WorldWideScience

Sample records for techniques resonance ionization

  1. Resonance ionization spectroscopy 1990

    International Nuclear Information System (INIS)

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  2. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  3. The Application of Resonance-Enhanced Multiphoton Ionization Technique in Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adan Li

    2014-01-01

    Full Text Available Gas chromatography resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (GC/REMPI-TOFMS using a nanosecond laser has been applied to analyze the 16 polycyclic aromatic hydrocarbons (PAHs. The excited-state lifetime, absorption characters, and energy of electronic states of the 16 PAHs were investigated to optimize the ionization yield. A river water sample pretreated by means of solid phase extraction was analyzed to evaluate the performance of the analytical instrument. The results suggested that REMPI is superior to electron impact ionization method for soft ionization and suppresses the background signal due to aliphatic hydrocarbons. Thus, GC/REMPI-TOFMS is a more reliable method for the determination of PAHs present in the environment.

  4. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  5. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Cruz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the sample allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studied. Special care has been dedicated to the influence of the presence of a 13C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used is an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer. (Author) 98 refs

  6. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Luz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the samples allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studies. special care has been dedicated to the influence of the presence of a ''13 C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used as an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer

  7. Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n'93mNb Reaction

    Directory of Open Access Journals (Sweden)

    Tomita Hideki

    2016-01-01

    Full Text Available We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrow-band and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate.

  8. Atomic and molecular resonance ionization

    International Nuclear Information System (INIS)

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  9. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  10. Trends in resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig

  11. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  12. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  13. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  14. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  15. Conceptual basis of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references

  16. Progress in zirconium resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Page, R.H.; Dropinski, S.C.; Worden, E.F.; Stockdale, J.A.D.

    1993-01-01

    The authors have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. The ground-level (first-step) transitions were chosen on the basis of demonstrated 91 Zr selectivity. Lifetimes of even-parity levels around 36,000 cm -1 , measured with the delayed-photoionization technique, range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10 -17 cm 2 ; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10 -15 cm 2 . Portions of Rydberg series converging to the 315 and 763 cm -1 levels of Zr + were identified. Clumps of autoionizing levels are thought to be due to Rydberg-valence mixing

  17. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  18. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  19. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  20. Historical survey of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures

  1. Collinear resonance ionization spectroscopy of radium ions

    CERN Multimedia

    We propose to study the neutron-deficient radium isotopes with high-resolution collinear resonance ionization spectroscopy. Probing the hyperfine structure of the $7{s}\\,^2\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{1/2}$ and $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transitions in Ra II will provide atomic-structure measurements that have not been achieved for $^{{A}<208}$Ra. Measurement of the $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transition in $^{{A}<214}$Ra will allow the spectroscopic quadrupole moments to be directly measured for the first time. In addition, the technique will allow tentative spin assignments to be confirmed and the magnetic dipole moments measured for $^{\\textit{A}<208}$Ra. Measurement of the hyperfine structure (in particular the isotope shifts) of the neutron-deficient radium will provide information to further constrain the nuclear models away from the N=126 shell closure.

  2. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  3. Atomic resonances above the total ionization energy

    International Nuclear Information System (INIS)

    Doolen, G.

    1975-01-01

    A rigorous result obtained using the theory associated with dilatation analytic potentials is that by performing a complex coordinate rotation, r/subj/ → r/subj/e/subi//sup theta/, on a Hamiltonian whose potential involves only pairwise Coulombic interactions, one can show that when theta = π/2, no complex eigenvalues (resonances) appear whose energies have a real part greater than the total ionization energy of the atomic system. This appears to conflict with experimental results of Walton, Peart, and Dolder, who find resonance behavior above the total ionization energy of the H -- system and also the theoretical stabilization results of Taylor and Thomas for the same system. A possible resolution of this apparent conflict is discussed and a calculation to check its validity is proposed

  4. Analysis of sample composition using resonant ionization and time-of-flight techniques; Analisis de composicion de muestras mediante ionizacion resonante y tecnicas de tiempo de vuelo

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, A de la; Ortiz, M; Campos, J

    1995-07-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the sample allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studied. Special care has been dedicated to the influence of the presence of a 13C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used is an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer. (Author) 98 refs.

  5. Indigenously built resonance ionization mass spectrometer

    International Nuclear Information System (INIS)

    Razvi, M.A.N.; Jayasekharan, T.; Thankarajan, K.; Guhagarkar, M.B.; Dixit, M.N.; Bhale, G.L.

    2000-04-01

    Design, fabrication and performance testing of an indigenously built Resonance Ionization Mass Spectrometer (RIMS) is presented in this report. The instrument is totally indigenous, but for the laser components consisting of the excimer laser and tunable dye lasers. Constructional details of atomic beam source and linear time-of-flight mass spectrometer are included. Finally, commissioning and performance testing of the instrument is described. Mass resolving power of 400 and a detection limit of 100 atoms has been achieved using this RIMS set-up. (author)

  6. Applications of resonance ionization spectroscopy in neutron dosimetry

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Hurst, G.S.

    1982-01-01

    Resonance Ionization Spectroscopy (RIS) is a new analytical technique which is orders of magnitude more sensitive than previous methods of atomic analysis. In this method, lasers are used to selectively excite specific electronic transitions in the element being analyzed. A second laser photon can then ionize the excited atoms. Commercial lasers have sufficient intensity to assure that every atom located in the central portion of the laser beam will be ionized, and therefore can be detected. In this paper the concept of a xenon-containing matrix (XCM) which would release xenon atoms when exposed to neutrons is explored. Accumulated xenon would be measured using RIS to determine total dose. The total dosimeter would consist of an XCM, a radiator, and an encapsulation around both to contain released xenon atoms

  7. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81 Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  8. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Koehler, S.; Albus, F.; Dibenberger, R.; Erdmann, N.; Funk, H.; Hasse, H.; Herrmann, G.; Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G.; Rao, P.M.; Riegel, J.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP Am =5.9738(2) and IP Cm =5.9913(8) eV, respectively, using only 10 12 atoms of 243 Am and 248 Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP T H =6.3067(2), IP N P =6.2655(2), and IP Pu =6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. copyright American Institute of Physics 1995

  9. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  10. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  11. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-01-01

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  12. Barium Tagging from nEXO Using Resonance Ionization Spectroscopy

    Science.gov (United States)

    Twelker, K.; Kravitz, S.

    nEXO is a 5-ton liquid enriched-xenon time projection chamber (TPC) to search for neutrinoless double-beta decay, designed to have the sensitivity to completely probe the inverted mass hierarchy of Majorana neutrinos. The detector will accommodate-as a background reduction technique-a system to recover and identify the barium decay product. This upgrade will allow a background-free measurement of neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at least one order of magnitude. Ongoing research and development includes a system to test barium extraction from liquid xenon using surface adsorption and Resonance Ionization Spectroscopy (RIS).

  13. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    Science.gov (United States)

    2016-12-01

    masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52

  14. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  15. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  16. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  17. Resonances above the ionization threshold in positron-hydrogen scattering

    International Nuclear Information System (INIS)

    Kernoghan, A.A.; Walters, H.R.J.; McAlinden, M.T.

    1994-01-01

    Resonances appearing above the ionization threshold in coupled-state calculations of positron-atom scattering are discussed. Calculations in the six state approximation Ps(1s, 2s, 2p) + H(1s, 2s, 2p), which show such resonance structure, are compared with a more extensive 18-state approximation Ps(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d) + H(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d) in which channels other than 1s, 2s and 2p are represented by pseudostates. The results strongly indicate that the above ionization threshold resonances observed in the six-state approximation, and in other small basis set calculations, are not real. It is suggested that they are a consequence of the neglect, or inadequate representation in other approximations, of ionization channels. In the six-state approximation the positronium component of the system wavefunction attempts to represent the missing ionization channels but in so doing produces unreal resonances above the ionization threshold. More generally it is suggested that, in coupled-state calculations of positron-atom scattering, the atom part of the system wavefunction will try to compensate for defects in the positronium component and vice versa. When the defects are serious, for example, the omission of important ionization channels, unusual spurious behaviour is to be expected. (Author)

  18. Pulsed plasma sources for the production of intense ion beams based on catalytic resonance ionization

    International Nuclear Information System (INIS)

    Knyazev, B.A.; Mel'nikov, P.I.; Bluhm, H.

    1994-01-01

    In this paper we describe a technique to produce planar and volumetric ion sources of nearly every element. This technique is based on a generalization of the LIBORS-process (Laser Ionization Based On Resonant Saturation) which because of its similarity to chemical catalytic reactions has been called CATRION (CATalytic Resonance IONization). A vapor containing the desired atomic species is doped with a suitable element processing resonance transitions that can be pumped ro saturation with a laser. By superelastic collisions with the excited atoms and by simulated bremsstrahlung absorption seed electrons are heated. It is the heated electron component which then by collisional processes ionizes the desired atomic species and are multiplied. 41 refs.; 4 figs.; 3 tabs

  19. Modeling and simulation of two-step resonance ionization processes using CW and pulsed lasers

    CERN Document Server

    de Groote, Ruben; Flanagan, Kieran

    This thesis derives and discusses equations that describe the evolution of atomic systems subjected to two monochromatic and coherent radiation fields and treats both continuous and temporally pulsed irradiation. This theoretical description is de- veloped mainly to understand the influence of the photon field intensities on experimental ionization spectra. The primary ap- plication of this theoretical framework is on methods that rely on resonant laser excitation and non-resonant laser ionization to extract information on the hyperfine structure of atomic systems. In particular, qualitative and quantitative discussions on the laser-related changes in hyperfine splitting extracted from ion- ization spectra are presented. Also, a method for increasing the resolution of resonance ionization techniques (potentially up un- til the natural linewidth of the electronic transitions) is discussed and theoretically justified. Both topics are illustrated with exper- imental data.

  20. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  1. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    CERN Document Server

    Flanagan, K T; Ruiz, R F Garcia; Budincevic, I; Procter, T J; Fedosseev, V N; Lynch, K M; Cocolios, T E; Marsh, B A; Neyens, G; Strashnov, I; Stroke, H H; Rossel, R E; Heylen, H; Billowes, J; Rothe, S; Bissell, M L; Wendt, K D A; de Groote, R P; De Schepper, S

    2013-01-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1\\% was measured for Fr-202. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr-205, with a departure observed in Fr-203 (N = 116).

  2. Determination of ultra-low levels of uranium using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kiran Kumar, P.V.; Acharyulu, G.V.S.G.

    2015-01-01

    The determination of isotopic composition of actinides like U and Pu is important, due to their distribution in the environment as a result of nuclear weapons testing, fuel reprocessing, reactor operations and to a smaller extent from accidental releases. The analytical methods like fission track analysis (FTA), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and resonance ionization mass spectrometry (RIMS) have evolved as sensitive techniques. Resonance Ionization Mass Spectrometry yields rapid isotopic signature data for material containing actinides without requiring time-consuming sample preparation and chemical separation procedures. In this paper, authors presented the details of the methodology and results for low-level detection of uranium using RIMS

  3. A resonant ionization laser ion source at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Stracener, D.W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  4. Generation of low-energy muons with laser resonant ionization

    International Nuclear Information System (INIS)

    Matsuda, Y.; Bakule, P.; Iwasaki, M.; Matsuzaki, T.; Miyake, Y.; Ikedo, Y.; Strasser, P.; Shimomura, K.; Makimura, S.; Nagamine, K.

    2006-01-01

    We have constructed a low-energy muSR spectrometer at RIKEN-RAL muon facility in ISIS, the UK. With low-background of pulsed muon beam, and short pulse width from laser resonant ionization method, it is hoped this instrument will open new possibilities for studies of material sciences with muon beam. It is enphasized that this method is well suited to the facility where intense pulsed proton beam is available

  5. Radiation ionization is an underestimated industrial technique

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Industrial radiation ionization requires electron beams coming from an accelerator or gamma radiation from a radioactive source (Co 60 ). The energy deposed in the irradiated material modifies its chemical bounds or kills micro-organisms. This process is used in medical material sterilization, in disinfestation of stored and packaged food products, in the production of plastic, in the coloring of glass, in the hardening of electronic components and in the modification of the properties of semi-conductors. For 40 years radiation ionization has been investigated, UNO (United Nations Organization) and WHO (World Health Organisation) recommend it for food processing. With a growing rate of 15% per year for the last 15 years, radiation ionization is now widely used. More than 170 gamma irradiation facilities are operating throughout the world. (A.C.)

  6. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  7. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  8. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  9. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  10. Determination of trace elements by resonant ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Ruster, W.; Ames, F.; Rehklau, D.; Mang, M.; Muehleck, C.; Rimke, H.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Kluge, H.J.; Otten, E.W.

    1988-01-01

    A resonant ionization mass spectrometer has been developed as an analytical tool for the detection of trace elements, especially of plutonium and other radionuclides. The sample, deposited on a rhenium filament, is evaporated by electrical heating and the atoms of the element under investigation are selectively ionized by laser light delivered from three dye lasers pumped by a copper vapour laser. The resulting photoions are detected in a time-of-flight spectrometer with a channelplate detector. For plutonium a mass resolution of M/ΔM=1500 was obtained and an overall detection efficiency of 4x10 -6 was determined for stepwise excitation and ionization via autoionizing states. With a laser light bandwidth of 3-5 GHz neighbouring isotopes could be suppressed by a factor of 20 due to isotope shifts in the excitation transitions. The isotope composition of synthetic samples was measured and good agreement was found with mass spectroscopic results. The influence of the hyperfine structure on the isotope ratios is discussed. (orig.)

  11. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  12. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Energy Technology Data Exchange (ETDEWEB)

    Gadelshin, V., E-mail: gadelshin@uni-mainz.de [University of Mainz, Institute of Physics (Germany); Cocolios, T. [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Fedoseev, V. [CERN, EN Department (Switzerland); Heinke, R.; Kieck, T. [University of Mainz, Institute of Physics (Germany); Marsh, B. [CERN, EN Department (Switzerland); Naubereit, P. [University of Mainz, Institute of Physics (Germany); Rothe, S.; Stora, T. [CERN, EN Department (Switzerland); Studer, D. [University of Mainz, Institute of Physics (Germany); Duppen, P. Van [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Wendt, K. [University of Mainz, Institute of Physics (Germany)

    2017-11-15

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  13. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Science.gov (United States)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  14. Chemical separation of plutonium from air filters and preparation of filaments for resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Eberhardt, K.; Erdmann, N.; Funk, H.; Herrmann, G.; Naehler, A.; Passler, G.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the determination of plutonium in environmental samples. A chemical procedure based on an ion-exchange technique for the separation of plutonium from a polycarbonate filter is described. The overall yield is about 60% as determined by α-particle spectroscopy. A technique for the subsequent preparation of samples for RIMS measurements is developed. Plutonium is electrode-posited as hydroxide and covered with a thin metallic layer. While heating such a sandwich filament the plutonium hydroxide is reduced to the metal and an atomic beam is evaporated from the surface, as required for RIMS. copyright American Institute of Physics 1995

  15. Progress on resonance ionization detection of combustion radicals

    International Nuclear Information System (INIS)

    Cool, T.A.

    1994-01-01

    Selective laser ionization techniques are used in our laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames. The progress made on the following three separate experiments during the past year is briefly described in this report. Flame Radical Concentration Measurements with VUV Spectroscopy; observation of hyperfine quantum beats in cyanogen; and the spectroscopy of the ClCO radical

  16. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fassett, J.D.; Murphy, T.J.

    1990-01-01

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g

  17. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.P.; Shaw, R.W.

    1995-01-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 10 3 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation--ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4 D 5/2 state of lanthanum at 30 354 cm --1 . The general utility of this spectral approach is discussed

  18. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes

    International Nuclear Information System (INIS)

    Sifi, R.

    2007-07-01

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  19. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    International Nuclear Information System (INIS)

    Henares, J.L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-01-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  20. Recent developments in and applications of resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Wendt, K.; Blaum, K.; Horn, R.; Huber, G.; Kunz, P.; Mueller, P.; Noertershaeuser, W.; Nunnemann, M.; Passler, G.; Schmitt, A.; Gruening, C.; Kratz, J.V.; Trautmann, N.; Waldek, A.

    1999-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has nowadays reached the status of a routine method for sensitive and selective ultratrace determination of long-lived radioactive isotopes in environmental, biomedical and technical samples. It provides high isobaric suppression, high to ultra-high isotopic selectivity and good overall efficiency. Experimental detection limits are as low as 10 6 atoms per sample and permit the fast and sensitive determination of ultratrace amounts of radiotoxic contaminations. Experimental arrangements for the detection of different radiotoxic isotopes, e.g. 236-244 Pu, 89,90 Sr and 99 Tc in environmental samples are described, and the application of RIMS to the ultrarare long-lived radioisotope 41 Ca for cosmochemical, radiodating and medical purposes are presented. (orig.)

  1. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  2. Collinear resonance ionization spectroscopy of exotic francium and radium isotopes

    CERN Document Server

    AUTHOR|(CDS)2094150

    Two experimental campaigns were performed at the Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE radioactive-beam facility. The spectroscopic quadrupole moment of $^{203}$Fr was measured. Its magnitude with respect to the other even-$N$ francium isotopes below $N = 126$ suggests an onset of static deformation. However, calculations of the static and total deformation parameters reveal that it cannot be considered as purely statically deformed. The neutron-rich radium isotopes were investigated. The spectroscopic quadrupole moment of $^{231}$Ra was measured and the continuation of increasing quadrupole deformation with neutron number in neutron-rich radium isotopes was further established. Measurements of the changes in mean-square charge radii of $^{231,233}$Ra allowed the odd-even staggering parameter to be calculated for $^{230-232}$Ra. A normal odd-even staggering which increases in magnitude with neutron number was observed in these isotopes.

  3. Three-color resonance ionization spectroscopy of Zr in Si

    International Nuclear Information System (INIS)

    Hansen, C. S.; Calaway, W. F.; Pellin, M. J.; Wiens, R. C.; Burnett, D. S.

    1997-01-01

    It has been proposed that the composition of the solar wind could be measured directly by transporting ultrapure collectors into space, exposing them to the solar wind, and returning them to earth for analysis. In a study to help assess the applicability of present and future postionization secondary neutral mass spectrometers for measuring solar wind implanted samples, measurements of Zr in Si were performed. A three-color resonant ionization scheme proved to be efficient while producing a background count rate limited by secondary ion signal (5x10 -4 counts/laser pulse). This lowered the detection limit for these measurements to below 500 ppt for 450,000 averages. Unexpectedly, the Zr concentration in the Si was measured to be over 4 ppb, well above the detection limit of the analysis. This high concentration is thought to result from contamination during sample preparation, since a series of tests were performed that rule out memory effects during the analysis

  4. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  5. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  6. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  7. Small sample analysis using sputter atomization/resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Christie, W.H.; Goeringer, D.E.

    1986-01-01

    We have used secondary ion mass spectrometry (SIMS) to investigate the emission of ions via argon sputtering from U metal, UO 2 , and U 3 O 8 samples. We have also used laser resonance ionization techniques to study argon-sputtered neutral atoms and molecules emitted from these same samples. For the case of U metal, a significant enhancement in detection sensitivity for U is obtained via SA/RIMS. For U in the fully oxidized form (U 3 O 8 ), SA/RIMS offers no improvement in U detection sensitivity over conventional SIMS when sputtering with argon. 9 refs., 1 fig., 2 tabs

  8. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Fedorov, D. [Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Fedosseev, V.N.; Forster, L.; Marsh, B.A. [CERN, CH-1211 Geneva 23 (Switzerland); Rossel, R.E. [CERN, CH-1211 Geneva 23 (Switzerland); Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany); Rothe, S.; Veinhard, M. [CERN, CH-1211 Geneva 23 (Switzerland)

    2016-09-11

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  9. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    CERN Document Server

    Day Goodacre, T.; Fedosseev, V.N.; Forster, L.; Marsh, B.A.; Rossel, R.E.; Rothe, S.; Veinhard, M.

    2016-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  10. Nuclear structure studies of rare francium isotopes using Collinear Resonance Ionization Spectroscopy (CRIS)

    CERN Document Server

    AUTHOR|(CDS)2084441

    It was known for many years that nuclei possessing certain numbers of protons (Z) and neutrons (N), called the magic numbers (8,20,28,50,82,126...), exhibit characteristic behavior and are in general more stable than their neighboring isotopes. As the capabilities of producing isotopes with more extreme values of Z and N increased, it was realized that those spherical nuclei only represent a small fraction of the total number of isotopes and that most isotopes are deformed. In order to study exotic isotopes and their deformation, it was necessary to develop new experimental techniques that would be powerful enough to be able to cope with very small production yields, but precise enough to measure the nuclear properties (such as radii and moments) with relatively small uncertainties. One technique that can measure nuclear properties of scarcely produced isotopes is in-source resonant ionization, but this technique does not allow for sufficient precision to deduce nuclear quadrupole moments. Furthermore, this t...

  11. Non-Liouvillean ion injection via resonantly enhanced two-photon ionization

    Directory of Open Access Journals (Sweden)

    B. A. Knyazev

    2004-03-01

    Full Text Available The charge-exchange method is now one of the main techniques for ion injection into accelerators and storage rings. The disadvantages of conventional methods, based on the atom or ion stripping in a material target, are emittance growth, energy straggling, and production of ions in many charge states. Recently suggested stripping methods based on direct photoionization require employment of hard-UV lasers, which still do not exist and must obviously be very bulky and expensive. An alternative method, suggested for injection of proton beams, employs excitation of the atom to 3p intermediate state with subsequent Lorentz ionization in a magnetic field gradient. This technique applies rigid requirements to laser characteristic and is not free of growing of the beam divergence. In this paper a variant of the stripping technique based on the resonantly enhanced two-photon ionization (RETPI is considered. The technique allows ionization of singly charged ions of the elements from helium to bismuth. A variant of the technique can be used for proton injection. RETPI can be applied for both ion injection and stacking, as well as for diagnostics of ion beam characteristics on the orbit. Stripping efficiency can be about 100% for the singly charged ions having the singlet ground state and decreases for the other ions. Special methods for “cleaning” unwanted atomic states in such ions, that can provide high stripping efficiency, are discussed. Excimer lasers with very moderate parameters can be employed for implementation of this technique for almost all elements. Numerical examples show that for most of the singly charged ions and for hydrogen atom necessary laser-beam energy density is merely 0.5–8  J/cm^{2} for a 1 m interaction region, and is 10 times higher for several light ions.

  12. Collinear resonant ionization laser spectroscopy of rare francium isotopes

    CERN Multimedia

    Neyens, G; Flanagan, K; Rajabali, M M; Le blanc, F M; Ware, T; Procter, T J

    2008-01-01

    We propose a programme of collinear resonant ionization spectroscopy (CRIS) of the francium isotopes up to and including $^{201}$Fr and $^{218,219}$Fr. This work aims at answering questions on the ordering of quantum states, and effect of the ($\\pi s_{1/2}^{-1}$)1/2$^{+}$ intruder state, which is currently believed to be the ground state of $^{199}$Fr. This work will also study the edge of the region of reflection asymmetry through measurement of the moments and radii of $^{218,219}$Fr. This proposal forms the first part of a series of experiments that will study nuclei in this region of the nuclear chart. Based on the success of this initial proposal it is the intention of the collaboration to perform high resolution measurements on the isotopes of radium and radon that surround $^{201}$Fr and $^{218}$Fr and thus providing a comprehensive description of the ground state properties of this region of the nuclear chart. Recent in-source spectroscopy measurements of lead, bismuth and polonium have demonstrated a...

  13. Three-color resonance ionization spectroscopy of Zr in Si

    International Nuclear Information System (INIS)

    Hansen, C.S.; Calaway, W.F.; Pellin, M.J.; Wiens, R.C.; Burnett, D.S.

    1997-01-01

    It has been proposed that the composition of the solar wind could be measured directly by transporting ultrapure collectors into space, exposing them to the solar wind, and returning them to earth for analysis. In a study to help assess the applicability of present and future postionization secondary neutral mass spectrometers for measuring solar wind implanted samples, measurements of Zr in Si were performed. A three-color resonant ionization scheme proved to be efficient while producing a background count rate limited by secondary ion signal (5x10 -4 counts/laser pulse). This lowered the detection limit for these measurements to below 500 ppt for 450,000 averages. Unexpectedly, the Zr concentration in the Si was measured to be over 4 ppb, well above the detection limit of the analysis. This high concentration is thought to result from contamination during sample preparation, since a series of tests were performed that rule out memory effects during the analysis. copyright 1997 American Institute of Physics

  14. Optimum conditions for the determination of ionization potentials, appearance potentials and fine structure in ionization efficiency curves using edd technique

    International Nuclear Information System (INIS)

    Selim, Ezzat T.; El-Kholy, S.B.; Zahran, Nagwa F.

    1978-01-01

    The optimum conditions for determining ionization potentials as well as fine structure in electron impact ionization efficiency curves are studied using energy distribution difference technique. Applying these conditions to Ar + , Kr + , CO + 2 and N + from N 2 , very good agreement is obtained when compared with results determined by other techniques including UV spectroscopy. The merits and limitation of the technique are also discussed

  15. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  16. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim; Andersson, Jan T.; Mö ller, Isabelle; Amad, Maan H.; Witt, Matthí as; Sarathy, Mani

    2013-01-01

    oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same

  17. Resonant-enhanced above-threshold ionization of atoms by XUV short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V.D. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: vladimir@df.uba.ar; Macri, P.A. [Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Departamento de Fisica, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, 7600 Mar del Plata (Argentina); Arbo, D.G. [Instituto de Astronomia y Fisica del Espacio, UBA-CONICET, CC 67 Suc 28 Buenos Aires (Argentina)

    2009-01-15

    Above-threshold ionization of atoms by XUV short laser pulses is investigated close to the resonant 1s-2p transitions. Both ab initio TDSE and a theoretical Coulomb-Volkov like theory are used to study the enhancement in the ionization probabilities. Our modified Coulomb-Volkov theory, fully accounting for the important 1s-2p transition is able to explain the spectrum as well as the total ionization cross sections.

  18. Determination of 90Sr in environmental samples with resonance ionization spectroscopy in collinear geometry

    International Nuclear Information System (INIS)

    Zimmer, K.; Stenner, J.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Otten, E.W.; Passler, G.; Schwalbach, R.; Schwarz, M.; Stevens, H.; Wendt, K.; Herrmann, G.; Niess, S.; Trautmann, N.; Walter, K.; Bushaw, B.A.

    1994-01-01

    A new, fast technique for trace analysis of the radioactive isotopes 89 Sr and 90 Sr in environmental samples has been developed. Conventional mass separation is combined with resonance ionization spectroscopy in collinear geometry, which provides high selectivity and sensitivity. In addition, a chemical separation procedure for sample preparation has been developed. The described technique was used to determine the 90 Sr content in ∼ 870 m 3 air samples collected near Munich during and shortly after the Chernobyl reactor accident in April 1986. The content of 90 Sr was measured to be 1.4 mBq per m 3 , corresponding to 1.6 x 10 9 atoms of 90 Sr per sample. This value is in good agreement with the results of radiochemical measurements. (orig.)

  19. Determination of [sup 90]Sr in environmental samples with resonance ionization spectroscopy in collinear geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, K. (Inst. fuer Physik, Univ. Mainz (Germany)); Stenner, J. (Inst. fuer Physik, Univ. Mainz (Germany)); Kluge, H.J. (Inst. fuer Physik, Univ. Mainz (Germany)); Lantzsch, J. (Inst. fuer Physik, Univ. Mainz (Germany)); Monz, L. (Inst. fuer Physik, Univ. Mainz (Germany)); Otten, E.W. (Inst. fuer Physik, Univ. Mainz (Germany)); Passler, G. (Inst. fuer Physik, Univ. Mainz (Germany)); Schwalbach, R. (Inst. fuer Physik, Univ. Mainz (Germany)); Schwarz, M. (Inst. fuer Physik, Univ. Mainz (Germany)); Stevens, H. (Inst. fuer Physik, Univ. Mainz (Germany)); Wendt, K. (Inst. fuer Physik, Univ. Mainz (Germany)); Herrmann, G. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Niess, S. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Trautmann, N. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Walter, K. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States))

    1994-08-01

    A new, fast technique for trace analysis of the radioactive isotopes [sup 89]Sr and [sup 90]Sr in environmental samples has been developed. Conventional mass separation is combined with resonance ionization spectroscopy in collinear geometry, which provides high selectivity and sensitivity. In addition, a chemical separation procedure for sample preparation has been developed. The described technique was used to determine the [sup 90]Sr content in [approx] 870 m[sup 3] air samples collected near Munich during and shortly after the Chernobyl reactor accident in April 1986. The content of [sup 90]Sr was measured to be 1.4 mBq per m[sup 3], corresponding to 1.6 x 10[sup 9] atoms of [sup 90]Sr per sample. This value is in good agreement with the results of radiochemical measurements. (orig.)

  20. Trace determination of 90Sr and 89Sr in environmental samples by collinear resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Lantzsch, J.; Bushaw, B. A.; Bystrow, V. A.; Herrmann, G.; Kluge, H.-J.; Niess, S.; Otten, E. W.; Passler, G.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Trautmann, N.; Wendt, K.; Yushkevich, Y. V.; Zimmer, K.

