WorldWideScience

Sample records for techniques nuclear resonant

  1. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  2. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  3. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  4. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique

    International Nuclear Information System (INIS)

    Silva Elipe, Maria Victoria

    2003-01-01

    A general overview of the advancements and applications of nuclear magnetic resonance (NMR) hyphenated with other analytical techniques is given from a practical point of view. Details on the advantages and disadvantages of the hyphenation of NMR with liquid chromatography as LC-NMR and also with mass spectrometry as LC-MS-NMR are demonstrated with two examples. Current developments of NMR with other analytical separation techniques, especially with capillary liquid chromatography (capLC) are discussed

  5. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  6. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-01-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms

  7. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  8. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  9. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  10. Applied nuclear γ-resonance as fingerprint technique in geochemistry and mineralogy

    International Nuclear Information System (INIS)

    Constantinescu, S.

    2003-01-01

    The aim of the present paper is to evidence the new developments of one of the most refined technique, the nuclear γ resonance or the well-known Moessbauer effect, in the field of mineralogical and geo-chemical investigation. There are many Moessbauer studies on minerals, but the development, the new performance of the Moessbauer equipment and of the computers impose to review more profoundly and more thoroughly the information, which this non-destructive technique offers. This task became more and more pressingly because a lot of minerals contain in high proportion, the Moessbauer isotopes. Generally, the mineralogists, physicists and chemists hope to obtain more refined and complete information about the physics and chemistry synthesis aspects in solid state transformation of some natural and synthetic materials and also about the structural aspects, by these kind of techniques. On this line, the authors very shortly review the principal aspects of the Moessbauer spectroscopy and underline the most important information one can obtain from spectra. The recent results, which have been obtained on minerals extracted from Romanian geological deposits by the authors, will be discussed in detail in the second part of this article. (authors)

  11. Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Dainan Zhang

    2017-02-01

    Full Text Available Abstract Natural organic matter (NOM plays important roles in biological, chemical, and physical processes within the terrestrial and aquatic ecosystem. Despite its importance, a clear and exhaustive knowledge on NOM chemistry still lacks. Aiming to prove that advanced solid-state 13C nuclear magnetic resonance (NMR techniques may contribute to fill such a gap, in this paper we reported relevant examples of its applicability to NOM components, such as biomass, deposition material, sediments, and kerogen samples. It is found that nonhydrolyzable organic carbons (NHC, chars, and polymethylene carbons are important in the investigated samples. The structure of each of the NHC fractions is similar to that of kerogens, highlighting the importance of selective preservation of NOM to the kerogen origin in the investigated aquatic ecosystems. Moreover, during the artificial maturation experiments of kerogen, the chemical and structural characteristics such as protonated aromatic, nonprotonated carbons, and aromatic cluster size play important roles in the origin and variation of nanoporosity during kerogen maturation. Graphical abstract NMR parameters of thermally stimulated kerogens

  12. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  13. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  14. Parameters and definitions in applied technique quality test for nuclear magnetic resonance imaging system (NMRI)

    International Nuclear Information System (INIS)

    Lin Zhikai; Zhao Lancai

    1999-08-01

    During the past two decades, medical diagnostic imaging technique has achieved dramatic development such as CT, MRI, PET, DSA and so on. The most striking examples of them are the application of X ray computerized tomography (CT) and magnetic resonance imaging in the field of medical diagnosis. It can be predicted that magnetic resonance imaging (MRI) will definitely have more widespread prospects of applications and play more and more important role in clinical diagnosis looking forward to the development of image diagnostic technique for 21 st century. The authors also present the measuring methods for some parameters. The parameters described can be used for reference by clinical diagnosticians, operators on MRI and medical physicists who engages in image quality assurance (QA) and control (QC) in performing MRI acceptance test and routine test

  15. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  16. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    International Nuclear Information System (INIS)

    Choi, Myoung Seon; Joo, Young Sang; Jung, Hyun Kyu; Cheong, Yong Moo.

    1997-02-01

    The scattering of plane acoustic waves normally incident on a multilayered cylindrical shell has been formulated using the global matrix approach. And a simple way to formulate the non-resonant background component in the field scattered by an empty elastic shell has been found. This is to replace the surface admittance for the shell with the zero-frequency limit of the surface admittance for the analogous fluid shell (i.e., the shear wave speed in the elastic shell is set to zero). It has been shown that the background thus obtained is exact and applicable to shells of arbitrary thickness and material makeup, and over all frequencies and mode numbers. This way has been also applied to obtain the expressions of the backgrounds for multilayered shells. The resonant ultrasound spectroscopy system has been constructed to measure the resonance spectrum of a single fuel rod. The leak-defective fuel rod detection system of a laboratory scale has been also constructed. Particularly, all techniques and processes necessary for manufacturing the ultrasonic probe of thin (1.2 mm) strip type have been developed. (author). 38 refs., 34 figs

  17. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  18. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  19. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  20. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  1. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  2. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  3. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  4. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  5. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  6. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  7. Computerized techniques for digital filtering and spectral decomposition with applications to nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Murphy, P.D.; Gerstein, B.C.

    1979-02-01

    A report is presented which describes a digital filtering technique using both a bandpass filter and an exponential filter. The properties of Lorentzian and Gaussian lineshapes are discussed. A procedure for decomposing NMR absorption spectra with overlapping lines into Lorentzian and Gaussian components is also described. Finally, two FORTRAN computer programs which implement concepts developed in this report are presented

  8. Advanced Nuclear Magnetic Resonance

    OpenAIRE

    Alonso, Diego A.

    2014-01-01

    Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a té...

  9. Molecular dynamics in porous media studied by nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Mattea, C.

    2006-01-01

    Field cycling NMR relaxometry was used to study dynamics of fluids under confinement in different scenarios: fluids flowing through porous media, fluids partially filling porous media and polymer melts in nanoscopic pores. Diffusion in partially filled porous media was also studied with the aid of an NMR diffusometry technique. It is shown that hydrodynamic flow influences the spin-lattice relaxation rate of water confined in mesoscopic porous media under certain conditions. The effect is predicted by an analytical theory and Monte Carlo simulations, and confirmed experimentally by field-cycling NMR relaxometry. Field-cycling NMR relaxometry has been applied to polar and non polar adsorbates in partially filled silica porous glasses. The dependence of the spin-lattice relaxation rate on the filling degree shows that limits for slow and fast exchange between different phases can be distinguished and identified depending on the pore size and polarity of the solvents. Diffusion in the same unsaturated systems was studied with the aid of NMR diffusometry technique. The effective diffusion coefficient of solvents with different polarities displays opposite tendencies as a function of the liquid content. A two-phase fast exchange model including Knudsen and ordinary diffusion and different effective tortuosities is presented accounting for these phenomena. In the case of polymer melts confined in narrow artificial tubes of a porous solid matrix with variable diameter (9 to 57 nm), the characteristics of reptation were experimentally verified using proton field cycling NMR relaxometry technique. This observation is independent of the molecular mass and pore size. In bulk, the same polymer melts show either Rouse or renormalized Rouse dynamics, depending on the molecular mass. The polymers under confinement show features specific for reptation even with a pore diameter 15 times larger than the Flory radius while bulk melts of the same polymers do not. (orig.)

  10. Diffusion processes in unsaturated porous media studied with nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Farrher, German David

    2006-01-01

    Unsaturated porous media form two-phase systems consisting of the liquid and its vapor. Molecular exchange between the two phases defines an effective diffusion coefficient which substantially deviates from the bulk value of the liquid. The objective of the present thesis is to study self-diffusion under such conditions by varying both the filling degree of the porous medium and the diffusion time. The main experimental tool was a combination of two different NMR field gradient diffusometry techniques. For comparison, diffusion in a porous medium was modeled with the aid of Monte Carlo simulations. The NMR diffusometry techniques under consideration were the pulsed gradient stimulated echo (PGStE) method, the fringe field stimulated echo (FFStE) method, and the magnetization grid rotating frame imaging (MAGROFI) method. As liquids, water and cyclohexane were chosen as representatives of polar and nonpolar species. The porous glasses examined were Vycor with a mean pore size of 4 nm and VitraPor 5, with a pore size ranging from 1 to 1.6 μm. Using a combination of the FFStE and the MAGROFI technique permits one to cover four decades of the diffusion time from 100 μs to 1 s. The time dependences acquired in this way were compared with Monte Carlo simulations of a model structure in a time window of eight decades, from 125 ps up to 12.5 ms. NMR microscopy of VitraPor5 partially filled with water or cyclohexane reveals heterogeneous distributions of the liquid on a length scale much longer than the pore dimension. As a consequence of the inhomogeneous filling degree, the effective transverse relaxation time varies, which in turn leads to NMR imaging contrasts. The NMR methods employed, that is, a combination of FFStE and MAGROFI diffusometry, provide effective diffusion coefficients not affected by spatial variations of the transverse relaxation time, in contrast to the PGStE method: The FFStE and MAGROFI techniques render the effective diffusion coefficient averaged

  11. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  12. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  13. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Hammad, F.H.

