN 0910-AG31 Unique Device...

  4. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  5. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  6. Gamma irradiation of Tetrapleura tetraptera fruit as a post-harvest technique and its subsequent effect on some phytochemicals, free scavenging activity and physicochemical properties

    Science.gov (United States)

    Darfour, B.; Agbenyegah, S.; Ofosu, D. O.; Okyere, A. A.; Asare, I. K.

    2014-09-01

    Herbs, spices and medicinal plants have been cherished by many ancient cultures for their use in curing common ailments and promoting good health. The dry fruit of Tetrapleura tetraptera has a pleasant aroma and hence used as a spice for seasoning in many parts of Ghana. Contamination of the fruit can occur at any stage during harvesting, drying, processing, transportation and storage. T. tetraptera is prone to microbial contamination and insect infestation resulting in quality deterioration and economic loss. The study aimed at establishing the effect of gamma irradiation as a post-harvest processing technique on T. tetraptera fruit and the subsequent effect of the gamma irradiation on some phytochemicals, free radical scavenging activity and physicochemical properties. The T. tetraptera powder was packed in polythene bags and gamma irradiated with Cobalt 60 source at 5 kGy and 10 kGy at room temperature at a dose rate of 2 kGy/h. The total phenolic content, total flavonoid and DPPH free radical scavenging activity, pH, lactic acid, vitamin C, moisture, carbohydrate, protein and trace element content of the samples were analysed. The antioxidant potential of the T. tetraptera extract was observed to be enhanced in the solvent used for the extraction after the irradiation but not the radiation dose used. Irradiation only had substantial impacts on carbohydrate and protein, Cu, Mg, and Mn. The T. tetraptera studied was safe for human consumption as far as trace metal levels are concerned. This study therefore suggest that gamma irradiation up to 10 kGy could be used as a post-harvest technique in T. tetraptera as a spice or herb.

  7. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    International Nuclear Information System (INIS)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.; Maqsood, A.

    2016-01-01

    Graphical abstract: Variation of AC conductivity (σ AC ) as a function of natural log of angular frequency (lnω) for Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr +3 doped Ni-Zn nanoferrite samples with composition Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 (x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr +3 doped Ni-Zn ferrite nanoparticles, as the concentration of Cr +3 increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ AC ) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  8. Tattoos and piercings: bodily expressions of uniqueness?

    Science.gov (United States)

    Tiggemann, Marika; Hopkins, Louise A

    2011-06-01

    The study aimed to investigate the motivations underlying the body modification practices of tattooing and piercing. There were 80 participants recruited from an Australian music store, who provided descriptions of their tattoos and piercings and completed measures of need for uniqueness, appearance investment and distinctive appearance investment. It was found that tattooed individuals scored significantly higher on need for uniqueness than non-tattooed individuals. Further, individuals with conventional ear piercings scored significantly lower on need for uniqueness than individuals with no piercings or with facial and body piercings. Neither appearance investment nor distinctive appearance investment differed significantly among tattoo or piercing status groups. Strength of identification with music was significantly correlated with number of tattoos, but not number of piercings. It was concluded that tattooing, but not body piercing, represents a bodily expression of uniqueness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Approximate Uniqueness Estimates for Singular Correlation Matrices.

    Science.gov (United States)

    Finkbeiner, C. T.; Tucker, L. R.

    1982-01-01

    The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)

  10. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides information ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  11. Quantum kinetic Heisenberg models: a unique dynamics

    International Nuclear Information System (INIS)

    Timonen, J.; Pilling, D.J.; Bullough, R.K.

    1986-01-01

    We suggest that the dynamics Glauber embodied in his kinetic Ising model can be introduced similarly and in an apparently unique way, into the quantum statistical mechanics of the quantum-integrable models like the Heisenberg, sine-Gordon and Massive Thirring models. The latter may suggest an extension of the theory to unique kinetic Ising models in two dimensions. The kinetic repulsive bose gas which is studied in detail in the steady state seems to be a solvable kinetic model. (author)

  12. Effect of Tb{sup 3+} substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ihsan, E-mail: muislampk@yahoo.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Awan, M.S. [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ahmad, Mukhtar [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ashiq, Muhammad Naeem [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Naseem, Shahzad [Centre for Solid State Physics, University of the Punjab, Lahore 54560 (Pakistan)

    2013-02-15

    M-type hexaferrites with new substitution of rare-earth element Tb{sup 3+} having nominal composition Ba{sub 0.5}Sr{sub 0.5-x}Tb{sub x}AlFe{sub 11}O{sub 19} (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) were synthesized by the sol-gel auto-combustion technique. The main aim of study is to investigate the effect of terbium (Tb{sup 3+}) ions substitution at Sr{sup 2+} site on the structural and magnetic properties. The materials were characterized by Differential Scanning Calorimetry, Thermogravimetry, Fourier Transform Infra-Red spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometery analyses. The XRD patterns confirm the formation of M-type hexaferrite phase. The crystallite size was found to be in the range of 17-45 nm which is good enough to obtain the suitable signal-to-noise ratio in the high density recording media. The magnetic properties such as saturation magnetization (M{sub s}), retentivity (M{sub r}), squareness ratio (M{sub r}/M{sub s}) and coercivity (H{sub c}) were calculated from the MH-loops. The saturation magnetization (M{sub s}) and retentivity (M{sub r}) decreased from 48.9-26.9 and 36.8-18.1 emu/g, respectively which may be due to spin canting and hence reduction in the super-exchange interactions. The enhancement of coercivity (H{sub c}) from 1825 to 4440 G may be due to higher magnetocrystalline anisotropy, which is due to the Fe{sup 2+} ions located on a 2a site. The magnetic properties such as retentivity (M{sub r}) and coercivity (H{sub c}) make the synthesized materials useful for high density recording media and permanent magnets.