    1995-01-01

    Collinear resonance ionization spectroscopy has been developed as a sensitive technique for fast trace detection of 90 Sr and 89 Sr in the environment. A detection limit for 90 Sr of 10 7 atoms in the presence of 10 17 atoms in the presence of 10 17 atoms of stable Strontium has been achieved, while the applicability of the method has been demonstrated on real world samples. After collection and chemical separation, strontium is surface ionized, accelerated to 33keV and mass separated. The ions are neutralized and the emerging fast atoms interact with an argon ion laser beam (γ=364 nm) in a quasi-collinear geometry. Optical excitation starts from the long-lived 5s4d 3 D2 state of strontium, which is populated in the charge exchange process, and the fast atoms are selectively excited into the high-lying 5s23f 3 F3 Rydberg state. The Rydberg-atoms are subsequently field-ionized and detected by a channeltron detector after energy selection. The described method was successfully used to determine the 90 Sr-content in air samples collected near Munich during the Chernobyl reactor accident in April 1986

  1. Analysis of 81Kr in groundwater using laser resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Kramer, S.D.; Hurst, G.S.; Chen, C.H.

    1985-10-01

    A new analytical technique based on resonant ionization of krypton with a vacuum ultraviolet (VUV) laser source was used to determine low-level 81 Kr concentrations in groundwater. The long half-life (210,000 years) and low concentration (1.3 x 10 3 81 Kr atoms per liter of modern water at 10 0 C) make the detection of 81 Kr by radioactive counting techniques extremely difficult. In this method, krypton gas was removed from water taken from an underground Swiss aquifer using standard cryogenic and chromatographic techniques. Stable krypton isotopes were then reduced by a factor of 10 7 by a two-stage isotopic enrichment cycle using a commercially available mass spectrometer. The enriched gas containing about 10 8 stable krypton atoms and about 10 3 atoms of 81 Kr was implanted into a silicon disc. This disc was then placed in the high vacuum final counting chamber and the krypton was released by laser annealing. This chamber contained a quadrupole mass spectrometer which used a pulsed VUV laser source as the ionizer. The measured signal indicated that the sample contained 1200 (+-300) atoms of 81 Kr

  2. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  3. Use of resonance ionization spectroscopy to detect DNA bands on ultrathin spin-coated gels.

    Science.gov (United States)

    Doktycz, M J; Gibson, W A; Arlinghaus, H F; Allen, R C; Jacobson, K B

    1993-01-01

    Development of alternative electrophoresis procedures are necessary for large volume sequencing and mapping studies. The use of stable isotopes as DNA labels and ultrathin gels promises to greatly increase the rate of sequencing. Spin coating is presented as an alternative method for producing ultrathin polyacrylamide gels. The technique has the potential of producing gels of micron to submicron thicknesses by varying the viscosity of the acrylamide solution and the spinning speed. Thirty micron thick 6% (weight %) gels were produced in this manner. Tin-labeled DNA oligomers were electrophoresed and detected using sputter-initiated resonance ionization spectroscopy (SIRIS). The usefulness of SIRIS and laser atomization RIS (LARIS) to sample the surface and deeper layers of 240 microns thick gels was investigated. With LARIS, whole cross-sections of the gel can be atomized, possibly allowing complete sampling of labels.

  4. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y., E-mail: yasuhiro.miyake@kek.jp; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R. [High Energy Accelerator Research Organization (KEK), Muon Science Laboratory (Japan); Torikai, E. [Yamanashi University, Faculty of Engineering (Japan); Iwasaki, M. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Wada, S.; Saito, N. [RIKEN, Advanced Science Institute (Japan); Okamura, K. [RIKEN-WAKO Incubation Plaza 301, Megaopto Co., Ltd. (Japan); Yokoyama, K. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Ito, T.; Higemoto, W. [J-PARC Center, Muon Section, Materials and Life Science Division (Japan)

    2013-04-15

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 Multiplication-Sign 10{sup 8}/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a {mu}{sup + } and an e{sup - }) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  5. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Science.gov (United States)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  6. Resonantly-enhanced two-photon ionization and mass-analyzed threshold ionization (MATI) spectroscopy of 2-hydroxypyridine

    CERN Document Server

    Lee, D H; Choi, K W; Choi, Y S; Kim, S K

    2002-01-01

    Mass-analyzed threshold ionization (MATI) spectra of 2-hydroxypyridines existing as lactims (2-pyridionl) in a molecular beam are obtained via (1+1') two-photon process to give accurate ionization energies of 8.9344 +- 0.0005 and 8.9284 +- 0.0005 eV for 2-pyridinol (2Py-OH) and its deuterated analogue (2Py-OD), respectively. Resonantly-enhanced two-photon ionization spectra of these compounds are also presented to give vibrational structures of their S sub 1 states. Vibrational frequencies of 2Py-OH and 2Py-OD in ionic ground states are accurately determined from MATI spectra taken via various S sub 1 intermediate states, and associated vibrational modes are assigned with the aid of ab initio calculations.

  7. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  8. Exploring Redox Properties of Aromatic Amino Acids in Water: Contrasting Single Photon vs Resonant Multiphoton Ionization in Aqueous Solutions.

    Science.gov (United States)

    Roy, Anirban; Seidel, Robert; Kumar, Gaurav; Bradforth, Stephen E

    2018-04-12

    Direct measurements of the valence ionization energies and the reorganization energies of the three aromatic amino acids, l-tyrosine, l-tryptophan, and l-phenylalanine, in aqueous solution using the liquid microjet technique and two different photoemission methods-X-ray photoelectron spectroscopy (XPS) at 175 eV photon energy and resonant two-photon ionization (R2PI) using 2 × 267 nm (2 × 4.64 eV) UV laser light-are reported. l-Tryptophan has the lowest vertical ionization energy, 7.3 eV, followed by tyrosine (7.8 eV) and phenylalanine (∼8.7 eV). Essentially, no variation in recovered orbital energies is observed comparing near threshold ionization to X-ray ionization. Superior sensitivity of the (background-free) R2PI scheme for solutions with very low solute concentration (<2 mM) is demonstrated in contrast to the single-photon XPS measurements, which often requires solute concentrations of 0.1-1 molar. This higher sensitivity along with chemical selectivity of the R2PI technique can be exploited for both spectroscopic assignment and as an analytical tool. The nature of the adiabatic ionization energy for the three aromatic amino acids has been explored by the R2PI approach and by empirically formulating the correlation between the estimated ionization onset with electronic and nuclear relaxation on the excited state surface. Our results have implications for understanding one-electron transfer within enzymes and in redox situations where (ir)reversible deprotonation occurs such as those manifest in the biochemistry of oxidation damage.

  9. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  10. A new Technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescence (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (author)

  11. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs

  12. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L.

    1992-07-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs.

  13. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  14. Dosimetry of ionizing radiations by Electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Azorin N, J.

    2005-01-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  15. A data acquisition system for measuring ionization cross section in laser multi-step resonant ionization experiment

    International Nuclear Information System (INIS)

    Qian Dongbin; Guo Yuhui; Zhang Dacheng; Chinese Academy of Sciences, Beijing; Ma Xinwen; Zhao Zhizheng; Wang Yanyu; Zu Kailing

    2006-01-01

    A CAMAC data acquisition system for measuring ionization cross section in laser multi-step resonant ionization experiment is described. The number of scalers in the front-end CAMAC can be adjusted by changing the data read-out table files. Both continuous and manual acquisition models are available, and there is a wide adjustable range from 1 ms to 800 s with the acquisition time unit. The long-term stability, Δt/t, for the data acquisition system with an acquisition time unit of 100 s was measured to be better than ±0.01%, thus validating its reliability in long-term online experimental data acquisition. The time response curves for three electrothermal power-meters were also measured by this DAQ system. (authors)

  16. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  17. Resonance ionization mass spectrometry for long-lived radionuclide assay

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.; Lucatorto, T.B.

    1986-01-01

    Isotopic ratios of /sup 10/Be:/sup 9/Be and /sup 129/I:/sup 127/I are measured from isotopic standards with ratios of 1:1000 and less. A high-resolution laser system is built and is capable of producing 25 mJ pulses of 10 nsec duration at 560 nm with 150 MHz bandwidth. This laser system is applied to the first isotopic shift measurement for beryllium. The issues involved in making low-level radioisotope measurements by RIMS, including atomization and ionization efficiencies, selectivity, and calibration are discussed

  18. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  19. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Analysis of Large Polymerases Chain Reaction Products

    International Nuclear Information System (INIS)

    Wunschel, David S.; Pasa Tolic, Ljiljana; Feng, Bingbing; Smith, Richard D.

    2000-01-01

    We have attempted to expand the size range of PCR products that can be analyzed by electroscopy ionization (ESI) Fourier transformion cyclotron resonance (FTICR) mass spectrometry. The mass measurement accuracy obtained illustrates that a signel base substitution could be identified at the size of PCR product with a 7 tesla ESI-FTICR

  20. Laser resonance ionization for ultra-trace analysis on long-lived ...

    Indian Academy of Sciences (India)

    for producing pure beams of short-lived isotopes at on-line facilities. .... mental design is to develop a compact table-top RIS experiment which allows for. 1058 ... partial beams which are merged by dichroic mirrors and polarization beam splitter ... A quasi-cw 35 W CO2 laser is used for efficient non-resonant ionization of.

  1. Application of resonance ionization mass spectrometry for trace analysis and in fundamental research

    International Nuclear Information System (INIS)

    Passler, G.

    1997-01-01

    Resonance ionization mass spectrometry (RIMS) has been used for ultra-trace analysis on long-lived radioisotopes like Pu, Tc and 89,90 Sr in various environmental samples. The experimental approaches cover pulsed laser spectroscopy on a thermal atomic beam and subsequent time-of-flight mass analysis, a pulsed laser ion source combined with conventional mass spectrometry, and collinear resonance ionization on a mass-separated fast atomic beam. The high sensitivity of RIMS also enables atomic spectroscopy on rare isotopes. For the first time experimental values for the ionization potential of actinides up to Cf have been determined. The paper reviews the dependency of the different experimental approaches on the analytical problem. copyright 1997 American Institute of Physics

  2. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application.

    Science.gov (United States)

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2011-01-01

    A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.

  3. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  4. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  5. High-resolution, three-step resonance ionization mass spectrometry of gadolinium

    International Nuclear Information System (INIS)

    Blaum, K.; Wendt, K.; Bushaw, B.A.; Noertershaeuser, W.

    2001-01-01

    High-resolution resonance ionization mass spectrometry has been used to measure triple-resonance autoionization (AI) spectra of gadolinium. Al resonances as narrow as 10 MHz have been observed and isotope shifts and hyperfine structure have been measured in selected AI states. The strongest AI state observed at 49663.576 cm-1 with a photoionization cross section of >3.6x10 -15 cm 2 was found to have an overall detection efficiency of >3x10 -5 , allowing application to a number of ultratrace determination problems. Analytical measurements with a diode-laser-based system have been successfully performed on bio-medical tissue samples

  6. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tanaka, Nobuyuki

    2005-01-01

    Laser breakdown and resonance ionization time-of-flight mass spectrometry (TOFMS) with a differential mobility analyzer (DMA) was developed and applied to detect compositions and organic substances in nano-particles. The laser breakdown TOFMS method is capable of reaching pptv sensitivity, which is generally much better than the normal LIBS techniques. The system was demonstrated to successfully detect signals in the mass range of 1 to 300 amu for 60 and 140 nm particles in diesel engine exhaust. The detected signals showed that the nano-particles contained both aromatic and chain hydrocarbons

  7. Improving the Selectivity of the ISOLDE Resonance Ionization Laser Ion Source and In-Source Laser Spectroscopy of Polonium

    CERN Document Server

    Fink, Daniel Andreas; Jochim, Selim

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientic elds such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was impleme...

  8. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  9. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    International Nuclear Information System (INIS)

    Nagel, Holger; Weickhardt, Christian; Boesl, Ulrich; Frey, Ruediger

    1995-01-01

    The analysis of mixtures of technical gases still comprises a lot of problems: the large number of components with very different and often rapidly varying concentrations makes great demands on analytical methods. By use of conventional analytical methods, signals of trace substances may interfere with signals of main components, whereas small signals representing low concentrations are covered by signals of main substances.The resonant-enhanced multiphoton ionization (REMPI) makes use of excited intermediate states of molecules. As these states are characteristic of each substance, one or more components of interest can be ionized with high efficiency without interference of other molecules by using a special laser-wavelength. The combination of the above mentioned ionization method with a reflectron time-of-flight mass spectrometer permits a very fast and sensitive detection of preselected trace substances.As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances

  10. Resonance ionization spectroscopy of Europium The first application of the PISA at ISOLDE-RILIS

    CERN Document Server

    AUTHOR|(CDS)2099873; Marsh, Bruce Alan

    The following work has been carried out at the radioactive ion beam facility ISOLDE at CERN. A compact atomic beam unit named PISA (Photo Ionization Spectroscopy Apparatus) has been implemented as a recent addition to the laboratory of the Resonance Ionization Laser Ion Source (RILIS). The scope of this thesis work was to demonstrate different applications of the PISA, using the existing and highly developed laser setup of the RILIS installation. In a demonstration of the suitability of PISA for ionization scheme development, a new ionization scheme for Europium has been developed. This resulted in the observation of several new autoionizing states and Rydberg series. Through the analysis of the observed Rydberg resonances a refined value of $45734.33(3)(3)$ cm$^{-1}$ for the ionization potential of the europium atom has been determined. In addition this thesis reports on the feasibility of the use of the PISA as a RILIS performance monitoring device during laser ion source operations. Finally the present wor...

  11. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  12. Trace analysis of actinides in the environment using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Raeder, Sebastian

    2011-01-01

    In this work the resonant ionization of neutral atoms using laser radiation was applied and optimized for ultra-trace analysis of the actinides thorium, uranium, neptunium and plutonium. The sensitive detection of these actinides is a challange for the monitoring and quantification of radioactive releases from nuclear facilities. Using resonance ionization spectroscopy combined with a newly developed quadrupole-mass-spectrometer, numerous energy levels in the atomic structure of these actinides could be identified. With this knowledge efficient excitation schemes for the mentioned actinides could be identified and characterised. The applied in-source-ionization ensures for a high detection efficiency due to the good overlap of laser radiation with the atomic beam and allows therefore for a low sample consumption which is required for the analysis of radio nuclides. The selective excitation processes in the resonant ionization method supresses unwanted contaminations and was optimized for analytical detection of ultra-trace amounts in environmental samples as well as for determination of isotopic compositions. The efficient in-source-ionization combined with high power pulsed laser radiation allows for detections efficiency up to 1%. For plutonium detection limits in the range of 10 4 -10 5 atoms could be demonstrated for synthetic samples as well as for first environmental samples. The usage of narrow bandwidth continuous wave lasers in combination with a transversal overlap of the laser radiation and the free propagating atomic beam enable for resolving individual isotopic shifts of the resonant transitions. This results in a high selectivity against dominant neighboring isotopes but with a significant loss in detection efficiency. For the ultra-trace isotope 236 U a detection limit down to 10 -9 for the isotope ratio N ( 236 U)/N ( 238 U) could be determined.

  13. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tetsuya K., E-mail: sato.tetsuya@jaea.go.jp; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kaneya, Yusuke; Nagame, Yuichiro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512 (Japan); Osa, Akihiko [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Ichikawa, Shin-ichi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Stora, Thierry [ISOLDE, CERN, CH-1211 Geneva 23 (Switzerland); Kratz, Jens Volker [Institut für Kernchemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-02-15

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI{sub 2} gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s {sup 256}Lr produced in the {sup 249}Cf + {sup 11}B reaction.

  14. Resonance ionization of sputtered atoms: Progress toward a quantitative technique

    International Nuclear Information System (INIS)

    Calaway, W.F.; Pellin, M.J.; Young, C.E.; Whitten, J.E.; Gruen, D.M.; Coon, S.R.; Texas Univ., Austin, TX; Wiens, R.C.; Burnett, D.S.; Stingeder, G.; Grasserbauer, M.

    1992-01-01

    The combination of RIMS and ion sputtering has been heralded as the ideal means of quantitatively probing the surface of a solid. While several laboratories have demonstrated the extreme sensitivity of combining RIMS with sputtering, less effort has been devoted to the question of accuracy. Using the SARISA instrument developed at Argonne National Laboratory, a number of well-characterized metallic samples have been analyzed. Results from these determinations have been compared with data obtained by several other analytical methods. One significant finding is that impurity measurements down to ppb levels in metal matrices can be made quantitative by employing polycrystalline metal foils as calibration standards. This discovery substantially reduces the effort required for quantitative analysis since a single standard can be used for determining concentrations spanning nine orders of magnitude

  15. Investigation of optimal photoionization schemes for Sm by multi-step resonance ionization

    International Nuclear Information System (INIS)

    Cha, H.; Song, K.; Lee, J.

    1997-01-01

    Excited states of Sm atoms are investigated by using multi-color resonance enhanced multiphoton ionization spectroscopy. Among the ionization signals one observed at 577.86 nm is regarded as the most efficient excited state if an 1-color 3-photon scheme is applied. Meanwhile an observed level located at 587.42 nm is regarded as the most efficient state if one uses a 2-color scheme. For 2-color scheme a level located at 573.50 nm from this first excited state is one of the best second excited state for the optimal photoionization scheme. Based on this ionization scheme various concentrations of standard solutions for samarium are determined. The minimum amount of sample which can be detected by a 2-color scheme is determined as 200 fg. The detection sensitivity is limited mainly due to the pollution of the graphite atomizer. copyright 1997 American Institute of Physics

  16. Above-threshold ionization of atoms by resonant XUV laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V D [Departamento de Fisica and IFIBA-CONICET, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Arbo, D G [Instituto de AstronomIa y Fisica del Espacio, FCEN-UBA CONICET, CC 67 Suc 28 Buenos Aires (Argentina); Macri, P A, E-mail: vladimir@df.uba.ar [Departamento de Fisica, FCEyN, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata (Argentina)

    2011-06-28

    Above-threshold ionization of atoms by XUV short laser pulses with frequencies close to the resonant 1s-2p transition is investigated. We present a theory based on a variational expression using trial wavefunctions for the final and the initial states. For the former we use a Coulomb-Volkov wavefunction, and for the latter a close-coupling solution of the time-dependent Schroedinger equation considering a few bound states. The close-coupling Coulomb-Volkov theory, fully accounting for the important 1s-2p transition, explains the photoelectron spectrum as well as the total ionization cross sections for the resonant case. We also compare the partial wave populations and angular distributions given by the theory with the numerical solutions of the time-dependent Schroedinger equation.

  17. Examination of excited state populations in sputtering using Multiphoton Resonance Ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed

  18. Examination of excited state populations in sputtering using multiphoton resonance ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs

  19. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization

    International Nuclear Information System (INIS)

    Kern, P.

    1995-01-01

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it's also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs

  20. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  1. On the effect of the pre-ionization technique on the discharge regime in a tokamak

    International Nuclear Information System (INIS)

    Bulyginskij, D.G.; Larionov, M.M.; Levin, L.S.; Miklukho, O.V.; Tokunov, A.I.; Shustova, N.V.

    1980-01-01

    The study is devoted to an experimental comparison of three ways of pre-ionization: by the main current, by the back current and by SHF breakdown in the conditions of the electron-cyclotron resonance (ECR). A discharge in hydrogen has been investigated at the initial pressure of 3x10 -4 torr. Oscillograms of hydrogen and impurity ion luminescence have the ionization maximum. The suposition is confirmed that the hard X radiation observed in ionization by the main current is caused by the runaway electrons passed into acceleration regime at the moment of breakdown. A comparison of the pre-ionization methods considered shows that they differ only slightly. ECR and back current pre-ionizations suppress the hard X-radiation. By these ways of pre-ionization it is possible to obtain a partly ionized plasma with the electron temperature not exceeding 10 eV, which does not support the earlier suppositions on a possibility of obtaining fully ionized plasma with the electron temperature of about 250 eV in the ECR pre-ionization

  2. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, N. [Institute for Transuranium Elements, European Commission Joint Research Centre, Karlsruhe (Germany); Kratz, J.V.; Trautmann, N. [Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Passler, G. [Johannes Gutenberg-University Mainz, Institute of Physics, Mainz (Germany)

    2009-11-15

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., {sup 238}U/{sup 238}Pu, {sup 241}Am/{sup 241}Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. (orig.)

  3. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  4. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  5. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  6. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu

    1998-01-01

    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  7. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day

    2017-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  8. Applied dosimetry to ionization techniques by electron beams

    International Nuclear Information System (INIS)

    Kuntz, F.

    1991-12-01

    After a general introduction about electron beam dosimetry, the second part is about the determination of treatment parameter for an electron ionization: are treated the problems of electron path determination, treatment depth of a product and finally, the radiation dose heterogeneities in all the volume of a treated product. The third part describes a process that greatly reduces radiation dose heterogeneity and then industrial interest is analyzed. The fourth part describes 2 applications of diffusion screen utilization. 66 figs

  9. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics.

    Science.gov (United States)

    Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan

    2015-01-01

    Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.

  10. Study of the ionization of sodium vapor in the presence of resonant laser radiation

    International Nuclear Information System (INIS)

    Carre, B.

    1986-06-01

    Ionization of a diffuse sodium jet, excited by laser radiation (D2 resonance), either continuous or pulsed, is studied by electron spectroscopy. Results show: associative ionization (AI) in the collision of two Na(3p) excited atoms; occupancy of highly excited nl states in energy association collisions of two Na(3p) followed by Penning collisional ionization (CI) in the system Na(nl) + Na(3p); heating of electrons by 1, 2, or 3 superelastic collisions with Na(3p). For both the excitation cases (continuous or pulsed source) analysis of experiment results leads to a description of the whole of the ionized medium, characterized as being low density and the site of the ambipolar diffusion of charged particles. A highly simplified model describes the kinetic and electrokinetic equilibrium (continuous case) in which the different populations of distinct nonthermalized energy (low energy primary electrons, hot electrons) play specific roles. The cross sections associated with AI and CI are estimated from experiment results using the model [fr

  11. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  12. Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Mansel, A.; Nunnemann, M.; Passler, G.; Trautmann, N.; Waldek, A.

    1997-01-01

    Trace amounts of plutonium in the environment can be detected by resonance ionization mass spectroscopy (RIMS). An atomic beam of plutonium is produced after its chemical separation and deposition on a filament. The atoms are ionized by a three-step excitation using pulsed dye-lasers. The ions are mass-selectively detected in a time-of-flight (TOF) mass spectrometer. With this setup a detection limit of 1·10 6 atoms of plutonium has been achieved. Furthermore, the isotopic composition can be determined. Different samples, including soil from the Chernobyl area, IAEA-certified sediments from the Mururoa Atoll and urine, have been investigated. copyright 1997 American Institute of Physics

  13. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  14. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F J [Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain); Pitarke, J M [Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain)

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  15. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pitarke, J.M.

    1994-01-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  16. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Science.gov (United States)

    Tuttle, William D.; Gardner, Adrian M.; Wright, Timothy G.

    2017-09-01

    The S1 ← S0 (A˜1 B2 ← X˜1 A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene.

  17. Theory of resonant multiphoton ionization of krypton by intense ultraviolet laser radiation

    International Nuclear Information System (INIS)

    Tang, X.; Lambropoulos, P.; L'Huillier, A.; Dixit, S.N.

    1989-01-01

    We present a theoretical interpretation of the experimental results on three-photon-resonant four-photon ionization of Kr reported by Landen, Perry, and Campbell [Phys. Rev. Lett. 59, 2558 (1987)] and Perry and Landen [Phys. Rev. A 38, 2815 (1988)]. Our calculations are based on multichannel quantum-defect theory combined with a density-matrix formalism describing the spatiotemporal development of the process. We obtain good agreement with the data, which even at intensities as high as 10 14 W/cm 2 show the imprint of the underlying atomic structure

  18. Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    Science.gov (United States)

    Wu, Pei Ying; Tzeng, Wen Bih

    2015-10-01

    We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.

  19. Magnetic resonance angiography of the pediatric abdomen and pelvis: techniques and imaging findings.

    Science.gov (United States)

    Sada, David M; Vellody, Ranjith; Liu, Peter S

    2013-11-01

    Although traditional catheter-based angiography has been the gold standard for pediatric abdominal and pelvic vascular imaging for the past several decades, advances in magnetic resonance angiography (MRA) have made it a viable alternative. MRA offers several advantages in that it is noninvasive, can be performed without ionizing radiation, and does not necessarily rely on contrast administration. The ability of modern MRA techniques to define variant vascular anatomy and detect vascular disease may obviate traditional angiography in some patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Stieltjes-moment-theory technique for calculating resonance width's

    International Nuclear Information System (INIS)

    Hazi, A.U.

    1978-12-01

    A recently developed method for calculating the widths of atomic and molecular resonances is reviewed. The method is based on the golden-rule definition of the resonance width, GAMMA(E). The method uses only square-integrable, L 2 , basis functions to describe both the resonant and the non-resonant parts of the scattering wave function. It employs Stieltjes-moment-theory techniques to extract a continuous approximation for the width discrete representation of the background continuum. Its implementation requires only existing atomic and molecular structure codes. Many-electron effects, such as correlation and polarization, are easily incorporated into the calculation of the width via configuration interaction techniques. Once the width, GAMMA(E), has been determined, the energy shift can be computed by a straightforward evaluation of the required principal-value integral. The main disadvantage of the method is that it provides only the total width of a resonance which decays into more than one channel in a multichannel problem. A review of the various aspects of the theory is given first, and then representative results that have been obtained with this method for several atomic and molecular resonances are discussed. 28 references, 3 figures, 4 tables

  2. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  3. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  4. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz Angelina [IIT, Chicago; Snopok, Pavel [IIT, Chicago; Neuffer, David [Fermilab; Rogers, Chris [Rutherford

    2017-10-12

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  5. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  6. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  7. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    AUTHOR|(CDS)2083035

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  8. Diode laser based resonance ionization mass spectrometry for spectroscopy and trace analysis of uranium isotopes

    International Nuclear Information System (INIS)

    Hakimi, Amin

    2013-01-01

    In this doctoral thesis, the upgrade and optimization of a diode laser system for high-resolution resonance ionization mass spectrometry is described. A frequency-control system, based on a double-interferometric approach, allowing for absolute stabilization down to 1 MHz as well as frequency detunings of several GHz within a second for up to three lasers in parallel was optimized. This laser system was used for spectroscopic studies on uranium isotopes, yielding precise and unambiguous level energies, total angular momenta, hyperfine constants and isotope shifts. Furthermore, an efficient excitation scheme which can be operated with commercial diode lasers was developed. The performance of the complete laser mass spectrometer was optimized and characterized for the ultra-trace analysis of the uranium isotope 236 U, which serves as a neutron flux dosimeter and tracer for radioactive anthropogenic contaminations in the environment. Using synthetic samples, an isotope selectivity of ( 236 U)/( 238 U) = 4.5(1.5) . 10 -9 was demonstrated.

  9. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  10. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  11. Use of a discharge in an hollow cathode as neutral atom source for resonant ionization mass spectrometry

    International Nuclear Information System (INIS)

    Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.

    1987-01-01

    The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr

  12. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Urena N, F.

    2000-01-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  13. Investigation of parameters of the working substance - low temperature plasma in the ionization resonator chamber of the RF reactive engine

    International Nuclear Information System (INIS)

    Vdovin, V.S.; Zajtzev, B.V.; Kobetz, A.F.; Bomko, V.A.; Rashkovan, V.M.; Bazyma, L.A.; Belokon, V.I.

    2003-01-01

    This paper is the extension of investigations of the RF engine designed for orientation and stabilization of the spacecrafts orbit, and it is undertaken for measuring of plasma parameters of RF discharge in the ionization resonator chamber. The experiments were performed at the frequency of 80 MHz on the model engine, in which a length of coaxial line with shortening capacities at the ends was used as the ionization resonator chamber. As the result of the experiments, conditions of the RF discharge ignition in the resonator chamber are studied; dependencies of plasma density and temperature versus applied power and working body pressure are obtained for various gases. The measurements of the thrust were performed at the special-purpose test bench

  14. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique

    International Nuclear Information System (INIS)

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane

  15. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  17. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  18. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Annual progress report, March 1992 - February 1993

    International Nuclear Information System (INIS)

    1993-01-01

    In this report, the author will review the progress made in his studies of ion rotational distributions resulting from resonance enhanced multiphoton ionization of excited electronic states and from single-photon ionization of ground electronic states of jet-cooled molecules by coherent VUV and XUV radiation. To do so he will select a few examples from his studies which serve to highlight his progress and to identify the background and significance of the specific spectral features and systems he has chosen to study

  19. Alignment dependence in above-threshold ionization of H2+: role of intermediate resonances

    DEFF Research Database (Denmark)

    Hernández, Jorge Fernández; Madsen, Lars Bojer

    2009-01-01

    We report a 3D ab initio investigation of the dependence of above-threshold ionization of the H2+ molecule on the orientation of a linearly polarized intense femtosecond laser pulse with respect to the molecular axis. The calculations were performed in the frozen nuclei approximation for the 2Σ+g(1......sσg) ground and the 2Σ+u(2pσu) first excited electronic states, in laser pulses of seven optical cycles (19 fs) with a wavelength of 800 nm and for different intensities. The numerical procedure combines two different techniques, a grid-based split-step method to propagate the wave packet during...... the pulse, and a bound and scattering states B-spline basis set calculation to extract the information from the former. We show that the orientation dependence of the above-threshold ionization spectra is very sensitive to the intensity of the field and to the final electron energy. For some intensities...