    1994-01-01

    Nuclear techniques are utilized in almost every industry. The discussion in this paper includes discussions on tracer methods and uses nucleonic control systems technology; non-destructive testing techniques and radiation technology. 1 fig., 2 tabs

  14. Indirect techniques in nuclear astrophysics

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Tribble, R.E.; Blokhintsev, L.D.; Cherubini, S.; Spitaleri, C.; Kroha, V.; Nunes, F.M.

    2005-01-01

    It is very difficult or often impossible to measure in the lab conditions nuclear cross sections at astrophysically relevant energies. That is why different indirect techniques are used to extract astrophysical information. In this talk different experimental possibilities to get astrophysical information using radioactive and stable beams will be addressed. 1. The asymptotic normalization coefficient (ANC) method. 2. Radiative neutron captures are determined by the spectroscopic factors (SP). A new experimental technique to determine the neutron SPs will be addressed. 3. 'Trojan Horse' is another unique indirect method, which allows one to extract the astrophysical factors for direct and resonant nuclear reactions at astrophysically relevant energies. (author)

  15. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1976-01-01

    The nuclear techniques used in hydrology are usually tracer techniques based on the use of nuclides either intentionally introduced into, or naturally present in the water. The low concentrations of these nuclides, which must be detected in groundwater and surface water, require special measurement techniques for the concentrations of radioactive or of stable nuclides. The nuclear techniques can be used most fruitfully in conjunction with conventional methods for the solution of problems in the areas of hydrology, hydrogeology and glacier hydrology. Nuclear techniques are used in practice in the areas of prospecting for water, environment protection and engineering hydrogeology. (orig.) [de

  16. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  17. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  18. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  19. Nuclear disarmament verification via resonant phenomena.

    Science.gov (United States)

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  20. Applications of one-dimensional or two-dimensional nuclear magnetic resonance to the structural and conformational study of oligosaccharides. Design and adjustment of new techniques

    International Nuclear Information System (INIS)

    Berthault, Patrick

    1988-01-01

    Oligosaccharides are natural compounds of huge importance as they intervene in all metabolic processes of cell life. Before the determination of structure-activity relationships, a precise knowledge of their chemical nature is therefore required. Thus, this research thesis aims at describing various experiments of high resolution nuclear magnetic resonance (NMR), and at demonstrating their applications on four oligosaccharides. After a brief description of NMR principles by using a conventional description and also a formalism derived from quantum mechanics, the author outlines the weaknesses of old NMR techniques, and introduces new techniques by using scalar couplings, by processing magnetization transfers with one-dimensional hetero-nuclear experiments. General principles of two-dimensional experiments are then presented and developed in terms of simple correlations, multiple correlations, correlations via double quantum coherencies. Experiments with light water are then described, and different experiments are performed to determine the structure and conformation of each unit. Bipolar interactions are then addressed to highlight proximities between atoms [fr

  1. Two qubits in pure nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.

    2002-01-01

    It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)

  2. Nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Of the thousands of publications available for the period from July 1977 to July 1979, only a few were selected for this review. Approximately 130 review sources are summarized in tabular form as to topic(s) covered in the review. Other parts of the review article deal with apparatus and techniques, spectral analysis, computer applications, analytical applications, selected organic systems, and selected inorganic systems. A total of 257 references are cited

  3. Nuclear techniques in medicine

    International Nuclear Information System (INIS)

    Basson, J.K.

    1984-01-01

    The use of nuclear techniques in medicine has, also in South Africa, increased enormously, especially as regards diagnosis and reseach. In 1983 in vivo tests with radioisotopes were carried out and also in vitro tests, mainly by radioimmunoassay. Therapy with open and sealed radioactive sources was concentrated mainly on cancer treatments. In 1983 NUCOR supported 83 research projects in the life sciences. Imaging of organs or tissues in the body with nuclear techniques has developed into the most important application of nuclear medicine, with the development of even more specific labelled compounds as the main objective. Radioimmunoassay is at an exciting watershed, now that labelled monoclonal antibodies with high specificity for early diagnosis (also in cancer) and even localised radiotherapy have become available. The establishment of the 200 MeV open-sector cyclotron by the National Accelerator Centre also for medical purposes will, in addition to the large-scale production of the protonrich isotopes, also make a substantial contribution to radiotherapy with nuclear particles such as neutrons, protons and helium-3

  4. The methods for generating tomographic images using transmition, emission and nuclear magnetic resonance techniques. II. Fourier method and iterative methods

    International Nuclear Information System (INIS)

    Ursu, I.; Demco, D.E.; Gligor, T.D.; Pop, G.; Dollinger, R.

    1987-01-01

    In a wide variety of applications it is necessary to infer the structure of a multidimensional object from a set of its projections. Computed tomography is at present largely extended in the medical field, but the industrial application may ultimately far exceed its medical applications. Two techniques for reconstructing objects from their projections are presented: Fourier methods and iterative techniques. The paper also contains a brief comparative study of the reconstruction algorithms. (authors)

  5. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  6. Nuclear techniques in agriculture

    International Nuclear Information System (INIS)

    Bhagwat, S.G.

    2012-01-01

    Crops provide us food grains and many other products. Demand for food and other agricultural products is increasing. There is also need for improvement of quality of the agricultural produce. There are several technologies in use for achieving the goal of increasing the quantity and quality of agricultural produce. Nuclear techniques provide us with an option which has certain advantages. The characteristics of crop plants are determined by the genetic make up of the plant. Traditionally the genetic make up was modified using conventional breeding techniques such as cross breeding to improve crops for yield, disease resistance, stress tolerance, resistance to insect pests or to improve quality. New varieties of crops are produced which replace the earlier ones and thus the demands are met. The process of development of new varieties is long and time consuming. Nuclear technique called mutation breeding provides an efficient way of breeding new varieties or improving the older ones. This technique merely enhances the process of occurrence of mutations. In nature mutations occur at a rate of approximately one in a million, while when mutations are induced using radiations such as gamma rays the efficiency of inducing mutations is enhanced. Useful mutations are selected, the mutants are evaluated and developed as a new variety. In the Nuclear Agriculture and Biotechnology Division (NA and BTD) this technique has been used to develop mutants of many crop plants. The mutants can be used to develop a variety directly or by using it in further breeding programme. Using these approaches the NA and BTD has developed 40 new varieties of crops such as groundnut, mungbean, urid, pigeon pea, mustard, soybean, sunflower, cowpea, jute. These varieties are developed in collaboration with other agricultural institutions and are popular among the farming community. The method of mutation breeding can be applied to many other crops for improvement. There is increasing interest among

  7. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  8. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop).

    Science.gov (United States)

    Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica

    2018-06-01

    Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.

  9. Molecular imaging techniques in magnetic resonance imaging and nuclear imaging; Molekulare Bildgebung in der Magnetresonanztomographie und der Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Hoegemann, D.; Basilion, J.P.; Weissleder, R. [Center for Molecular Imaging Research, Massachusetts General Hospital, Charleston, MA (United States)

    2001-02-01

    The identification of genetic and biochemical changes allows a more conclusive characterization and classification of disease. Up to now this information is mostly obtained through in vitro analysis after resection or biopsy by immunohistopathology and molecular biology. There is a definite need for non-invasive detection and repeated monitoring of such changes in experimental research as well as in clinical trials. Therefore, it is necessary to develop radiological imaging techniques that not only visualize morphologic and physiologic alterations, but track genetic and biochemical processes. This short review reports some of the various ongoing research projects that address this problem and provide some very promising approaches. (orig.) [German] Die Bestimmung genetischer und biochemischer Veraenderungen erlaubt in zunehmendem Masse die eindeutige Charakterisierung und Klassifikation von Erkrankungen. Bisher ist hierzu in der Regel eine gezielte immunohistopathologische oder molekularbiologische In-vitro-Analyse nach Resektion oder Entnahme einer Biopsie erforderlich. In der experimentellen Forschung wie auch in der klinischen Anwendung sind bildgebende Verfahren wuenschenswert, die eine nichtinvasive Detektion und ein wiederholt durchfuehrbares Monitoring gewaehrleisten. Aus diesem Grunde ist die Entwicklung radiologischer Untersuchungsmethoden erforderlich, die ueber die morphologischen und physiologischen Veraenderungen hinaus eine Beurteilung der genetischen und biochemischen Vorgaenge ermoeglichen. In diesem kurzen Uebersichtsartikel werden einige der zahlreichen aktuellen Forschungsprojekte zusammengefasst, die sich mit diesem Problem beschaeftigen und inzwischen aussichtsreiche Techniken zur Verfuegung stellen. (orig.)

  10. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Barnette, P.

    The long term development and successful utilization of the Tongonan geothermal field for electric power generation is ultimately a function of the response of the reservoir to extensive exploitation. A field drawdown test of several years duration has been planned to test this response. A number of nuclear chemical techniques have been incorporated into this to assist in quantitatively tracing the subsurface movements of both reservoir and reinjected fluids; and to provide an early warning of changes in the physical and chemical properties of the reservoir fluids with respect to natural recharge. The programme will be implemented by Philippine Atomic Energy Commission (PAEC) under contract to Philippine National Oil Company - Energy Development Corporation (PNOC-EDC). (author)

  11. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  12. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  13. Nuclear magnetic resonance applications in biological systems

    International Nuclear Information System (INIS)

    Jiang Ling; Liu Maili

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technology which has been widely applied in biological systems over the past decades. It is a powerful tool for macromolecular structure determination in solution, and has the unique advantage of being capable of elucidating the structure and dynamic behavior of proteins during vital biomedical processes. In this review, we introduce the recent progress in NMR techniques for studying the structure, interaction and dynamics of proteins. The methods for NMR based drug discovery and metabonomics are also briefly introduced. (authors)

  14. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Young, I.R.