  13. Preparation and electrocatalytic oxidation properties of a nickel pentacyanonitrosylferrate modified carbon composite electrode by two-step sol-gel technique: improvement of the catalytic activity

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Abdi, Kamaleddin; Khayatiyan, Gholam-Reza

    2004-01-01

    The sol-gel technique was used to construct nickel pentacyanonitrosylferrate (NiPCNF) modified composite ceramic carbon electrodes (CCEs). This involves two steps: forming a CCE containing Ni powder and then immersing the electrode into a sodium pentacyanonitrosyl-ferrate solution (electroless deposition). The cyclic voltammograms of the resulting surface modified CCE under optimum conditions show a well-defined redox couple due to the [Ni II Fe III/II (CN) 5 NO] 0/-1 system. The electrochemical properties and stability of the modified electrode were investigated by cyclic voltammetry. The apparent electron transfer rate constant (k s ) and transfer coefficient (α) were determined by cyclic voltammetry being about 1.1 s -1 and 0.55, respectively. Sulfite has been chosen as a model to elucidate the electrocatalytic ability of NiPCNF-modified CCE prepared by one- or two-step sol-gel technique. The modified electrode showed excellent electrocatalytic activity toward the SO 3 2- electro oxidation in pH range 3-9 in comparison with CCE modified by homogeneous mixture of graphite powder, Ni(NO 3 ) 2 and Na 2 [Fe(CN) 5 NO] (one-step sol-gel technique). Sulfite was determined amperometrically at the surface of this modified electrode in pH 7. Under the optimized conditions the calibration curve is linear in the concentration range 2 μM to 2.0 mM. The detection limit (signal-to-noise is 3) and sensitivity are 0.5 μM and 13.5 nA/μM. The modified carbon ceramic electrode containing nickel pentacyanonitrosylferrate shows good repeatability, short response time, t (90%) 2 [Fe(CN) 5 NO] solution. The advantages of the SO 3 2- amperometrically detector based on the nickel pentacyanonitrosylferrate-doped CCE is high sensitivity, inherent stability at wide pH range, excellent catalytic activity and less expense and simplicity of preparation. This sensor can be used as amperometric detector in chromatographic instruments

  14. Influence of substrate temperature on physical properties of (111 oriented CdIn2S4 thin films by nebulized spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    J.Raj Mohamed

    2016-06-01

    Full Text Available In this work, we present the substrate temperature influenced change in the structural, optical, morphological, and electrical conductivity properties of CdIn2S4 thin films deposited on amorphous glass substrates by nebulized spray pyrolysis (NSP technique. X-ray diffraction pattern revealed that the as-deposited CdIn2S4 thin films had a cubic structure with a preferred orientation along (111 plane. The reduced strain by increasing the substrate temperature from 200 to 350 °C increased the average crystalline size from 17 to 33 nm while the formation of secondary phases such as CdIn2O4 and In2O3 reduced it to 21 nm after the substrate temperature at 450 °C. The energy dispersive analysis by X-ray (EDAX studies confirmed the presence of Cd, In, and S. The absorption coefficient, direct band gap energy, Urbach energy, skin depth, and extinction coefficient of CdIn2S4 films were analyzed by optical absorption spectra. The better conductivity and mobility noticed at Ts = 350 °C are explained by carrier concentration and crystalline size. Better optical and electrical conductivity behavior of CdIn2S4 thin film sample suggests for effective PEC solar cell fabrication.

  15. Effect of monovalent doping on the physical properties of La0.7Sr0.3MnO3 compound synthesized using sol-gel technique

    Science.gov (United States)

    Ayadi, F.; Saadaoui, F.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Cheikhrouhou, A.; Sicard, L.; Ammar, S.

    2012-02-01

    In this work, we have studied the effect of monovalent substitution on the structural, magnetic and magnetocaloric properties of the P-doped La0.7Sr0.2M0.1MnO3 (M = Na, K) manganites synthesized by sol-gel technique. Structural investigations using X-ray diffraction show that all the elaborated compounds crystallize in the rhomboedral structure with R-3c space group. The increase in the ionic radius induces a rotation of MnO6 octahedra leading to a change in the Mn-O-Mn angles and the Mn-O distances. Magnetizations measurements were carried out using vibrating sample magnetometer operating above room temperature with magnetic applied field up to 5 tesla. All our samples exhibit paramagnetic to ferromagnetic transition with a Curie temperature above room temperature. From magnetic measurements versus magnetic applied field at several temperatures, we have determined the magnetocaloric effect using the classical thermodynamics based on Maxwell relations.

  16. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties.

    Science.gov (United States)

    Mehrabanian, Mehran; Nasr-Esfahani, Mojtaba

    2011-01-01

    Nanohydroxyapatite (n-HA)/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60%) for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 μm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.

  17. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Science.gov (United States)

    Mehrabanian, Mehran; Nasr-Esfahani, Mojtaba

    2011-01-01

    Nanohydroxyapatite (n-HA)/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60%) for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 μm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface. PMID:21904455

  18. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Directory of Open Access Journals (Sweden)

    Mehrabanian M

    2011-08-01

    Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

  19. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure.

    Science.gov (United States)

    Li, Xin; Guo, Jianbin; Dong, Renjie; Ahring, Birgitte K; Zhang, Wanqin

    2016-02-15

    Anaerobic digestate has valuable potential as organic fertilizer or soil amendment, given that it typically contains high amounts of plant nutrients, such as nitrogen, phosphate and plant hormones. In this study, ammonia stripping and vacuum evaporation were tested to compare their technical feasibilities and their effects on plant nutrient properties in the liquid fraction of digestate. Results of the batch experiments showed that the nutrient characteristics of liquid digestate, including total ammonia nitrogen (TAN), soluble P, gibberellic acid (GA), indoleacetic acid (IAA) and abscisic acid (ABA), were strongly dependent on the initial pH in both ammonia stripping and vacuum evaporation processes. A low plant nutrient concentration (TAN 137 mg · L(-1), soluble P 1.5 mg · L(-1), GA3/ABA 0.04) in the liquid digestate was achieved in the ammonia stripping process with Ca(OH)2 addition of 12 g · L(-1), whereas a high nutrient concentration (TAN 2998 mg · L(-1), soluble P 178.3 mg · L(-1), IAA 60.9 mg · L(-1) and GA3/ABA 0.4) was achieved in vacuum evaporation at a pH level of 6. According to the results, both ammonia stripping and vacuum evaporation can be used as an alternative of nutrient recovery techniques, which should be chosen based on the potential different applications of liquid digestate (e.g., soaking seed, increasing plant tolerance, and nutrients transportation). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation of thin-film (Ba(0.5),Sr(0.5))TiO3 by the laser ablation technique and electrical properties

    Science.gov (United States)

    Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.

    1994-09-01

    The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.

  1. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of FexSx nano thin films deposited by SILAR technique

    Science.gov (United States)

    Manikandan, K.; Mani, P.; Surendra Dilip, C.; Valli, S.; Fermi Hilbert Inbaraj, P.; Joseph Prince, J.

    2014-01-01

    Iron sulfide thin films (FexSx) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV-vis analysis.

  2. Electrospinning: a fascinating fiber fabrication technique.

    Science.gov (United States)

    Bhardwaj, Nandana; Kundu, Subhas C

    2010-01-01

    With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electrospun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology. (c) 2010 Elsevier Inc. All rights reserved.

  3. Chemical characterization of a unique chondrite - Allan Hills 85085

    Science.gov (United States)

    Gosselin, David C.; Laul, J. C.