  20. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  1. Towards radiation detected resonance ionization spectroscopy on transfermium elements in a buffer gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, 64289 Darmstadt (Germany); Laatiaoui, Mustapha; Block, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55128 Mainz (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, 55128 Mainz (Germany); Hessberger, Fritz-Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2013-07-01

    The study of the atomic structure of transfermium elements like nobelium (No) and lawrencium (Lr) via Radiation Detected Resonance Ionization Spectroscopy (RADRIS) is one of the most fascinating disciplines of modern atomic physics. It allows the determination of relativistic effects at the heaviest elements and provides a critical test of theoretical predictions. For these transfermium elements no experimental data on atomic level schemes are available at present. First experiments on {sup 254}No were performed in 2007, in which a buffer gas cell with an overall efficiency of 1%. In this experiment the evaporation temperature of nobelium was determined for the first time. To increase the efficiency of the buffer gas cell, off-line measurements have been performed with nat. ytterbium, the chemical homologue of nobelium. Also on-line experiments during a parasitic beam-time in 2012 provided an insight into the critical parameters of our setup. The results of the off-line and on-line measurements are briefly summarized in this talk.

  2. Ultratrace analysis of plutonium in environmental samples by resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Trautmann, N.; Erdmann, N.; Gruening, C.; Kratz, J. V.; Waldek, A.; Huber, G.; Nunnemann, M.; Passler, G.

    2000-01-01

    Plutonium is present in the environment mainly as a result of global fallout from nuclear weapons tests, satellite and reactor accidents as well as releases from nuclear facilities. Sensitive and fast detection methods are required for risk assessment, low-level surveillance of the environment, personnel dose monitoring, studies of biological effects and investigations of the migration behavior of plutonium. Furthermore, the isotopic composition is of interest to get information from what source the plutonium contamination originated. Alpha-spectroscopy is most frequently used for the determination of trace amounts of plutonium in the environment with the disadvantage that the detection sensitivity depends on the half-life of the isotope to be measured and that there are limitations in the isotopic resolution. Conventional mass spectrometry may suffer from isobaric interferences. Therefore, in the last years resonant laser ionization mass spectrometry (RIMS) has been explored as an alternative for ultratrace analysis of plutonium. This method provides a high element and isotope selectivity and a good overall efficiency, resulting in a detection limit of ∼10 6 atoms (∼0.4 fg). RIMS meets also the requirements of a low background and a short measuring time (1-2 h)

  3. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 3,5-difluorophenol

    Science.gov (United States)

    Peng, Wei Chih; Wu, Pei Ying; Tzeng, Shen Yuan; Tzeng, Wen Bih

    2018-05-01

    The first electronic transition and adiabatic ionization energies of 3,5-difluorophenol (35DFP) have been identified as 37614 cm-1 and 72468 cm-1, respectively. These energy values of 35DFP are marginally higher than those of other positional isomers of difluorophenols (25DFP, 34DFP, and 24DFP). The observed active vibrations are primarily due to the in-plane and out-of-plane ring deformation and substituent-sensitive bending motions in the electronically excited (S1) and cationic ground (D0) states.

  4. A Study of the r-Process Path Nuclides,$^{137,138,139}$Sb using the Enhanced Selectivity of Resonance Ionization Laser Ionization

    CERN Multimedia

    Walters, W

    2002-01-01

    The particular features of the r-process abundances with 100 < A < 150 have demonstrated the close connection between knowledge of nuclear structure and decay along the r-process path and the astrophysical environement in which these elements are produced. Key to this connection has been the measurement of data for nuclides (mostly even-N nuclides) that lie in the actual r-process path. Such data are of direct use in r-process calculations and they also serve to refine and test the predictive power of nuclear models where little or no data now exist. In this experiment we seek to use the newly developed ionization scheme for the Resonance Ionization Laser Ion Source (RILIS) to achieve selective ionization of neutron-rich antimony isotopes in order to measure the decay properties of r-process path nuclides $^{137,138,139}$Sb. These properties include the half-lives, delayed neutron branches, and daughter $\\gamma$-rays. The new nuclear structure data for the daughter Te nuclides is also of considerable in...

  5. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  6. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible.

  7. Separation Techniques for Uranium and Plutonium at Trace Levels for the Thermal Ionization Mass Spectrometric Determination

    International Nuclear Information System (INIS)

    Suh, M. Y.; Han, S. H.; Kim, J. G.; Park, Y. J.; Kim, W. H.

    2005-12-01

    This report describes the state of the art and the progress of the chemical separation and purification techniques required for the thermal ionization mass spectrometric determination of uranium and plutonium in environmental samples at trace or ultratrace levels. Various techniques, such as precipitation, solvent extraction, extraction chromatography, and ion exchange chromatography, for separation of uranium and plutonium were evaluated. Sample preparation methods and dissolution techniques for environmental samples were also discussed. Especially, both extraction chromatographic and anion exchange chromatographic procedures for uranium and plutonium in environmental samples, such as soil, sediment, plant, seawater, urine, and bone ash were reviewed in detail in order to propose some suitable methods for the separation and purification of uranium and plutonium from the safeguards environmental or swipe samples. A survey of the IAEA strengthened safeguards system, the clean room facility of IAEA's NWAL(Network of Analytical Laboratories), and the analytical techniques for safeguards environmental samples was also discussed here

  8. Quality control for total evaporation technique by surface/thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Kato, Seikou; Inoue, Sinichi; Yamaguchi, Katsuyuki; Tsutaki, Yasuhiro

    2007-01-01

    For the measurement of uranium and plutonium isotopic composition, the surface/thermal ionization mass spectrometry is widely used at the both nuclear facilities and safeguards verification laboratories. The progress of instrument specification makes higher sensitivity. The total evaporation technique is one of the latest measurement techniques by using this progress, in which all of uranium or plutonium on the filament would be evaporated by increasing the filament current. The accuracy and precision of this technique is normally checked by using the certified isotope reference materials measurement. But the fluctuation of ion beam is very different by each filament, depending on the chemical form of evaporation. So, it should be considered how to check the measurement quality of unknown samples which has no certified values. This presentation is focused on the monitoring of ion yields and pattern of isotope ratio fluctuation to attain the traceability between reference material and unknown sample as quality control approach of total evaporation technique. (author)

  9. Separation Techniques for Uranium and Plutonium at Trace Levels for the Thermal Ionization Mass Spectrometric Determination

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Han, S. H.; Kim, J. G.; Park, Y. J.; Kim, W. H

    2005-12-15

    This report describes the state of the art and the progress of the chemical separation and purification techniques required for the thermal ionization mass spectrometric determination of uranium and plutonium in environmental samples at trace or ultratrace levels. Various techniques, such as precipitation, solvent extraction, extraction chromatography, and ion exchange chromatography, for separation of uranium and plutonium were evaluated. Sample preparation methods and dissolution techniques for environmental samples were also discussed. Especially, both extraction chromatographic and anion exchange chromatographic procedures for uranium and plutonium in environmental samples, such as soil, sediment, plant, seawater, urine, and bone ash were reviewed in detail in order to propose some suitable methods for the separation and purification of uranium and plutonium from the safeguards environmental or swipe samples. A survey of the IAEA strengthened safeguards system, the clean room facility of IAEA's NWAL(Network of Analytical Laboratories), and the analytical techniques for safeguards environmental samples was also discussed here.

  10. Determination of contraband using fast neutron resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Whang, J. [Kyunghee Univ., Dept. of Nuclear Engineering, Yongin-shi, Kyongki-do (Korea, Republic of)

    2004-07-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  11. Determination of contraband using fast neutron resonance technique

    International Nuclear Information System (INIS)

    Bae, J.; Whang, J.

    2004-01-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  12. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Rhee, Yong Joo; Lee, Jong Min

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm -1 and 37700 cm -1

  13. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    CERN Document Server

    Kim, J T; Rhee, Y J; Lee, J M

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm sup - sup 1 and 37700 cm sup - sup 1

  14. Resonant multiphoton ionization of caesium atoms by ultra-short laser pulses at 1.06 μm

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Manus, C.; Thebault, J.

    1978-01-01

    This paper reports the four-photon ionization of caesium atoms when the laser frequency is tuned through the resonant three-photon transition 6S → 6F. This experiment was performed by using a tunable-wavelength bandwidth-limited subnanosecond laser pulse at 1.06 μm, in the 10 8 -10 9 W.cm -2 laser intensity range. Pulse widths of 1.5 ns, 50 ps, and 15 ps were used. The resonant character of the multiphoton ionization process was observed, even with the shortest pulse of 15 ps. Nevertheless the influence of a temporal effect is demonstrated according to theoretical predictions. The resonance shift ΔE of the 6S → 6F transition energy was found to be linear with the laser intensity I within the range 10 8 -10 9 W.cm -2 . ΔE = αI, with α = 2 cm -1 /GW.cm -2 . This results confirms previous measurements performed with single-mode 35 ns laser pulses and is in very good agreement with calculated resonance shifts

  15. Comparison of derivatization/ionization techniques for liquid chromatography tandem mass spectrometry analysis of oxylipins.

    Science.gov (United States)

    Meckelmann, Sven W; Hellhake, Stefan; Steuck, Maryvonne; Krohn, Michael; Schebb, Nils Helge

    2017-05-01

    The performance of two derivatization and ionization techniques for the quantitative reversed phase liquid chromatography (LC)- mass spectrometry (MS) analysis of hydroxy fatty acids (OH-PUFA) in plasma was evaluated: One used AMPP (N-(4-aminomethylphenyl)pyridinium chloride) leading to a positive charged amid-derivate which can be detected by electrospray ionization (ESI)-MS. Second yielded penta fluorobenzyl bromide (PFB) ester derivates allowing detection in electron capture atmospheric pressure chemical ionization (ecAPCI)-MS. The sensitivity of detection of a comprehensive set of hydroxy fatty acids of n6- and n3- poly unsaturated fatty acids was investigated. On the SCIEX3200 MS the applied PFB derivatization led to poor limits of detection (LOD) of 10-100nM (0.1-1pmol/0.03-0.3ng on column). By contrast, AMPP derivatization led to a similar sensitivity compared to the standard ESI(-) of non derivatized analytes (LOD about 1nM (10fmol/3pg on column)). For several analytes, including 9-HETE, 11-HETE and 17-HDHA the AMPP derivatization improved sensitivity enabling their detection in human plasma. However, precision was reduced by AMPP derivatization and variation in IS recovery indicated a strong matrix influence on the MS-signal. In sum, with the instrumentation used, neither of these derivatization methods improves in our hands the LC-MS based quantification of oxylipins. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  17. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  18. Resonant laser techniques for combustion and flow diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Fritzon, Rolf

    1998-05-01

    This thesis presents results from two areas of research. Firstly, the resonant coherent laser techniques polarization spectroscopy (PS), degenerate four-wave mixing (DFWM) and stimulated emission (SE) have been developed in the general field of combustion diagnostics. Secondly, laser induced fluorescence (LIF) has been developed and applied for the visualization of mixture fractions in turbulent non reacting flows. PS was developed for instantaneous two-dimensional imaging of minor species in flames, the technique being demonstrated on OH and NO. Various aspects of imaging and of detection in general were investigated. Two-photon induced PS was demonstrated for the detection of NH{sub 3}, CO and N{sub 2} molecules. LIF was monitored simultaneously to allow a quantitative comparison between the techniques. Furthermore, PS and DFWM were developed for instantaneous two-dimensional OH temperature imaging. Through a novel experimental approach based on the use of a dual-wavelength dye laser and a diffraction grating the temperature imaging measurements were performed using only one laser and one CCD camera. A comparison between the two techniques was made. SE was through a crossed-beam arrangement developed for spatially resolved detection of flame species. Two-dimensional LIF was developed and applied for measuring mixture fractions in the shear layer between two co-flowing turbulent gaseous jets. The technique was further applied in a study of the mixing of a turbulent water jet impinging orthogonally onto a flat surface. Average concentration fields in the center-plane of the jet was compared with results from large eddy simulations and with data from the literature 221 refs, 48 figs, 5 tabs

  19. Background estimation techniques in searches for heavy resonances at CMS

    CERN Document Server

    Benato, Lisa

    2017-01-01

    Many Beyond Standard Model theories foresee the existence of heavy resonances (over 1 TeV) decaying into final states that include a high-energetic, boosted jet and charged leptons or neutrinos. In these very peculiar conditions, Monte Carlo predictions are not reliable enough to reproduce accurately the expected Standard Model background. A data-Monte Carlo hybrid approach (alpha method) has been successfully adopted since Run 1 in searches for heavy Higgs bosons performed by the CMS Collaboration. By taking advantage of data in signal-free control regions, determined exploiting the boosted jet substructure, predictions are extracted in the signal region. The alpha method and jet substructure techniques are described in detail, along with some recent results obtained with 2016 Run 2 data collected by the CMS detector.

  20. Enhanced asymmetry in few-cycle attosecond pulse ionization of He in the vicinity of autoionizing resonances

    International Nuclear Information System (INIS)

    Djiokap, J M Ngoko; Starace, Anthony F; Hu, S X; Jiang Weichao; Peng Liangyou

    2012-01-01

    By solving the two-active-electron, time-dependent Schrödinger equation in its full dimensionality, we investigate the carrier-envelope phase (CEP) dependence of single ionization of He to the He + (1s) state triggered by an intense few-cycle attosecond pulse with carrier frequency ω corresponding to the energy ℏω = 36 eV. Effects of electron correlations are probed by comparing projections of the final state of the two-electron wave packet onto field-free highly correlated Jacobi matrix wave functions with projections onto uncorrelated Coulomb wave functions. Significant differences are found in the vicinity of autoionizing resonances. Owing to the broad bandwidths of our 115 and 230 as pulses and their high intensities (1–2 PW cm −2 ), asymmetries are found in the differential probability for ionization of electrons parallel and antiparallel to the linear polarization axis of the laser pulse. These asymmetries stem from interference of the one- and two-photon ionization amplitudes for producing electrons with the same momentum along the linear polarization axis. Whereas these asymmetries generally decrease with increasing ionized electron kinetic energy, we find a large enhancement of the asymmetry in the vicinity of two-electron doubly excited (autoionizing) states on an energy scale comparable to the widths of the autoionizing states. The CEP dependence of the energy-integrated asymmetry agrees very well with the predictions of time-dependent perturbation theory (Pronin et al 2009 Phys. Rev. A 80 063403). (paper)

  1. Magnetic resonance techniques for investigation of multiple sclerosis

    Science.gov (United States)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  2. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  3. Mass Spectrometric Study of Some Fluoroquinolone Drugs Using Electron Ionization and Chemical Ionization Techniques in Combination With Semi-Empirical Calculations

    International Nuclear Information System (INIS)

    Abd EL Kareem, M.S.M.

    2013-01-01

    A mass spectrometer of the type QMS (SSQ710) is used to record the electron ionization mass spectra of some 6-fluoroquinolones molecules, namely: Norfloxacin, Pefloxacin, Ciprofloxacin and Levofloxacin.While the chemical ionization mass spectra of these compounds are recorded using Thermo Finnigan TRACE DSQ GC/MS system.In EI mass spectra, the relative intensities for the molecular ions [M] +. of the studied compounds and the prominent fragment ions are reported and discussed. Furthermore, fragmentation patterns for the four compounds have been suggested and discussed and the most important fragmentation processes such as [M-CO 2 ] +. , [M-C 2 H 4 N] + and [M-CO 2 -C 2 H 4 N] + are investigated.On the other hand, the chemical ionization (CI) mass spectra of the compounds have been recorded using methane as the reagent gas. These spectra are discussed in terms of the structure of the compounds, with particular reference to their conventional electron ionization mass spectra. The protonated molecules [M + H] + are more relatively intense than [M] +. ions in the recorded EI mass spectra indicating higher stability in the case of [M + H] + .Also, fragmentation patterns for the four compounds have been suggested and discussed (using chemical ionization technique) and the most important fragmentation processes such as [MH-CO 2 ] +. , [MH-C 2 H 4 N] + and [MH-H 2 O] + are investigated.

  4. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  5. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    Science.gov (United States)

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  6. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    International Nuclear Information System (INIS)

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Sklorz, Martin; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-01-01

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  7. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Stefan [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Erdmann, Sabrina [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Sklorz, Martin [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Schulz-Bull, Detlef [Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, 18119 Rostock (Germany); Zimmermann, Ralf [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany)

    2015-01-15

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  8. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  9. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  10. Atomic population redistribution in a dense Ga vapour proceeding via energy pooling ionization induced by resonant laser-assisted collisions

    International Nuclear Information System (INIS)

    Barsanti, S; Bicchi, P

    2002-01-01

    In this paper we report on the atomic population redistribution originating from the ionization that takes place in a dense Ga vapour kept in quartz cells and resonantly excited by laser radiation, in the collisions between two excited atoms. This ionization process is known as energy-pooling ionization (EPI). The electron/ion recombination that takes place in the low density plasma produced gives rise to population in the atomic Rydberg levels and from the latter via cascade transitions to lower lying ones. We have monitored the fluorescences relative to the radiative emissions from such levels, namely those corresponding to the nP → 5S 1/2 series, with 9 ≤ n ≤ 26, and the 4D → 4P 1/2,3/2 transitions. Their characteristics testify to their origin as being due to the EPI process. Further confirmation is obtained by performing a time-resolved analysis of such fluorescences, whose appearance and time evolution is strongly influenced by the dynamics of the process. The effect of the introduction of a few Torr of buffer gas inside the quartz cell, resulting in the quenching of all the fluorescences for n ≥ 12, is also discussed

  11. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  12. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  13. Observation of new satellites in Cs-Ar system using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Hurst, G.S.; Payne, M.G.; Young, J.P.

    1978-01-01

    The absorption line shape of Cs-Ar system is recorded using two-photon ionization of the system with Cs(7P) as an intermediate state. New satellite structures in the wings of Cs(7P) are observed which were not resolved in previous absorption measurements. Also the absolute absorption cross section in the blue wing is measured

  14. Dual ring multilayer ionization chamber and theory-based correction technique for scanning proton therapy.

    Science.gov (United States)

    Takayanagi, Taisuke; Nihongi, Hideaki; Nishiuchi, Hideaki; Tadokoro, Masahiro; Ito, Yuki; Nakashima, Chihiro; Fujitaka, Shinichiro; Umezawa, Masumi; Matsuda, Koji; Sakae, Takeji; Terunuma, Toshiyuki

    2016-07-01

    To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. The authors distinguish between a calibration procedure and an additional correction: 1-the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2-the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical model tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm(2) were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow

  15. Dual ring multilayer ionization chamber and theory-based correction technique for scanning proton therapy

    International Nuclear Information System (INIS)

    Takayanagi, Taisuke; Nishiuchi, Hideaki; Fujitaka, Shinichiro; Umezawa, Masumi; Nihongi, Hideaki; Tadokoro, Masahiro; Ito, Yuki; Nakashima, Chihiro; Matsuda, Koji; Sakae, Takeji; Terunuma, Toshiyuki

    2016-01-01

    Purpose: To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. Methods: The authors distinguish between a calibration procedure and an additional correction: 1—the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2—the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical model tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. Results: IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm 2 were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight

  16. Online monitoring of biofouling using coaxial stub resonator technique

    NARCIS (Netherlands)

    Hoog-Antonyuk, N.A.; Mayer, M.J.J.; Miedema, H.; Olthuis, Wouter; Tomaszweska, A.A.; Paulitsch-Fuchs, A.H.; van den Berg, Albert

    Here we demonstrate the proof-of-principle that a coaxial stub resonator can be used to detect early stages of biofilm formation. After promising field tests using a stub resonator with a stainless steel inner conductor as sensitive element, the sensitivity of the system was improved by using a

  17. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    Science.gov (United States)

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  18. Dating the Martian meteorite Zagami by the ⁸⁷Rb-⁸⁷Sr isochron method with a prototype in situ resonance ionization mass spectrometer.

    Science.gov (United States)

    Anderson, F Scott; Levine, Jonathan; Whitaker, Tom J

    2015-01-30

    The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ~270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ~1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. We demonstrate the first use of laser ablation resonance ionization mass spectrometry for (87)Rb-(87)Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained (87)Rb-(87)Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an (87)Rb-(87)Sr age for this specimen of 360 ±90 Ma. Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The Authors. Rapid Communications in

  19. One- and two-photon single ionization of 1D helium: resolving the role of individual decay channels and resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Neimanns, Vera; Zimmermann, Klaus; Joerder, Felix; Buchleitner, Andreas [Albert-Ludwigs-Univ., Freiburg im Breisgau (Germany). Quantum Optics and Statistics; Lugan, Pierre [Laboratory of Theoretical Physics of Nanosystems, Institute of Theoretical Physics, EPF Lausanne (Switzerland)

    2012-07-01

    We combine the method of complex rotation and Floquet theory to analyze the multiphoton ionization of helium atoms in strong laser fields. We focus on 1D Z{sup 2+}e{sup -}e{sup -} helium to highlight the methods that allow us to extract the partial decay rates associated with various decay channels. In the regime of one-photon single ionization, we study the dependence of the partial rates associated with the singly ionized He{sup +}(N) states on the field frequency. We show that the electron-electron interaction provides couplings to higher single-ionization continua. Finally, we examine two-photon single-ionization processes, and analyze the role of the internal electronic structure of the atom, specifically the signature of resonant coupling to intermediate bound states on the decay rates.

  20. Quantitative magnetic resonance techniques in the evaluation of intracranial tuberculomas

    International Nuclear Information System (INIS)

    Vasudev, M.K.; Jayakumar, P.N.; Srikanth, S.G.; Nagarajan, K.; Mohanty, A.

    2007-01-01

    Purpose: To evaluate intracranial tuberculomas using quantitative magnetic resonance (MR) techniques such as T2 relaxometry, magnetization transfer (MT), and diffusion-weighted imaging (DWI). Material and Methods: Thirty-three patients with intracranial tuberculomas (histologically confirmed in 22) were evaluated using proton density/T2-weighted, T1-weighted (with and without MT), and echo-planar diffusion-weighted imaging sequences. T2 relaxation times, MT ratios (MTR), and apparent diffusion coefficient (ADC) values were calculated from the center of the lesion, the periphery, perilesional edema, and contralateral normal white matter. The mean and standard deviation values of each variable were calculated and correlated using Pearson's test (P = 0.05). Results: The measured mean values of T2 relaxation time, MTR, and ADC in the center of lesions were 155.5 ms, 14.1, and 1.27x10-3 mm 2 /s, respectively, compared to 117 ms, 23.72, and 0.74x10-3 mm 2 /s in normal white matter, and a T2 relaxation time of 187.45 ms in normal gray matter. Significant inverse correlations were noted between T2 relaxation values and MTR (P<0.001) and between MTR and ADC (P = 0.046). Significant positive correlation was seen between T2 relaxation and ADC values (P = 0.03). Conclusion: Intracranial tuberculomas are characterized by relatively short T2 relaxation times (compared to normal gray matter), decreased MTR, and mostly no restriction of diffusion. A combination of these quantitative parameters could be of help in the noninvasive diagnosis of tuberculomas

  1. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  2. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  3. Ionizing radiation effects in Acai oil analysed by gas chromatography coupled to mass spectrometry technique

    International Nuclear Information System (INIS)

    Valli, Felipe; Fernandes, Carlos Eduardo; Moura, Sergio; Machado, Ana Carolina; Furasawa, Helio Akira; Pires, Maria Aparecida Faustino; Bustillos, Oscar Vega

    2007-01-01

    The Acai fruit is a well know Brazilian seed plant used in large scale as a source of feed stock, specially in the Brazilian North-east region. The Acai oil is use in many purposes from fuel sources to medicine. The scope of this paper is to analyzed the chemical structures modification of the acai oil after the ionizing radiation. The radiation were set in the range of 10 to 25 kGy in the extracted Acai oil. The analyses were made by gas chromatography coupled to mass spectrometry techniques. A GC/MS Shimatzu QP-5000 equipped with 30 meters DB-5 capillary column with internal diameter of 0.25 mm and 0.25 μm film thickness was used. Helium was used as carried gas and gave a column head pressure of 12 p.s.i. (1 p.s.i. = 6894.76 Pa) and an average flux of 1 ml/min. The temperature program for the GC column consisted of a 4-minutes hold at 75 deg C, a 15 deg C /min ramp to 200 deg C, 8 minutes isothermal. 20 deg C/min ramp to 250 deg C, 2 minutes isothermal. The extraction of the fatty acids was based on liquid-liquid method using chloroform as solvent. The chromatograms resulted shows the presences of the oleic acid and others fatty acids identify by the mass spectra library (NIST-92). The ionization radiation deplete the fatty acids presents in the Acai oil. Details on the chemical qualitative analytical is present as well in this work. (author)

  4. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    Science.gov (United States)

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  5. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    Science.gov (United States)

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  7. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  8. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Wendy [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Ren, Lei, E-mail: lei.ren@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Cai, Jing [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Zhang, You [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Chang, Zheng; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-06-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  9. Resonantly-enhanced, four-photon ionization of krypton at laser intensities exceeding 1013 W/cm2

    International Nuclear Information System (INIS)

    Perry, M.D.; Landen, O.L.; Campbell, E.M.

    1987-12-01

    The yield of singly- and multiply- charged ions of krypton and xenon is presented as a function of laser intensity and frequency. The measurements were performed using the second harmonic output of a well-characterized, tunable picosecond dye laser in the range 285 to 310 nm at laser intensities from 1 x 10 12 to 10 14 W/cm 2 . Enhancement of the Kr + yield by two orders of magnitude by three-photon resonant, four-photon ionization is observed in the vicinity of the 4d'[5/2] 3 and the 4d[3/2] 1 intermediate states. A model incorporating line shifts and widths scaling linearly with intensity is in good agreement with the experimental results

  10. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  11. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  12. Isomer separation of $^{70g}Cu$ and $^{70m}Cu$ with a resonance ionization laser ion source

    CERN Document Server

    Köster, U; Mishin, V I; Weissman, L; Huyse, M; Kruglov, K; Müller, W F; Van Duppen, P; Van Roosbroeck, J; Thirolf, P G; Thomas, H C; Weisshaar, D W; Schulze, W; Borcea, R; La Commara, M; Schatz, H; Schmidt, K; Röttger, S; Huber, G; Sebastian, V; Kratz, K L; Catherall, R; Georg, U; Lettry, Jacques; Oinonen, M; Ravn, H L; Simon, H

    2000-01-01

    Radioactive copper isotopes were ionized with the resonance ionization laser ion source at the on-line isotope separator ISOLDE (CERN). Using the different hyperfine structure in the 3d/sup 10/ 4s /sup 2/S/sub 1/2/-3d/sup 10/ 4p /sup 2/P/sub 1/2//sup 0/ transition the low- and high-spin isomers of /sup 70/Cu were selectively enhanced by tuning the laser wavelength. The light was provided by a narrow-bandwidth dye laser pumped by copper vapor lasers and frequency doubled in a BBO crystal. The ground state to isomeric state intensity ratio could be varied by a factor of 30, allowing to assign gamma transitions unambiguously to the decay of the individual isomers. It is shown that the method can also be used to determine magnetic moments. In a first experiment for the 1/sup +/ ground state of /sup 70/Cu a magnetic moment of (+)1.8(3) mu /sub N/ and for the high-spin isomer of /sup 70/Cu a magnetic moment of (+or-)1.2(3) mu /sub N/ could be deduced. (20 refs).

  13. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  14. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  15. Tools and methods for teaching magnetic resonance concepts and techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    2012-01-01

    Teaching of MRI methodology can be challenging for teachers as well as students. To support student learning, two graphical simulators for exploration of basic magnetic resonance principles are here introduced. The first implements a simple compass needle analogy implemented for day one of NMR...... and MRI education. After a few minutes of use, any user with minimal experience of magnetism will be able to explain the basic magnetic resonance principle. A second piece of software, the Bloch Simulator, aims much further, as it can be used to demonstrate and explore a wide range of phenomena including...

  16. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    International Nuclear Information System (INIS)

    Nagel, H.; Weickhardt, C.; Boesl, U.; Frey, R.

    1995-01-01

    As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances. copyright 1995 American Institute of Physics

  17. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  18. Preparation of a newly microbial polymer using ionizing radiation technique and its conductivity

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Hwa Jung; Song, Aram; Kim, Dong Ho; Park, Hae Jun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup (Korea, Republic of)

    2016-11-15

    Extracellular polymeric substance (EPS) is produced by microorganisms for a variety of purpose in response to environmental stresses. The EPS are heterogeneous mixture composed dominantly of polysaccharides and proteins, with nucleic acid and lipid as minor constituents. Application of a bacterial EPS is in mostly bioremediation in environment and it applied to pharmaceutical industries including indwelling medical devices. Furthermore, the EPS studies have mostly been performed in the only level of bacterial culture system. In this study, we have first investigated the structural modification of EPS using ionizing radiation technique. The extracted EPS solution from bacterial culture step was exposed to gamma-irradiation at room temperature. Especially, the EPS was given irradiation at various ranges of 0, 2, 10 and 30 kGy from {sup 60}Co gamma-ray source. The structural property and surface morphology were characterized by using Fourier-transform infrared (FTIR) and field emission-scanning electron microscopy (FE-SEM). Also, the conductivity of EPS was determined by using the Van der PauW method, and the polymeric substances turned out to have semi-conductivity (about 5.38*10{sup -7})

  19. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS).