    1983-01-01

    In a method of investigating the distribution of a quantity in a chosen region of a body (E) by nuclear magnetic resonance techniques movement of the body during the investigation is monitored by probes (A, B C) (C extends orthogonally to A and B) attached to the body and responsive to magnetic fields applied to the body during the investigation. An apparatus for carrying out the method is also described. If movement is detected, due compensation may be made during processing of the collected data, or the latter may be re-ascertained after appropriate adjustment e.g. a change in the RF excitation frequency. (author)

  15. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin

    2006-01-01

    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  16. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  17. Nuclear magnetic resonance imaging method

    International Nuclear Information System (INIS)

    Johnson, G.; MacDonald, J.; Hutchison, S.; Eastwood, L.M.; Redpath, T.W.T.; Mallard, J.R.

    1984-01-01

    A method of deriving three dimensional image information from an object using nuclear magnetic resonance signals comprises subjecting the object to a continuous, static magnetic field and carrying out the following set of sequential steps: 1) exciting nuclear spins in a selected volume (90deg pulse); 2) applying non-aligned first, second and third gradients of the magnetic field; 3) causing the spins to rephase periodically by reversal of the first gradient to produce spin echoes, and applying pulses of the second gradient prior to every read-out of an echo signal from the object, to differently encode the spin in the second gradient direction for each read-out signal. The above steps 1-3 are then successively repeated with different values of gradient of the third gradient, there being a recovery interval between the repetition of successive sets of steps. Alternate echoes only are read out, the other echoes being time-reversed and ignored for convenience. The resulting signals are appropriately sampled, set out in an array and subjected to three dimensional Fourier transformation. (author)

  18. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  19. Spatial localization in nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Keevil, Stephen F

    2006-01-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  20. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  1. Fifty years of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Valderrama, Juan Crisostomo

    1997-01-01

    Short information about the main developments of nuclear magnetic resonance during their fifty existence years is presented. Beside two examples of application (HETCOR and INADEQUATE) to the structural determination of organic compounds are described

  2. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    Science.gov (United States)

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  3. Neutron resonance analysis for nuclear safeguards and security applications

    Science.gov (United States)

    Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

    2017-09-01

    Neutron-induced reactions can be used to study the properties of nuclear materials of interest in the fields of nuclear safeguards and security. The elemental and isotopic composition of these materials can be determined by using the presence of resonance structures. This idea is the basis of two non-destructive analysis techniques which have been developed at the GELINA neutron time-of-flight facility at JRC-Geel: Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). A combination of NRTA and NRCA has been proposed for the characterisation of particle-like debris of melted fuel formed in severe nuclear accidents. In this work, we present a quantitative validation of the NRTA technique which was used to determine the areal densities of Pu enriched reference samples used for safeguards applications. Less than 2% bias has been obtained for the fissile isotopes, with well-known total cross sections.

  4. Apparatus and method for nuclear magnetic resonance scanning and mapping

    International Nuclear Information System (INIS)

    Damadian, R.V.

    1983-01-01

    An improved apparatus and method is disclosed for analyzing the chemical and structural composition of a specimen including whole-body specimens which may include, for example, living mammals, utilizing nuclear magnetic resonance (NMR) techniques. A magnetic field space necessary to obtain an NMR signal characteristic of the chemical structure of the specimen is focused to provide a resonance domain of selectable size, which may then be moved in a pattern with respect to the specimen to scan the specimen

  5. Nuclear magnetic resonance spectroscopy in food applications: a critical appraisal

    International Nuclear Information System (INIS)

    Divakar, S.

    1998-01-01

    Usefulness of Nuclear Magnetic Resonance (NMR) spectroscopy in food applications is presented in this review. Some of the basic concepts of NMR pertaining to one-dimensional and two-dimensional techniques, solid-state NMR and Magnetic Resonance Imaging (MRI) are discussed. Food applications dealt with encompass such diverse areas like nature and state of water in foods, detection and quantitation of important constituents of foods, intact food systems and NMR related to food biology. (author)

  6. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  7. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Bahadur, J.; Saxena, R.K.

    1974-01-01

    Several types of sealed radioactive sources, stable isotopes and water soluble radioactive tracers, used by different investigators, have been listed for studying the dynamic behaviour of water in nature. In general, all the facets of hydrological cycle, are amenable to these isotopic techniques. It is recommended that environmental isotopes data collection should be started for studying the water balance and also the interrelationships between surface and subsurface water in various rivers catchments with changing physical, geological and climatic parameters. (author)

  8. Nuclear Resonance Fluorescence for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  9. Nuclear magnetic resonance of D(-)-α-amino-benzyl penicillin

    International Nuclear Information System (INIS)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S.; Menezes, Sonia M.C.

    1995-01-01

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-α-amino-benzyl penicillin were analysed using 13 C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed

  10. Selection of planes in nuclear magnetic resonance tomography

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1986-01-01

    A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)

  11. Evaluation and analysis of nuclear resonance data

    International Nuclear Information System (INIS)

    Frohner, F.H.

    2000-01-01

    A probabilistic foundations of data evaluation are reviewed, with special emphasis on parameter estimation based on Bayes' theorem and a quadratic loss function, and on modern methods for the assignment of prior probabilities. The data reduction process leading from raw experimental data to evaluated computer files of nuclear reaction cross sections is outlined, with a discussion of systematic and statistical errors and their propagation and of the generalized least squares formalism including prior information and nonlinear theoretical models. It is explained how common errors induce correlations between data, what consequences they have for uncertainty propagation and sensitivity studies, and how evaluators can construct covariance matrices from the usual error information provided by experimentalists. New techniques for evaluation of inconsistent data are also presented. The general principles are then applied specifically to the analysis and evaluation of neutron resonance data in terms of theoretical models - R-matrix theory (and especially its practically used multi-level Breit-Wigner and Reich-Moore variants) in the resolved region, and resonance-averaged R-matrix theory (Hauser-Feshbach theory with width-fluctuation corrections) in the unresolved region. Complications arise because the measured transmission data, capture and fission yields, self-indication ratios and other observables are not yet the wanted cross sections. These are obtained only by means of parametrisation. The intervening effects - Doppler and resolution broadening, self-shielding, multiple scattering, backgrounds, sample impurities, energy-dependent detector efficiencies, inaccurate reference data etc - are therefore also discussed. (author)

  12. Acoustic techniques in nuclear safeguards

    International Nuclear Information System (INIS)

    Olinger, C.T.; Sinha, D.N.

    1995-01-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed

  13. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  14. Nuclear level mixing resonance spectroscopy

    International Nuclear Information System (INIS)

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  15. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  16. Display of cross sectional anatomy by nuclear magnetic resonance imaging.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1978-04-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  17. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  18. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  19. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  20. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  1. The origins and future of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.

    1992-01-01

    What began as a curiosity of physics has become the preeminent method of diagnostic medical imaging and may displace x-ray-based techniques in the 21st century. During the past two decades nuclear magnetic resonance has revolutionized chemistry, biochemistry, biology and, more recently, diagnostic medicine. Nuclear magnetic resonance imaging, (MRI) as it is commonly called, is fundamentally different from x-ray-based techniques in terms of the principles of spatial encoding and mechanisms of signal and contrast generation involved. MRI has a far richer ultimate potential than any other imaging technique known today, and its technology and applications are still far from maturation, which may not occur until early in the 21st century. 23 refs., 6 figs

  2. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    Weill, J.

    1953-12-01

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [fr

  3. Nuclear techniques in food production

    International Nuclear Information System (INIS)

    Merlin, J.P.C.

    1975-01-01

    This study is divided into three parts. The first, devoted to the use of radiations in food production, deals especially with artificial mutagenesis, selectors taking advantage of altered hereditary features in plants from irradiated seed; sterilization of animals to eliminate harmful insects (male sterilization technique); the lethal power of radiations used for the production of animal vaccins, attenuated by irradiation, against organisms which infest or degrade food products. Part two shows that radioactive atoms used as tracers to reveal migrations and chemical transformations of products such as fertilizers and pesticides can speed up all kinds of agronomical research. Their possibilities in research on animal feeding and to detect poisonous substances in foodstuffs are also mentioned. The last part is devoted to the use of nuclear techniques in irrigation and more precisely in the study of underground water flows soil moisture and lastly the future of nuclear desalination [fr

  4. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  5. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  6. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  7. Quantum information processing and nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cummins, H.K.