    1990-01-01

    Allan Hills 85085 is a new and very important addition to the growing list of unique carbonaceous chondrites because of its unique chemical and mineralogical properties. This chemical study provides more precise data on the major, minor, and trace element characteristics of ALH85085. ALH85085 has compositional, petrological, and isotopic affinities to AL Rais and Renazzo, and to Bencubbin-Weatherford. The similarities to Al Rais and Renazzo suggest similar formation locations and thermal processing, possibly in the vicinity of CI chondrites. Petrologic, compositional and isotopic studies indicate that the components that control the abundance of the various refractory and volatile elements were not allowed to equilibrate with the nebula as conditions changed, explaining the inconsistencies in the classification of these meteorites using known taxonomic parameters.

  4. The uniqueness of stable crack growth data

    International Nuclear Information System (INIS)

    Smith, E.

    1981-01-01

    The paper addresses the uniqueness of the stable crack growth relation, with particular reference to creep crack growth and stress corrosion crack growth, where it is the pattern to use laboratory data which relates the stress intensity K to the crack growth rate dc/dt. Simple models are used to define the conditions under which the K versus dc/dt data is unique. Extensive use is made of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model, in which the yield accompanying crack growth is assumed to be confined to an infinitesimal thin strip coplanar with the growing crack. The DBCS model can be modified to give an incremental growth criterion, which is in the form of a differential equation relating the stress intensity to crack length. The conditions under which this equation gives a unique relation between stress intensity and crack length are then investigated. (orig./HP)

  5. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Ashtar, M. [Nano Scale Physics Laboratory, Department of Physics, Air University, PAF Complex E-9, Islamabad (Pakistan); Munir, A.; Anis-ur-Rehman, M. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Maqsood, A., E-mail: tpl.qau@usa.net [Nano Scale Physics Laboratory, Department of Physics, Air University, PAF Complex E-9, Islamabad (Pakistan)

    2016-07-15

    Graphical abstract: Variation of AC conductivity (σ{sub AC}) as a function of natural log of angular frequency (lnω) for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4} nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr{sup +3} doped Ni-Zn nanoferrite samples with composition Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4}(x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr{sup +3} doped Ni-Zn ferrite nanoparticles, as the concentration of Cr{sup +3} increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ{sub AC}) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  6. The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jang Hyeon; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Park, Jin Hong [Dept. of Radiation Oncology, Seoul national university Bundang hospital, Sungnam (Korea, Republic of)

    2014-12-15

    The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with TrueBeam{sup TM} STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy.

  7. Structural, Infrared and Magnetic Properties of Nanosized Ni(x)Zn1-xFe2O4 Powders Synthesized by Sol-Gel Technique.

    Science.gov (United States)

    Zhu, Xiang-Rong; Zhu, Zhi-Gang; Chen, Cheng; Shen, Hong-Lie

    2015-04-01

    Ni-Zn ferrites Ni(x)Zn1-xFe2O4 (x = 0.2, 0.4, 0.5, 0.6, 0.8) powders were synthesized by sol-gel technique. Structural, infrared and magnetic properties of samples were investigated. Spinel structural characteristics are shown by XRD spectra and the morphologies observed by atomic force microscopy demonstrate the samples are in nano-range. For all the samples, FTIR spectra exhibit obvious v1 infrared absorbing bands, in the range 500-600 cm-1, corresponding to intrinsic stretching vibrations of the metal ions at the tetrahedral site (Td), Mtetra O. Furthermore, the central position of v1 band is tending to shift to larger wave numbers with the increasing Ni contents in the samples. For the samples Ni(x)Zn1-xFe2O4 (x = 0.2, 0.4), the v2 infrared absorbing bands, in the range 450-385 cm(-1), corresponding to stretching vibrations of the metal ions at the octahedral-metal stretching (Oh), Mocta O, were also observed. However, for samples Ni(x)Zn1-xFe2O4 with higher Ni content (x = 0.5, 0.6, 0.8), the v2 infrared absorbing bands were obscure. The magnetic hysteretic loops at room temperature obtained from vibration samples magnetometer reveal the soft magnetism of the samples. The sample with lowest Ni content, Ni0.2Zn0.8Fe2O4, presents much higher saturation field than the other samples. The coercive field rises with increased Ni content, which is ascribed to the increased magnetocrystalline anisotropy constant with Ni content.

  8. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.

    Science.gov (United States)

    Esmaeilzadeh, Javad; Hesaraki, Saeed; Hadavi, Seyed Mohammad-Mehdi; Esfandeh, Masoud; Ebrahimzadeh, Mohammad Hosein

    2017-02-01

    In this study, polymer blends comprising poly(D/L) lactic acid (PDLLA) and 0-30wt% polycaprolactone (PCL) was prepared by a solvent-evaporation technique. The effect of PCL content on the dynamic-mechanical properties and tensile and flexural characteristics of the blends was evaluated. The creep and stress relaxation behaviors were also determined and using various known models such as power law, Burgers model and Weibull distribution equation. The results showed that by increasing the PCL content from 10 to 30wt%, the yield stress and flexural strength decreased from 47MPa to 26MPa and 72MPa to 29MPa respectively. In addition to tensile and flexural strength, the elastic modulus of neat PDLLA declined with increasing the PCL content, whereas the elongation or the strain percentage at the break point increased considerably. Biphasic regions were observed in the microstructures of the blends, indicating the immiscibility of PCL in PDLLA matrix. However, the PCL spherulites with an average particle diameter of 100nm to 5μm were homogeneously dispersed in PDLLA phase even at high PCL concentrations. Moreover, the microstructures of the fractured surfaces of the polymers confirmed that PDLLA with a brittle fracture behavior tends toward a soft fracture behavior when it is blended with PCL. The dynamic-mechanical tests indicated that the damping energy and dissipative ability of PDLLA improve by adding PCL. Moreover, T g of neat PDLLA by adding of 10, 20 and 30wt% decreases from 67.3 to 66.2, 65.1 and 63.5°C respectively. Increasing in the recovered viscoelastic strain due to the addition of PCL was also experienced which can be attributed to the presence of large volumetric backbone of PCL chains as well as easy movement of them in the matrix. The results of modeling studies showed a good correlation between the experimentally obtained data. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of Carbon Modification on the Morphological, Structural, and Optical Properties of Zinc Oxide Nanoparticles Synthesized by Pneumatic Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    R. Taziwa

    2017-01-01

    Full Text Available This paper reveals the influence of doping on the morphological, structural, and optical properties of zinc oxide (ZnO nanoparticles (NPs synthesized by pneumatic spray pyrolysis technique (PSP, using zinc ethoxide ZnO2CH32 as the precursor. The prepared samples were characterized by XRD, HRTEM, SEM-EDX, UV-Vis spectroscopy, and RS. RS analysis has revealed that the unmodified ZnO and carbon modified ZnO samples have characteristic Raman optic modes at 325 cm−1, 373 cm−1, and 432 cm−1 belonging to Wurtzite ZnO structure. The XRD ZnO (C:ZnO NPS have characteristic peaks of hexagonal Wurtzite ZnO structure. HRTEM analysis has revealed that the synthesized ZnO NPs have particle size range of 8.8–11.82 nm. EDX spectra of both unmodified and modified ZnO nanoparticles have revealed prominent peaks at 0.51 keV, 1.01 keV, 1.49 keV, 8.87 keV, and 9.86 keV. The occurrence of these peaks in the EDX spectra endorses the existence of Zn and O atoms in the PSP synthesized ZnO NPs. The UV-Vis spectroscopy has revealed a red shift of the absorption edge, with the increase in C dopant level. The effect of nanocrystallite size and the gradual prominence of C into ZnO matrix due to increase in C dopant level in the PSP synthesized ZnO NPs was meticulously elaborated through Raman spectroscopy analysis.