    Science.gov (United States)

    Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten

    2008-07-01

    We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.

  20. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  1. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte.

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  2. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397

  3. The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

    CERN Document Server

    Cocolios, T E; Procter, T J; Rothe, S; Garcia Ruiz, R F; Stroke, H H; Rossel, R E; Heylen, H; Franchoo, S; Marsh, B A; Verney, D; Papuga, J; Strashnov, I; Billowes, J; de Groote, R P; Le Blanc, F; Simpson, G S; Fedosseev, V N; Lynch, K M; Wood, R T; Budincevic, I; Mason, P J R; Wendt, K D A; Flanagan, K T; De Schepper, S; Rajabali, M M; Al Suradi, H H; Walker, P M; Smith, A J

    2013-01-01

    The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1\\% experimental efficiency, and as low as a 0.001\\% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  5. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  6. Development of laser-based resonance ionization techniques for 81-Kr and 85-Kr measurements in the geosciences, II. December 1, 1994 through December 31, 2000 reporting period. Final technical report for Grant No. DE-FG05-95ER14497

    Energy Technology Data Exchange (ETDEWEB)

    Thonnard, Norbert; McKay, Larry D.; Labotka, Theodore C.

    2001-02-05

    A facility for measurement of rare Kr-81 and Kr-85 isotope concentration in hydrogeologic samples, and isotopic composition of minute quantities of krypton and xenon from extraterrestrial samples, was established, requiring refinement of an emerging mass spectrometric-based analytical technique and securing of laboratory space and equipment. The analytical process consists of (1) collecting a groundwater sample, (2) degassing the water, (3) separating Kr from the recovered gases, (4&5) two isotopic enrichments to reduce interfering isotopes by E9, and (6) detecting the rare krypton isotope in a unique time-of-flight mass spectrometer detecting as few as 100 Kr atoms. All equipment is installed and operating, with only some additional adjustment and testing of the last step (6, above) remaining to be completed. Collaborations have been established with a number of researchers and organizations world wide, and both groundwater and extraterrestrial samples have been collected. Completion of analyses awaits full operation of step 6.

  7. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  8. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  9. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  10. Electron-spin-resonance techniques in fuel research

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    E.s.r. techniques provide a sensitive means of identifying the free radicals present in pyrolytic and combustion reactions, and determining their concentration. This article explains the theoretical basis of these techniques and indicates the scope of the work recently initiated with the e.s.r. spectrometer at the Division of Coal Research.

  11. Handbook of multifrequency electron paramagnetic resonance data and techniques

    CERN Document Server

    Misra, Sushil K

    2014-01-01

    This handbook is aimed to deliver an up-to-date account of some of the recently developed experimental and theoretical methods in EPR, as well as a complete up-to-date listing of the experimentally determined values of multifrequency transition-ion spin Hamiltonian parameters by Sushil Misra, reported in the past 20 years, extending such a listing published by him in the Handbook on Electron Spin Resonance, volume 2. This extensive data tabulation makes up roughly 60% of the book`s content. It is complemented by the first full compilation of hyperfine splittings and g-factors for aminoxyl (nit

  12. Online monitoring of biofouling using coaxial stub resonator technique

    Directory of Open Access Journals (Sweden)

    N.A. Hoog

    2015-03-01

    Analysis of the biofilm and the stub resonator signal, both as function of time, indicates that the sensor allows detection of early stages of biofilm formation. In addition, the sensor signal clearly discriminates between the first stages of biofilm formation (characterized by separated, individual spots of bacterial growth on the glass beads and the presence of a nearly homogeneous biofilm later on in time. Model simulations based on the transmission line theory predict a shift of the sensor response in the same direction and order of magnitude as observed in the biofouling experiments, thereby confirming the operating principle of the sensor.

  13. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    Science.gov (United States)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  14. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-10-15

    II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  15. Simultaneous demonstration of UV-type and ionizing radiation-type DNA repair by the nucleoid sedimentation technique

    International Nuclear Information System (INIS)

    Aldenhoff, P.; Sperling, K.

    1984-01-01

    The nucleoid sedimentation technique is one of the most sensitive methods for measuring DNA excision repair. With this technique, it is shown that both UV- and ionizing radiation-type repair (the latter induced by bleomycin) can be discriminated in HeLa and normal diploid cells using 1-β-D-arabinofuranosylcytosine. The latter compound inhibits UV-type repair synthesis, and thus causes DNA breaks due to enzymic incision to persist, but has no effect on rejoining DNA after ionizing radiation-type damage. It was then possible to prove that 4-nitroquinoline-1-oxide induces both types of lesions which are repaired simultaneously. This effect could be demonstrated in HeLa and normal human diploid cells in a single experimental set-up. (Auth.)

  16. Trace analysis of actinides in the environment using resonance ionization mass spectrometry; Spurenanalyse von Aktiniden in der Umwelt mittels Resonanzionisations-Massenspektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian

    2011-04-12

    In this work the resonant ionization of neutral atoms using laser radiation was applied and optimized for ultra-trace analysis of the actinides thorium, uranium, neptunium and plutonium. The sensitive detection of these actinides is a challange for the monitoring and quantification of radioactive releases from nuclear facilities. Using resonance ionization spectroscopy combined with a newly developed quadrupole-mass-spectrometer, numerous energy levels in the atomic structure of these actinides could be identified. With this knowledge efficient excitation schemes for the mentioned actinides could be identified and characterised. The applied in-source-ionization ensures for a high detection efficiency due to the good overlap of laser radiation with the atomic beam and allows therefore for a low sample consumption which is required for the analysis of radio nuclides. The selective excitation processes in the resonant ionization method supresses unwanted contaminations and was optimized for analytical detection of ultra-trace amounts in environmental samples as well as for determination of isotopic compositions. The efficient in-source-ionization combined with high power pulsed laser radiation allows for detections efficiency up to 1%. For plutonium detection limits in the range of 10{sup 4}-10{sup 5} atoms could be demonstrated for synthetic samples as well as for first environmental samples. The usage of narrow bandwidth continuous wave lasers in combination with a transversal overlap of the laser radiation and the free propagating atomic beam enable for resolving individual isotopic shifts of the resonant transitions. This results in a high selectivity against dominant neighboring isotopes but with a significant loss in detection efficiency. For the ultra-trace isotope {sup 236}U a detection limit down to 10{sup -9} for the isotope ratio N ({sup 236}U)/N ({sup 238}U) could be determined.

  17. Methods for magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  18. Technique of obstetric pelvimetry by magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Sigmund, G.; Wenz, W.; Bauer, M.; DeGregorio, G.; Henne, K.

    1991-01-01

    Magnetic resonance imaging (MRL) allows for the first time direct determination of maternal pelvic dimensions without ionising radiation. Phantom measurements and the correlation with traditional pelvimetric measurements in 10 patients after Caesarean section have shown mean differences of ± 2 mm, with a maximum of 5 mm. The evaluation of pelvic configuration is obtained analogous to the conventional roentgenogram. In addition to conventional or digital X-ray pelvimetry, the soft tissues of the maternal pelvis and the presenting part of the foetus is delineated with high contrast. Positioning in the body coil can be accomplished even late in pregnancy or in impending labour, acceptance by the pregnant women being high. Whereas in a given indication after delivery conventional X-ray pelvimetry continues to be performed, antenatally MRI pelvimetry has now been established in our Departments as the method of choice - based on meanwhile 107 examinations. Present drawbacks are the relatively high cost and the limited availability of MR units. (orig.) [de

  19. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  20. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    Science.gov (United States)

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  1. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S; Skinner, Heath D; Walker, Christopher M; Williams, Michelle D; Tailor, Ramesh; Court, Laurence E; Bankson, James A; Lai, Stephen Y

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  2. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Directory of Open Access Journals (Sweden)

    Vlad C Sandulache

    Full Text Available Ionizing radiation (IR cytotoxicity is primarily mediated through reactive oxygen species (ROS. Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP magnetic resonance spectroscopy (MRS and spectroscopic imaging (MRSI can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC, an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  3. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    International Nuclear Information System (INIS)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-01-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O 2 at C 3 Π(v = 2)←X 3 Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O 2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  4. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Science.gov (United States)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-06-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable "normal-glow" mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v' = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ˜1150 K to ˜1350 K within the discharge area. The measurements had an accuracy of ˜±50 K.

  5. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  6. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  7. Magnetic resonance angiography of the neck vessels: technique and anatomy

    International Nuclear Information System (INIS)

    Carriero, A.; Salute, L.

    1990-01-01

    The authors identified the standard projections for studying neck vessels with magnetic resonance angiography. Sixty volunteers underwent angio-MR of the arterial neck vessels with FISP 3D FT sequences obtained on the coronal and sagittal planes. The gradient-echo sequence (FISP 3D FT) was acquired with TR=0.04-0.08 s and TE=15 ms, with 25 grade flip angle. Single excitated slices of thickness ranging from 1-2 mm were included in the acquisition volume. Theses sequences were subsequently processed by the maximum intensity projection method. Two radiologist examined our results to choose the optimal projections. We used a semi-quantitative scale which allowed us to distinguish 3 different diagnostic levels for each projection: well-visualized vessels, poorly-visualized, and non-visualized ones. For each section axial rotations were performed ranging from 0 grade to 180 grade, with 15 grade i ntervals. On the coronal plane, rotations from 45 grade to 45 grade were the optimal ones to visualize the studied vessels. The 0 grade- 15 grade- 30 grade- 45 grade- 135 grade- 165 grade- 180 grade projections allowed the common carotids to be clearly demonstrated together with the verterbal arteries. The other projections appeared to be useless for diagnostic purposes. On the saggittal plane, rotations from 60 grade to 120 grade were the optimal ones. The 90 grade projection allowed the demonstration of all the big arterial vessel of the neck, including carotid bifurcation and internal and external carotids. The assessment of the optimal diagnostic projections for angio-MR of the neck vessels is helpful to reduce post-processing time. As a matter of fact, the immediate visualization, during the examination, of the standard projections allows further acquisitions to be obtained- if needed- to try to solve specific diagnostic doubts

  8. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization; Analyse chimique de surfaces par spectrometrie d`ionisation resonante associee a la pulverisation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P

    1995-12-19

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it`s also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs.

  9. Comparison between magnetic resonance findings and conventional techniques (ultrasonography and mammography) in breast disease

    International Nuclear Information System (INIS)

    Martin, J.L.; Garofono, J.M.; Berquet, A.; Fernandez, F.J.; Fuentes, P.; Alvarez de Cienfuegos, E.

    1996-01-01

    Although mammography is indisputably the best diagnostic method for detecting breast abnormalities, there are other techniques, such as ultrasonography and magnetic resonance, which are increasingly widely employed as additional indispensable aids. The present work compares mammography, ultrasound and magnetic resonance images of normal breast and of the major pathologies that can be observed in breast, including sclerosing adenosis, giant fibroadenoma, multifocal carcinoma, fibrocystic breast disease, infiltrating duct carcinoma, colloid carcinoma, radical scar, abscess and breast prosthesis. (Author) 10 refs

  10. Electron impact ionization technique on the study of terpenes and related species in French Guiana tropical forest

    International Nuclear Information System (INIS)

    Lopes, Paula Regina Corain; Bustillos, Oscar W.V.; Guenther, Alex B.; Turnipseed, Andrew A.; Emmons, Louisa; Bonal, Damien; Burban, Benoit; Siebicke, Lukas; Serca, Dominique

    2013-01-01

    The electron impact ionization is, originally, a mass spectrometry ionization method and still the most widely used of all ionization methods.In this technique, a beam of electrons passes through the gas phase sample. An electron that collides with a neutral analyte molecule can knock off another electron, resulting in a positively charged ion. The fragmentation process dependent sup on many qualities including primary structure, electron energy and ion source temperature. This paper presents a study on the seasonal variation of isoprene and some other significant biogenic volatile organic compounds (BVOC) such as α-pinene, β-pinene, limonene, e-βocimene and longifolene, measured at the Guyaflux Tower located in a wet tropical forest in French Guiana using the Relaxed Eddy Accumulation technique and analyzed by a mass spectrometer coupled to a gas chromatograph, a thermo desorption unit and a flame ionization detector (TD-GC-MS-FID). The results showed that isoprene was by far the biogenic volatile organic compound with the highest concentration and flux, followed by alpha-pinene. Previous limited studies in Amazonia and the Congo suggested that a higher concentration and flux rate of isoprene and alpha-pinene should be expected during the dry season with lower emissions during the wet season, which is in relative agreement with what was observed at this tropical forest site in French Guiana. The exceptions were observed in a long wet period in which the concentration of isoprene and alpha-pinene increased more than it was expected to, for this time of the year. (author)

  11. Electron impact ionization technique on the study of terpenes and related species in French Guiana tropical forest

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paula Regina Corain; Bustillos, Oscar W.V., E-mail: paulinhacorain@usp.br, E-mail: ovega@ipen.br [Instituto de Pesquisa Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guenther, Alex B.; Turnipseed, Andrew A.; Emmons, Louisa, E-mail: guenther@ucar.edu [Biosphere Atmosphere Interaction Group, Atmosphere Chemistry Division of National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Bonal, Damien; Burban, Benoit; Siebicke, Lukas, E-mail: lukas.siebicke@ecofog.gf [Institut National de la Recherche Agronomique (INRA-UMR EEF), Nancy (France); Serca, Dominique, E-mail: dominique.serca@aero.obs-mip.fr [Universite Paul Sabatier (UPS), Toulouse (France). Laboratoire d' Aerologie

    2013-07-01

    The electron impact ionization is, originally, a mass spectrometry ionization method and still the most widely used of all ionization methods.In this technique, a beam of electrons passes through the gas phase sample. An electron that collides with a neutral analyte molecule can knock off another electron, resulting in a positively charged ion. The fragmentation process dependent sup on many qualities including primary structure, electron energy and ion source temperature. This paper presents a study on the seasonal variation of isoprene and some other significant biogenic volatile organic compounds (BVOC) such as α-pinene, β-pinene, limonene, e-βocimene and longifolene, measured at the Guyaflux Tower located in a wet tropical forest in French Guiana using the Relaxed Eddy Accumulation technique and analyzed by a mass spectrometer coupled to a gas chromatograph, a thermo desorption unit and a flame ionization detector (TD-GC-MS-FID). The results showed that isoprene was by far the biogenic volatile organic compound with the highest concentration and flux, followed by alpha-pinene. Previous limited studies in Amazonia and the Congo suggested that a higher concentration and flux rate of isoprene and alpha-pinene should be expected during the dry season with lower emissions during the wet season, which is in relative agreement with what was observed at this tropical forest site in French Guiana. The exceptions were observed in a long wet period in which the concentration of isoprene and alpha-pinene increased more than it was expected to, for this time of the year. (author)

  12. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  13. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    Energy Technology Data Exchange (ETDEWEB)

    Faye, M; Wane, S T, E-mail: mamadou.faye@ucad.edu.sn [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Boulevard Martin Luther King, (Corniche Ouest) BP 5005-Dakar Fann (Senegal)

    2011-03-14

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = {+-}1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  14. Effects of uniform dc electric fields on multiphoton ionization of cesium atoms

    International Nuclear Information System (INIS)

    Klots, C.E.; Compton, R.N.

    1985-01-01

    Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique

  15. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    Science.gov (United States)

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics

  16. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  17. Energy distributions of neutral species ejected from well-characterized surfaces measured by means of multiphoton resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, D.; Ishigami, R.; Dhole, S.D.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp

    2000-04-01

    The energy distributions of neutral atoms ejected from the polycrystalline Cu target, the Si(1 1 1)-7x7 surface, and the Si(1 1 1)-''5 x 5''-Cu surface by 5 keV Ar{sup +} ion bombardment have been measured with very high efficiency by means of the multi-photon resonance ionization spectroscopy, in order to obtain the surface binding energies. The energy distributions for Cu from polycrystalline Cu target, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface have been found to have a peak at energies of around 3.0, 5.0 and 1.5 eV, and the function shapes of high energy tails to be proportional to E{sup -1.9}, E{sup -1.2} and E{sup -1.3}, respectively. Based on the linear collision cascade theory, the surface binding energies are determined to be 5.7, 6.0 and 2.0 eV, and the power factor m in the power law approximation to the Thomas-Fermi potential are determined to be 0.1, 0.4 and 0.3 for Cu from the Cu polycrystalline, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface, respectively. In conclusion, the results indicate that the energy distributions of ejected particles are well characterized by the linear collision cascade theory developed by Sigmund.

  18. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    International Nuclear Information System (INIS)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-01-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented

  19. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    Science.gov (United States)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  20. Photo double-ionization of helium: a new approach combining R matrix and semiclassical techniques in an hyperspherical framework

    International Nuclear Information System (INIS)

    Malegat, L.; Kazansky, A.; Selles, P.

    1999-01-01

    We introduce a new method for computing photo double ionization (PDI) cross sections for two electron atoms. It is formulated in terms of the hyperspherical radius R and relies upon a combination of R matrix techniques in the inner region R≤R 0 with a semiclassical approximation for the R motion in the outer region. We present a first application of this method to the PDI of He within a model of reduced dimensionality where r 1 =r 2 . It demonstrates the validity of our numerical scheme and provides a first quantitative estimate of the energy domain of validity of the Wannier mechanism. (orig.)

  1. Development of sodium leak detection technology using laser resonance ionization mass spectrometry. Design and functional test using prototype sodium detection system

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Ito, Chikara; Harano, Hideki; Okazaki, Koki; Watanabe, Kenichi; Iguchi, Tetsuo

    2009-01-01

    In a sodium-cooled fast reactor, highly sensitive technology is required to detect small amounts of sodium leaking from the cooling system piping or components. The conventional sodium leak detectors have a fundamental difficulty in improving the detection sensitivity for a sodium leak because of the presence of salinity ( 23 NaCl) in the atmosphere around the components and piping of cooling systems. In order to overcome this problem, an innovative technology has been developed to selectively detect the radioactive sodium ( 22 Na) produced by a neutron reaction in the primary cooling system using Laser Resonance Ionization Mass Spectrometry (RIMS). In this method, sodium ions produced with the two processes of (1) atomization of sodium aerosols and (2) resonance ionization of sodium atom, are detected selectively using a time-of-flight mass spectrometer. The 22 Na can be distinguished from the stable isotope ( 23 Na) by mass spectrometry, which is the advantage of RIMS comparing to the other methods. The design and the construction of the prototype system based on fundamental experiments are shown in the paper. The aerodynamic lens was newly introduced, which can transfer aerosols at atmospheric pressure into a vacuum chamber while increasing the aerosol density at the same time. Furthermore, the ionization process was applied by using the external electric field after resonance exciting from the ground level to the Rydberg level in order to increase the ionization efficiency. The preliminary test results using the stable isotope ( 23 Na) showed that prototype system could easily detect sodium aerosol of 100 ppb, equivalent to the sensitivity of the conventional detectors. (author)

  2. Reliability and comparison of acromion assessment techniques on x-ray and magnetic resonance imaging (reliability of acromion assessment techniques)

    International Nuclear Information System (INIS)

    Viskontas, D.G.; MacDermid, J.C.; Drosdowech, D.S.; Garvin, G.J.; Romano, W.M.; Faber, K.J.

    2005-01-01

    To determine the reliability and correlation of plain radiography and magnetic resonance imaging (MRI) in the assessment of acromion morphology. Materials and Methods: Acromion morphology was assessed using the lateral acromion angle (LAA) and the acromion-humeral interval (AHI). Thirty patients who had x-rays and MRI for impingement syndrome were included. Six blinded observers assessed the acromion morphology subjectively and objectively. Results: Neither acromion assessment technique demonstrated a positive correlation (kappa and intraclass coefficient 0.55) when measured objectively by experienced observers. Conclusion: The LAA and the AHI are both reliable acromion assessment techniques on X-ray and MRI when measured objectively and by experienced observers. (author)

  3. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Pastura, Giuseppe; Mattos, Paulo; Gasparetto, Emerson Leandro; Araujo, Alexandra Prufer de Queiroz Campos

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  4. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  5. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  6. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique

    International Nuclear Information System (INIS)

    Silva Elipe, Maria Victoria

    2003-01-01

    A general overview of the advancements and applications of nuclear magnetic resonance (NMR) hyphenated with other analytical techniques is given from a practical point of view. Details on the advantages and disadvantages of the hyphenation of NMR with liquid chromatography as LC-NMR and also with mass spectrometry as LC-MS-NMR are demonstrated with two examples. Current developments of NMR with other analytical separation techniques, especially with capillary liquid chromatography (capLC) are discussed

  7. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  8. A pyroloysis technique for determining microamounts of hydrogen in lunar soil using the helium ionization detector

    Science.gov (United States)

    Bustin, R.

    1983-01-01

    A method has been developed which will determine hydrogen in sub-milligram samples of lunar soil. It consists of heating the sample in a pyroprobe followed by the gas chromatographic determination of hydrogen using the helium ionization detector. Using a 7 foot, 1/8 OD stainless steel column packed with Carbosieve S, 120/140 mesh, hydrogen was well-separated from the other gases released from lunar soil. Standards of hydrogen in helium were used for calibration. The limit to detection under the conditions used was about 2 ng. The method was linear from 2 ng to 270 ng. The method was checked using some actual lunar samples. Results were typical of those obtained for lunar soils using other methods.

  9. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.M. [Univ. of California, Los Angeles (United States)

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  10. A Computational Study on the Magnetic Resonance Coupling Technique for Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Zakaria N.A.

    2017-01-01

    Full Text Available Non-radiative wireless power transfer (WPT system using magnetic resonance coupling (MRC technique has recently been a topic of discussion among researchers. This technique discussed more scenarios in mid-range field of wireless power transmission reflected to the distance and efficiency. The WPT system efficiency varies when the coupling distance between two coils involved changes. This could lead to a decisive issue of high efficient power transfer. This paper presents case studies on the relationship of operating range with the efficiency of the MRC technique. Demonstrative WPT system operates at two different frequencies are projected in order to verify performance. The resonance frequencies used are less than 100MHz within range of 10cm to 20cm.

  11. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  12. A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes

    Science.gov (United States)

    Osman, Shazali; Wang, Wilson

    2018-03-01

    Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.

  13. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  14. The electron-impact ionization of Ar and Kr revisited: A critical analysis of double-to-single ionization cross section ratio measurements using the fast-atom-beam technique

    International Nuclear Information System (INIS)

    Tarnovsky, V.; Becker, K.

    1992-01-01

    We report new measurements of the absolute electron-impact double ionization cross sections for Ar and Kr and of the ratios of double-to-single ionization for impact energies from threshold to 200 eV using the crossed electron-beam - fast-atom-beam technique. The work was motivated by the recently highlighted spread of about 30% in the Ar 2+ /Ar + ionization cross section ratios obtained by several groups using different experimental techniques. Such a spread is inconsistent with statistical uncertainties of typically 3% or less that were quoted for the various reported ratios. A similar situation exists for Kr where the spread among the recently published Kr 2+ /Kr + ionization cross section ratios is about 15%. We made an attempt to identify all potential systematic errors inherent to the fast-beam technique that could affect the measurement of cross section ratios with special emphasis on those systematic errors that could influence the detection of singly and doubly charged product ions differently. We found Ar 2+ /Ar + and Kr 2+ /Kr + cross section ratios of, respectively 0.066±0.007 and 0.087±0.008 at 100 eV which confirm earlier measurements using the same experimental technique. The error limits on cross sections ratios of multiple-to-single ionization for the same target atom and at least ±10% for ratios of single ionization cross sections for different target species. Our error limits are dominated by systematic uncertainties of the apparatus which do not cancel when cross section ratios are measured, since the ratios are obtained under similar, but not identical experimental conditions. (orig.)

  15. Design of 1+ Ion Source Coupling First Design of the Resonant Ionization Laser Ion Source For the Multi-Mega Watt Target Station

    CERN Document Server

    A. Olivier-Kaiser, F. Le Blanc, C. Lau

    The realisation of next-generation ion sources suitable for the EURISOL multi-mega-watt (MMW) target station needs exhaustive studies and developments. An exhaustive review was carried out to evaluate the capability of the ion-sources to operate under the irradiation conditions of the MMW target station. In addition, selectivity must be taken into account to avoid the spread of unwanted radioactivity out of the target-ion-source system (TIS).These studies led to consider RILIS (Resonance Ionization Laser Ion Source) as the reference ion source for this target station.

  16. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  17. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    International Nuclear Information System (INIS)

    Faye, M; Wane, S T

    2011-01-01

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = ±1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  18. Comparison of extraction techniques and mass spectrometric ionization modes in the analysis of wine volatile carbonyls

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Julian; Mateo-Vivaracho, Laura; Cacho, Juan [Laboratory for Flavor Analysis and Enology, Institute of Engineering of Aragon, I3A, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza (Spain); Ferreira, Vicente, E-mail: vferre@unizar.es [Laboratory for Flavor Analysis and Enology, Institute of Engineering of Aragon, I3A, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza (Spain)

    2010-02-15

    This work presents a comparative study of the analytical characteristics of two methods for the analysis of carbonyl compounds in wine, both based on the derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). In the first method derivatives are formed in the solid phase extraction (SPE) cartridge in which the analytes have been previously isolated, while in the second method derivatives are formed in a solid phase microextraction (SPME) fibre saturated with vapors of the reagent and exposed to the sample headspace. In both cases detection has been carried out by electron impact (EI) or negative chemical ionization (NCI) mass spectrometry. The possibility of determining haloanisols simultaneously has been also considered. The method based on SPE presents, in general, better analytical properties than the SPME one. Although linearity was satisfactory for both methods (R{sup 2} > 0.99), repeatability of the SPE method (RSD < 10%) was better than that obtained with SPME (9% < RSD < 20%). Detection limits obtained with EI are better for the SPE method except for trihaloanisols, while with NCI detection limits for both strategies are comparable, although the SPME strategy presents worse results for ketones and methional. Detection limits are always lower with NCI, being the improvement most notable for SPME. Recovery experiments show that in the case of SPE, uncertainties are lower than 12% in all cases, while with the SPME method the imprecision plus the existence of matrix effects make the global uncertainty to be higher than 15%.

  19. Comparison of extraction techniques and mass spectrometric ionization modes in the analysis of wine volatile carbonyls

    International Nuclear Information System (INIS)

    Zapata, Julian; Mateo-Vivaracho, Laura; Cacho, Juan; Ferreira, Vicente

    2010-01-01

    This work presents a comparative study of the analytical characteristics of two methods for the analysis of carbonyl compounds in wine, both based on the derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). In the first method derivatives are formed in the solid phase extraction (SPE) cartridge in which the analytes have been previously isolated, while in the second method derivatives are formed in a solid phase microextraction (SPME) fibre saturated with vapors of the reagent and exposed to the sample headspace. In both cases detection has been carried out by electron impact (EI) or negative chemical ionization (NCI) mass spectrometry. The possibility of determining haloanisols simultaneously has been also considered. The method based on SPE presents, in general, better analytical properties than the SPME one. Although linearity was satisfactory for both methods (R 2 > 0.99), repeatability of the SPE method (RSD < 10%) was better than that obtained with SPME (9% < RSD < 20%). Detection limits obtained with EI are better for the SPE method except for trihaloanisols, while with NCI detection limits for both strategies are comparable, although the SPME strategy presents worse results for ketones and methional. Detection limits are always lower with NCI, being the improvement most notable for SPME. Recovery experiments show that in the case of SPE, uncertainties are lower than 12% in all cases, while with the SPME method the imprecision plus the existence of matrix effects make the global uncertainty to be higher than 15%.

  20. The production of radioisotopes for medical applications by the adiabatic resonance crossing (ARC) technique

    CERN Document Server

    Froment, P; Delbar, T; Ryckewaert, G; Tilquin, I; Vervier, J

    2002-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) technique has been proposed by Rubbia (Resonance enhanced neutron captures for element activation and waste transmutation, CERN-LHC/97-0040EET, 1997; TARC collaboration, Neutron-driven nuclear transmutation by adiabatic resonance crossing, CERN-SL-99-036EET, 1999; Abanades et al., Nucl. Instr. and Meth. A 487 (2002) 577) for element activation and waste transmutation. We investigate the possibility to use this technique for the industrial production of **9**9Mo and **1**2**5Xe by resonance neutron capture in **9**8Mo and **1**2**4Xe, respectively. Their daughters, i.e. **9**9**mTc and **1**2**5I, are widely used in medical applications. The high neutron flux needed is produced by bombarding a thick Be target with 65 or 75 MeV proton beam (few microamperes). This target is placed at the centre of a large cubic lead assembly (1.6 m side, purity: 99.999%). The neutrons are progressively slowed down by elastic scattering on lead, and their energies "scan" t...