    2001-01-01

    Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class of composite rotations, tailored composite rotations, presented in Chapter 5. Chapter 6 describes some of the advantages and pitfalls of combining composite rotations. Experimental evaluations of the composite rotations are given in each case. An actual implementation of a quantum information protocol, approximate quantum cloning, is presented in Chapter 7. The dissertation ends with appendices which contain expansions of some equations and detailed calculations of certain composite rotation results, as well as spectrometer pulse sequence programs. (author)

  8. Cuban agriculture and nuclear techniques

    International Nuclear Information System (INIS)

    Labrada Remon, A.; Perez Talavera, S.

    1997-01-01

    The application of nuclear techniques to agriculture emerged in Cuba at the end of the 60s. At the beginning only few researchers used these techniques for stimulating or mutational purposes. At the end of the 80 s systematic research began for its possible application to existing agricultural problems among which we can highlight radiomutable genesis and the determination of diagnostic damage of seeds by x-rays, plant nutrition and soil fertility, efficient water use, animal nutrition, reproduction and health as well as pest control

  9. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  10. Resonances: from nuclear physics to mesoscopic systems

    International Nuclear Information System (INIS)

    Ferreira, Lidia S.; Maglione, Enrico

    2007-01-01

    Resonances are one of the most interesting phenomena in many fields of physics which lead to important findings. In the quantum world, systems with electrons, hadrons or atoms provide enormous amount of data on resonances, leading to the discovery of new states of matter. In nuclear physics, the recent findings on exotic nuclei, added to the list many new examples, which are important not only as direct data on resonances, but also for the production of new isotopes in regions of the nuclear chart which were 'terra incognita', until recently. With recent developments in microelectronics it is possible to create in the laboratory almost two dimensional wave guides where the motion of the electrons can exhibit typical quantum effects. The geometry of systems, such as bends, corners or crosses, has a strong influence on the conduction properties of the electrons, since it can create the appropriate conditions required for the formation of bound states or resonances in the conduction channels. Therefore it is quite important to have an accurate description of the relation between geometry and observables, which in a theoretical perspective emerges naturally from the solution of a multichannel eigenvalue problem. The study of resonances and their behaviour in these domains of physics, will be the purpose of the lecture. (Author)

  11. Nuclear magnetic resonance studies of epithelial metabolism and function

    International Nuclear Information System (INIS)

    Balaban, R.S.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive technique for studying cellular metabolism and function. In this review the general applications and advantages of NMR will be discussed with specific reference to epithelial tissues. Phosphorus NMR investigations have been performed on epithelial tissues in vivo and in vitro; however, other detectable nuclei have not been utilized to date. Several new applications of phosphorus NMR to epithelial tissues are also discussed, including studies on isolated renal tubules and sheet epithelia

  12. Resonance and nuclear relaxation in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.

    1988-04-01

    A study of the 59 Co nuclear magnetic resonance and relaxation was made on the intermetallic compound GdCo 2 from 4,2 k to 330 k using the spin echo technique. An oscillatory behaviour of the primary echo was observed in the whole range of temperatures studied. This is due to the electronic quadrupole interaction of the 59 Co nuclei. (A.C.A.S.) [pt

  13. Nuclear techniques in animal agriculture

    International Nuclear Information System (INIS)

    Young, B.A.

    1981-01-01

    Nuclear technology plays an integral part in research to improve the health and productivity of animals. The use of radioisotopes and ionizing radiations in animal agriculture is briefly reviewed. The radioimmunoassay techniques give the opportunity of measuring and following precisely hormonal patterns in animals over the reproductive cycle. Simply by analysing a sample of blood, milk, or other body fluid, minute hormone concentrations can be assayed and the reproductive status of the animal assessed. The radioimmunoassay procedure uses antigens which are isotopically labelled, usually with 125 I, and antibodies specifically developed for each hormone. The onset of sexual maturity, of oestrus, or the influence of environmental, nutritional or other factors on the reproductive state of an animal can be studied. An example of the use of the radioimmunoassay technique is illustrated in the coordinated research program of the IAEA which focuses on improving domestic buffalo production. Nuclear techniques, particularly the use of stable and radioactive tracers are providing important insights into the functioning of the digestive system of ruminants, its qualitative dynamics and metabolism. For assessing the products of the rumen, particularly volatile fatty acids which become an energy source, and microbial proteins which become a protein source for the animal, materials labelled with 14 C, 3 H, 35 S, 15 N and 32 P are used. As an illustrative example, the results of one study of nitrogen metabolism, microbial protein and rumen bypass protein synthesis in cattle are shown

  14. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  15. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  16. Innovative health solutions using nuclear techniques

    International Nuclear Information System (INIS)

    Bailey, Dale

    2013-01-01

    Australian nuclear medicine is currently amongst the highest standard of anywhere in the world. Its origins here are firmly entrenched in Internal Medicine, with its emphasis on physiology and function, unlike many other countries such as the USA where a Radiology orientation dominates. In addition, Australia has been well served by extremely competent and innovative physical scientists working in universities, government research facilities (e.g., AAEC, ANSTO) and tertiary referral hospitals who have established their main affiliations as being within the highly multidisciplinary nuclear medicine community. Nuclear medicine in the past 10-15 years has experienced a massive shift towards 'hybrid' imaging - where two (or more) complementary imaging modalities, such as X-ray CT and a Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scanner, are combined into a functionally single device which provides high resolution spatial anatomical (form, or structure) and radionuclide distribution (function) images. In addition, the nuclear imaging techniques maintain their quantitative characteristics and thus combined structure-function imaging results in a significant improvement in diagnostic capability - looking beyond simple forms to quantifying degree of disease, e.g., malignancy of a cancer. Recently, PET scanners have been combined with NMR Imaging (MRI) and these will provide new areas of application, especially in magnetic resonance spectroscopy and radionuclide imaging. The techniques are extremely valuable in monitoring response to treatment, allowing treatments to be changed if proving ineffective. In addition, new techniques are emerging using radionuclides for therapy, combined with the improvements in imaging. This permits exquisite targeting and optimal patient selection. This talk will highlight a number of these achievements and ask the question as to what is holding back developments in Australia at present.

  17. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  18. Nuclear magnetic resonance - from molecules to man

    OpenAIRE

    Wüthrich, Kurt

    2017-01-01

    Initial observations of the physical phenomenon of nuclear magnetic resonance (NMR) date back to the late 1940s. In the following two decades high-resolution NMR in solution became an indispensible analytical tool in chemistry, and solid state NMR had an increasingly important role in physics. Some of the potentialities of the method for investigations of complex biological systems had also long been anticipated, and initial experiments with biological specimens were described already 30 year...

  19. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  20. Resonating-group method for nuclear many-body problems

    International Nuclear Information System (INIS)

    Tang, Y.C.; LeMere, M.; Thompson, D.R.

    1977-01-01

    The resonating-group method is a microscopic method which uses fully antisymmetric wave functions, treats correctly the motion of the total center of mass, and takes cluster correlation into consideration. In this review, the formulation of this method is discussed for various nuclear many-body problems, and a complex-generator-coordinate technique which has been employed to evaluate matrix elements required in resonating-group calculations is described. Several illustrative examples of bound-state, scattering, and reaction calculations, which serve to demonstrate the usefulness of this method, are presented. Finally, by utilization of the results of these calculations, the role played by the Pauli principle in nuclear scattering and reaction processes is discussed. 21 figures, 2 tables, 185 references

  1. Nuclear techniques for bulk and surface analysis of materials

    International Nuclear Information System (INIS)

    D'Agostino, M.D.; Kamykowski, E.A.; Kuehne, F.J.; Padawer, G.M.; Schneid, E.J.; Schulte, R.L.; Stauber, M.C.; Swanson, F.R.

    1978-01-01

    A review is presented summarizing several nondestructive bulk and surface analysis nuclear techniques developed in the Grumman Research Laboratories. Bulk analysis techniques include 14-MeV-neutron activation analysis and accelerator-based neutron radiography. The surface analysis techniques include resonant and non-resonant nuclear microprobes for the depth profile analysis of light elements (H, He, Li, Be, C, N, O and F) in the surface of materials. Emphasis is placed on the description and discussion of the unique nuclear microprobe analytical capacibilities of immediate importance to a number of current problems facing materials specialists. The resolution and contrast of neutron radiography was illustrated with an operating heat pipe system. The figure shows that the neutron radiograph has a resolution of better than 0.04 cm with sufficient contrast to indicate Freon 21 on the inner capillaries of the heat pipe and pooling of the liquid at the bottom. (T.G.)

  2. Nuclear magnetic resonance. Applications to medicine and biology

    International Nuclear Information System (INIS)

    Berdugo, M.; Fauchet, M.; Menasche, P.; Grall, Y.; Piwnica, A.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a non-invasive exploratory technique based on a principle radically different from those of radiography, radionuclide exploration and ultrasonography. Signals coming from atomic nuclei and reflecting their density and chemical/biochemical environment are collected, thus providing information on the physiological and pathological state of tissues. The technique has multiple applications, either practical (tomographic imaging of the brain, thyroid gland and liver) or in the field of research, e.g. investigating ischaemic myocardial areas and pathological fluid composition, measuring intracellular pH, diagnosing the nature of a tumour and, broadly speaking, understanding the biochemical changes associated with malignant degeneration [fr

  3. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  4. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  5. Nuclear magnetic resonance imaging in pharmaceutical research

    International Nuclear Information System (INIS)

    Sarkar, S.K.