  10. Comparison of magnetoencephalography with other functional imaging techniques.

    Science.gov (United States)

    Ioannides, A A

    1991-01-01

    Recent advances in instrumentation and analysis in biomagnetism offer a unique tool for studying the spatiotemporal evolution of spontaneous brain activity as well as activity evoked by a stimulus. The overall performance characteristics of this and other techniques used to study the dynamics of brain function are compared. Particular emphasis is placed on defining the general spatiotemporal window of brain activity that each technique makes accessible. Similarities and differences associated with diverse modelling schemes for extracting source current density properties from electrographic recordings are stated.

  11. ROSAT Discovers Unique, Distant Cluster of Galaxies

    Science.gov (United States)

    1995-06-01

    Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these

  12. ARGO-YBJ: a unique device for the EAS study

    International Nuclear Information System (INIS)

    Marsella, G

    2006-01-01

    The ARGO-YBJ detector, installed at the Yangbajing Cosmic Ray Laboratory (Tibet, China), at 4300m a.s.l., is a full coverage layer of Resistive Plate Counters (RPCs) covering an area of about 5800 m 2 . The high space-time granularity, the full-coverage technique and the high altitude location will make this detector a unique device for deeply investigating a large variety of astrophysical phenomena. In this work, the capabilities of ARGO-YBJ in imaging and reconstructing in detail some of the main atmospheric shower features will be presented

  13. Review of the book: MUPO Program. Unique Minds

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez-Arias

    2017-07-01

    Full Text Available Unique Minds (Mentes Únicas and its version for teachers and counsellors, MUPO, are programs full of good ideas and tools for teachers and families. Both programs help to address learning disabilities in the natural context in which they take place and help children, families and teachers in their search for solutions based on their own resources. The programs are grounded on General Systems Theory and Multiple Intelligences Theory. They accessibly explain how our brain works and use techniques from Systemic Brief Family Therapy, such as Externalization, especially appropriate for the target ages - 8 to 12 years old, the ages when children learn to learn-.

  14. Helping Homeless People: Unique Challenges and Solutions.

    Science.gov (United States)

    Solomon, Clemmie, Ed.; Jackson-Jobe, Peggy, Ed.

    This publication is designed to provide a practical guide for gaining a detailed awareness and understanding of homelessness. After a foreword by Jesse Jackson, these chapters are included: (1) Introduction: Assessing the Unique Needs of Homeless People (Clemmie Solomon), which discusses the need for helping professionals to commit to addressing…

  15. Esperanto: A Unique Model for General Linguistics.

    Science.gov (United States)

    Dulichenko, Aleksandr D.

    1988-01-01

    Esperanto presents a unique model for linguistic research by allowing the study of language development from project to fully functioning language. Esperanto provides insight into the growth of polysemy and redundancy, as well as into language universals and the phenomenon of social control. (Author/CB)

  16. On uniqueness in evolution quasivariational inequalities

    Czech Academy of Sciences Publication Activity Database

    Brokate, M.; Krejčí, Pavel; Schnabel, H.

    2004-01-01

    Roč. 11, č. 1 (2004), s. 111-130 ISSN 0944-6532 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution quasivariational inequality * uniqueness * sweeping process Subject RIV: BA - General Mathematics Impact factor: 0.425, year: 2004 http://www.heldermann-verlag.de/jca/jca11/jca0386.pdf

  17. Marketing the Uniqueness of Small Towns. Revised.

    Science.gov (United States)

    Dunn, Douglas; Hogg, David H.

    The key to marketing a town is determining and promoting the town's "differential advantage" or uniqueness that would make people want to visit or live there. Exercises to help communities gain important insights into the town's competitive edge include a brainstorming session with knowledgeable community members, a visitor…

  18. The end of the unique myocardial band

    DEFF Research Database (Denmark)

    MacIver, David H; Partridge, John B; Agger, Peter

    2018-01-01

    Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour...

  19. Unraveling the evolution of uniquely human cognition.

    Science.gov (United States)

    MacLean, Evan L

    2016-06-07

    A satisfactory account of human cognitive evolution will explain not only the psychological mechanisms that make our species unique, but also how, when, and why these traits evolved. To date, researchers have made substantial progress toward defining uniquely human aspects of cognition, but considerably less effort has been devoted to questions about the evolutionary processes through which these traits have arisen. In this article, I aim to link these complementary aims by synthesizing recent advances in our understanding of what makes human cognition unique, with theory and data regarding the processes of cognitive evolution. I review evidence that uniquely human cognition depends on synergism between both representational and motivational factors and is unlikely to be accounted for by changes to any singular cognitive system. I argue that, whereas no nonhuman animal possesses the full constellation of traits that define the human mind, homologies and analogies of critical aspects of human psychology can be found in diverse nonhuman taxa. I suggest that phylogenetic approaches to the study of animal cognition-which can address questions about the selective pressures and proximate mechanisms driving cognitive change-have the potential to yield important insights regarding the processes through which the human cognitive phenotype evolved.

  20. Is There a Unique Black Personality?

    Science.gov (United States)

    Mosby, Doris P.

    This article reviews research from the 1940's, 1950's and 1960's on the effects of discrimination on blacks. Data from these studies indicate that adverse cultural restrictions have fostered a unique and distinctive black personality. Among traits identified are: a negative or inferior self-image, pessimism about the future, attachment to the…

  1. Using Quantum Confinement to Uniquely Identify Devices

    Science.gov (United States)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  2. Synthetic Biology of Cyanobacteria: Unique Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Bertram M Berla

    2013-08-01

    Full Text Available Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria’s potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as ‘chassis’ strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a ‘green E. coli’. In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints.