  1. Parameters and definitions in applied technique quality test for nuclear magnetic resonance imaging system (NMRI)

    International Nuclear Information System (INIS)

    Lin Zhikai; Zhao Lancai

    1999-08-01

    During the past two decades, medical diagnostic imaging technique has achieved dramatic development such as CT, MRI, PET, DSA and so on. The most striking examples of them are the application of X ray computerized tomography (CT) and magnetic resonance imaging in the field of medical diagnosis. It can be predicted that magnetic resonance imaging (MRI) will definitely have more widespread prospects of applications and play more and more important role in clinical diagnosis looking forward to the development of image diagnostic technique for 21 st century. The authors also present the measuring methods for some parameters. The parameters described can be used for reference by clinical diagnosticians, operators on MRI and medical physicists who engages in image quality assurance (QA) and control (QC) in performing MRI acceptance test and routine test

  2. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    International Nuclear Information System (INIS)

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-01-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method

  3. Isotopic Determination of Nuclear Materials Using Nuclear Fission Track Registration Technique and Thermal Ionization Mass Spectrometric Technique

    International Nuclear Information System (INIS)

    Jeon, Young Sin; Pyo, Hyeong Yeol; Park, Yong Joon; Song, Kyu Seok; Kim, Won Ho; Jee, Kwang Yong

    2007-05-01

    It is very important to develope the technology for the determination of isotopic ratios of hot particles( 234 U, 235 U, 236 U etc.) detected from swipe samples of various nuclear facilities. This technology is highly competitive internationally and has to be established independently as long as our government maintains atomic energy and treats nuclear materials. In this text, sample pretreatment procedure, gamma-ray counting, alpha or fission track techniques, isotopic analysis of U and Pu, background problems and detection limits for mass determination, and their application to the real swipe sample were described with detailed procedure. This technology would contribute to the Korean economy's high growth rate as well as to superiority of government's leading research and development programs if successfully established

  4. The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis.

    Science.gov (United States)

    Doménech, José David; Muñoz, Pascual; Capmany, José

    2009-11-09

    In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.

  5. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-01-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms

  6. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  7. Laser post-ionization secondary neutral mass spectroscopy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Calaway, W.F.; Young, C.E.

    1987-01-01

    Three different instruments using laser ionization techniques will be described. Results from the SARISA instrument with a demonstrated figure of merit of .05 (atoms detected/atoms sputtered) for resonance ionization; detection of Fe at the sub-part-per-billion level in ultrapure Si; and features of the instrument such as energy and angle refocusing time-of-flight (EARTOF) mass spectrometer and multiplexing for simultaneous detection of secondary ions and neutrals. 12 refs., 3 figs

  8. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  9. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  10. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  11. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopesa

    OpenAIRE

    Kudryavtsev, Yuri; Ferrer, Rafael; Huyse, Mark; Van den Bergh, Paul; Van Duppen, Piet; Vermeeren, L.

    2014-01-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented. © 2013 AIP Publishing LLC.

  12. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  13. Development of techniques in magnetic resonance and structural studies of the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Hans-Marcus L. [Univ. of California, Berkeley, CA (United States)

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  14. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Investigated the optical properties of BiFeO_3 (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO_3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au"9"+ ions at a fluence of 1 × 10"1"2 ions cm"−"2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  15. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  16. High speed resonant frequency determination applied to field mapping using perturbation techniques

    International Nuclear Information System (INIS)

    Smith, B.H.; Burton, R.J.; Hutcheon, R.M.

    1992-01-01

    Perturbation techniques are commonly used for measuring electric and magnetic field distributions in resonant structures. A field measurement system has been assembled using a Hewlett Packard model 8753C network analyzer interfaced via an HPIB bus to a personal computer to form an accurate, rapid and flexible system for data acquisition, control, and analysis of such measurements. Characterization of long linac structures (up to 3 m) is accomplished in about three minutes, minimizing thermal drift effects. This paper describes the system, its application and its extension to applications such as confirming the presence of weak, off-axis quadrupole fields in an on-axis coupled linac. (Author) 5 figs., 10 refs

  17. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    Science.gov (United States)

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  18. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim; Muller, Hendrik; Adam, Frederick M.; Panda, Saroj K.; Witt, Matthias; Al-Hajji, Adnan A.; Sarathy, Mani

    2015-01-01

    cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated

  19. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  20. Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Sayed H

    2011-07-01

    Full Text Available Abstract Cardiovascular magnetic resonance (CMR tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR, scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1 Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM, delay alternating with nutations for tailored excitation (DANTE, and complementary SPAMM (CSPAMM; and 2 Advanced techniques, which include harmonic phase (HARP, displacement encoding with stimulated echoes (DENSE, and strain encoding (SENC. Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention

  1. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Joo, Young Sang; Jung, Hyun Kyu; Cheong, Yong Moo.

    1997-02-01

    The scattering of plane acoustic waves normally incident on a multilayered cylindrical shell has been formulated using the global matrix approach. And a simple way to formulate the non-resonant background component in the field scattered by an empty elastic shell has been found. This is to replace the surface admittance for the shell with the zero-frequency limit of the surface admittance for the analogous fluid shell (i.e., the shear wave speed in the elastic shell is set to zero). It has been shown that the background thus obtained is exact and applicable to shells of arbitrary thickness and material makeup, and over all frequencies and mode numbers. This way has been also applied to obtain the expressions of the backgrounds for multilayered shells. The resonant ultrasound spectroscopy system has been constructed to measure the resonance spectrum of a single fuel rod. The leak-defective fuel rod detection system of a laboratory scale has been also constructed. Particularly, all techniques and processes necessary for manufacturing the ultrasonic probe of thin (1.2 mm) strip type have been developed. (author). 38 refs., 34 figs

  2. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hang, E-mail: hangwang@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Dai, Bona [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Liu, Bin [Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003 (China); Lu, Han [Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 197, Rui Jin Er Road, Shanghai 200025 (China)

    2015-07-02

    Highlights: • Coumarins were used as new MALDI matrices. • Coumarins were used for MALDI-FT ICR MS detection of hydrophobic compounds. • DCA had improvement in detection sensitivity, stability, selectivity and reproducibility. • DCA was applied to sterols detection in yeast cells. - Abstract: Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]{sup +} peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H{sub 2}O + H]{sup +} and [M + H]{sup +} peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research.

  3. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GALDI-FTICR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; J. Michelle Kotler; Jill R. Scott

    2008-10-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO-2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition ofC18H39O7Na-. Anatural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or~7 zeptomoles (10-21) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  4. Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie; Somogyi, Arpád; Herrmann, Kristin; Pemberton, Jeanne E

    2006-02-01

    Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).

  5. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  6. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    Science.gov (United States)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  7. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    Science.gov (United States)

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  8. Indications and technique of fetal magnetic resonance imaging; Indikationen und Technik der fetalen Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria); Brugger, P.C. [Medizinische Universitaet Wien, Zentrum fuer Anatomie und Zellbiologie, Wien (Austria)

    2013-02-15

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [German] Evaluierung und Bestaetigung von im praenatalen Ultraschall entdeckten Pathologien. Ultraschall und Magnetresonanztomographie. Praenatale Untersuchungsmethode. Die fetale MRT ist inzwischen als ergaenzende Methode zum praenatalen Ultraschall anerkannt. Die fetale MRT soll als additive Methode bei klinischer Relevanz, nicht jedoch als Routinescreeningverfahren waehrend der Schwangerschaft angewendet werden. Durchfuehrung ausschliesslich an einem Perinatalzentrum nach vorangegangenem Level-III-Ultraschall. (orig.)

  9. Spectroscopic studies on technetium and silicon. A solid-state laser system for the resonance-ionization spectroscopy; Spektroskopische Untersuchungen an Technetium und Silizium. Ein Festkoerperlasersystem fuer die Resonanzionisationsspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Mattolat, Christoph

    2010-11-15

    This doctoral thesis describes advancement and refinement of the titanium:sapphire laser system of the working group LARISSA, Institut fuer Physik, Johannes Gutenberg- Universitaet Mainz and its application to resonance ionization spectroscopy. Activities on the laser systems comprised three major tasks: The output power of the conventional titanium:sapphire lasers could be increased by a factor of two in order to match the needs at resonance ionization laser ion source at ISOL facilities. Additionally, the laser system was complemented by a titanium:sapphire laser in Littrow geometry, which ensures a mode-hop free tuning range from 700 nm to 950 nm, and by an injection seeded titanium:sapphire laser with a spectral width of 20 MHz (in respect to a spectral width of 3 GHz for the conventional lasers). The performance of the new laser system was tested in spectroscopic investigations of highly excited atomic levels of gold and technetium. From the measured level positions the ionization potential of gold could be verified by using the Rydberg-Ritz formula, while the ionization potential of technetium could be determined precisely for the first time. Using the seeded titanium: sapphire laser Doppler-free two-photon spectroscopy inside a hot ionizer cavity was demonstrated. A width of the recorded resonances of 90 MHz was achieved and the hyperfine structure and isotope shift of stable silicon isotopes was well resolved with this method. (orig.)

  10. Design and Implementation of Half-Bridge LLC Resonant Converter by FHA Technique

    Directory of Open Access Journals (Sweden)

    Navid Salehi

    2015-07-01

    Full Text Available Although in existence for many years, only recently has the LLC resonant converters, in particular in its half-bridge implementation, gained in the popularity it certainly deserve. The advantages such as high efficiency, low level of EMI emissions, and its ability to achieve high power density are such features that suited for power supply demand of many modern applications such as ATX PCs and flat panel TVs. One of the major difficulties in concern with designing such converter is complex model and non-linear equations that cannot be easily used into a design procedure. So in this paper, design is based on the assumption that input-to-output power transfer is essentially due to the fundamental Fourier series components of currents and voltages. This technique known as First Harmonic Approximation (FHA and is a proper method to obtain the voltage gain through solving the equivalent ac circuit of the resonant tank. The design simulated by Pspice and finally the experimental results show design procedure base on FHA technique.

  11. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  12. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

    Science.gov (United States)

    Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz

    2018-06-01

    The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.

  13. Initial Clinical Experience in Multiple Myeloma Staging by Means of Whole-Body Resonance Techniques

    International Nuclear Information System (INIS)

    Gallego, J. I.; Concepcion, L.; Alonso, S.; Sanchez, B.; Manzi, F.

    2003-01-01

    To develop a magnetic resonance (MR) exploratory technique equivalent to serial bone X-ray, and to compare their precision in the staging of multiple myeloma (MM) patients. Multiple acquisition T1-weights TSE and STIR sequences in the coronal plane were performed. Ten healthy volunteers and 11 multiple myeloma diagnosed patients were included. The visualization of bony structures was particularly noted,with special attention given to those which would normally be included in a serial bone X-ray. In the case of the patients, a comparison was made between diagnostic capacities of the MR sequences. MR highlighters significantly more (p<0.05) bony elements than did the serial bone X-ray. This was greatly due to a sequential displacement of the scanner bed, allowing for field-of-views which were minimally from head to third proximal of the leg. Magnetic resonance detected a significantly higher number (p<0.05) of lesions. It was, in turn, capable of revealing greater lesion extensions, even to the point of implying staging classification changes in 18% of the patients. The utilization of whole-body MR techniques in multiple myeloma patients is feasible and clinically beneficial. MR is both more sensitive and more specific than serial bone X-ray for evaluation of bony lesions in MM. It is currently serving as a valid alternative in a growing numbers of patients. (Author) 10 refs

  14. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry; Aplicacion de la Resonancia paramagnetica electronica a la dosimetria de las radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  15. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  16. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  17. Study of lead free ferroelectrics using overlay technique on thick film microstrip ring resonator

    Directory of Open Access Journals (Sweden)

    Shridhar N. Mathad

    2016-03-01

    Full Text Available The lead free ferroelectrics, strontium barium niobates, were synthesized via the low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. The X band response (complex permittivity at very high frequencies of Ag thick film microstrip ring resonator perturbed with strontium barium niobates (SrxBa1-xNb2O6 in form of bulk and thick film was measured. A new approach for determination of complex permittivity (ε′ and ε′′ in the frequency range 8–12 GHz, using perturbation of Ag thick film microstrip ring resonator (MSRR, was applied for both bulk and thick film of strontium barium niobates (SrxBa1-xNb2O6. The microwave conductivity of the bulk and thick film lie in the range from 1.779 S/cm to 2.874 S/cm and 1.364 S/cm to 2.296 S/cm, respectively. The penetration depth of microwave in strontium barium niobates is also reported.

  18. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  19. Applied nuclear γ-resonance as fingerprint technique in geochemistry and mineralogy

    International Nuclear Information System (INIS)

    Constantinescu, S.

    2003-01-01

    The aim of the present paper is to evidence the new developments of one of the most refined technique, the nuclear γ resonance or the well-known Moessbauer effect, in the field of mineralogical and geo-chemical investigation. There are many Moessbauer studies on minerals, but the development, the new performance of the Moessbauer equipment and of the computers impose to review more profoundly and more thoroughly the information, which this non-destructive technique offers. This task became more and more pressingly because a lot of minerals contain in high proportion, the Moessbauer isotopes. Generally, the mineralogists, physicists and chemists hope to obtain more refined and complete information about the physics and chemistry synthesis aspects in solid state transformation of some natural and synthetic materials and also about the structural aspects, by these kind of techniques. On this line, the authors very shortly review the principal aspects of the Moessbauer spectroscopy and underline the most important information one can obtain from spectra. The recent results, which have been obtained on minerals extracted from Romanian geological deposits by the authors, will be discussed in detail in the second part of this article. (authors)

  20. Diagnosis of deep endometriosis: clinical examination, ultrasonography, magnetic resonance imaging, and other techniques.

    Science.gov (United States)

    Bazot, Marc; Daraï, Emile

    2017-12-01

    The aim of the present review was to evaluate the contribution of clinical examination and imaging techniques, mainly transvaginal sonography and magnetic resonance imaging (MRI) to diagnose deep infiltrating (DE) locations using prisma statement recommendations. Clinical examination has a relative low sensitivity and specificity to diagnose DE. Independently of DE locations, for all transvaginal sonography techniques a pooled sensitivity and specificity of 79% and 94% are observed approaching criteria for a triage test. Whatever the protocol and MRI devices, the pooled sensitivity and specificity for pelvic endometriosis diagnosis were 94% and 77%, respectively. For rectosigmoid endometriosis, pooled sensitivity and specificity of MRI were 92% and 96%, respectively fulfilling criteria of replacement test. In conclusion, advances in imaging techniques offer high sensitivity and specificity to diagnose DE with at least triage value and for rectosigmoid endometriosis replacement value imposing a revision of the concept of laparoscopy as the gold standard. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of electron spin resonance technique for the detection of irradiated mango (Mangifera indica L.) fruits

    International Nuclear Information System (INIS)

    Bhushan, B.; Kadam, R.M.; Thomas, P.; Singh, B.B.

    1994-01-01

    The electron spin resonance (ESR) technique was examined as a method for the detection of irradiated mango fruits. A symmetric ESR signal at g = 1.988 was detected in the hard seed cover (endocarp), the dry epidermal layer (testa) surrounding the kernel, and the soft kernel portions of the seed from four mango cultivars. the amplitude of the signal in the epidermal layer and seed cover showed a dose-dependent increase over control values. Qualitatively, however, no new signal was observed following irradiation, except that line width increased by 50%. Methyl cellosolve washing greatly reduced the intensity of the endogenous and radiation (1.0 kGy)-induced ESR signals in the seed cover; results suggest phenolic substances as the source of free radicals. the similarity of naturally occurring ESR signals to that induced by irradiation seems to restrict the practical utility of this method in irradiated mangoes

  2. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  3. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    DEFF Research Database (Denmark)

    Kremer, S.; Renard, F.; Achard, S.

    2015-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder but the specific morphological and temporal patterns distinguishing them uneqtaivcally from lesions caused by other disorders have...... not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR voltametry, and ultrahigh...... diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MR I techniques may further our understanding of the pathogenic processes hi NMO spectrum disorders and may...

  4. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  5. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children. Patient safety considerations

    International Nuclear Information System (INIS)

    Callahan, Michael J.; MacDougall, Robert D.; Bixby, Sarah D.; Voss, Stephan D.; Robertson, Richard L.; Cravero, Joseph P.

    2018-01-01

    In the context of health care, risk assessment is the identification, evaluation and estimation of risk related to a particular clinical situation or intervention compared to accepted medical practice standards. The goal of risk assessment is to determine an acceptable level of risk for a given clinical treatment or intervention in association with the provided clinical circumstances for a patient or group of patients. In spite of the inherent challenges related to risk assessment in pediatric cross-sectional imaging, the potential risks of ionizing radiation and sedation/anesthesia in the pediatric population are thought to be quite small. Nevertheless both issues continue to be topics of discussion concerning risk and generate significant anxiety and concern for patients, parents and practicing pediatricians. Recent advances in CT technology allow for more rapid imaging with substantially lower radiation exposures, obviating the need for anesthesia for many indications and potentially mitigating concerns related to radiation exposure. In this review, we compare and contrast the potential risks of CT without anesthesia against the potential risks of MRI with anesthesia, and discuss the implications of this analysis on exam selection, providing specific examples related to neuroblastoma surveillance imaging. (orig.)

  6. Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children. Patient safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Michael J.; MacDougall, Robert D.; Bixby, Sarah D.; Voss, Stephan D.; Robertson, Richard L.; Cravero, Joseph P. [Boston Children' s Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2018-01-15

    In the context of health care, risk assessment is the identification, evaluation and estimation of risk related to a particular clinical situation or intervention compared to accepted medical practice standards. The goal of risk assessment is to determine an acceptable level of risk for a given clinical treatment or intervention in association with the provided clinical circumstances for a patient or group of patients. In spite of the inherent challenges related to risk assessment in pediatric cross-sectional imaging, the potential risks of ionizing radiation and sedation/anesthesia in the pediatric population are thought to be quite small. Nevertheless both issues continue to be topics of discussion concerning risk and generate significant anxiety and concern for patients, parents and practicing pediatricians. Recent advances in CT technology allow for more rapid imaging with substantially lower radiation exposures, obviating the need for anesthesia for many indications and potentially mitigating concerns related to radiation exposure. In this review, we compare and contrast the potential risks of CT without anesthesia against the potential risks of MRI with anesthesia, and discuss the implications of this analysis on exam selection, providing specific examples related to neuroblastoma surveillance imaging. (orig.)

  7. Mass spectrometry imaging of illicit drugs in latent fingerprints by matrix-free and matrix-assisted desorption/ionization techniques.

    Science.gov (United States)

    Skriba, Anton; Havlicek, Vladimir

    2018-02-01

    Compared with classical matrix-assisted laser-desorption ionization mass spectrometry (MALDI), the matrix free-based strategies generate a cleaner background, without significant noise or interference coming from an applied matrix, which is beneficial for the analysis of small molecules, such as drugs of abuse. In this work, we probed the detection efficiency of methamphetamine, heroin and cocaine in nanostructure-assisted laser desorption-ionization (NALDI) and desorption electrospray ionization and compared the sensitivity of these two matrix-free tools with a standard MALDI mass spectrometry experiment. In a typical mass spectrometry imaging (MSI) setup, papillary line latent fingerprints were recorded as a mixture a common skin fatty acid or interfering cosmetics with a drug. In a separate experiment, all drugs (1 µL of 1 μM standard solution) were detected by all three ionization techniques on a target. In the case of cocaine and heroin, NALDI mass spectrometry was the most sensitive and revealed signals even from 0.1 μM solution. The drug/drug contaminant (fatty acid or cosmetics) MSI approach could be used by law enforcement personnel to confirm drug abusers of having come into contact with the suspected drug by use of fingerprint scans at time of apprehension which can aid in reducing the work of lab officials.

  8. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  9. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite; Estudo por ressonancia paramagnetica eletronica de defeitos induzidos pelas radiacoes ionizantes na hidroxiapatita do esmalte dentario

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures 65 refs., 40 figs., 5 tabs.

  10. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  11. Absolute absorbed dose measurements with an array of ionization chambers as part of a routine procedure of quality control for the VMAT technique

    International Nuclear Information System (INIS)

    Clemente Gutierrez, F.; Cabello Murillo, E.; Ramirez Ros, J. C.; Casa de Julian, M. A. de la

    2011-01-01

    Arcotheraphy techniques volumetric modulated (VMAT) treatments involve continuous variation of the gantry rotation speed, positions of the sheets and dose rate. Since all treatments are administered by continuous arcs, these techniques require quality control procedures to ensure quick and easy constancy of the calibration factor (total absorbed dose) for any gantry angle. We report here a simple method of quality control for the measurement of the calibration factor using an array of ionization chambers. The measurements were performed on a unit of 6 MV Elekta Synergy with VMAT, belonging to the Radiation Oncology service of the Defense Central Hospital Gomez Ulla.

  12. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    Science.gov (United States)

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  13. Optical properties of WO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay; Tomar, Monika

    2014-01-01

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO 3 thin films. WO 3 thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO 3 thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO 3 thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO 3 /Au/prism structure were utilized to estimate the dielectric properties of WO 3 thin films at optical frequency (λ = 633 nm). As the thickness of WO 3 thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO 3 film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light

  14. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay, E-mail: drguptavinay@gmail.com, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  15. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  16. Study on the crystallization of the metal glass with the ferromagnetic resonance and transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Rodrigues, R.W.D.; Pascual, R.; Pessoa, C.S.

    1983-01-01

    The crystallization of the metal glass METGLAS 2826A has been studied with the ferromagnetic resonance and electron transmission microscopy techniques. The first-derivative linewidth of the absorption curve was measured for several times of isothermal treatments at 375 0 C. After an initial decrease, attributed to stress relaxation, the linewidth increases linearly with the transformed fraction of the first crystallization phase. Comparison with the electron microscopy results shows that the ferromagnetic resonance technique is particularly useful for short and medium aging times. (Author) [pt

  17. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique.

    Science.gov (United States)

    Ohvo-Rekilä, Henna; Mattjus, Peter

    2011-01-01

    The glycolipid transfer protein (GLTP) is a protein capable of binding and transferring glycolipids. GLTP is cytosolic and it can interact through its FFAT-like (two phenylalanines in an acidic tract) motif with proteins localized on the surface of the endoplasmic reticulum. Previous in vitro work with GLTP has focused mainly on the complete transfer reaction of the protein, that is, binding and subsequent removal of the glycolipid from the donor membrane, transfer through the aqueous environment, and the final release of the glycolipid to an acceptor membrane. Using bilayer vesicles and surface plasmon resonance spectroscopy, we have now, for the first time, analyzed the binding and lipid removal capacity of GLTP with a completely label-free technique. This technique is focused on the initial steps in GLTP-mediated transfer and the parameters affecting these steps can be more precisely determined. We used the new approach for detailed structure-function studies of GLTP by examining the glycolipid transfer capacity of specific GLTP tryptophan mutants. Tryptophan 96 is crucial for the transfer activity of the protein and tryptophan 142 is an important part of the proteins membrane interacting domain. Further, we varied the composition of the used lipid vesicles and gained information on the effect of membrane properties on GLTP activity. GLTP prefers to interact with more tightly packed membranes, although GLTP-mediated transfer is faster from more fluid membranes. This technique is very useful for the study of membrane-protein interactions and lipid-transfer rates and it can easily be adapted to other membrane-interacting proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies : A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique?

    NARCIS (Netherlands)

    Wegelin, Olivier; Melick, H.H.E.; Hooft, Lotty; Bosch, J L H Ruud; Reitsma, Hans B; Barentsz, Jelle O; Somford, Diederik M

    CONTEXT: The introduction of magnetic resonance imaging-guided biopsies (MRI-GB) has changed the paradigm concerning prostate biopsies. Three techniques of MRI-GB are available: (1) in-bore MRI target biopsy (MRI-TB), (2) MRI-transrectal ultrasound fusion (FUS-TB), and (3) cognitive registration

  19. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  20. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    Science.gov (United States)

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  1. (1+1) resonant enhanced multiphoton ionization via the A 2Σ+ state of NO: Ionic rotational branching ratios and their intensity dependence

    International Nuclear Information System (INIS)

    Rudolph, H.; Dixit, S.N.; McKoy, V.; Huo, W.M.

    1988-01-01

    Recent high resolution photoelectron spectroscopic studies of the (1+1) resonant enhanced multiphoton ionization (REMPI) of NO via the 0--0 transition of the A--X band (γ band) have shown a pronounced ΔN = 0 signal (ΔNequivalentN/sub +/-N/sub i/) and smaller, but measurable, ΔN = +- 2 peaks. The authors [K. S. Viswanathan et al., J. Phys. Chem. 90, 5078 (1986)] assign the excitation to be via an R(21.5) line, with no further specification. We have performed ab initio calculations of the rotational branching ratios for the four possible ''R(21.5)'' transitions, namely, the rotationally ''clean'' R 21 and R 22 , and the ''mixed'' R 12 +Q 22 and R 11 +Q 21 branches. We find the mixed R 12 +Q 22 (21.5) branch to agree best with the observed photoelectron spectrum collected parallel to the polarization vector of the light. The discrepancy is larger for detection perpendicular to the polarization. To understand this difference, we have assessed the influence of laser intensity and polarization ''contamination'' on the branching ratios and photoelectron angular distributions

  2. Forensic age estimation based on development of third molars: a staging technique for magnetic resonance imaging.

    Science.gov (United States)

    De Tobel, J; Phlypo, I; Fieuws, S; Politis, C; Verstraete, K L; Thevissen, P W

    2017-12-01

    The development of third molars can be evaluated with medical imaging to estimate age in subadults. The appearance of third molars on magnetic resonance imaging (MRI) differs greatly from that on radiographs. Therefore a specific staging technique is necessary to classify third molar development on MRI and to apply it for age estimation. To develop a specific staging technique to register third molar development on MRI and to evaluate its performance for age estimation in subadults. Using 3T MRI in three planes, all third molars were evaluated in 309 healthy Caucasian participants from 14 to 26 years old. According to the appearance of the developing third molars on MRI, descriptive criteria and schematic representations were established to define a specific staging technique. Two observers, with different levels of experience, staged all third molars independently with the developed technique. Intra- and inter-observer agreement were calculated. The data were imported in a Bayesian model for age estimation as described by Fieuws et al. (2016). This approach adequately handles correlation between age indicators and missing age indicators. It was used to calculate a point estimate and a prediction interval of the estimated age. Observed age minus predicted age was calculated, reflecting the error of the estimate. One-hundred and sixty-six third molars were agenetic. Five percent (51/1096) of upper third molars and 7% (70/1044) of lower third molars were not assessable. Kappa for inter-observer agreement ranged from 0.76 to 0.80. For intra-observer agreement kappa ranged from 0.80 to 0.89. However, two stage differences between observers or between staging sessions occurred in up to 2.2% (20/899) of assessments, probably due to a learning effect. Using the Bayesian model for age estimation, a mean absolute error of 2.0 years in females and 1.7 years in males was obtained. Root mean squared error equalled 2.38 years and 2.06 years respectively. The performance to

  3. Ionic rotational branching ratios in resonant enhanced multiphoton ionization of NO via the A 2Σ+(3sσ) and D 2Σ+(3pσ) states

    International Nuclear Information System (INIS)

    Rudolph, H.; Dixit, S.N.; McKoy, V.; Huo, W.M.

    1988-01-01

    We present the results of ab initio calculations of the ionic rotational branching ratios in NO for a (1+1) REMPI (resonant enhanced multiphoton ionization) via the A 2 Σ + (3sσ) state and a (2+1) REMPI via the D 2 Σ + (3pσ) state. Despite the atomic-like character of the bound 3sσ and 3pσ orbitals in these resonant states, the photoelectron continuum exhibits strong l mixing. The selection rule ΔN+l = odd (ΔNequivalentN/sub +/-N/sub i/) implies that the peaks in the photoelectron spectrum corresponding to ΔN = odd ( +- 1, +- 3) are sensitive to even partial waves while those corresponding to even ΔN probe the odd partial waves in the photoelectron continuum. Recent experimental high resolution photoelectron studies have shown a strong ΔN = 0 peak for ionization via the A 2 Σ + and the D 2 Σ + states, indicating a dominance of odd-l partial waves. While this seems natural for ionization out of the 3sσ orbital, it is quite anomalous for 3pσ ionization. Based on extensive bound calculations, Viswanathan et al. [J. Phys. Chem. 90, 5078 (1986)] attribute this anomaly to a strong l mixing in the electronic continuum caused by the nonspherical molecular potential

  4. Parallel transmission techniques in magnetic resonance imaging: experimental realization, applications and perspectives

    International Nuclear Information System (INIS)

    Ullmann, P.