    1991-01-01

    Nuclear magnetic resonance imaging has important applications in pharmaceutical research since it allows specific tissue and disease characterization in animal models noninvasively with excellent anatomical resolution and therefore provides improved ability to monitor the efficacy of novel drugs. The utility of NMR imaging in renal studies to monitor the mechanism of drug action and renal function in rats is described. The extension of the resolution of an NMR image to microscopic domain at higher magnetic field strengths and the utility of NMR microimaging in cerebrovascular and tumour metastasis studies in mice are discussed. (author). 40 refs., 14 figs

  6. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    1994-01-01

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  7. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  8. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  9. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  10. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  11. Nuclear magnetic resonance in cardiology: cardiac MRI

    International Nuclear Information System (INIS)

    Fernandez, Claudio C.

    2003-01-01

    As a new gold standard for mass, volume and flow, the magnetic resonance imaging (MRI) is probably the most rapidly evolving technique in the cardiovascular diagnosis. An integrated cardiac MRI examination allows the evaluation of morphology, global and regional function, coronary anatomy, perfusion, viability and myocardial metabolism, all of them in only one diagnostic test and in a totally noninvasive manner. The surgeons can obtain relevant information on all aspects of diseases of the heart and great vessels, which include anatomical details and relationships with the greatest field of view, and may help to reduce the number of invasive procedures required in pre and postoperative evaluation. However, despite these excellent advantages the present clinical utilization of MRI is still too often restricted to few pathologies or case studies in which other techniques fail to identify the cardiac or cardiovascular abnormalities. If magnetic resonance is an excellent method for diagnosing so many different cardiac conditions, why is so little it used in routine cardiac practice? Cardiologists are still not very familiar with the huge possibilities or cardiovascular MRI utilities. Our intention is to give a comprehensive survey of many of the clinical applications of this challenger technique in the study of the heart and great vessels. Those who continue to ignore this important and mature imaging technique will rightly fail to benefit. (author) [es

  12. Communication techniques and nuclear energy

    International Nuclear Information System (INIS)

    Carpintero Santamaria, N.

    2005-01-01

    The paper presents some thoughts on several factors related to nuclear energy and the way they are presented by the mass media, usually provoking controversy to the Spanish society and thus, undermining public acceptance. Some possibilities for boosting nuclear energy among public opinion are suggested, emphasizing the fact that nuclear power is essential because it is both ecologically and economically sound. (Author)

  13. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  14. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  15. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance

  16. The nuclear controversy and nuclear safety techniques

    International Nuclear Information System (INIS)

    Ragnarson, P.

    1979-09-01

    Survey interviews with 125 Swedish nuclear safety engineers are summarized and commented upon. A short historical background is given, claiming that the major safety issues of nuclear energy have been debated continously during the 50's and 60's in a way that could well have been watched and interpreted by a political, democratic system involving political parties, government departments, etc. With a few exceptions, these 125 engineers represent 10 - 20 years experience in nuclear research and development. By definition they belong to a professional group of about 800 in Sweden (1978). The main aim of the study is to find out if (how and why) a public debate can bring about changes in an industrially established technology by influencing the attitudes and technical judgements of the individuals and/or organizations involved. Examples are given in which the nuclear specialists themselves admit or claim that direct or indirect impacts from the public debate have been important. A common experience is that the scientists and engineers have been forced to broaden their professional scope through a time-consuming but - on the whole - 'positive' process. A year after the interviews started, a serious reactor accident occured near Harrisburg, Pennsylvania. The group has been used for a survey of the immediate reactions in order to see if it could cause sudden changes of attitudes among the experts. A minority demonstrated clear changes towards a more cautious attitude regarding nuclear risks. (author)

  17. Nuclear magnetic resonance studies of lens transparency

    International Nuclear Information System (INIS)

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ( 31 P) NMR spectroscopy was used to measure the 31 P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. 1 H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T 1 and T 2 with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T 1 and T 2 at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T 1 or T 2 , consistent with the phase separation being a low-energy process. 1 H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T 1 relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine γ-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T 1 with increasing magnetic field

  18. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    Science.gov (United States)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  19. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  20. Mapping air pollution. Application of nuclear techniques

    International Nuclear Information System (INIS)

    Parr, R.M.; Stone, S.F.; Zeisler, R.

    1996-01-01

    Nuclear techniques have important applications in the study of air pollution and many of its components. However, it is in the study of airborne particulate matter (APM) that nuclear analytical techniques find many of their most important applications. This article focuses on those applications, and on the work of the IAEA in this important field of study. 2 figs

  1. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques

    International Nuclear Information System (INIS)

    Mahajan, S.; Lewis, R.N.; George, R.; Sykes, B.D.; McElhaney, R.N.

    1988-01-01

    The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22 Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism

  2. Nuclear magnetic resonance imaging of the thorax

    International Nuclear Information System (INIS)

    Gamsu, G.; Webb, W.R.; Sheldon, P.; Kaufman, L.; Crooks, L.E.; Birnberg, F.A.; Goodman, P.; Hinchcliffe, W.A.; Hedgecock, M.

    1983-01-01

    Nuclear magnetic resonance (NMR) images of the thorax were obtained in ten normal volunteers, nine patients with advanced bronchogenic carcinoma, and three patients with benign thoracic abnormalities. In normal volunteers, mediastinal and hilar structures were seen with equal frequency on NMR images and computed tomographic scans. The hila were especially well displayed on spin-echo images. Spin-echo images showed mediastinal invasion by tumor, vascular and bronchial compression and invasion, and hilar and mediastinal adenopathy. Tumor and benign abnormalities could be separated from mediastinal and hilar fat because of their longer T1 times. Lung masses and nodules as small as 1.5 cm could be seen on the spin-echo images. NMR imaging shows promise for assessment of benign and malignant mediastinal, hilar, and lung abnormalities

  3. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  4. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  5. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  6. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  7. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  8. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  9. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  10. Nuclear data adjustment methodology utilizing resonance parameter sensitivities and uncertainties

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1983-01-01

    This work presents the development and demonstration of a Nuclear Data Adjustment Method that allows inclusion of both energy and spatial self-shielding into the adjustment procedure. The resulting adjustments are for the basic parameters (i.e. resonance parameters) in the resonance regions and for the group cross sections elsewhere. The majority of this development effort concerns the production of resonance parameter sensitivity information which allows the linkage between the responses of interest and the basic parameters. The resonance parameter sensitivity methodology developed herein usually provides accurate results when compared to direct recalculations using existng and well-known cross section processing codes. However, it has been shown in several cases that self-shielded cross sections can be very non-linear functions of the basic parameters. For this reason caution must be used in any study which assumes that a linear relatonship exists between a given self-shielded group cross section and its corresponding basic data parameters. The study also has pointed out the need for more approximate techniques which will allow the required sensitivity information to be obtained in a more cost effective manner

  11. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    International Nuclear Information System (INIS)

    Barrall, G.A.; Lawrence Berkeley Lab., CA

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample's density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques

  12. Nuclear security: strategies and techniques

    International Nuclear Information System (INIS)

    Khan, I.K.

    2010-05-01

    The modern society, whether in developed or in developing countries, depend on the availability of nuclear energy and on the day-to-day use of radioactive materials in medicine, agriculture, industry and for research. Before 9/11, these activities were mainly covered by safety rules regarding health and environment. Since 9/ 11, it is clear, that these activities also require adequate security. For the continued and expanded use of nuclear energy or radioactive materials, nuclear security is indispensable and an important prerequisite for successful and sustainable development. Many of our nuclear security services, expert assistance and training events, we have assisted Member States in their efforts to improve their preparedness and response capabilities and acquired a much better understanding of Member States prob and the need for further support. The end of the Cold War was marked by a shift from a bi-polar structure of global security into a more complex and unpredictable configuration of world affairs. It also brought about new security challenges, i.e. an increased probability for low-density regional, national or sub-national conflicts with new and more dispersed threats emanating from a larger number of actors, including non-state actors; terrorists or criminals. The audio-visual impact of modern media has enhanced the socio-psychological impact on a global scale of such conflicts. The number of cases of illicit trafficking in nuclear materials that were recorded since the 90's raised concern about the international physical protection regime and triggered an effort to enhance our capabilities for prevention, detection and responses regarding terrorist acts, as well as to strengthen the Convention on the Physical Protection of Nuclear Material

  13. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  14. Study of biological fluids by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kriat, M.; Vion-Dury, J.; Confort-Gouny, S.; Sciaky, M.; Cozzone, P.J.