  3. Tegresstrade mark Urethral Implant Phase III Clinical Experience and Product Uniqueness.

    Science.gov (United States)

    Dmochowski, Roger R

    2005-01-01

    Advances in materials technology, coupled with a heightened understanding of wound healing and tissue-materials interactions in the lower urinary tract, have led to the development of a variety of new urethral bulking agents that are expected to be available in the near future. Experience with such bulking agents continues to grow and study results are disseminated as more clinical trials are initiated and completed. The intention of this report is to review the characteristics and initial clinical results for one of these new agents: Tegresstrade mark Urethral Implant (C. R. Bard, Inc., Murray Hill, NJ). This material, with unique phase-change properties upon exposure to body temperature fluids, offers ease of injection and requires less volume for clinical effect than bovine collagen. Additionally, Tegress Urethral Implant performance in clinical trials has suggested improved durability and correspondingly higher continence and improvement rates versus bovine collagen. As these materials evolve, an understanding of preferential implant techniques is being gained also. Delivery method and implant site may prove to substantially alter the biologic activity of these compounds. As outlined in this review, experience with Tegress Implant resulted in changes in delivery technique that translated into improved materials and tissue interaction.

  4. A unique instrumental malfunction during robotic prostatectomy.

    Science.gov (United States)

    Park, Sung Yul; Ahn, Jenny Jin-Kyung; Jeong, Wooju; Ham, Won Sik; Rha, Koon Ho

    2010-01-01

    Over the past decade, the introduction of robotics in the field of medicine has provided a new approach to patients requiring surgery, and both its advantages and disadvantages are currently under study by many groups worldwide. The use of robotics has especially been considered by the urological community as a treatment option in radical prostatectomy. The current case report is one in which the da Vinci Surgical System, with fourth arm use was employed in radical prostatectomy. This case presents a unique occurrence in which a bolt of the Prograsper forcep became loose during an operation, leading to diminished device functionality and later impedance of its removal. A circumstance such as this has not previously been reported, so we introduce for other robotic surgeons our unique instrumental malfunction case during a robotic prostatectomy.

  5. Consciousness: a unique way of processing information.

    Science.gov (United States)

    Marchetti, Giorgio

    2018-02-08

    In this article, I argue that consciousness is a unique way of processing information, in that: it produces information, rather than purely transmitting it; the information it produces is meaningful for us; the meaning it has is always individuated. This uniqueness allows us to process information on the basis of our personal needs and ever-changing interactions with the environment, and consequently to act autonomously. Three main basic cognitive processes contribute to realize this unique way of information processing: the self, attention and working memory. The self, which is primarily expressed via the central and peripheral nervous systems, maps our body, the environment, and our relations with the environment. It is the primary means by which the complexity inherent to our composite structure is reduced into the "single voice" of a unique individual. It provides a reference system that (albeit evolving) is sufficiently stable to define the variations that will be used as the raw material for the construction of conscious information. Attention allows for the selection of those variations in the state of the self that are most relevant in the given situation. Attention originates and is deployed from a single locus inside our body, which represents the center of the self, around which all our conscious experiences are organized. Whatever is focused by attention appears in our consciousness as possessing a spatial quality defined by this center and the direction toward which attention is focused. In addition, attention determines two other features of conscious experience: periodicity and phenomenal quality. Self and attention are necessary but not sufficient for conscious information to be produced. Complex forms of conscious experiences, such as the various modes of givenness of conscious experience and the stream of consciousness, need a working memory mechanism to assemble the basic pieces of information selected by attention.

  6. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Paul; Scarborough, Rebecca [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)

    2013-07-01

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  7. Unique sodium phosphosilicate glasses designed through extended topological constraint theory.

    Science.gov (United States)

    Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou

    2014-05-15

    Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.

  8. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    International Nuclear Information System (INIS)

    Jung, Paul; Scarborough, Rebecca

    2013-01-01

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  9. Influence of substrate temperature on structural, morphological, optical and electrical properties of Bi-doped MnInS4 thin films prepared by nebuliser spray pyrolysis technique

    Science.gov (United States)

    Kennedy, A.; Senthil Kumar, V.; Pradeev Raj, K.

    2017-11-01

    Bismuth (Bi)-doped manganese indium sulphide (MnInS4) thin films were deposited on heated glass substrates using an aqueous solution of MnCl2, InCl3, (NH2)2CS and BiCl3 by the common nebuliser spray pyrolysis technique. The thin films were grown at various substrate temperatures ranging from 250 to 400 °C with a constant spray time (5 min). The present work aims to study the effect of substrate temperature on the structural, optical, photoluminescence and electrical properties of the grown thin films using various techniques like X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectrum (EDS), UV-Vis absorption spectroscopy, photoluminescence spectra (PL) and four probe methods. The XRD pattern reveals that the Bi-doped MnInS4 thin films were polycrystalline in nature with a cubic spinel structure whose particle size varies between 8.2 and 23.5 nm. From the FE-SEM micrographs, due to the change in the substrate temperature, shapes such as spherical, needle-shaped and T-shaped grains were observed throughout the surface of the films. The energy dispersive analysis spectrum (EDS) shows the presence of Mn, In, S and Bi in the film grown at 250 °C. It is interesting to note that the structural homogeneity and crystallinity of the film is improved due to the decrease in the absorption coefficient (α) and extinction coefficient (K) with an increase in substrate temperature. Also, with an increase in the substrate temperature, the calculated band gap energy was found to decrease from 1.87 to 1.59 eV. From the PL spectra, several intense peaks corresponding to blue, green, yellow, orange and red band emissions were observed in the wavelength region of 350-650 nm. Moreover as the intensity of the peak increases with increase in the substrate temperature, the crystallinity of the material of the film greatly improves concomitant with minimum strain and defect states. From the electrical studies, the electrical conductivity

  10. Experimental techniques; Techniques experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Chomaz, P. [GANIL CNRS/IN2P3, CEA/DSM, 14 - Caen (France)

    2007-07-01

    This lecture presents the experimental techniques, developed in the last 10 or 15 years, in order to perform a new class of experiments with exotic nuclei, where the reactions induced by these nuclei allow to get information on their structure. A brief review of the secondary beams production methods will be given, with some examples of facilities in operation or under project. The important developments performed recently on cryogenic targets will be presented. The different detection systems will be reviewed, both the beam detectors before the targets, and the many kind of detectors necessary to detect all outgoing particles after the reaction: magnetic spectrometer for the heavy fragment, detection systems for the target recoil nucleus, {gamma} detectors. Finally, several typical examples of experiments will be detailed, in order to illustrate the use of each detector either alone, or in coincidence with others. (author)

  11. Semiconductor Modeling Techniques

    CERN Document Server

    Xavier, Marie

    2012-01-01

    This book describes the key theoretical techniques for semiconductor research to quantitatively calculate and simulate the properties. It presents particular techniques to study novel semiconductor materials, such as 2D heterostructures, quantum wires, quantum dots and nitrogen containing III-V alloys. The book is aimed primarily at newcomers working in the field of semiconductor physics to give guidance in theory and experiment. The theoretical techniques for electronic and optoelectronic devices are explained in detail.