    2007-06-01

    The primary objective of this work was the first experimental realization of parallel RF transmission for accelerating spatially selective excitation in magnetic resonance imaging. Furthermore, basic aspects regarding the performance of this technique were investigated, potential risks regarding the specific absorption rate (SAR) were considered and feasibility studies under application-oriented conditions as first steps towards a practical utilisation of this technique were undertaken. At first, based on the RF electronics platform of the Bruker Avance MRI systems, the technical foundations were laid to perform simultaneous transmission of individual RF waveforms on different RF channels. Another essential requirement for the realization of Parallel Excitation (PEX) was the design and construction of suitable RF transmit arrays with elements driven by separate transmit channels. In order to image the PEX results two imaging methods were implemented based on a spin-echo and a gradient-echo sequence, in which a parallel spatially selective pulse was included as an excitation pulse. In the course of this work PEX experiments were successfully performed on three different MRI systems, a 4.7 T and a 9.4 T animal system and a 3 T human scanner, using 5 different RF coil setups in total. In the last part of this work investigations regarding possible applications of Parallel Excitation were performed. A first study comprised experiments of slice-selective B1 inhomogeneity correction by using 3D-selective Parallel Excitation. The investigations were performed in a phantom as well as in a rat fixed in paraformaldehyde solution. In conjunction with these experiments a novel method of calculating RF pulses for spatially selective excitation based on a so-called Direct Calibration approach was developed, which is particularly suitable for this type of experiments. In the context of these experiments it was demonstrated how to combine the advantages of parallel transmission

  5. Studies on diagnosis of endometriosis by magnetic resonance imaging by means of fat saturation techniques

    International Nuclear Information System (INIS)

    Okada, Saori

    1995-01-01

    It is difficult to distinguish a small endometrial implant from adipose tissue by magnetic resonance imaging (MRI). I assessed the usefulness of fat saturated MRI in detecting small endometrial implants by comparing it with conventional MRI. Seventy-four patients with clinically suspected endometriosis were referred for MRI. In every patient, laparoscopy or laparotomy was performed. MRI was performed with a 1.5 T superconducting magnet with spin echo T1, T2 and fat saturated T1 weighted images. Surgery revealed a normal pelvis in 6 patients, endometriosis in 65, and cystic lesions in three others. With fat saturated MRI, overall sensitivity, specificity, positive predictive value and negative predictive value were 87.7%, 66.7%, 95.0% and 42.9%, respectively. At surgery, 160 pigmented lesions of endometriosis were detected. Conventional MRI permitted identification of almost all ovarian endometriomas >10 mm in diameter, as with fat saturated MRI. With conventional MRI, 18 endometrial implant lesions <10 mm in diameter were detected. Including those detected by fat saturated MRI, altogether 42 lesions were detected. Conventional MRI demonstrated only 3 lesions among the 48 blueberry spots, but the additional fat saturated MRI technique increased the detection rate to 21 out of 48. Fat saturated MRI can therefore be used for detecting small endometrial implants. (author)

  6. Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Dainan Zhang

    2017-02-01

    Full Text Available Abstract Natural organic matter (NOM plays important roles in biological, chemical, and physical processes within the terrestrial and aquatic ecosystem. Despite its importance, a clear and exhaustive knowledge on NOM chemistry still lacks. Aiming to prove that advanced solid-state 13C nuclear magnetic resonance (NMR techniques may contribute to fill such a gap, in this paper we reported relevant examples of its applicability to NOM components, such as biomass, deposition material, sediments, and kerogen samples. It is found that nonhydrolyzable organic carbons (NHC, chars, and polymethylene carbons are important in the investigated samples. The structure of each of the NHC fractions is similar to that of kerogens, highlighting the importance of selective preservation of NOM to the kerogen origin in the investigated aquatic ecosystems. Moreover, during the artificial maturation experiments of kerogen, the chemical and structural characteristics such as protonated aromatic, nonprotonated carbons, and aromatic cluster size play important roles in the origin and variation of nanoporosity during kerogen maturation. Graphical abstract NMR parameters of thermally stimulated kerogens

  7. Fetal magnetic resonance imaging: methods and techniques; Fetale Magnetresonanztomographie: Methoden und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie, Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Stuhr, F.; Lindner, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Since the introduction of fetal magnetic resonance imaging (MRI) into prenatal diagnostics, advances in coil technology and development of ultrafast sequences have further enhanced this technique. At present numerous sequences are available to visualize the whole fetus with high resolution and image quality, even in late stages of pregnancy. Taking into consideration the special circumstances of examination and adjusting sequence parameters to gestational age, fetal anatomy can be accurately depicted. The variety of sequences also allows further characterization of fetal tissues and pathologies. Fetal MRI not only supplies additional information to routine ultrasound studies, but also reveals fetal morphology and pathology in a way hitherto not possible. (orig.) [German] Seit Einfuehrung der fetalen Magnetresonanztomographie (MRT) in die praenatale Diagnostik wurde das Verfahren durch neue Spulentechniken und die Entwicklung ultraschneller Sequenzen kontinuierlich weiter entwickelt. Gegenwaertig steht eine Vielzahl von Sequenzen zur Verfuegung, die es erlauben, mit hoher Bildqualitaet und raeumlicher Aufloesung selbst in fortgeschrittenen Schwangerschaftsstadien den gesamten Feten darzustellen. Unter Beruecksichtigung der speziellen Untersuchungsbedingungen und des Schwangerschaftsalters kann so die fetale Anatomie genau abgebildet werden. Die Vielfalt an Sequenzen und deren gezielter Einsatz ermoeglichen es weiter, fetale Gewebe und Pathologien naeher zu charakterisierten. Auf diese Weise liefert die fetale MRT nicht nur Zusatzinformationen zur Routineultraschalluntersuchung, sie gibt auch Aufschluss ueber bestimmte fetale Morphologien und Pathologien, die bisher nicht darstellbar waren. (orig.)

  8. Studies on diagnosis of endometriosis by magnetic resonance imaging by means of fat saturation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Saori [Shimane Medical Univ., Izumo (Japan)

    1995-03-01

    It is difficult to distinguish a small endometrial implant from adipose tissue by magnetic resonance imaging (MRI). I assessed the usefulness of fat saturated MRI in detecting small endometrial implants by comparing it with conventional MRI. Seventy-four patients with clinically suspected endometriosis were referred for MRI. In every patient, laparoscopy or laparotomy was performed. MRI was performed with a 1.5 T superconducting magnet with spin echo T1, T2 and fat saturated T1 weighted images. Surgery revealed a normal pelvis in 6 patients, endometriosis in 65, and cystic lesions in three others. With fat saturated MRI, overall sensitivity, specificity, positive predictive value and negative predictive value were 87.7%, 66.7%, 95.0% and 42.9%, respectively. At surgery, 160 pigmented lesions of endometriosis were detected. Conventional MRI permitted identification of almost all ovarian endometriomas >10 mm in diameter, as with fat saturated MRI. With conventional MRI, 18 endometrial implant lesions <10 mm in diameter were detected. Including those detected by fat saturated MRI, altogether 42 lesions were detected. Conventional MRI demonstrated only 3 lesions among the 48 blueberry spots, but the additional fat saturated MRI technique increased the detection rate to 21 out of 48. Fat saturated MRI can therefore be used for detecting small endometrial implants. (author).

  9. Magnetic resonance imaging in radiotherapy treatment planning

    NARCIS (Netherlands)

    Moerland, Marinus Adriaan

    1996-01-01

    From its inception in the early 1970's up to the present, magnetic resonance imaging (MRI) has evolved into a sophisticated technique, which has aroused considerable interest in var- ious subelds of medicine including radiotherapy. MRI is capable of imaging in any plane and does not use ionizing

  10. Techniques and processes for the measurement of the resonances of small single crystals

    International Nuclear Information System (INIS)

    Migliori, A.; Stekel, A.; Sarrao, J.L.; Visscher, W.M.; Bell, T.; Lei, M.

    1991-01-01

    The mechanical resonances of small oriented single crystals of materials of interest to basic science and engineering can be used to determine all the elastic moduli and the ultrasonic attenuation of these materials. To measure the resonances of the samples without introducing the resonances of the measuring system requires that the transducers be non-resonant at the frequencies of interest, and that they be well isolated from their mounts. However, for samples near 1 mm in the largest dimension, the transducer design problem becomes sever, and the signals become weak. In addition, no resonances can be missed, and, often, the symmetry class of the resonances must be known. We outline here appropriate transducer, electronics, and system designs to circumvent these problems. 10 refs., 4 figs

  11. Quantification of oxygen and carbon in high Tc superconducting films by (α,α) elastic resonance technique

    International Nuclear Information System (INIS)

    Vizkelethy, G.; Revesz, P.

    1993-01-01

    The quantification of oxygen and carbon in high-temperature (T c ) superconducting oxide thin films was made by employing elastic resonance in He backscattering analysis. A method combining the oxygen resonance technique and channeling was presented for measuring the nature of the oxygen disorder near the surface and the interface in a YBCO superconducting film grown on an MgO substrate. The oxygen resonance technique was used to quantify the oxygen profiling in the metal/YBCO contacts, showing that Zr and Nb act as sinks to oxygen from YBCO films and are oxidized in the forms Zr/ZrO 2 /YBCO/MgO and Nb 0.2 O/YBCO/MgO after annealing in a vacuum at 350 o C. We combined the carbon and oxygen resonances to determine the carbon contamination and oxygen concentration changes on the YBCO surface after coating and baking the photoresist. Residual carbon on the surface and a thin layer of oxygen depletion near the YBCO surface have been observed. The residual carbon in Bi 2 Sr 2 CaCu 2 O 8 films made by the decomposition of metallo-organic precursors was quantified using carbon resonance. (author)

  12. Study on flow-induced acoustic resonance in symmetrically located side-branches using dynamic PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Inagaki, Terumi; Nishi, Yasuyuki; Someya, Satoshi; Okamoto, Koji

    2014-01-01

    Flow-induced acoustic resonance in a piping system containing closed coaxial side-branches was investigated experimentally. Resonance characteristics of the piping system were examined by a microphone. The results revealed that the resonance frequencies of the shear layer instability were locked in corresponding to the natural frequencies of the side-branches. Phase-averaged velocity fields were obtained two-dimensionally in the junction of coaxial side-branches by dynamic particle image velocimetry (PIV), while the acoustic resonance was induced at the first and second hydrodynamic modes. Patterns of jet correspond to two hydrodynamic modes were derived from the phase-averaged velocity fields. The dynamic PIV can acquire time-series velocity fluctuations, then, two-dimensional phase delay maps under resonance and off-resonance conditions in the junction of coaxial side-branches were obtained. Experimental results show that the proposed phase delay map method costs less experiment and computation time and achieves a better accuracy and repetition than the phase-locking technique. In addition, the phase delay map method can obtain phase difference under the different frequency components. This is important when two different acoustic modes were induced in one experimental condition. (author)

  13. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Achraf Al Faraj

    2011-02-01

    Full Text Available Achraf Al Faraj1,2, Florence Fauvelle3, Nathalie Luciani4, Ghislaine Lacroix5, Michael Levy4, Yannick Crémillieux1, Emmanuelle Canet-Soulas1Université Lyon1, Créatis-LRMN, Lyon, France; 2King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, Riyadh, Kingdom of Saudi Arabia; 3CRSSA, Biophysique Cellulaire et Moléculaire, Laboratoire de RMN, La Tronche, France; 4Université Paris7-Paris Diderot, Matières et Systèmes Complexes, Paris, France; 5Institut National de l’Environnement et des Risques Industriels, Verneuil-en-Halatte, FranceBackground: Single-walled carbon nanotubes (SWCNT hold promise for applications as contrast agents and target delivery carriers in the field of nanomedicine. When administered in vivo, their biodistribution and pharmacological profile needs to be fully characterized. The tissue distribution of carbon nanotubes and their potential impact on metabolism depend on their shape, coating, and metallic impurities. Because standard radiolabeled or fluorescently-labeled pharmaceuticals are not well suited for long-term in vivo follow-up of carbon nanotubes, alternative methods are required.Methods: In this study, noninvasive in vivo magnetic resonance imaging (MRI investigations combined with high-resolution magic angle spinning (HR-MAS, Raman spectroscopy, iron assays, and histological analysis ex vivo were proposed and applied to assess the biodistribution and biological impact of intravenously injected pristine (raw and purified and functionalized SWCNT in a 2-week longitudinal study. Iron impurities allowed raw detection of SWCNT in vivo by susceptibility-weighted MRI.Results: A transitional accumulation in the spleen and liver was observed by MRI. Raman spectroscopy, iron assays, and histological findings confirmed the MRI readouts. Moreover, no acute toxicological effect on the liver metabolic profile was observed using the HR-MAS technique, as confirmed by quantitative real

  14. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  15. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  16. Use of electron spin resonance technique for identifying of irradiated foods

    International Nuclear Information System (INIS)

    El-Shiemy, S.M.E

    2008-01-01

    The present investigation was carried out to establish the electron spin resonance (ESR) technique for identifying of some irradiated foodstuffs, i.e. dried fruits (fig and raisin), nuts (almond and pistachio) and spices (fennel and thyme). Gamma rays were used as follows: 0, 1, 3 and 5 kGy were given for dried fruits, while 0, 2, 4 and 6 kGy were given for nuts. In addition, 0, 5, 10 and 15 kGy were given for spices. All treatments were stored at room temperature (25±2 degree C) for six months to study the possibility of detecting its irradiation treatment by ESR spectroscopy. The obtained results indicated that ESR signal intensities of all irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation. So, all irradiated samples under investigation could be differentiated from unirradiated ones immediately after irradiation treatment. The decay that occur in free radicals which responsible of ESR signals during storage periods at ambient temperature showed a significant minimize in ESR signal intensities of irradiated samples. Therefore, after six months of ambient storage the detection was easily possible for irradiated dried fig with dose ≥ 3 kGy and for all irradiated raisin and pistachio (shell). Also, it was possible for irradiated fennel with dose ≥ 10 kGy and for irradiated thyme with dose ≥15 kGy. In contrast, the identification of all irradiated samples of almond (shell as well as edible part) and pistachio (edible part) was impossible after six months of ambient storage.

  17. Use of electron spin resonance technique for identifying of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    El-Shiemy, S M E

    2008-07-01

    The present investigation was carried out to establish the electron spin resonance (ESR) technique for identifying of some irradiated foodstuffs, i.e. dried fruits (fig and raisin), nuts (almond and pistachio) and spices (fennel and thyme). Gamma rays were used as follows: 0, 1, 3 and 5 kGy were given for dried fruits, while 0, 2, 4 and 6 kGy were given for nuts. In addition, 0, 5, 10 and 15 kGy were given for spices. All treatments were stored at room temperature (25{+-}2 degree C) for six months to study the possibility of detecting its irradiation treatment by ESR spectroscopy. The obtained results indicated that ESR signal intensities of all irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation. So, all irradiated samples under investigation could be differentiated from unirradiated ones immediately after irradiation treatment. The decay that occur in free radicals which responsible of ESR signals during storage periods at ambient temperature showed a significant minimize in ESR signal intensities of irradiated samples. Therefore, after six months of ambient storage the detection was easily possible for irradiated dried fig with dose {>=} 3 kGy and for all irradiated raisin and pistachio (shell). Also, it was possible for irradiated fennel with dose {>=} 10 kGy and for irradiated thyme with dose {>=}15 kGy. In contrast, the identification of all irradiated samples of almond (shell as well as edible part) and pistachio (edible part) was impossible after six months of ambient storage.

  18. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  19. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  20. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  1. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  2. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    International Nuclear Information System (INIS)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-01-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  3. Experiments at the GELINA facility for the validation of the self-indication neutron resonance densitometry technique

    Directory of Open Access Journals (Sweden)

    Rossa Riccardo

    2017-01-01

    Full Text Available Self-Indication Neutron Resonance Densitometry (SINRD is a passive non-destructive method that is being investigated to quantify the 239Pu content in a spent fuel assembly. The technique relies on the energy dependence of total cross sections for neutron induced reaction. The cross sections show resonance structures that can be used to quantify the presence of materials in objects, e.g. the total cross-section of 239Pu shows a strong resonance close to 0.3 eV. This resonance will cause a reduction of the number of neutrons emitted from spent fuel when 239Pu is present. Hence such a reduction can be used to quantify the amount of 239Pu present in the fuel. A neutron detector with a high sensitivity to neutrons in this energy region is used to enhance the sensitivity to 239Pu. This principle is similar to self-indication cross section measurements. An appropriate detector can be realized by surrounding a 239Pu-loaded fission chamber with appropriate neutron absorbing material. In this contribution experiments performed at the GELINA time-of-flight facility of the JRC at Geel (Belgium to validate the simulations are discussed. The results confirm that the strongest sensitivity to the target material was achieved with the self-indication technique, highlighting the importance of using a 239Pu fission chamber for the SINRD measurements.

  4. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder

    NARCIS (Netherlands)

    S. Kremer (Stephane); F. Renard (Felix); S. Achard (Sophie); M.A. Lana-Peixoto (Marco A.); J. Palace (Jacqueline); N. Asgari (Nasrin); E.C. Klawiter (Eric C.); S. Tenembaum (Silvia); B. Banwell (Brenda); B.M. Greenberg (Benjamin M.); J.L. Bennett (Jeffrey); M. Levy (Michael); P. Villoslada (Pablo); A. Saiz (Albert Abe); K. Fujihara (Kazuo); K.H. Chan (Koon Ho); S. Schippling (Sven); F. Paul (Friedemann); H.J. Kim (Ho Jin); J. De Seze (Jerome); J.T. Wuerfel (Jens T.); P. Cabre (Philippe); R. Marignier (Romain); T. Tedder (Thomas); E.D. van Pelt - Gravesteijn (Daniëlle); S. Broadley (Simon); T. Chitnis (Tanuja); D. Wingerchuk (Dean); L. Pandit (Lekha); M.I. Leite (M. Isabel); M. Apiwattanakul (Metha); I. Kleiter (Ingo); N. Prayoonwiwat (Naraporn); M. Han (May); K. Hellwig (Kerstin); K. Van Herle (Katja); G. John (Gareth); D.C. Hooper (D. Craig); I. Nakashima (Ichiro); D. Sato (Douglas); M.R. Yeaman (Michael R.); E. Waubant (Emmanuelle); S. Zamvil (Scott); O. Stüve (Olaf); O. Aktas (Orhan); T.J. Smith (Terry J.); A. Jacob (Anu); K. O'Connor (Kevin)

    2015-01-01

    textabstractBrain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other

  5. Non-resonant two and three-photon ionization of the singlet and triplet metastable helium atoms of an atomic jet

    International Nuclear Information System (INIS)

    Mathieu, Bernard.

    1978-01-01

    The three-photon ionization cross-section of the helium metastables He(2 1 S) and He(2 3 S) is determined by means of the linearly polarized radiation of a pulsed ruby laser with an emission wavelength equal to 6946.4 A at 19 0 C. Two-photon ionization, obtained by doubling the laser beam frequency, is also studied [fr

  6. Gear Tooth Failure Detection by the Resonance Demodulation Technique and the Instantaneous Power Spectrum Method – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemloonia

    2011-01-01

    Full Text Available The role of gears in industry for speed and torque variation purposes is obvious. The gearbox diagnostic methods have been improved quickly in recent years. In this paper, two of the newest methods, the resonance demodulation technique (R.D, and the instantaneous power spectrum technique (IPS are applied to gearbox vibration signals and their capabilities in fault detection are compared. Yet, the important role of time averaging should not be dispensed with, as it is the primary step for both techniques. In the present study, the mathematical method of these techniques, according to the mathematical vibration model of gears, is introduced, these techniques are applied to the test rig data, and finally the results of both methods are compared. The results indicate that in each method, the location of fault can be estimated and it is located in the same angular position in both methods. The IPS method is applicable to severe faults, whereas the resonance demodulation technique is a simple tool to recognize the fault at each severity and at the early stages of fault generation.

  7. Demonstration of acoustic resonances in a cylindrical cavity applying the photoacoustic technique

    Science.gov (United States)

    Barreiro, N. L.; Vallespi, A. S.; Zajarevich, N. M.; Peuriot, A. L.; Slezak, V. B.

    2017-09-01

    In this work we present some experiments which can be performed in college or on the first courses of university to acquire knowledge about resonant acoustical phenomena in closed cavities in a tangible way, through experiments based on the photoacoustic effect in gases. This phenomenon consists in the generation of acoustic waves after optical excitation of an absorbing gas and further local heating of the non-absorbing surrounding gas by energy exchange through collisions between molecules of both species. Simple experiments, performed with daily live elements, can be very useful for teachers and students to get in touch with the phenomenon of acoustic resonances with the addition of concepts about light-matter interaction. The setups consist of the resonant cavity, the illumination source and the signal detection-acquisition scheme. In this paper a closed glass test tube is used as the resonant cavity and is filled with a mixture of nitrogen dioxide and air. The illumination is performed by a pulsed power LED modulated at different resonant frequencies of the cavity. A microphone inside the tube is connected to an oscilloscope which displays the photoacoustic signal. The LED is moved along the tube showing how different resonant modes can be excited.

  8. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  9. IMPLANTABLE RESONATORS – A TECHNIQUE FOR REPEATED MEASUREMENT OF OXYGEN AT MULTIPLE DEEP SITES WITH IN VIVO EPR

    Science.gov (United States)

    Li, Hongbin; Hou, Huagang; Sucheta, Artur; Williams, Benjamin B.; Lariviere, Jean P.; Khan, Nadeem; Lesniewski, Piotr N.; Swartz, Harold M.

    2013-01-01

    EPR oximetry using implantable resonators allow measurements at much deeper sites than are possible with surface resonators (> 80 mm vs. 10 mm) and have greater sensitivity at any depth. We report here the development of an improvement of the technique that now enables us to obtain the information from multiple sites and at a variety of depths. The measurements from the various sites are resolved using a simple magnetic field gradient. In the rat brain multi-probe implanted resonators measured pO2 at several sites simultaneously for over 6 months to record under normoxic, hypoxic and hyperoxic conditions. This technique also facilitates measurements in moving parts of the animal such as the heart, because the orientation of the paramagnetic material relative to the sensitive small loop is not altered by the motion. The measured response is very fast, enabling measurements in real time of physiological and pathological changes such as experimental cardiac ischemia in the mouse heart. The technique also is quite useful for following changes in tumor pO2, including applications with simultaneous measurements in tumors and adjacent normal tissues. PMID:20204802

  10. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  11. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  12. 4. Measuring technique

    International Nuclear Information System (INIS)

    2006-01-01

    It is noted that in nuclear medicine a most widely the scintillation detectors are applying. Action of these detectors is based on registration of light flares in visible and ultraviolet field arising in scintillator under ionizing radiation action. In the chapter following subchapters are included: gamma-spectrometer and gamma radiation detectors; counter of whole body; measuring of accumulated activity (uptake measurements); scanner; scintillation chamber; single-photon emission computed tomography; positron emission computed tomography; magnet resonance tomography; computer technique, images making

  13. Absolute cross sections for photoionization of Xeq+ ions (1 ⩽ q ⩽ 5) at the 3d ionization threshold

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Borovik, A Jr; Hellhund, J; Holste, K; Huber, K; Schäfer, H-J; Schury, D; Klumpp, S; Mertens, K; Martins, M; Flesch, R; Ulrich, G; Rühl, E; Jahnke, T; Lower, J; Metz, D; Schmidt, L P H; Schöffler, M

    2014-01-01

    The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III for measuring multiple photoionization of Xe q+ (q = 1–5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type hν + Xe q+ → Xe r+ + (q − r)e − with product charge states q + 2 ⩽ r ⩽ q + 5. Prominent ionization features are observed in the photon-energy range 650–750 eV, which are associated with excitation or ionization of an inner-shell 3d electron. Single-configuration Dirac–Fock calculations agree quantitatively with the experimental cross sections for non-resonant photoabsorption, but fail to reproduce all details of the measured ionization resonance structures. (paper)

  14. Second-Order Harmonic Reduction Technique for Photovoltaic Power Conditioning Systems Using a Proportional-Resonant Controller

    Directory of Open Access Journals (Sweden)

    Hae-Gwang Jeong

    2013-01-01

    Full Text Available This paper proposes a second-order harmonic reduction technique using a proportional-resonant (PR controller for a photovoltaic (PV power conditioning system (PCS. In a grid-connected single-phase system, inverters create a second-order harmonic at twice the fundamental frequency. A ripple component unsettles the operating points of the PV array and deteriorates the operation of the maximum power point tracking (MPPT technique. The second-order harmonic component in PV PCS is analyzed using an equivalent circuit of the DC/DC converter and the DC/AC inverter. A new feed-forward compensation technique using a PR controller for ripple reduction is proposed. The proposed algorithm is advantageous in that additional devices are not required and complex calculations are unnecessary. Therefore, this method is cost-effective and simple to implement. The proposed feed-forward compensation technique is verified by simulation and experimental results.

  15. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    Science.gov (United States)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  16. Non-contrast enhanced magnetic resonance angiography techniques in candidates for kidney transplantation: A comparative study

    International Nuclear Information System (INIS)

    Blankholm, Anne Dorte; Ginnerup-Pedersen, Bodil; Stausbøl-Grøn, Brian; Haislund, Margit; Laustsen, Sussie; Ringgaard, Steffen

    2013-01-01

    Aim: Detailed knowledge of vessel status in potential candidates for kidney transplantation is essential for the surgeon. Contrast enhanced magnetic resonance angiography has previously been used intensively for assessing this, but the discovery that use of gadolinium based contrast agents in magnetic resonance imaging can cause Nephrogenic Systemic Fibrosis in patients suffering from severe kidney disease has lead to renewed interest in non-contrast enhanced magnetic resonance angiography. The aim of this study was to find a non-contrast enhanced magnetic resonance angiography method for preoperative evaluation of the pelvic vessels prior to kidney transplantation, providing a sufficient image quality. Method: In a prospective study we consecutively included 54 patients undergoing examinations prior to kidney transplantation. The patients were examined with the following magnetic resonance angiography sequences: A 2D Time of flight (n = 54), 3D Time of flight (n = 52) patients, 3D Phase Contrast (n = 54), 3D Balanced Steady State Free Precession (n = 52) and a 2D TRiggered Angiography Non-Contrast Enhanced (TRANCE) (a Spin Echo sequence with subtraction) (n = 48). The sequences were evaluated with respect to contrast, diagnostic performance and artefact burden. Results: Evaluating contrast, 3D Phase Contrast was significantly better than 2D Time of flight (p 0.2). The 2D Time of flight was significantly better than the other sequences (p < 0.001) in all cases. The artefact score was lowest for the Phase Contrast images and significantly superior to the 2D Time of flight (p < 0.005). The 2D Time of flight was significantly better than the three other sequences (p < 0.001) in all cases. Conclusion: Non-contrast enhanced magnetic resonance angiography offers a safe preoperative examination for assessment of vessel status before kidney transplantation. A combination of 2D Time of flight and 3D Phase Contrast acquisitions is recommended and can be performed within a

  17. Resonance Damping Techniques for Grid-Connected Voltage Source Converters with LCL filters – A Review

    DEFF Research Database (Denmark)

    Zhang, Chi; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    LCL filters play an important role in grid-connected converters when trying to reduce switching-frequency ripple currents injected into the grid. Besides, their small size and low cost make them attractive for many practical applications. However, the LCL filter is a third-order system, which...... presents a resonance peak frequency. Oscillation will occur in the control loop in high frequency ranges, especially in current loop in double-loops controlled converters. In order to solve this, many strategies have been proposed to damp resonance, including passive and active methods. This paper makes...

  18. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  19. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques : A quantitative review

    NARCIS (Netherlands)

    Kemp, G.J.; Ahmad, R.E.; Nicolay, K.; Prompers, J.J.

    2015-01-01

    Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive 31P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle

  20. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  1. Monte Carlo-narrow resonance calculational techniques for treating double-heterogeneity effects

    International Nuclear Information System (INIS)

    Gelbard, E.M.; Chen, I.J.

    1986-01-01

    Reliable methods already exist for computing resonance integrals (RI's) in regular lattices. But lattice structures always contain irregularities. Such effects have been called ''double-heterogeneity'' effects. Two methods for computing double heterogeneity effects on RI's are reviewed and evaluated. 2 refs., 1 tab

  2. Standardization of the Fricke gel dosimetry method and tridimensional dose evaluation using the magnetic resonance imaging technique

    International Nuclear Information System (INIS)

    Cavinato, Christianne Cobello

    2009-01-01

    This study standardized the method for obtaining the Fricke gel solution developed at IPEN. The results for different gel qualities used in the preparation of solutions and the influence of the gelatin concentration in the response of dosimetric solutions were compared. Type tests such as: dose response dependence, minimum and maximum detection limits, response reproducibility, among others, were carried out using different radiation types and the Optical Absorption (OA) spectrophotometry and Magnetic Resonance (MR) techniques. The useful dose ranges for Co 60 gamma radiation and 6 MeV photons are 0,4 to 30,0 Gy and 0,5 to 100,0 Gy , using OA and MR techniques, respectively. A study of ferric ions diffusion in solution was performed to determine the optimum time interval between irradiation and samples evaluation; until 2,5 hours after irradiation to obtain sharp MR images. A spherical simulator consisting of Fricke gel solution prepared with 5% by weight 270 Bloom gelatine (national quality) was developed to be used to three-dimensional dose assessment using the Magnetic Resonance Imaging (MRI) technique. The Fricke gel solution prepared with 270 Bloom gelatine, that, in addition to low cost, can be easily acquired on the national market, presents satisfactory results on the ease of handling, sensitivity, response reproducibility and consistency. The results confirm their applicability in the three-dimensional dosimetry using MRI technique. (author)

  3. Stochastic mass-reconstruction: a new technique to reconstruct resonance masses of heavy particles decaying into tau lepton pairs

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Sho [Fermilab

    2015-12-15

    The invariant mass of tau lepton pairs turns out to be smaller than the resonant mass of their mother particle and the invariant mass distribution is stretched wider than the width of the resonant mass as significant fraction of tau lepton momenta are carried away by neutrinos escaping undetected at collider experiments. This paper describes a new approach to reconstruct resonant masses of heavy particles decaying to tau leptons at such experiments. A typical example is a Z or Higgs boson decaying to a tau pair. Although the new technique can be used for each tau lepton separately, I combine two tau leptons to improve mass resolution by requiring the two tau leptons are lined up in a transverse plane. The method is simple to implement and complementary to the collinear approximation technique that works well when tau leptons are not lined up in a transverse plane. The reconstructed mass can be used as another variable in analyses that already use a visible tau pair mass and missing transverse momentum as these variables are not explicitly used in the stochastic mass-reconstruction to select signal-like events.