    1991-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy in the study of biofluids is rapidly developing and might soon constitute a new major medical application of this technique which benefits from technological and methodological progress such as higher magnetic fields, new probe design, solvent suppression sequences and advanced data processing routines. In this overview, the clinical and pharmacological impact of this new approach is examined, with emphasis on the NMR spectroscopy of plasma, cerebrospinal fluid and urine. Applications to pharmacokinetics and toxicology are illustrated. Interestingly, a number of biochemical components of fluids which are not usually assayed by conventional biochemical methods are readily detected by NMR spectroscopy which is clearly a new competitive entrant among the techniques used in clinical biology. Its ease-of-use, cost effectiveness and high informational content might turn it into a major diagnostic tool in the years to come [fr

  15. Improving Farming With Nuclear Techniques

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2011-01-01

    Soil erosion, land degradation, the excessive or inappropriate use of fertilisers in agriculture and poor water quality are threats to the environment and hamper development. IAEA projects apply nuclear technology to evaluate these risks and find ways to make better use of water and soil resources. Many countries have benefited from this programme, including Qatar, Chile, Kenya, Turkey, Vietnam and Bangladesh.

  16. The nuclear techniques and IAEA

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The International atomic energy agency (IAEA) and its member states help hundred of development projects using nuclear science and technology. Specialists are sent in centers and research laboratories as counselors or speaker, activities of collective and personal training are organised with national institutes, material is supplied for research works or technical projects executed locally. (N.C.)

  17. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  18. Nuclear magnetic resonance imaging of the kidney

    International Nuclear Information System (INIS)

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-01-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease

  19. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  20. Nuclear resonant scattering beamline at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1996-04-01

    Mainly by Japan Atomic Energy Research Institute, the Institute of Physical and Chemical Research and Japan Synchrotron Radiation Research Institute, the construction of the Super Photon ring-8 GeV (SPring-8) which is the large scale synchrotron radiation facility for a high luminance light source placing emphasis on short wavelength region (shorter than about 1 nm) is in progress at the Harima Science Park City, Hyogo Prefecture. The features of the SPring-8 are the high luminance of light, the good parallelism and directionality of light, the quasi-monochromatic light with variable wavelength, and the possibility of design from straight polarization to circular polarization. The injection system that accelerates electrons up to 8 GeV and the storage ring storing the 8 GeV electrons for long hours, and 61 beamlines are explained. The manufacture of the nuclear resonant scattering beamline as the beamline for joint utilization was begun. Its transport channel and the experiment hutch are shown. By the features of undulator synchrotron radiation, the research on the matters with small recoilless fraction such as biological substances, liquid, gas and others and the research on time-dependent phenomena become feasible anew. The research on the dynamic structural analysis of heme protein is planned. (K.I.)

  1. Nuclear magnetic resonance studies of lipoproteins

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Morrisett, J.D.

    1986-01-01

    Several nuclei in lipoproteins are magnetically active and are thus potential NMR probes of lipoprotein structure. Table I lists the magnetic isotopes preset in the covalent structures of the molecular constituents of lipoproteins: lipids, proteins, and carbohydrates. Every type of nucleus that is part of the endogenous structure of these molecules has at least one magnetic isotope. Each magnetic nucleus represents an intrinsic and completely nonperturbing probe (when at the natural abundance level) of local molecular motion and magnetic environment. The NMR experiment itself is also nonperturbing and nondestructive. Table I also lists for each nucleus its nuclear spin, its natural isotopic abundance, its sensitivity, and its resonance frequency at two commonly employed magnetic in the low field range (21.14 kG or 2.11 Tesla) and the other in the high field range (47.0 kG or 4.70 Tesla). Of the nuclei listed in Table I, /sup 1/H, /sup 13/C, and /sup 31/P have been the primary ones studied in lipoproteins. The general advantages and disadvantages afforded by these and other nuclei as probes of lipoprotein structure are discussed. /sup 13/C NMR spectroscopy, the method which has had the most extensive application (and probably has the greatest future potential) to lipoproteins, is treated in greatest detail, but many of the principles described apply to other nuclei as well

  2. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  3. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  4. Techniques of nuclear structure calculations

    International Nuclear Information System (INIS)

    Dyson, R.D.

    1967-04-01

    The quasiparticle method for identical particles interacting through pairing forces has been extended by others for use with systems of neutrons and protons. The method is to project isospin from separately considered neutron and proton quasiparticle wavefunctions. This is discussed in detail, and it seems that the projection may not be important. Therefore unprojected quasiparticle wavefunctions are tried with some success as a basis of states in which to diagonalize a realistic nuclear Hamiltonian. Brief unrelated calculations on nuclei of mass 19 and the SU(3) classification of states in the p-f shell are also presented. (author)

  5. Powder metallurgy techniques in nuclear technology

    International Nuclear Information System (INIS)

    Mardon, P.G.

    1983-01-01

    The nuclear application of conventional powder metallurgy routes is centred on the fabrication of ceramic fuels. The stringent demands in terms of product performance required by the nuclear industry militate against the use of conventional powder metallurgy to produce metallic components such as the fuel cladding. However, the techniques developed in powder metallurgy find widespread application throughout nuclear technology. Illustrations of the use of these techniques are given in the fields of absorber materials, ceramic cladding materials, oxide fuels, cermet fuels, and the disposal of highly active waste. (author)

  6. Proceedings of the 9. Meeting of the nuclear magnetic resonance users. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Nuclear magnetic resonance spectroscopy has been one of the methods more powerful for characterizing and identifying substances, because it allows a detailed evaluation on internal molecular dynamics as well as clarifying its molecular and electronic structures. This meeting has presented a widespread variety of NMR techniques, as well as, advances in the use of this techniques in studies of the structure of liquids and solids. Theoretical and experimental papers are presented, covering the following subjects: nuclear magnetic resonance, structural chemical analysis, chemical shift and NMR spectrometers

  7. Tracer techniques in estimating nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1987-01-01

    Residual inventory of nuclear materials remaining in processing facilities (holdup) is recognized as an insidious problem for safety of plant operations and safeguarding of special nuclear materials (SNM). This paper reports on an experimental study where a well-known method of radioanalytical chemistry, namely tracer technique, was successfully used to improve nondestructive measurements of holdup of nuclear materials in a variety of plant equipment. Such controlled measurements can improve the sensitivity of measurements of residual inventories of nuclear materials in process equipment by several orders of magnitude and the good quality data obtained lend themselves to developing mathematical models of holdup of SNM during stable plant operations

  8. Nuclear techniques in agriculture in the Philippines

    International Nuclear Information System (INIS)

    Medina, F.I.S. III; Medina, V.F.O.

    1994-01-01

    Nuclear techniques, both isotopic tracers and radiation have been utilized in the Philippine agricultural research and development to improve food production, reduce food losses and protect the environment. The Philippine Nuclear Research Institute (PNRI), a government agency has been mandated to promote the peaceful application of nuclear energy to accelerate national development. It takes the lead role in nuclear assisted agricultural research and development and has adopted a two-pronged approach for food and agricultural R and D by increasing productivity through crop improvement by mutation breeding, soil management and fertilizer uptake studies, livestock improvement; and reducing losses by pest control and food irradiation

  9. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  10. Nuclear technique for automotive tribology

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Kawamoto, Junichi

    1991-01-01

    In this report, the methods and the features are described on the measurement of wear, lubricating oil consumption, leakage of liquid, the behavior of rotating objects and so on related to engines by using radioisotopes as the tracer. The neutrons from nuclear reactors and the charged particles generated with high energy accelerators used for irradiation, and the method of measuring wear using residual radioactivity or the intensity of worn particles in lubricating oil are explained. For the measurement of oil consumption, the labeling with oleic acid sulfide (S-35) is utilized. The measurement of the rotating motion of piston rings is carried out by labeling both sides of the ring openings. The liquid leakage of very small quantity from seals and others can be measured by labeling working liquid with a tracer. (K.I.)

  11. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  12. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  13. Nuclear forensics: strategies and analytical techniques

    International Nuclear Information System (INIS)

    Marin, Rafael C.; Sarkis, Jorge E.S.; Pestana, Rafael C.B.

    2013-01-01

    The development of nuclear forensics as a field of science arose in response to international demand for methods to investigate the illicit trafficking of nuclear materials. After being seized, unknown nuclear material is collected and analyzed by a set of analytical methods. The fingerprints of these materials can be identified and further used during the investigations. Data interpretation is an extensive process aiming to validate the hypotheses made by the experts, and can help confirm the origin of seized nuclear materials at the end of the process or investigation. This work presents the set of measures and analytical methods that have been inherited by nuclear forensics from several fields of science. The main characteristics of these methods are evaluated and the analytical techniques employed to determine the fingerprint of nuclear materials are described. (author)

  14. Techniques and methods in nuclear materials traceability

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1996-01-01

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials

  15. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  16. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  17. The Nuclear Magnetic Resonance and its utilization in image formation

    International Nuclear Information System (INIS)

    Bonagamba, T.J.; Tannus, A.; Panepucci, H.

    1987-01-01

    Some aspects about Nuclear Magnetic Resonance (as Larmor Theorem, radio frequency pulse, relaxation of spins system) and its utilization in two dimensional image processing with the necessity of a tomography plane are studied. (C.G.C.) [pt

  18. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  19. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary; Hussain, Muhammad Mustafa; Emwas, Abdul-Hamid M.; Agarwal, Praveen; Archer, Lynden A.