  12. Unique double recurrence of cerebral arteriovenous malformation.

    Science.gov (United States)

    Nagm, Alhusain; Horiuchi, Tetsuyoshi; Ichinose, Shunsuke; Hongo, Kazuhiro

    2015-09-01

    Surgically treated patients with arteriovenous malformations (AVMs) are considered cured when the postoperative angiogram proves complete resection. However, despite no residual nidus or early draining vein on postoperative angiogram, rare instances of AVM recurrence have been reported in adults. In this paper, the authors present a case of a 24-year-old woman with asymptomatic double recurrence of her cerebral AVM after angiographically proven complete resection. To the authors' knowledge, this patient represents the first case with double de novo asymptomatic recurrence of Spetzler-Martin grade I AVM. Also, she represents the first case with unique AVM criteria in each recurrence.

  13. Unique phenotypic expression of glucosephosphate isomerase deficiency.

    Science.gov (United States)

    Paglia, D E; Paredes, R; Valentine, W N; Dorantes, S; Konrad, P N

    1975-01-01

    Studies of a Mexican kindred present evidence for a unique phenotype of erythrocyte glucosephosphate isomerase, GPI Valle Hermoso. The proband was apparently the homozygous recipient of a mutant autosomal allele governing production of an isozyme characterized by decreased activity, marked thermal instability, normal kinetics and pH optimum, and normal starch gel electrophoretic patterns. Unlike previously known cases, leukocyte and plasma GPI activities were unimpaired. This suggested that the structural alteration primarily induced enzyme instability without drastically curtailing catalytic effectiveness, thereby allowing compensation by cells capable of continued protein synthesis. Age-related losses of GPI, however, were not evident by density-gradient fractionation of affected erythrocytes.

  14. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  15. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Heusler Markus

    1998-01-01

    Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

  16. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Piotr T. Chruściel

    2012-05-01

    Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  17. Physics properties of TiO{sub 2} films produced by dip-coating technique; Propriedades fisicas de filmes de TiO{sub 2} produzidos pela tecnica de dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Tabarelli, A.; Bergmann, C.P., E-mail: acteloeken@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS),RS (Brazil). Laboratorio de Materiais Ceramicos; Regonini, D.; Graule, T.; Clemens, F. [Swiss Federal Laboratories for Materials Testing and Research, Laboratory of High Performance Ceramics (Switzerland)

    2014-07-01

    The use of titanium dioxide (TiO{sub 2}) as a photocatalyst to produce hydrogen has been of great interest because of their chemical stability, low cost and non-toxicity. TiO{sub 2} occurs in three different crystal forms: rutile, anatase and brokita. Among these, the anatase phase generally exhibits the best photocatalytic behavior, while the rutile phase is the most stable. Among the various techniques of deposition, dip-coating technique produces films with good photocatalytic properties, using simple and inexpensive equipment. In this work TiO{sub 2} films were obtained by dip-coating. The films were characterized using X-ray diffraction, scanning electron microscopy, profilometry, contact angle measurements and photocurrent. The microstructure and physical properties were evaluated in relation of the temperature and the addition of an additive. (author)

  18. Unmanned Aerial Vehicles unique cost estimating requirements

    Science.gov (United States)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  19. Young children's preference for unique owned objects.

    Science.gov (United States)

    Gelman, Susan A; Davidson, Natalie S

    2016-10-01

    An important aspect of human thought is the value we place on unique individuals. Adults place higher value on authentic works of art than exact replicas, and young children at times value their original possessions over exact duplicates. What is the scope of this preference in early childhood, and when do children understand its subjective nature? On a series of trials, we asked three-year-olds (N=36) to choose between two toys for either themselves or the researcher: an old (visibly used) toy vs. a new (more attractive) toy matched in type and appearance (e.g., old vs. brand-new blanket). Focal pairs contrasted the child's own toy with a matched new object; Control pairs contrasted toys the child had never seen before. Children preferred the old toys for Focal pairs only, and treated their own preferences as not shared by the researcher. By 3years of age, young children place special value on unique individuals, and understand the subjective nature of that value. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. ENDF Cross Sections are not Uniquely Defined

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-06-11

    Most evaluated data that is coded into the ENDF format [1] does not uniquely define cross sections, because the evaluator defined total is not equal to the sum of evaluator defined partial cross sections, i.e., the total is not equal to elastic plus capture, etc. So we have always had the question: What is the correct total cross section? This is not a new problem; it has existed since the very beginning of ENDF over forty years ago. It is a problem that is periodically discussed and apparently handled, only to have it pop up again every ten years or so, as we have the next generation of ENDF format users who are not aware of the problem. See the Appendices for a summary of the differences that exist today for the ENDF/B-VII.0 (Appendix C), JEFF- 3.1(Appendix D), JENDL-3.3 (Appendix E), and CENDL-3.1 (Appendix F) data libraries. For use in our application we need consistent, unique data. To accomplish this for decades we [2, 3] have been ignoring the evaluator defined total, and re-defining it as equal to the sum of its evaluator defined parts. This has never been completely satisfactory to us, because we have been doing this without consulting evaluators, or obtaining their approval, so that the data we actually use in our applications may or may not be what the evaluators intended.

  1. Event segmentation ability uniquely predicts event memory.

    Science.gov (United States)

    Sargent, Jesse Q; Zacks, Jeffrey M; Hambrick, David Z; Zacks, Rose T; Kurby, Christopher A; Bailey, Heather R; Eisenberg, Michelle L; Beck, Taylor M

    2013-11-01

    Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Event Segmentation Ability Uniquely Predicts Event Memory

    Science.gov (United States)

    Sargent, Jesse Q.; Zacks, Jeffrey M.; Hambrick, David Z.; Zacks, Rose T.; Kurby, Christopher A.; Bailey, Heather R.; Eisenberg, Michelle L.; Beck, Taylor M.

    2013-01-01

    Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79 years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. PMID:23942350

  3. Ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China.

    Science.gov (United States)

    Wang, Mei; Wang, Hongxia; Zhao, Namula

    2015-02-01

    To explore the unique ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China. Based on the natural life concept of "integration of universe and man", osteopathy in traditional Mongolian medicine in China uses the modern principles and methods of physiology, psychology, and biomechanics. Against this background, we explored the unique ideas, properties, and stan- dards of fracture repositioning in traditional Mongolian medicine. Fracture treatment with osteopathy in traditional Mongolian medicine in China is based on (a) the ideas of natural, sealed, self and dynamic repositioning of fractures; (b) the properties of structural continuity and functional completeness; (c) the standards of "integration of movement and stillness" and "force to force". The unique ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China have resulted in the widespread use of such techniques and represents the future direction of the development of fracture repositioning.

  4. Study of the dynamic and magnetic properties of solids using inelastic scattering and polarized neutron techniques. Part of a coordinated programme on the use of neutron scattering techniques in the study of solids

    International Nuclear Information System (INIS)

    Iyengar, P.