  4. A low feed-through 3D vacuum packaging technique with silicon vias for RF MEMS resonators

    Science.gov (United States)

    Zhao, Jicong; Yuan, Quan; Kan, Xiao; Yang, Jinling; Yang, Fuhua

    2017-01-01

    This paper presents a wafer-level three-dimensional (3D) vacuum packaging technique for radio frequency microelectromechanical systems (RF MEMS) resonators. A Sn-rich Au-Sn solder bonding is employed to provide a vacuum encapsulation as well as electrical conductions. Vertical silicon vias are micro-fabricated by glass reflow process. The optimized grounding, via pitch, and all-round shielding effectively reduce feed-through capacitance. Thus the signal-to-background ratios (SBRs) of the transmission signals increase from 17 dB to 20 dB, and the quality factor (Q) values of the packaged resonators go from around 8000 up to more than 9500. The measured average leak rate and shear strength are (2.55  ±  0.9)  ×  10-8 atm-cc s-1 and 42.53  ±  4.19 MPa, respectively. Furthermore, thermal cycling test between  -40 °C and 100 °C and high temperature storage test at 150 °C show that the resonant-frequency drifts are less than  ±7 ppm. In addition, the SBRs and the Q values have no obvious change after the tests. The experimental results demonstrated that the proposed encapsulation technique is well suited for the applications of RF MEMS devices.

  5. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  6. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  7. Resonance multiphoton ionization and dissociation of dimethyl ether via the {\\skew1\\tilde{\\rm C}^{\\prime}}, {\\skew1\\tilde{\\rm C}} and \\tilde{\\rm B} states

    Science.gov (United States)

    Mejia-Ospino, E.; García, G.; Guerrero, A.; Alvarez, I.; Cisneros, C.

    2005-01-01

    The three-photon resonance four-photon ionization and dissociation spectra of dimethyl ether (DME) are presented in the wavelength range 450-550 nm at 1 nm intervals. The (3+1) REMPI spectra show three prominent bands corresponding to the \\tildeB \\leftarrow \\skew1\\tildeX, {\\skew1\\tildeC} \\leftarrow \\skew1\\tildeX and {\\skew1\\tildeC^{\\prime}} \\leftarrow \\skew1\\tildeX transitions with origins at 61 457 cm-1 (7.615 eV), 59 055 cm-1 (7.322 eV) and 58 010 cm-1 (7.194 eV), respectively. Several ionized species, CH3+, CHnO+ (n = 1-3) and CH3OCH3+, are observed in the region of wavelengths studied here. In order to compare the results, a shorter wavelength multiphoton dissociation and ionization of DME at 355 nm is also presented. At this wavelength, DME undergoes neutral dissociation to CH3 and CH3O and each fragment is then ionized by multiphoton absorption. The fragmentation at 355 nm is very intense and only small fragments such as CH3+, CHO+, CH2+, CH+ and C+ ions are observed. The measurement of photoelectron energy allows us to establish that the DME ionization potential is at least 9.55 ± 0.15 eV. The experiments were performed using a Nd:YAG-OPO (optical parametric oscillator) tunable laser system coupled to a time-of-flight mass spectrometer and a hemispherical electron energy analyser.

  8. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.

    Science.gov (United States)

    Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong

    2008-10-21

    In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.

  9. A phase-imaging ion-cyclotron-resonance technique for mass measurements of short-lived nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, Sergey; Blaum, Klaus; Doerr, Andreas; Eronen, Tommi; Goncharov, Mikhail; Hoecker, Martin; Ketter, Jochen; Ramirez, Enrique Minaya; Simon, Vanessa [Max-Planck Institute for Nuclear Physics (Germany); Block, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Chenmarev, Stanislav; Filjanin, Pavel; Nesterenko, Dmitriy; Novikov, Yuri [Petersburg Nuclear Physics Institute (Russian Federation); Droese, Christian; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt-University (Germany)

    2014-07-01

    A novel approach to mass measurements on the sub-ppb level even for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position sensitive detector. Compared to the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. With the new technique low-lying isomeric states with excitation energy on the 10-keV level can be separated from the ground state. Moreover, the new technique possesses a substantially higher sensitivity since just two ions are sufficient to determine the ion cyclotron frequency. A measurement of the mass difference of singly charged ions of {sup 132}Xe and {sup 131}Xe with an uncertainty of 25 eV has demonstrated the great potential of the new approach.

  10. Evaluation of Resonant Damping Techniques for Z-Source Current-Type Inverter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chiang; Gajanayake, C.J.

    2008-01-01

    For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current......-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator...... for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control...

  11. Method for high resolution magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  12. Magnetic Resonance Spectroscopy: An Objective Technique for the Quantification of Prostate Cancer Pathologies

    Science.gov (United States)

    2007-02-01

    infantile Alexander disease. J. Neurol. 2003; 250(3): 300–306. 8. Chaudhuri A, Condon BR, Gow JW, Brennan D, Hadley DM. Proton magnetic resonance...xanthomatosis with NAA/Cr and Lac/Cr levels [70]. Studies were also seen in diabetes mellitus [71], and most interestingly, after the lengthy discussion of...71] Geissler A, Frund R, Scholmerich J, Feuerbach S, Zietz B. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton

  13. Formation of resonances with final state photons in two photon interactions, and development of calorimetric techniques

    International Nuclear Information System (INIS)

    Mir, R.

    1986-07-01

    In this thesis, resonances produced in two photon interactions were investigated with the TASSO detector at PETRA. The η ' and A 2 resonances were studied in a final state of charged pions and low energy photons. The couplings of these resonances to γγ were measured: Γ γγ (η ' (958)) 5.1±0.4(stat.)±0.65(syst.) Kev, Γ γγ (A 2 (1320)) 0.90±0.27(stat.)±0.16(syst.) Kev. A search for ι(1460) and η c (2980) was initiated. Upper limits on the γγ widths of these resonances times their branching ratio to the decay channel were obtained: Γ γγ (ι→γγ) x B(ι→ρ 0 γ) γγ (η c →γγ) x B(η c →η ' π + π - ) < 2.6 keV (95% C.L.). A proportional tubes electromagnetic calorimeter operating in the proportional mode was constructed. Tower readout was incorporated. The calorimeter gave an energy resolution of σ/E = 19%/√E. Large surface, thin Gap Chambers (TGC), were developed and constructed for the OPAL hadron pole-tip-calorimeter. The TGC operate in a high gain mode. They provide large signals for both pad and strip readout, without the need for amplification. To form a hadron calorimeter, ten chambers were interlaced with 8 cm thick iron slabs between them. An energy resolution of: σ/E = 105%/√E was obtained

  14. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  15. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images.

    Science.gov (United States)

    Carminati, M Chiara; Boniotti, Cinzia; Fusini, Laura; Andreini, Daniele; Pontone, Gianluca; Pepi, Mauro; Caiani, Enrico G

    2016-05-01

    The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches.

  16. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation

    International Nuclear Information System (INIS)

    Kreitner, K.F.; Romaneehsen, Bernd; Oberholzer, Katja; Dueber, Christoph; Krummenauer, Frank; Mueller, L.P.

    2006-01-01

    The performance of a magnetic resonance (MR) imaging strategy that uses multiple receiver coil elements and integrated parallel imaging techniques (iPAT) in traumatic and degenerative disorders of the knee and to compare this technique with a standard MR imaging protocol was evaluated. Ninety patients with suspected internal derangements of the knee joint prospectively underwent MR imaging at 1.5 T. For signal detection, a 6-channel array coil was used. All patients were investigated with a standard imaging protocol consisting of different turbo spin-echo sequences proton density (PD), T 2 -weighted turbo spin echo (TSE) with and without fat suppression in three imaging planes. All sequences were repeated with an integrated parallel acquisition technique (iPAT) using the modified sensitivity encoding (mSENSE) algorithm with an acceleration factor of 2. Two radiologists independently evaluated and scored all images with regard to overall image quality, artefacts and pathologic findings. Agreement of the parallel ratings between readers and imaging techniques, respectively, was evaluated by means of pairwise kappa coefficients that were stratified for the area of evaluation. Agreement between the parallel readers for both the iPAT imaging and the conventional technique, respectively, as well as between imaging techniques was found encouraging with inter-observer kappa values ranging between 0.78 and 0.98 for both imaging techniques, and the inter-method kappa values ranging between 0.88 and 1.00 for both clinical readers. All pathological findings (e.g. occult fractures, meniscal and cruciate ligament tears, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques with comparable performance. The use of iPAT lead to a 48% reduction of acquisition time compared with standard technique. Parallel imaging using mSENSE proved to be an efficient and economic tool for fast musculoskeletal MR imaging of the knee joint with comparable

  17. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  18. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  19. Application of resonance ionisation spectroscopy in atomic physics

    International Nuclear Information System (INIS)

    Kluge, H.J.

    1997-01-01

    Resonance ionization spectroscopy (RIS) and resonance ionization mass spectroscopy (RIMS) techniques have proved to be a powerful tool in atomic spectroscopy and trace analysis. Detailed atomic spectroscopy can be performed on samples containing less than 10 12 atoms. This sensitivity is especially important for investigating atomic properties of transuranium elements. RIMS is especially suitable for ultra trace determination of long lived radioactive isotopes. The extremely low detection limits allow analysis of samples in the sub-femtogram regime. High elemental and isotopic selectivity can be obtained. To produce isobarically pure ion beams, a RIS based laser ion source can be used

  20. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    Science.gov (United States)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  1. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B., E-mail: spsantin@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Luiz Augusto Ubirajara, E-mail: augustosantos@terra.com.br [Universidade de Sao Paulo (IOT/HCFUSP), Sao Paulo, SP (Brazil). Fac. de Medicina. Instituto de Ortopedia e Traumatologia

    2013-07-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10{sup -6}, as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations

  2. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    International Nuclear Information System (INIS)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B.; Santos, Luiz Augusto Ubirajara

    2013-01-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10 -6 , as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations in

  3. Functional method implementation of post-crop conservation of melon cantaloupe, using ionizing radiation as quality control technique in productive chain

    International Nuclear Information System (INIS)

    Siqueira, Alessandra A.Z. Cozzo de; Matraia, Clarice; Walder, Julio Marcos M.; Spoto, Marta H.F.; Silva, Paula P.M. da; Maretti, Marina S.

    2005-01-01

    The Brazilian fruit culture is an alternative to minimize the lack-of-food problem using management and post harvest appropriate techniques. Gamma radiation technology is a possible technique used for food, enlarging its shelf-life, eliminating pathogenic microorganisms and in the quarantine treatment. The irradiation with seven doses (150,300,450,600,750 and 900 Gy) was used in Cantaloupe melon (Cucumis melon var. Cantaloupensis) aiming to establish the minimum, maximum and ideal doses, according to Brazilian laws, analyzing weight, color, firmness, pulp and juice quantity and sensory aspects, using the Difference Control Test. The results indicate that storage influenced significantly the weight, color and pulp quantity parameters. Doses higher than 450 Gy however influenced the firmness, juice quantity and sensory aspects characteristics. These results are indicating that the minimum dose was 150 Gy, the maximum dose was 900 Gy and the ideal dose for the quarantine treatment and to increase shelf-life of the Cantaloupe melon was 450 Gy. The data obtained allowed us to conclude that the ionizing radiation can increase the shelf-life of the Cantaloupe melon using doses up to 450 Gy making it proper to exportation. (author)

  4. Monitoring of atomic metastable state lifetimes by the laser-enhanced ionization technique--A new method for probing local stoichiometric combustive conditions

    International Nuclear Information System (INIS)

    Ljungberg, Peter; Malmsten, Yvonne; Axner, Ove

    1995-01-01

    The lifetimes of atomic metastable states in an acetylene/air flame have been investigated using the laser-enhanced ionization technique. The lifetimes were found to be several orders of magnitude less than the natural ones, which clearly shows that they are fully determined by the surrounding environment. The lifetime of a specific state has been investigated as a function of flame conditions. It was found that the lifetime is strongly dependent on the local flame composition, with a distinct maximum for stoichiometric conditions. For fuel-lean local conditions, the excess of O2 acts as an effective quencher of the metastable state, while for fuel-rich conditions the quenching is dominated by unburned fuel components. An acetylene/air flame has been probed both as a function of height in the flame, as well as a function of fuel/air composition fed to the burner. The experiments show clearly for which heights and fuel/air compositions that lean, stoichiometric or rich conditions prevail. This makes a monitoring of metastable state lifetimes a useful technique for combustion analysis

  5. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  6. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  7. Polarization spectroscopy of the sodium dimer utilizing a triple-resonance technique in the presence of argon

    Science.gov (United States)

    Arndt, Phillip; Horton, Timothy; McFarland, Jacob; Bayram, Burcin; Miami University Spectroscopy Team

    2015-05-01

    The collisional dynamics of molecular sodium in the 61Σg electronic state is under investigation using a triple resonance technique in the presence of argon. A continuous wave ring dye laser is used to populate specific rovibrational levels of the A1Σu electronic state. A pump-probe technique is then employed where the pump laser populates the 61Σg state, and the probe laser dumps the population to the B1Σu state. From this level, fluorescence is detected as the system decays to the X1Σg state. We measure the polarization of this signal in the presence of various argon pressures. We will present our current work as well as the processes involved in the experiment. Financial support from the National Science Foundation (Grant No. NSF-PHY-1309571) is gratefully acknowledged.

  8. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  9. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  10. Magnetic resonance evaluation of anterior cruciate ligament repair using the patellar tendon double bone block technique

    International Nuclear Information System (INIS)

    Autz, G.; Singson, R.D.; Goodwin, C.

    1991-01-01

    The magnetic resonance (MR) appearance of the anterior cruciate ligament reconstruction was determined in 20 clinically stable and 2 clinically unstable knees for a total of 22 examinations. All patients studied had undergone knee reconstruction using the patellar tendon as graft material. The reconstructed anterior cruciate ligament varies in appearance. It appeared as a thick, well-defined, low signal band on T1- and T2-weighted sagittal and coronal images in 14 of 22 examinations. The remaining 8 knees showed a graft having one or more thin and attenuated, low signal intensity bands in the sagittal and/or coronal plane. Arthroscopy confirmed an intact but lax graft in the clinically unstable knees. (orig.)

  11. Parametric Roll Resonance Detection using Phase Correlation and Log-likelihood Testing Techniques

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2009-01-01

    generation warning system the purpose of which is to provide the master with an onboard system able to trigger an alarm when parametric roll is likely to happen within the immediate future. A detection scheme is introduced, which is able to issue a warning within five roll periods after a resonant motion......Real-time detection of parametric roll is still an open issue that is gathering an increasing attention. A first generation warning systems, based on guidelines and polar diagrams, showed their potential to face issues like long-term prediction and risk assessment. This paper presents a second...... started. After having determined statistical properties of the signals at hand, a detector based on the generalised log-likelihood ratio test (GLRT) is designed to look for variation in signal power. The ability of the detector to trigger alarms when parametric roll is going to onset is evaluated on two...

  12. DETECTION OF SOME IRRADIATED NUTS BY ELECTRON SPIN RESONANCE (ESR) TECHNIQUE

    International Nuclear Information System (INIS)

    KHALLAF, M.F.; YASIN, N.M.N.; EL-NASHABY, F.M.; ALI, H.G.M.; EL-SHIEMY, S.M.

    2008-01-01

    The present investigation was carried out to establish the electron spin resonance (ESR) detection method for identifying irradiated nuts (almond and pistachio). Samples were irradiated with 2, 4 and 6 kGy and stored at room temperature (25± 2 0 C) for six months to study the possibility of detecting its previous irradiation treatments by ESR spectroscopy. Analysis was carried out just after irradiation treatment and during ambient storage period. The ESR signal intensities of irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation so, all irradiated samples under investigation could be differentiated from non-irradiated ones immediately after irradiation treatment. The decay in radicals responsible of ESR signals showed the identification of irradiated almond (shell or edible part) and pistachio (edible part) was impossible after six months of ambient storage

  13. Determination of protein by resonance light scattering technique using dithiothreitol-sodium dodecylbenzene sulphonate as probe

    Science.gov (United States)

    Wu, Lihang; Mu, Dan; Gao, Dejiang; Deng, Xinyu; Tian, Yuan; Zhang, Hanqi; Yu, Aimin

    2009-02-01

    The resonance light scattering (RLS) spectra of bovine serum albumin (BSA)-dithiothreitol (DTT)-sodium dodecylbenzene sulphonate (SDBS) and its analytical application were investigated. The RLS intensity of this system can be effectively enhanced in the presence of BSA. Based on the enhanced RLS intensity, a simple assay for BSA was developed. The experimental results indicate that the enhanced RLS intensity is proportional to the concentration of BSA in the range from 1.0 × 10 -8 to 7.5 × 10 -7 mol L -1 with the determination limit of 5.0 × 10 -9 mol L -1. The effects of pH, concentration of SDBS and DTT on the RLS enhancement were discussed. Most metal ions have little interference on the determination of BSA. Some synthetic and real samples were analyzed, and the results obtained were in good agreement with those obtained by Bradford method.

  14. DETECTION OF SOME IRRADIATED NUTS BY ELECTRON SPIN RESONANCE (ESR) TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    KHALLAF, M F; YASIN, N M.N. [Food Science Dept., Faculty of Agriculture, Ain Shams University, Cairo (Egypt); EL-NASHABY, F M; ALI, H G.M.; EL-SHIEMY, S M [Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    The present investigation was carried out to establish the electron spin resonance (ESR) detection method for identifying irradiated nuts (almond and pistachio). Samples were irradiated with 2, 4 and 6 kGy and stored at room temperature (25{+-} 2{sup 0}C) for six months to study the possibility of detecting its previous irradiation treatments by ESR spectroscopy. Analysis was carried out just after irradiation treatment and during ambient storage period. The ESR signal intensities of irradiated samples were markedly increased correspondingly with irradiation dose as a result of free radicals generated by gamma irradiation so, all irradiated samples under investigation could be differentiated from non-irradiated ones immediately after irradiation treatment. The decay in radicals responsible of ESR signals showed the identification of irradiated almond (shell or edible part) and pistachio (edible part) was impossible after six months of ambient storage.

  15. Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique

    Czech Academy of Sciences Publication Activity Database

    Fang, D.; Kurebayashi, H.; Wunderlich, Joerg; Výborný, Karel; Zarbo, Liviu; Campion, R. P.; Casiraghi, A.; Gallagher, B. L.; Jungwirth, Tomáš; Ferguson, A.J.

    2011-01-01

    Roč. 6, č. 7 (2011), s. 413-417 ISSN 1748-3387 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA AV ČR KJB100100802; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanomagnets Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 27.270, year: 2011

  16. Resonance light scattering technique for the determination of proteins with polymethacrylic acid (PMAA)

    Science.gov (United States)

    Chen, Yanhua; Gao, Dejiang; Tian, Yuan; Ai, Peng; Zhang, Hanqi; Yu, Aimin

    2007-07-01

    As a resonance light scattering (RLS) probe, the polyelectrolyte polymethacrylic acid (PMAA) was applied in this assay. The bovine serum albumin (BSA) and human serum albumin (HSA) were determined by the electrostatic interaction of PMAA and proteins. At pH 3.8 Na 2HPO 4-citric acid buffer solution, the RLS intensities of PMAA-BSA (HSA) system were greatly enhanced. The characteristic peaks were appeared at the wavelength 320, 546 and 594 nm. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the RLS intensities were proportional to the protein concentrations in the range of (0.0200-2.00) × 10 -6 mol/L for BSA and (0.0200-2.40) × 10 -6 mol/L for HSA. The influences of some foreign substances were also examined. The synthetic samples containing proteins and some real samples were analyzed and the results obtained were satisfactory.

  17. Magnetic resonance evaluation of anterior cruciate ligament repair using the patellar tendon double bone block technique

    Energy Technology Data Exchange (ETDEWEB)

    Autz, G.; Singson, R.D. (St. Luke' s Roosevelt Hospital Center, New York, NY (United States). Dept. of Radiology); Goodwin, C. (St. Luke' s Roosevelt Hospital Center, New York, NY (United States). Dept. of Orthopedics)

    1991-11-01

    The magnetic resonance (MR) appearance of the anterior cruciate ligament reconstruction was determined in 20 clinically stable and 2 clinically unstable knees for a total of 22 examinations. All patients studied had undergone knee reconstruction using the patellar tendon as graft material. The reconstructed anterior cruciate ligament varies in appearance. It appeared as a thick, well-defined, low signal band on T1- and T2-weighted sagittal and coronal images in 14 of 22 examinations. The remaining 8 knees showed a graft having one or more thin and attenuated, low signal intensity bands in the sagittal and/or coronal plane. Arthroscopy confirmed an intact but lax graft in the clinically unstable knees. (orig.).

  18. Study of the effect of ionizing radiation on the structure of natural rubber latex by positron annihilation technique

    International Nuclear Information System (INIS)

    Lopez Saldana, I.R.

    1993-01-01

    At the present research, were studied the changes in natural rubber latex structure, due to electron beam by a 3 MeV, 25 m A Dynamitron electron accelerator. The natural rubber latex was irradiated at 30, 40 and 50 kGy/s dose rate, over a total dose range from 150 to 250 kGy, for each dose rate used. From natural rubber latex irradiated films were prepared by casting with 0.7 mm. thickness. In the main part, the study was made by positron annihilation lifetime (PAL), this technique is unique in the determination of free-volume properties due to the fact that positronium atom (Ps) is found to be preferentially localized in the free-volume region of polymeric materials. The positron lifetime measurements were performing using a gamma-gamma coincidence system. These results were analyzed by PATFIT-88 program computer into three components, the long-lived component for orthopositronium (o-Ps) with parameters lifetime (τ 3 ) and formation intensity (I 3 ), were plotted and analyzed for each dose rate and total dose used. Besides with τ 3 were calculated the mean free-volume size based on the spherical model for the free-volume bubble, found that the free-volume decrease slightly with the total dose due to the crosslinking of natural rubber latex. Besides was studied the effect of dose rate on tensile strength, the tensile strength is increased with the total dose although there was not a clear effect due to the dose rate. Also the films were subjected to aging in order to determined the thermal stability of natural rubber latex irradiated, the results show that the films have good stability. Besides was used the infrared spectroscopy to determine the changes due to the crosslinking by variations in the characteristically absorption bands for cis 1,4-polyisoprene. (Author)

  19. Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) - Initial experiences

    International Nuclear Information System (INIS)

    Romaneehsen, B.; Oberholzer, K.; Kreitner, K.-F.; Mueller, L.P.

    2003-01-01

    Purpose: To investigate the feasibility of using multiple receiver coil elements for time saving integrated parallel imaging techniques (iPAT) in traumatic musculoskeletal disorders. Material and methods: 6 patients with traumatic derangements of the knee, ankle and hip underwent MR imaging at 1.5 T. For signal detection of the knee and ankle, we used a 6-channel body array coil that was placed around the joints, for hip imaging two 4-channel body array coils and two elements of the spine array coil were combined for signal detection. All patients were investigated with a standard imaging protocol that mainly consisted of different turbo spin-echo sequences (PD-, T 2 -weighted TSE with and without fat suppression, STIR). All sequences were repeated with an integrated parallel acquisition technique (iPAT) using a modified sensitivity encoding (mSENSE) technique with an acceleration factor of 2. Overall image quality was subjectively assessed using a five-point scale as well as the ability for detection of pathologic findings. Results: Regarding overall image quality, there were no significant differences between standard imaging and imaging using mSENSE. All pathologies (occult fracture, meniscal tear, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques. iPAT led to a 48% reduction of acquisition time compared with standard technique. Additionally, time savings with iPAT led to a decrease of pain-induced motion artifacts in two cases. Conclusion: In times of increasing cost pressure, iPAT using multiple coil elements seems to be an efficient and economic tool for fast musculoskeletal imaging with diagnostic performance comparable to conventional techniques. (orig.) [de

  20. Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments

    Science.gov (United States)

    Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.

    2002-05-01

    This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb

  1. Computerized techniques for digital filtering and spectral decomposition with applications to nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Murphy, P.D.; Gerstein, B.C.

    1979-02-01

    A report is presented which describes a digital filtering technique using both a bandpass filter and an exponential filter. The properties of Lorentzian and Gaussian lineshapes are discussed. A procedure for decomposing NMR absorption spectra with overlapping lines into Lorentzian and Gaussian components is also described. Finally, two FORTRAN computer programs which implement concepts developed in this report are presented

  2. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  3. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  4. Investigation of Mn Implanted LiNbO3 applying electron paramagnetic resonance technique

    International Nuclear Information System (INIS)

    Darwish, A.; Ila, D.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    The effect of ion implantation on the LiNbO 3 crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO 3 :Mn 2+ at a depth of approximately 200 nm was formed by implantation of 2.5 x 10 14 Mncm 2 and 1 x 10 17 Mn/cm 2 at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO 3 :Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal

  5. A sensitive resveratrol assay with a simple probe methylene blue by resonance light scattering technique

    Science.gov (United States)

    Xiang, Haiyan; Dai, Kaijin; Luo, Qizhi; Duan, Wenjun; Xie, Yang

    2011-01-01

    A novel resonance light scattering (RLS) method was developed for the determination of resveratrol based on the interaction between resveratrol and methylene blue (MB). It was found that at pH 8.69, the weak RLS intensity of MB was remarkably enhanced by the addition of trace amount of resveratrol with the maximum peak located at 385.0 nm. Under the optimum conditions, a good linear relationship between the enhanced RLS intensities and the concentrations of resveratrol was obtained over the range of 2.0-14.0 μg ml -1 with the detection limit (3 σ) of 0.63 μg ml -1. The results of the analysis of resveratrol in synthetic samples and human urine are satisfactory, which showed it may provide a more sensitive, convenient, rapid and reproducible method for the detection of resveratrol, especially in biological and pharmaceutical field. In this work, the characteristics of RLS, absorption and fluorescence spectra of the resveratrol-MB system, the influencing factors and the optimum conditions of the reaction were investigated.

  6. Application of magnetic resonance elastography as a non-invasive technique for diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    YANG Minglei

    2016-03-01

    Full Text Available At present, liver biopsy is the gold standard for the diagnosis and grading of liver fibrosis, but its limitations have been widely acknowledged. The non-invasive detection methods are needed in clinical practice, and at present, magnetic resonance elastography (MRE is a hot research topic. This article reviews the advances in the clinical application of MRE in related fields, and studies have shown that MRE has a high diagnostic value due to its high sensitivity and specificity in the diagnosis and grading of liver fibrosis and an area under the receiver operating characteristic curve as high as 0.95. Compared with serological and other imaging diagnostic methods, MRE can determine fibrosis stage more accurately and has good reproducibility and objectivity. MRE can be widely applied in all patients except those with hemochromatosis, with special advantages in the diagnosis for patients with obesity and ascites, and can make up for the disadvantages of other methods. This article points out that MRE may become the best non-invasive method for the assessment of liver fibrosis, especially advanced fibrosis.

  7. Missing mass calculator as a technique to reconstruct the mass of resonances decaying into tau pairs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenschein, Ulla; De Maria, Antonio; Quadt, Arnulf; Zinonos, Zinonas [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    An accurate reconstruction of a resonance mass decaying into a pair of tau leptons is a difficult task because of the presence of multiple undetected neutrinos from the tau decays. The Missing Mass Calculator (MMC) is a sophisticated method to optimise the reconstruction of this events. It is based on the requirement that mutual orientations of the neutrinos and other decay products are consistent with the mass and decay kinematics of a tau lepton. This is achieved by minimizing a likelihood function defined in the kinematically allowed phase space region. MMC was one of the most powerful tools used in SM-Higgs to tau tau searches in Run1 at LHC. Now, in Run2, LHC collides proton-proton at center of mass energy √(s) = 13 TeV and at higher luminosity. Therefore, many efforts need to be done to optimise the analysis tools to the new experimental conditions. Amongst these tools, MMC requires to be retuned in order to play a key role again in the searches of the Higgs boson in di-tau final states. This talk outlines the main aspects of the MMC retuning and the impact on its performance.

  8. Improved application of independent component analysis to functional magnetic resonance imaging study via linear projection techniques.

    Science.gov (United States)

    Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li

    2009-02-01

    Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.

  9. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  10. Magnetic resonance tomography (MR) of intracranial tumours: Multi-echo technique versus gadolinium-DTPA

    International Nuclear Information System (INIS)

    Heindel, W.; Steinbrich, W.; Friedmann, G.