    2010-01-01

    using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core

  20. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  1. Narrow nuclear resonance profiling of Al with subnanometric depth resolution

    International Nuclear Information System (INIS)

    Rosa, E.B.O. da; Krug, C.; Stedile, F.C.; Morais, J.; Baumvol, I.J.R.

    2002-01-01

    We report on the use of the narrow and isolated resonance at 404.9 keV in the cross-section curve of the 27 Al(p,γ) 28 Si nuclear reaction for profiling Al in ultrathin aluminum oxide films on Si. The samples were characterized as-deposited and after thermal annealing, so that Al transport could be studied. An estimated depth resolution of approximately 0.4 nm near the surface of the films could be obtained owing to: (i) the very small resonance width; (ii) the high stopping power of Al 2 O 3 for 404.9 keV protons; (iii) the high energy stability of the proton beam provided by the 500 kV HVEE ion implanter at Porto Alegre; and (iv) an apparent thickness magnification by a factor between 2.0 and 2.4 with the use of glancing incidence. This technique is compared to other methods for Al profiling like medium energy ion scattering and some sputtering-based techniques

  2. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  3. On nuclear reaction duration at the range of overlapping resonances

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.

    1981-01-01

    Nuclear reaction duration above the threshold of overlapping resonances is investigated and its importance to obtain a new information on a collision mechanism is evidenced. It is shown also that the duration of resonant nuclear reactions is asymptotically decreasing according to the law[E 2 n(E)] -1 when the energy E and the number of open channels n(E) are increasing [ru

  4. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  5. Charm and Hidden Charm Scalar Resonances in Nuclear Matter

    NARCIS (Netherlands)

    Tolos, Laura; Molina, Raquel; Gamermann, Daniel; Oset, Eulogio

    2009-01-01

    We study the properties of the scalar charm resonances D(s0)(2317) and D(0)(2400), and the theoretical hidden charm state X(3700) in nuclear matter. We find that for the D(s0)(2317) and X(3700) resonances, with negligible and small width at zero density, respectively, the width becomes about 100 MeV

  6. Atomic resonances in nuclear fusion plasmas

    International Nuclear Information System (INIS)

    Clauser, C. F.; Barrachina, R. O.

    2013-01-01

    We present a study of zero energy resonances of photoionization and radiative recombination cross section for the different species in a fusion reactor. In this context, the interaction potential is screened and its typical length depends on the plasma density and temperature. Due to the nature of these resonances, we propose other atomic processes in which they can take place. Finally, we show the density and temperature conditions where these resonances occur and their probable consequence on the reactor performance. (author)

  7. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  8. Evaluation of human thyroid tumors by proton nuclear magnetic resonance

    International Nuclear Information System (INIS)

    deCertaines, J.; Herry, J.Y.; Lancien, G.; Benoist, L.; Bernard, A.M.; LeClech, G.

    1982-01-01

    Proton nuclear magnetic resonance (NMR) was used in a study of 40 patients with thyroid tumors following partial or total thyroidectomy. Three patient groups were considered: those with nodules showing increased uptake, those with solitary nodules with decreased uptake, and those with multinodular goiters. Spin-lattice and spin-spin relaxation times (T 1 and T 2 ) were measured on samples of nodular and extranodular tissue from each patient. Increased T 1 and T 2 were observed for benign cold nodules, an increase in T 1 alone for nodules with increased uptake, and a wide fluctuation in T 1 and T 2 for multinodular goiters. The four cancers in the series did not show a distinctive proton NMR pattern in comparison with the other nodular structures studied. The results point to the feasibility of applying NMR techniques to the detection of thyroid disease

  9. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  10. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  11. Nuclear magnetic resonance imaging characteristics of gallstones in vitro

    International Nuclear Information System (INIS)

    Moon, K.L. Jr.; Hricak, H.; Margulis, A.R.; Bernhoft, R.; Way, L.W.; Filly, R.A.; Crooks, L.E.

    1983-01-01

    The nuclear magnetic resonance (NMR) imaging characteristics of gallstones of various composition from 36 patients were studied in vitro using a spin-echo imaging technique. The majority of gallstones (83%) produced no measurable NMR signal despite having a mean water content of 12% and a mean cholesterol content of 61%. Six (17%) of the stones had a weak but measurable signal in the center of the stone, which was thought to represent signal from water in clefts or pores within the stones. The mean water and cholesterol content of the stones with measurable signal did not differ significantly from that of stones with no signal. A possible explanation for these findings, based on the known NMR characteristics of solid materials, is offered

  12. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  13. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  14. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-01-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  15. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  16. Systematic study on nuclear resonant scattering

    International Nuclear Information System (INIS)

    Suarez, A.A.; Freitas, M.L.

    1974-01-01

    New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects

  17. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  18. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  19. Principles of nuclear magnetic resonance (NMR) - current state of the art

    International Nuclear Information System (INIS)

    Lerski, R.A.

    1985-01-01

    Nuclear magnetic resonance (NMR) imaging has progressed rapidly from laboratory curiosity to commercial exploitation and clinical application in the space of only three years. The physical principles underlying the technique are described and the equipment requirements outlined. The question of optimal magnetic field strength is discussed. (author)

  20. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  1. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  2. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  3. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    International Nuclear Information System (INIS)

    Pruet, J; Lange, D

    2007-01-01

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons

  4. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  5. Nuclear quadrupole resonance applied for arsenic oxide study

    International Nuclear Information System (INIS)

    Correia, J.A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T 1 ), the spin-spin relaxation time (T 2 ) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180 0 C pulse is applied after a 90 0 C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90 0 C - 180 0 C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author)

  6. Stieltjes-moment-theory technique for calculating resonance width's

    International Nuclear Information System (INIS)

    Hazi, A.U.

    1978-12-01

    A recently developed method for calculating the widths of atomic and molecular resonances is reviewed. The method is based on the golden-rule definition of the resonance width, GAMMA(E). The method uses only square-integrable, L 2 , basis functions to describe both the resonant and the non-resonant parts of the scattering wave function. It employs Stieltjes-moment-theory techniques to extract a continuous approximation for the width discrete representation of the background continuum. Its implementation requires only existing atomic and molecular structure codes. Many-electron effects, such as correlation and polarization, are easily incorporated into the calculation of the width via configuration interaction techniques. Once the width, GAMMA(E), has been determined, the energy shift can be computed by a straightforward evaluation of the required principal-value integral. The main disadvantage of the method is that it provides only the total width of a resonance which decays into more than one channel in a multichannel problem. A review of the various aspects of the theory is given first, and then representative results that have been obtained with this method for several atomic and molecular resonances are discussed. 28 references, 3 figures, 4 tables

  7. Nuclear Magnetic Resonance and Magnetic Resonance Imaging / Spectroscopy

    Data.gov (United States)

    Federal Laboratory Consortium — NMR - MRI/S techniques and instruments are available at two different MagLab facilities in Florida: The NMR-MRI/S Facility at MagLab headquarters near Florida State...

  8. Nuclear magnetic resonance imaging in patients with hypertrophic and dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Boisvieux, A.

    1987-01-01

    Patients with hypertrophic and dilated cardiomyopathy and normal subjects were investigated with nuclear magnetic resonance imaging. To evaluate the NMR scanner possibilities, the results were compared with the echocardiographic investigation of the same patients. The capabilities of NMR imaging to provide information about intracardiac anatomy are emphasized. This study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of the techniques used to obtain NMR images and a review of the clinical use of NMR imaging for cardiac diagnosis [fr

  9. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  10. Analysis of archaeological pieces with nuclear techniques

    International Nuclear Information System (INIS)

    Tenorio, D.

    2002-01-01

    In this work nuclear techniques such as Neutron Activation Analysis, PIXE, X-ray fluorescence analysis, Metallography, Uranium series, Rutherford Backscattering for using in analysis of archaeological specimens and materials are described. Also some published works and thesis about analysis of different Mexican and Meso american archaeological sites are referred. (Author)

  11. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  12. Resonance internal conversion as a way of accelerating nuclear processes

    International Nuclear Information System (INIS)

    Karpeshin, F.F.

    2006-01-01

    Theory of resonance conversion is presented. Being a natural extension of the traditional internal conversion into the subthreshold area, resonance conversion in a number of cases strongly affects the nuclear processes. Moreover, concentrating the transition strength on the narrow bands corresponding to the spectral atomic lines, it offers a unique tool capable of accelerating nuclear decay rates. Furthermore, along with the conventional nonradiative process of nuclear excitation through NEET and its reverse, TEEN, resonance conversion offers an appropriate mathematics for consideration of a number of cross-invariant processes involving both nuclei and electrons: excitation and deexcitation of the nuclei by hyperfine magnetic field, nuclear spin mixing, hyperfine interaction and magnetic anomalies in the atomic spectra, collisional nuclear excitation via ionization of the shells in the muon decay in the orbit, etc. The mechanisms of the optical pumping of the isomers are also considered, as well as triggering their energy in the resonance field of a laser. The effect is especially high in the hydrogen-like heavy ions due to practical absence of any damping of the resonance. The theory is also generalized to the case of the discrete Auger transitions [ru

  13. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  14. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  15. Data retrieval techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Sozzi, G.L.; Dahl, C.C.; Gross, R.S.; Voeller, J.G. III

    1995-01-01

    Data retrieval, processing retrieved data, and maintaining the plant documentation system to reflect the as-built condition of the plant are challenging tasks for most existing nuclear facilities. The information management systems available when these facilities were designed and constructed are archaic by today's standards. Today's plant documentation systems generally include hard copy drawings and text, drawings in various CAD formats, handwritten information, and incompatible databases. These existing plant documentation systems perpetuate inefficiency for the plant technical staff in the performance of their daily activities. This paper discusses data retrieval techniques and tools available to nuclear facilities to minimize the impacts of the existing plant documentation system on plant technical staff productivity

  16. Improving animal productivity by nuclear techniques

    International Nuclear Information System (INIS)

    Garcia, M.; Jayasuriya, M.C.N.; Perera, B.M.A.O.