    1977-12-01

    Magnetic moment density distributions of several cubic spinel ferrites were obtained by using the neutron diffraction technique. The investigated materials were magnetite, MnFe 2 O 4 , MnAlGe, and Cu 2 MnAl. Information about the static and time-averaged behaviour of the magnetic electrons was deduced. The diffuse scattering technique with polarized neutrons which permits to isolate the magnon-scattering profile from other neutron profiles, was utilized to explore the acoustic magnon branches in ferro and ferrimagnetic materials such as MnFe 2 O 4 . The lattice and molecular dynamics has been studied in a number of condensed systems. Librational motions of water molecules in crystal hydrates were determined by the technique of polarization dependence of incoherent scattering cross section. Librations of amino and methyl groups in amino acids have been studied. Mixed salts of various ammonium and potassium compounds were investigated with a view to elucidate the nature of potential function and reorientational motions of reorienting ions

  5. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures

    Directory of Open Access Journals (Sweden)

    Levine R Paul

    2005-04-01

    Full Text Available Abstract Background Genetic differences between yeast strains used in wine-making may account for some of the variation seen in their fermentation properties and may also produce differing sensory characteristics in the final wine product itself. To investigate this, we have determined genomic differences among several Saccharomyces cerevisiae wine strains by using a "microarray karyotyping" (also known as "array-CGH" or "aCGH" technique. Results We have studied four commonly used commercial wine yeast strains, assaying three independent isolates from each strain. All four wine strains showed common differences with respect to the laboratory S. cerevisiae strain S288C, some of which may be specific to commercial wine yeasts. We observed very little intra-strain variation; i.e., the genomic karyotypes of different commercial isolates of the same strain looked very similar, although an exception to this was seen among the Montrachet isolates. A moderate amount of inter-strain genomic variation between the four wine strains was observed, mostly in the form of depletions or amplifications of single genes; these differences allowed unique identification of each strain. Many of the inter-strain differences appear to be in transporter genes, especially hexose transporters (HXT genes, metal ion sensors/transporters (CUP1, ZRT1, ENA genes, members of the major facilitator superfamily, and in genes involved in drug response (PDR3, SNQ1, QDR1, RDS1, AYT1, YAR068W. We therefore used halo assays to investigate the response of these strains to three different fungicidal drugs (cycloheximide, clotrimazole, sulfomethuron methyl. Strains with fewer copies of the CUP1 loci showed hypersensitivity to sulfomethuron methyl. Conclusion Microarray karyotyping is a useful tool for analyzing the genome structures of wine yeasts. Despite only small to moderate variations in gene copy numbers between different wine yeast strains and within different isolates of a given

  6. The core and unique proteins of haloarchaea

    Directory of Open Access Journals (Sweden)

    Capes Melinda D

    2012-01-01

    Full Text Available Abstract Background Since the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity, desiccation, and high solar radiation. However, few previous attempts have been made to identify novel genes that would permit survival in such extreme conditions. Results With the recent release of several new complete haloarchaeal genome sequences, we have conducted a comprehensive comparative genomic analysis focusing on the identification of unique haloarchaeal conserved proteins that likely play key roles in environmental adaptation. Using bioinformatic methods, we have clustered 31,312 predicted proteins from nine haloarchaeal genomes into 4,455 haloarchaeal orthologous groups (HOGs. We assigned likely functions by association with established COG and KOG databases in NCBI. After identifying homologs in four additional haloarchaeal genomes, we determined that there were 784 core haloarchaeal protein clusters (cHOGs, of which 83 clusters were found primarily in haloarchaea. Further analysis found that 55 clusters were truly unique (tucHOGs to haloarchaea and qualify as signature proteins while 28 were nearly unique (nucHOGs, the vast majority of which were coded for on the haloarchaeal chromosomes. Of the signature proteins, only one example with any predicted function, Ral, involved in desiccation/radiation tolerance in Halobacterium sp. NRC-1, was identified. Among the core clusters, 33% was predicted to function in metabolism, 25% in information transfer and storage, 10% in cell processes and signaling, and 22% belong to poorly characterized or general function groups. Conclusion Our studies have established conserved groups of nearly 800 protein clusters present in all

  7. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    Science.gov (United States)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  8. Uniqueness and Tradition, according to Patek Philippe

    Directory of Open Access Journals (Sweden)

    Costin Popescu

    2014-11-01

    Full Text Available Products tend to become objects of psycho-affective investments, more than instruments with practical-functional duties. Watches form a product category where this evolution is manifest. The biggest watch manufacturers sell subjective time, meant to give (more spiritual consistency to those who buy and use them. The advertisements of a campaign carried out in the 1990s by Patek Philippe, producer of luxury watches, convey elitist values: uniqueness, tradition. The requirements for the integration of such values claim a high complexity of the advertisements; the headlines, for example, ask their addressees to redefine concepts (tradition; the body texts use argumentative layers; the images present characters whose hands form expressive configurations, etc. Such efforts to elaborate commercial messages prove the symbolic ambitions of advertising, one of the most prominent factors to mould meaning in the social life.

  9. 2XIIB vacuum vessel: a unique design

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Calderon, M.O.

    1975-01-01

    The 2XIIB mirror confinement experiment makes unique demands on its vacuum system. The confinement coil set encloses a cavity whose surface is comprised of both simple and compound curves. Within this cavity and at the core of the machine is the operating vacuum which is on the order of 10 -9 Torr. The vacuum container fits inside the cavity, presenting an inside surface suitable for titanium getter pumping and a means of removing the heat load imposed by incandescent sublimator wires. In addition, the cavity is constructed of nonmagnetic and nonconducting materials (nonmetals) to avoid distortion of the pulsed confinement field. It is also isolated from mechanical shocks induced in the machine's main structure when the coils are pulsed. This paper describes the design, construction, and operation of the 2XIIB high-vacuum vessel that has been performing successfully since early 1974

  10. Is physical space unique or optional

    International Nuclear Information System (INIS)

    Ekstein, H.; Centre National de la Recherche Scientifique, 13 - Marseille

    1975-02-01

    There are two concepts of the physical space-time. One, S(F), is that of a fixed arena in which events take place. The other S(D), is that of a space-time shaped by events. The second depends on the state (initial conditions) or on the external field, the first does not. The main assertions of the present paper are: 1) the fixed space-time S(F) is neither incompatibles with nor made superfluous, by Einstein's theory. S(F) is experimentally explorable, unique, and probably identical with Minkowski space M. 2) The dynamical space S(D) is largely optional. It can be chosen to be M, but the natural choice is Einstein's pseudo-Riemanian manifold [fr

  11. The unique ethics of sports medicine.

    Science.gov (United States)

    Johnson, Rob

    2004-04-01

    The ethical code by which physicians traditionally conduct themselves is based on the relationship between the physician and the patient: both work toward the goal of improving or maintaining health. Constraints on this relationship may be behaviors of patient choice (tobacco use, excessive alcohol use, sedentary behavior, and so on). The athlete-physician relationship is ethically different. Influences such as the physician's employer, the athlete's desire to play with pain and injury, and the economic consequences of playing or not complicate medical decisions. This perspective suggests something different and even unique about the ethics of the sports medicine practitioner. This article explores the differences fostering the ethical tight ropes that sports physicians walk in their sports medicine practices.