    1986-01-01

    In thirty-seven MR examinations of intracranial tumours equivalent sections were obtained in a multi-echo technique before and after intravenous injection of 0.1 mmol gadolinium DTPA/kg body weight. From this comparison the following preliminary conclusions have been drawn concerning the demonstration of the tumour, its delineation and type: contrast administration does not unequivocally improve the sensitivity. In 55% of the cases, differentiation between tumour and oedema respectively normal brain tissue was easier after Gd-DTPA. Diffusely infiltrating gliomas remain a problem, since their extent is uncertain with or without contrast medium. The structure of the tumour can already be adequately characterized by the multi-echo technique. In order to diagnose the type of tumour, the criteria which apply to Gd-DTPA are similar to those used for iodine-containing contrast media in CT. (orig.) [de

  11. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Fendt, Alois; Geissler, Robert; Streibel, Thorsten

    2013-01-01

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  12. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    Energy Technology Data Exchange (ETDEWEB)

    Fendt, Alois [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Geissler, Robert [Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); and others

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. Black-Right-Pointing-Pointer Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. Black-Right-Pointing-Pointer Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. Black-Right-Pointing-Pointer The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. Black-Right-Pointing-Pointer The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  13. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  14. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  15. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  16. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  17. Supine spinal magnetic resonance imaging with straightened lower extremities in spondylolisthesis: A comparison with the conventional technique

    International Nuclear Information System (INIS)

    Daghighi, Mohammad Hossein; Poureisa, Masoud; Arablou, Farid; Fouladi, Daniel F.

    2015-01-01

    Highlights: • MR imaging with straightened lower extremities was tested in spondylolisthesis. • This technique is more accurate than conventional MR imaging in detecting slip. • Level of spondylolisthesis is the only independent predictor of severity of slip. - Abstract: Objectives: To compare the degree of slip in spondylolisthesis on supine magnetic resonance (MR) images obtained with flexed and straightened lower extremities. Methods: Supine spinal MR studies were performed in 100 cases of symptomatic spondylolisthesis with flexed and then straightened lower extremities. The angle of lumbar lordosis (by Cobb's method) and the degree of slip (by Taillard's method) were compared between the two sets of images. Results: The mean angle of lumbar lordosis increased from 51.65 ± 8.57° on MR images with flexed lower limbs to 57.39 ± 9.05° on MR images with straightened lower limbs (p < 0.001; mean percent increase: 11.51%). Similar change was also observed for the mean degree of slip (from 25.80 ± 7.74% to 28.68 ± 7.93%, p < 0.001; mean percent increase: 12.60%). After MR imaging with straightened lower extremities 22 out of 54 initially grade I cases had grade II disease (p < 0.001). Conclusions: Supine magnetic resonance imaging with straightened lower extremities detects higher degree of slippage in symptomatic patients with spondylolisthesis compared to conventional MRI with flexed lower extremities

  18. Supine spinal magnetic resonance imaging with straightened lower extremities in spondylolisthesis: A comparison with the conventional technique

    Energy Technology Data Exchange (ETDEWEB)

    Daghighi, Mohammad Hossein; Poureisa, Masoud; Arablou, Farid [Department of Radiology, Imam Reza Teaching Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Fouladi, Daniel F., E-mail: medicorelax@yahoo.com [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Highlights: • MR imaging with straightened lower extremities was tested in spondylolisthesis. • This technique is more accurate than conventional MR imaging in detecting slip. • Level of spondylolisthesis is the only independent predictor of severity of slip. - Abstract: Objectives: To compare the degree of slip in spondylolisthesis on supine magnetic resonance (MR) images obtained with flexed and straightened lower extremities. Methods: Supine spinal MR studies were performed in 100 cases of symptomatic spondylolisthesis with flexed and then straightened lower extremities. The angle of lumbar lordosis (by Cobb's method) and the degree of slip (by Taillard's method) were compared between the two sets of images. Results: The mean angle of lumbar lordosis increased from 51.65 ± 8.57° on MR images with flexed lower limbs to 57.39 ± 9.05° on MR images with straightened lower limbs (p < 0.001; mean percent increase: 11.51%). Similar change was also observed for the mean degree of slip (from 25.80 ± 7.74% to 28.68 ± 7.93%, p < 0.001; mean percent increase: 12.60%). After MR imaging with straightened lower extremities 22 out of 54 initially grade I cases had grade II disease (p < 0.001). Conclusions: Supine magnetic resonance imaging with straightened lower extremities detects higher degree of slippage in symptomatic patients with spondylolisthesis compared to conventional MRI with flexed lower extremities.

  19. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  20. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  1. Single Breath-Hold Physiotherapy Technique; Effective tool for T2* magnetic resonance imaging in young patients with thalassaemia major

    Directory of Open Access Journals (Sweden)

    Surekha T. Mevada

    2016-02-01

    Full Text Available Magnetic resonance imaging using T2* (MRI T2* is a highly sensitive and non-invasive technique for the detection of tissue iron load. Although the single breath-hold multi-echo T2* technique has been available at the Sultan Qaboos University Hospital (SQUH, Muscat, Oman, since 2006, it could not be performed on younger patients due to their inability to hold their breath after expiration. This study was carried out between May 2007 and May 2015 and assessed 50 SQUH thalassaemic patients aged 7‒17 years old. Seven of these patients underwent baseline and one-year follow-up MRI T2* scans before receiving physiotherapy training. Subsequently, all patients were trained by a physiotherapist to hold their breath for approximately 15‒20 seconds at the end of expiration before undergoing baseline and one-year follow-up MRI T2* scans. Failure rates for the pre- and post-training groups were 6.0% and 42.8%, respectively. These results indicate that the training of thalassaemic patients in breathhold techniques is beneficial and increases rates of compliance for MRI T2* scans.

  2. Dynamic subtraction magnetic resonance venography: a new real time imaging technique for the detection of dural sinus thrombosis

    International Nuclear Information System (INIS)

    Mandel, C.; Birchall, D.; Connolly, D.; English, P.

    2002-01-01

    Full text: Requests for imaging suspected dural sinus thrombosis are increasing. Conventional magnetic imaging (MRI) and magnetic resonance venography (MRV) are often used to detect venous sinus thrombosis, but these techniques are prone to technical problems. Catheter angiography is sometimes required as the final arbiter in the evaluation of the dural venous sinuses. Recent technical developments in MR scanning have allowed the development of dynamic subtraction MRA. This technique is beginning to be applied to the assessment of intracranial vascular malformations. We have recently applied the technique to the imaging of the dural venous sinuses, and describe our early experience with the technique. Imaging was performed on a Philips Intera 1.5T scanner with gradient strength 33 mT and slew rate 130 T/m/sec. T1-weighed fast field echo imaging was performed (flip angle 400, TR 1.5 msec) during bolus injection of gadolinium (5ml gadolinium followed by a 10 ml saline chaser) at 5-6 ml/sec using a MRI-compatible pump injector. Slice thickness depended on the plane of acquisition, but was between 100- 150 mm. Images were acquired in three orthogonal projections in each case, using 3 separate contrast injections. Mask images were obtained before the arrival of contrast, and subtracted reconstructed images were obtained in real time, providing a dynamic display of the intracranial circulation including the dural venous sinuses. Frame rate was 1 frame per 0.8 seconds. We will present dynamic MR angiographic images in a number of patients. Normal appearances and those seen in venous sinus thrombosis will be presented in the video display. Dynamic MR venography is a new technique for the imaging of dural venous sinuses. In our practice, it has proved a valuable adjunct for the imaging of patients with dural venous sinus thrombosis. Copyright (2002) Blackwell Science Pty Ltd

  3. Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: A histopathological correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Ayumi; Narumi, Shinsuke; Ohba, Hideki; Yamaguchi, Mao; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Institute for Biomedical Sciences, Morioka (Japan); Ogasawara, Kuniaki; Kobayashi, Masakazu [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2012-11-15

    Several magnetic resonance (MR) imaging techniques are used to examine atherosclerotic plaque of carotid arteries; however, the best technique for visualizing intraplaque characteristics has yet to be determined. Here, we directly compared four kinds of T1-weighted (T1W) imaging techniques with pathological findings in patients with carotid stenosis. A total of 31 patients who were candidates for carotid endarterectomy were prospectively examined using a 1.5-T MRI scanner, which produced four kinds of T1W images, including non-gated spin echo (SE), cardiac-gated black-blood (BB) fast-SE (FSE), magnetization-prepared rapid acquisition with gradient echo (MPRAGE), and source image of three-dimensional time-of-flight MR angiography (SI-MRA). The signal intensity of the carotid plaque was manually measured, and the contrast ratio (CR) against the adjacent muscle was calculated. CRs from the four imaging techniques were compared to each other and correlated with histopathological specimens. CRs of the carotid plaques mainly containing fibrous tissue, lipid/necrosis, and hemorrhage were significantly different with little overlaps (range: 0.92-1.15, 1.22-1.52, and 1.55-2.30, respectively) on non-gated SE. However, BB-FSE showed remarkable overlaps among the three groups (0.89-1.10, 1.07-1.23, and 1.01-1.42, respectively). MPRAGE could discriminate fibrous plaques from hemorrhagic plaques but not from lipid/necrosis-rich plaques: (0.77-1.07, 1.45-2.43, and 0.85-1.42, respectively). SI-MRA showed the same tendencies (1.01-1.39, 1.45-2.57, and 1.12-1.39, respectively). Among T1W MR imaging techniques, non-gated SE images can more accurately characterize intraplaque components in patients who underwent CEA when compared with cardiac-gated BB-FSE, MPRAGE, and SI-MRA images. (orig.)

  4. Use of contrast media in computed tomography and magnetic resonance imaging in horses: Techniques, adverse events and opportunities.

    Science.gov (United States)

    Nelson, B B; Goodrich, L R; Barrett, M F; Grinstaff, M W; Kawcak, C E

    2017-07-01

    The use of contrast media in computed tomography (CT) and magnetic resonance imaging (MRI) is increasing in horses. These contrast-enhanced imaging techniques provide improved tissue delineation and evaluation, thereby expanding diagnostic capabilities. While generally considered safe, not all contrast media exhibit the same safety profiles. The safety of contrast media use and descriptions of adverse events occurring in horses are sparsely reported. This review summarises the reported evidence of contrast media use and adverse events that occur in horses, with added contribution from other veterinary species and studies in man for comparison. This comprehensive data set empowers equine clinicians to develop use and monitoring strategies when working with contrast media. Finally, it summarises the current state-of-the-art and highlights the potential applications of contrast-enhanced CT and MRI for assessment of diseased or injured equine tissues, as well as (patho)physiological processes. © 2017 EVJ Ltd.

  5. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance

    International Nuclear Information System (INIS)

    Oleaga Zufiria, L.; Ibanez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D.

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs

  6. Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) - Initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Romaneehsen, B.; Oberholzer, K.; Kreitner, K.-F. [Johannes Gutenberg-Univ. Mainz (Germany). Klinik und Poliklinik fuer Radiologie; Mueller, L.P. [Johannes Gutenberg-Univ. Mainz (Germany). Klinik und Poliklinik fuer Unfallchirurgie

    2003-09-01

    Purpose: To investigate the feasibility of using multiple receiver coil elements for time saving integrated parallel imaging techniques (iPAT) in traumatic musculoskeletal disorders. Material and methods: 6 patients with traumatic derangements of the knee, ankle and hip underwent MR imaging at 1.5 T. For signal detection of the knee and ankle, we used a 6-channel body array coil that was placed around the joints, for hip imaging two 4-channel body array coils and two elements of the spine array coil were combined for signal detection. All patients were investigated with a standard imaging protocol that mainly consisted of different turbo spin-echo sequences (PD-, T{sub 2}-weighted TSE with and without fat suppression, STIR). All sequences were repeated with an integrated parallel acquisition technique (iPAT) using a modified sensitivity encoding (mSENSE) technique with an acceleration factor of 2. Overall image quality was subjectively assessed using a five-point scale as well as the ability for detection of pathologic findings. Results: Regarding overall image quality, there were no significant differences between standard imaging and imaging using mSENSE. All pathologies (occult fracture, meniscal tear, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques. iPAT led to a 48% reduction of acquisition time compared with standard technique. Additionally, time savings with iPAT led to a decrease of pain-induced motion artifacts in two cases. Conclusion: In times of increasing cost pressure, iPAT using multiple coil elements seems to be an efficient and economic tool for fast musculoskeletal imaging with diagnostic performance comparable to conventional techniques. (orig.) [German] Ziel: Einsatz integrierter paralleler Akquisitionstechniken (iPAT) zur Verkuerzung der Untersuchungszeit bei muskuloskelettalen Verletzungen. Material und Methoden: 6 Patienten mit einem Knie, Sprunggelenks- oder Huefttrauma wurden bei 1,5 T

  7. Molecular dynamics in porous media studied by nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Mattea, C.

    2006-01-01

    Field cycling NMR relaxometry was used to study dynamics of fluids under confinement in different scenarios: fluids flowing through porous media, fluids partially filling porous media and polymer melts in nanoscopic pores. Diffusion in partially filled porous media was also studied with the aid of an NMR diffusometry technique. It is shown that hydrodynamic flow influences the spin-lattice relaxation rate of water confined in mesoscopic porous media under certain conditions. The effect is predicted by an analytical theory and Monte Carlo simulations, and confirmed experimentally by field-cycling NMR relaxometry. Field-cycling NMR relaxometry has been applied to polar and non polar adsorbates in partially filled silica porous glasses. The dependence of the spin-lattice relaxation rate on the filling degree shows that limits for slow and fast exchange between different phases can be distinguished and identified depending on the pore size and polarity of the solvents. Diffusion in the same unsaturated systems was studied with the aid of NMR diffusometry technique. The effective diffusion coefficient of solvents with different polarities displays opposite tendencies as a function of the liquid content. A two-phase fast exchange model including Knudsen and ordinary diffusion and different effective tortuosities is presented accounting for these phenomena. In the case of polymer melts confined in narrow artificial tubes of a porous solid matrix with variable diameter (9 to 57 nm), the characteristics of reptation were experimentally verified using proton field cycling NMR relaxometry technique. This observation is independent of the molecular mass and pore size. In bulk, the same polymer melts show either Rouse or renormalized Rouse dynamics, depending on the molecular mass. The polymers under confinement show features specific for reptation even with a pore diameter 15 times larger than the Flory radius while bulk melts of the same polymers do not. (orig.)

  8. Diffusion processes in unsaturated porous media studied with nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Farrher, German David

    2006-01-01

    Unsaturated porous media form two-phase systems consisting of the liquid and its vapor. Molecular exchange between the two phases defines an effective diffusion coefficient which substantially deviates from the bulk value of the liquid. The objective of the present thesis is to study self-diffusion under such conditions by varying both the filling degree of the porous medium and the diffusion time. The main experimental tool was a combination of two different NMR field gradient diffusometry techniques. For comparison, diffusion in a porous medium was modeled with the aid of Monte Carlo simulations. The NMR diffusometry techniques under consideration were the pulsed gradient stimulated echo (PGStE) method, the fringe field stimulated echo (FFStE) method, and the magnetization grid rotating frame imaging (MAGROFI) method. As liquids, water and cyclohexane were chosen as representatives of polar and nonpolar species. The porous glasses examined were Vycor with a mean pore size of 4 nm and VitraPor 5, with a pore size ranging from 1 to 1.6 μm. Using a combination of the FFStE and the MAGROFI technique permits one to cover four decades of the diffusion time from 100 μs to 1 s. The time dependences acquired in this way were compared with Monte Carlo simulations of a model structure in a time window of eight decades, from 125 ps up to 12.5 ms. NMR microscopy of VitraPor5 partially filled with water or cyclohexane reveals heterogeneous distributions of the liquid on a length scale much longer than the pore dimension. As a consequence of the inhomogeneous filling degree, the effective transverse relaxation time varies, which in turn leads to NMR imaging contrasts. The NMR methods employed, that is, a combination of FFStE and MAGROFI diffusometry, provide effective diffusion coefficients not affected by spatial variations of the transverse relaxation time, in contrast to the PGStE method: The FFStE and MAGROFI techniques render the effective diffusion coefficient averaged

  9. Search for Narrow Resonances in Dijet Final States at sqrt[s]=8  TeV with the Novel CMS Technique of Data Scouting.

    Science.gov (United States)

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Forthomme, L; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Du, R; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Elgammal, S; Mohamed, A; Mohammed, Y; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulte, J F; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Parida, B; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; La Licata, C; Schizzi, A; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Kim, H; Lee, A; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Oh, S B; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Qazi, S; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbounov, N; Gorbunov, I; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chadeeva, M; Danilov, M; Zhemchugov, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Palencia Cortezon, E; Sanchez Cruz, S; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Krammer, M; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Gerosa, R; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mccoll, N; Mullin, S D; Ovcharova, A; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Sun, W; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Bowen, J; Bruner, C; Castle, J; Kenny, R P; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Luo, J; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Krutelyov, V; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Lamichhane, P; Sturdy, J; Belknap, D A; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N

    2016-07-15

    A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8  fb^{-1}. The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of 1 kHz, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on the coupling of a leptophobic resonance Z_{B}^{'} to quarks, improving on the results obtained by previous experiments for the mass range from 500 to 800 GeV.

  10. Contrast-enhanced magnetic resonance imaging of pulmonary lesions: Description of a technique aiming clinical practice

    International Nuclear Information System (INIS)

    Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich

    2015-01-01

    To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Material and methods: Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Results: Readers agreed moderately to substantially concerning lesions’ enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. Conclusions: The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions

  11. Contrast-enhanced magnetic resonance imaging of pulmonary lesions: Description of a technique aiming clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Koenigkam-Santos, Marcel, E-mail: marcelk46@yahoo.com.br [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Radiology Department, German Cancer Research Center (Deutsches Krebsforschungszentrum – DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Radiology, University Hospital of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes 3900, Campus Universitario Monte Alegre, 14048 900 Ribeirao Preto, Sao Paulo (Brazil); Optazaite, Elzbieta, E-mail: optazaite@andrulis.eu [Diagnostic and Interventional Radiology with Nuclear Medicine, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Sommer, Gregor, E-mail: gregor.sommer@usb.ch [Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel (Switzerland); Safi, Seyer, E-mail: seyer.safi@gmail.com [Surgery Department, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Heussel, Claus Peter, E-mail: heussel@uni-heidelberg.de [Diagnostic and Interventional Radiology with Nuclear Medicine, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); and others

    2015-01-15

    To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Material and methods: Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Results: Readers agreed moderately to substantially concerning lesions’ enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. Conclusions: The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions.

  12. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  13. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    Science.gov (United States)

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed

  14. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  15. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Science.gov (United States)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  16. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging and investigational cell-based therapies

    Directory of Open Access Journals (Sweden)

    Alessandra eCanazza

    2014-02-01

    Full Text Available Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.

  17. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  18. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  19. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  20. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  1. Search for narrow resonances in dijet final states at $\\sqrt{s}= $ 8 TeV with the novel CMS technique of data scouting

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Forthomme, Laurent; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Elgammal, Sherif; Mohamed, Amr; Mohammed, Yasser; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Parida, Bibhuti; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunsoo; Lee, Ari; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Oh, Sung Bin; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Qazi, Shamona; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbounov, Nikolai; Gorbunov, Ilya; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Chadeeva, Marina; Danilov, Mikhail; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Sun, Werner; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Bowen, James; Bruner, Christopher; Castle, James; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel

    2016-07-14

    A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8 fb$^{-1}$. The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of 1 kHz, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on th...

  2. An automatic method for detection and classification of Ionospheric Alfvén Resonances using signal and image processing techniques

    Science.gov (United States)

    Beggan, Ciaran

    2014-05-01

    Induction coils permit us to measure the very rapid changes of the magnetic field. In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory (55.3° N, 3.2° W, L~3), in the Scottish Borders of the United Kingdom. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1908) and is located in a rural valley with a quiet magnetic environment. The coils record magnetic field changes over an effective frequency range of about 0.1-40Hz, and encompass phenomena such as the Schumann resonances, magnetospheric pulsations and Ionospheric Alfvén Resonances (IAR). In this study we focus on the IAR, which are related to the vibration of magnetic field lines passing through the ionosphere, believed to be mainly excited by lower atmospheric electrical discharges. The IAR typically manifest as a series of spectral resonances structures (SRS) within the 1-6Hz frequency range, usually appearing a fine bands or fringes in spectrogram plots. The SRS tend to occur daily between 18.00-06.00UT at the Eskdalemuir site, disappearing during the daylight hours. They usually start as a single low frequency before bifurcating into 5-10 separate fringes, increasing in frequency until around midnight. The fringes also widen in frequency before fading around 06.00UT. Occasionally, the fringes decrease in frequency slightly around 03.00UT before fading. In order to quantify the daily, seasonal and annual changes of the SRS, we developed a new method to identify the fringes and to quantify their occurrence in frequency (f) and the change in frequency (Δf). The method uses short time-series of 100 seconds to produce an FFT spectral plot from which the non-stationary peaks are identified using the residuals from a best-fit six order spline. This is repeated for an entire day of data. The peaks from each time-slice are placed into a matrix

  3. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  4. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  5. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  6. Effects of ionizing radiations on reticulated polymers associated to nuclear wastes. The HSF-SIMS technique contribution; Effets des radiations ionisantes sur les polymeres reticules associes aux dechets nucleaires. Apport de la technique HSF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Debre, O [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-06-30

    Among the materials used for confinement of nuclear wastes of low and medium level activity the epoxyde resins are known as matrices which preserve well their properties in an ionizing environment. This work is dedicated to the investigation of the modifications occurring in molecular structure of these materials as well as of the ion exchange resins they incorporate, irradiated in different conditions. The first part deals with the analysis of a commercial reticulated epoxyde resin submitted to a 2 MGy integral dose gamma irradiation under two different dose rate (51 and 900 Gy/h), and under two different environments (air and water). The results obtained with the techniques providing structure information (time-of-flight mass spectrometry (HSF-SIMS) and FT-IR spectrometry) confirm those obtained by techniques sensible to macroscopic properties of material (DMA, DSC), taking into account that no noticeable irradiation effect can be made evident inside the material. On the other hand, an irradiation carried out in air results in a superficial oxidation, due probably to the action of the air radiolysis products. The preliminary results of an ion irradiation followed by an in-situ HSF-SIMS analysis pointed out to a basic difference between the energy amount transferred by gamma photons and fast ions; the last ones being able to induce scissions of the nearby liaisons in the material. The second part of this work is concerned with the ion exchange resins of the type PS-DVB saturated in water and non-active ions, simulating real wastes, irradiated in the same conditions as the epoxyde resins. In contrast to the results on the last one, it appears that the irradiation of these materials results primarily in scissions of the functional groups on which the ions are attached. In addition to this finding it appears that the role of water as carrying outward the attached ions appears to be fundamental 175 refs.

  7. Non-conventional measurement techniques for the determination of some long-lived radionuclides produced in nuclear fuel

    International Nuclear Information System (INIS)

    Rosenberg, R.J.

    1992-04-01

    The results of a literature survey on non-radiometric analytical techniques for the determination of long-lived radionuclides are described. The methods which have been considered are accelerator mass spectrometry, inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry, resonance ionization spectrometry, resonance ionization mass spectrometry and neutron activation analysis. Neutron activation analysis has been commonly used for the determination of 129 I and 237 Np in environmental samples. Inductively coupled mass spectrometry seems likely to become the method of choice for the determination of 99 Tc, 237 Np and Pu-isotopes. The methods are discussed and the chemical separation methods described. (orig.)

  8. MAGNETIC-RESONANCE-IMAGING USING A CLINICAL WHOLE-BODY SYSTEM - AN INTRODUCTION TO A USEFUL TECHNIQUE IN SMALL ANIMAL-EXPERIMENTS

    NARCIS (Netherlands)

    WOLF, RFE; LAM, KH; MOOYAART, EL; BLEICHRODT, RP; NIEUWENHUIS, P; SCHAKENRAAD, JM

    A clinical whole body magnetic resonance imaging (MRI) system with high resolution coils was used to obtain non-invasive images of the living rat. The results demonstrate the feasibility of the set-up and the advantages of this new imaging technique: detailed information, no extra costs,

  9. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    Science.gov (United States)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  10. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  11. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    Science.gov (United States)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  12. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Science.gov (United States)

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2015-01-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  13. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Goran Bačić

    2016-08-01

    Full Text Available Free radicals, particularly reactive oxygen species (ROS, are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.

  14. Magnetic resonance imaging of lipoma and liposarcoma: potential of short tau inversion recovery as a technique of fat suppression

    International Nuclear Information System (INIS)

    Pang, A.K.K.; Hughes, T.

    2000-01-01

    The present limited retrospective study was performed to assess MR imaging of lipomatous tumours of the musculoskeletal system and to evaluate the potential of the T2 short tau inversion-recovery (STIR) technique for differentiating lipomas from liposarcomas. Magnetic resonance imaging of 12 patients with lipomatous tumours of the musculoskeletal system (eight benign lipomas, three well differentiated liposarcomas and one myxoid liposarcoma) were reviewed. Benign lipomas were usually superficial and showed homogeneity on T1- and T2-weighted spin echo sequences. Full suppression at T2-STIR was readily demonstrated. In contrast the liposarcomas in the present series were all deep-seated. Two well-differentiated liposarcomas showed homogeneity at long and short relaxation time (TR) but failed to show complete suppression at T2-STIR. One case of well-differentiated liposarcoma (dedifferentiated liposarcoma) and one of myxoid liposarcoma showed mild and moderate heterogeneity at T1 and T2, respectively and posed no difficulty in being diagnosed correctly. In conclusion, short and long TR in combination with T2 STIR show promise in differentiating benign from malignant lipomatous tumours of the musculoskeletal system, when taken in combination with the position of the tumour. Copyright (1999) Blackwell Science Pty Ltd

  15. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  16. Magneto-optical properties of BiFeO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO{sub 3} thin films. BiFeO{sub 3} thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO{sub 3}/air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO{sub 3} thin films. The SPR reflectance curves obtained for prism/Au/BiFeO{sub 3}/air structure were utilized to investigate the optical properties of BiFeO{sub 3} thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO{sub 3} film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO{sub 3} film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO{sub 3} film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T.

  17. Application of Al techniques to a voice actuated computer system for reconstructing and displaying magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Sherley, P.L.; Pujol, A. Jr.; Meadow, J.S.

    1990-01-01

    This paper reports that to provide a means of rendering complex computer architectures, languages, and input/output modalities transparent to experienced and inexperienced users, research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study, an artificial intelligence (AI) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user, the AI control strategy determines the user's intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid, the control strategy queries the user for additional informaiton. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AI techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure

  18. Magnetic Resonance-Guided Growth Plate Bone Bridge Resection at 0.23 Tesla: Report of a Novel Technique

    International Nuclear Information System (INIS)

    Blanco Sequeiros, R.; Vaehaesarja, V.; Ojala, R.

    2008-01-01

    Background: Growth plate or physeal cartilage trauma may result in delayed or immediate failure of growth due to bone bridge formation at the insult site. With computed tomography (CT) and magnetic resonance imaging (MRI), the role of imaging has expanded from diagnosis to treatment planning and therapy guidance. Purpose: To describe a technique for MR-guided growth plate bone bridge resection and to evaluate feasibility of the procedure. Material and Methods: Three consecutive patients with growth plate bone bridges were treated surgically under MR guidance. All bridges were detected with prior MRI and radiographs. All patients were referred to procedure due to growth plate bridge associated growth anomaly and pertaining clinical symptoms. The effect of the treatment was evaluated after 48 months with a clinical follow-up. Results: All bridges were successfully detected, marked, and removed under MRI guidance. All patients had relief from their symptoms. Two patients had lasting results from the operation with no further operative treatment needed or scheduled at 48 months from primary treatment. There was one clinical failure, with the patient requiring repeated osteotomies. Conclusion: We have successfully implemented a novel therapy for growth plate bridge resection

  19. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  1. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  2. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  3. Magnetic Resonance and Ultrasound Image Fusion Supported Transperineal Prostate Biopsy Using the Ginsburg Protocol: Technique, Learning Points, and Biopsy Results.

    Science.gov (United States)

    Hansen, Nienke; Patruno, Giulio; Wadhwa, Karan; Gaziev, Gabriele; Miano, Roberto; Barrett, Tristan; Gnanapragasam, Vincent; Doble, Andrew; Warren, Anne; Bratt, Ola; Kastner, Christof

    2016-08-01

    high, prostate biopsies may not be needed for all men with elevated prostate-specific antigen values and nonsuspicious mpMRI. We present our technique to sample (biopsy) the prostate by the transperineal route (the area between the scrotum and the anus) to detect prostate cancer using a fusion of magnetic resonance and ultrasound images to guide the sampling. Copyright © 2016 European Association of Urology. All rights reserved.

  4. The Use of Atmospheric Pressure Chemical Ionization Mass Spectrometry with High Performance Liquid Chromatography and Other Separation Techniques for Identification of Triacylglycerols

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sigler, Karel

    2007-01-01

    Roč. 3, - (2007), s. 252-271 ISSN 1573-4110 R&D Projects: GA ČR GA203/06/0219 Institutional research plan: CEZ:AV0Z50200510 Keywords : triacylglycerols * atmospheric presssure chemical ionization * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 1.815, year: 2007