  12. Mushrooms—Biologically Distinct and Nutritionally Unique

    Science.gov (United States)

    Feeney, Mary Jo; Miller, Amy Myrdal; Roupas, Peter

    2014-01-01

    Mushrooms are fungi, biologically distinct from plant- and animal-derived foods (fruits, vegetables, grains, dairy, protein [meat, fish, poultry, legumes, nuts, and seeds]) that comprise the US Department of Agriculture food patterns operationalized by consumer-focused MyPlate messages. Although mushrooms provide nutrients found in these food groups, they also have a unique nutrient profile. Classified into food grouping systems by their use as a vegetable, mushrooms’ increasing use in main entrées in plant-based diets is growing, supporting consumers’ efforts to follow dietary guidance recommendations. Mushrooms’ nutrient and culinary characteristics suggest it may be time to reevaluate food groupings and health benefits in the context of 3 separate food kingdoms: plants/botany, animals/zoology, and fungi/mycology. PMID:25435595

  13. Unique computer system for safeguards use

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Pratt, J.C.

    1981-01-01

    Microprocessors have been used to implement specialized scientific data processing systems since 1976. One such system, the LeCroy 3500, is presently being used by the Detection and Verification Group of the Energy Division at Los Alamos National Laboratory for a large variety of tasks involving measurement of various nuclear parameters associated with radioactive materials. The system is unique because it can do not only sophisticated pulse height and multi-scale analyses but also other analyses that are limited only by the availability fo CAMAC modules that would acquire data from exotic experiments. The system is also field portable which extends the range of experiments that it can control. Four applications of this system are described in this paper: (1) plutonium storage vault monitoring, (2) coded aperture image reconstruction, (3) spatial distribution of gamma radiation, and (4) nuclear waste management. 7 figures

  14. ARAC: A unique command and control resource

    International Nuclear Information System (INIS)

    Bradley, M.M.; Baskett, R.L.; Ellis, J.S.

    1996-04-01

    The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) is a centralized federal facility designed to provide real-time, world-wide support to military and civilian command and control centers by predicting the impacts of inadvertent or intentional releases of nuclear, biological, or chemical materials into the atmosphere. ARAC is a complete response system consisting of highly trained and experienced personnel, continually updated computer models, redundant data collection systems, and centralized and remote computer systems. With over 20 years of experience responding to domestic and international incidents, strong linkages with the Department of Defense, and the ability to conduct classified operations, ARAC is a unique command and control resource

  15. Unique benefits of nanotechnology to drug delivery and diagnostics.

    Science.gov (United States)

    McNeil, Scott E

    2011-01-01

    Nanotechnology offers many potential benefits to medical research by making pharmaceuticals more efficacious and by decreasing their adverse side-effects. Preclinical characterization of nanoparticles intended for medical applications is complicated--due to the variety of materials used, their unique surface properties and multifunctional nature. This chapter serves as an introduction to the volume, giving a broad overview of applications of nanotechnology to medicine, and describes some of the beneficial aspects of nanotechnology-based drug delivery. We define nanotechnology and provide brief descriptions of the major classes of nanomaterials used for medical applications. The following two chapters discuss scientific and regulatory hurdles involved in the use of nanotechnology in medicine. The remaining bulk of the volume provides the reader with protocols that have been tested against clinically relevant nanoparticles and describes some of the nuances of nanoparticle types and necessary controls.

  16. Renormalization Group in the uniqueness region weak Gibbsianity and convergence.

    CERN Document Server

    Bertini, L; Olivieri, E

    2004-01-01

    We analyze the block averaging transformation applied to lattice gas models with short range interaction in the uniqueness region below the critical temperature. %We discuss the %Gibbs property of the renormalized measure and the convergence of %renormalized potential under iteration of the map. We prove weak Gibbsianity of the renormalized measure and convergence of the renormalized potential in a weak sense. Since we are arbitrarily close to the coexistence region we have a diverging characteristic length of the system: the correlation length or the critical length for metastability, or both. Thus, to perturbatively treat the problem we have to use a scale--adapted expansion. Moreover, such a model below the critical temperature resembles a disordered system in presence of Griffiths' singularity. Then the cluster expansion that we use must be graded with its minimal scale length diverging when the coexistence line is approached.

  17. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction

    Energy Technology Data Exchange (ETDEWEB)

    Li, M G; Chen, X B [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 (Canada); Tian, X Y, E-mail: mil715@mail.usask.c [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 (Canada)

    2009-09-15

    Artificial scaffolds play vital roles in tissue engineering as they provide a supportive environment for cell attachment, proliferation and differentiation during tissue formation. Fabrication of tissue scaffolds is thus of fundamental importance for tissue engineering. Of the variety of scaffold fabrication techniques available, rapid prototyping (RP) methods have attracted a great deal of attention in recent years. This method can improve conventional scaffold fabrication by controlling scaffold microstructure, incorporating cells into scaffolds and regulating cell distribution. All of these contribute towards the ultimate goal of tissue engineering: functional tissues or organs. Dispensing is typically used in different RP techniques to implement the layer-by-layer fabrication process. This article reviews RP methods in tissue scaffold fabrication, with emphasis on dispensing-based techniques, and analyzes the effects of different process factors on fabrication performance, including flow rate, pore size and porosity, and mechanical cell damage that can occur in the bio-manufacturing process. (topical review)

  18. The cost of uniqueness in groundwater model calibration

    Science.gov (United States)

    Moore, Catherine; Doherty, John

    2006-04-01

    Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The "cost of uniqueness" is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, in turn, can lead to erroneous predictions made by a model that is ostensibly "well calibrated". Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post

  19. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  20. Unique Structural Features Facilitate Lizard Tail Autotomy

    DEFF Research Database (Denmark)

    Sanggaard, Kristian Wejse; Danielsen, C. C.; Wogensen, L.

    2012-01-01

    that tail shedding by the Tokay gecko (Gekko gecko) and the associated extracellular matrix (ECM) rupture were independent of proteolysis. Instead, lizard caudal autotomy relied on biological adhesion facilitated by surface microstructures. Results based on bio-imaging techniques demonstrated that the tail...... of Gekko gecko was pre-severed at distinct sites and that its structural integrity depended on the adhesion between these segments....