    1995-01-01

    The IAEA and FAO have run a joint programme for 30 years to assist national agricultural research systems in member states to develop, test and apply nuclear and related techniques for improving the productivity of livestock. Applications of nuclear technologies for improving livestock productivity include: use of radioimmunoassay in animal nutrition researches, animal production, and evaluating feeding and management systems through reproductive performance in a field. Geographic coverage and the type of livestock studies are: grazing animals (cattle, goats and sheep) in Africa, Latin America and Asia, as well as buffalo production in Asia. 6 refs, 8 figs, 6 tabs

  17. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline, Francoise; CEA, 91 - Orsay

    1978-01-01

    A short survey of data processing techniques in medical scintigraphy is presented. Three lists of abstracts being firstly from reviews, secondly from proceedings, and thirdly of reports and thesis, are presented as an addendum to the bibliography CEA-BIB-214, for the period 1975 up to march 1977. An index of authors and subjects is included. Finally an appendix with 18 patents is attached. Several bibliographical reviews: Excerpta Medica (Nuclear Medicine) Abstract Journal, INIS Atomindex, Nuclear Science Abstracts, together with a number of special journals and documents, recently published, have been used for this work [fr

  18. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  19. Baryons and baryon resonances in nuclear matter

    Science.gov (United States)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  20. Quantitative dosing by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Solomon, I.

    1958-01-01

    The measurement of the absolute concentration of a heavy water reference containing approximately 99.8 per cent of D 2 O has been performed, by an original magnetic resonance method ('Adiabatic fast passage method') with a precision of 5.10 -5 on the D 2 O concentration. (author) [fr

  1. Display of cross sectional anatomy by nuclear magnetic resonance imaging. 1978.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1995-12-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  2. Nuclear magnetic resonance imaging of the knee: examples of normal anatomy and pathology.

    Science.gov (United States)

    Kean, D M; Worthington, B S; Preston, B J; Roebuck, E J; McKim-Thomas, H; Hawkes, R C; Holland, G N; Moore, W S

    1983-06-01

    Nuclear magnetic resonance images of the knee were obtained from three normal volunteers and from two patients. The pathology included an osteosarcoma of the distal femur and a fracture of the tibia. Steady State Free Precession (SSFP) techniques were used with a 0.15 Tesla resistive type magnet. Normal anatomy was well displayed and the size of the osteosarcoma was accurately predicted. Using SSFP techniques, the blood in the knee joint was not visualised, but the underlying tibial fracture was clearly outlined.

  3. Parent di-nuclear quasimolecular states as exotic resonant states

    International Nuclear Information System (INIS)

    Grama, N.

    2002-01-01

    It in shown that the parent di-nuclear quasimolecular state is an exotic resonant state that corresponds to a S-matrix pole in the neighbourhood of an attractor in the k-plane. The properties of the parent quasimolecular states i.e. energy, widths, deviation from the linear dependence of the energy on l(l + 1) doorway character and criteria for observability, result naturally from the general properties of the exotic resonant states. (author)

  4. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  5. 43. Polish Seminar on Nuclear Magnetic Resonance and its Applications. Cracow. Abstracts

    International Nuclear Information System (INIS)

    2010-12-01

    42 Polish Seminar on Nuclear Magnetic Resonance and its Applications, held on 1-2 December 2010 in Cracow (Poland), was devoted to the development of different magnetic resonance techniques and application of such techniques as crucial part of the studies. The Report contains 58 short descriptions of the contributions submitted by the participants of the Seminar. They cover all areas of the NMR application in major branches of basic chemistry, structural biology, medicine and materials science. Also recent results of the quantum chemical calculations of the NMR parameters are presented.

  6. Computer Assisted Instruction (Cain) For Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Jaturonrusmee, Wasna; Arthonvorakul, Areerat; Assateranuwat, Adisorn

    2005-10-01

    A computer assisted instruction program for nuclear magnetic resonance spectroscopy was developed by using Author ware 5.0, Adobe Image Styler 1.0, Adobe Photo shop 7.0 and Flash MX. The contents included the basic theory of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, the instrumentation of NMR spectroscopy, the two dimensional (2D) NMR spectroscopy and the interpretation of NMR spectra. The program was also provided examples, and exercises, with emphasis on NMR spectra interpretation to determine the structure of unknown compounds and solutions for self study. The questionnaire from students showed that they were very satisfied with the software

  7. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    Duma, L.

    2004-01-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C 13 -enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C 13 -labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C 13 -enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C 13 spin pairs. (author)

  8. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1986-01-01

    The development and clinical application of a number of nuclear techniques for studying body composition is described. These techniques include delayed neutron activation for the analysis of calcium, phsophorus, sodium and chlorine and prompt-gamma activation for the measurement of nitrogen and cadmium. In addition, the measurement of in vivo iron by nuclear resonance scattering and lead by x-ray fluorescence is described. (author)

  9. Basic principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Valk, J.; MacLean, C.; Algra, P.R.

    1985-01-01

    The intent of this book is to help clinicians understand the basic physical principles of magnetic resonance (MR) imaging. The book consists of the following: a discussion of elementary considerations; pulse sequencing; localization of MR signals in space; MR equipment; MR contrast agents; clinical applications; MR spectroscopy; and biological effects of MR imaging; a set of appendixes; and a bibliography. Illustrations and images are included

  10. Nuclear techniques in coal and chemical industries

    International Nuclear Information System (INIS)

    Elbern, A.W.; Leal, C.A.

    1980-01-01

    The use of nuclear techniques for the determination of important parameters in industrial installations is exemplified; advantages of these techniques over other methods conventionally used are pointed out. The use of radiotracers in the study of physical and chemical phenomena occurring in the chemical industry is discussed. It is also shown that, using certain radioisotopes, it is possible to construct devices which enable, for example, the determination of the ash content in coal samples. These devices are economical and easy to be installed for the on-line control during coal transportation. (C.L.B.) [pt

  11. Environmental monitoring in Slovakia using nuclear techniques

    International Nuclear Information System (INIS)

    Florek, M.; Holy, K.; Sivo, A.; Sykora, I.; Chudy, M.; Richtarikova, M.; Polaskova, A.; Hola, O.; Meresova, J.; Ondo-Estok, D.; Mankovska, B.; Frontasyeva, M.V.; Ermakov, E.V.

    2005-01-01

    The contamination of the atmosphere of Slovakia by stable elements and also by-,radionuclides as 14 C, 7 Be, 210 Pb and 222 Rn were studied during the last decade using nuclear techniques. The main aims of this research were the better understanding of processes taking place in the atmosphere, the quantification of the atmospheric pollution and its trend, as well as the evaluation of the health risk from this pollution

  12. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  13. Nuclear Resonance Fluorescence and Isotopic Mapping of Containers

    Science.gov (United States)

    Johnson, Micah S.; McNabb, Dennis P.

    2009-03-01

    National security programs have expressed interest in developing systems to isotopically map shipping containers, fuel assemblies, and waste barrels for various materials including special nuclear material (SNM). Current radiographic systems offer little more than an ambiguous density silhouette of a container's contents. In this paper we will present a system being developed at LLNL to isotopically map containers using the nuclear resonance fluorescence (NRF) method. Recent experimental measurements on NRF strengths in SNM are discussed.

  14. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  15. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    International Nuclear Information System (INIS)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance

  16. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  17. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  18. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  19. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, B.; Soussaline, F.

    1977-03-01

    The development of new radiopharmaceuticals, cyclotron-produced radionuclides and improvement of detector, scanner and gamma camera characteristics have enable a remarkable recent progress in scintigraphic techniques for organ visualization and functional studies. Using a variety of techniques, positron cameras, section scanners, gamma holography, tomographic imaging appear to be playing an increasing important role. Data processing techniques, for example image processing and three dimensional reconstruction have significantly increased their impact. The principal research work and advances in technique achieved up to 1972 are summarized and the subjects which have been further exploited are outlined. The main section comprises references and abstracts of articles from scientific journals and conference proceedings (191 articles and 221 papers mentioned) for the period 1972-1975 to illustrate advances in this domain: Excerpta Medica (Nuclear Medicine) Abstract Journals and Nuclear Science Abstracts (1972-1975) were used as abstracting publications. This survey is completed with an index of authors and subject-matters. Eleven thesis are mentionned in an appendix [fr

  20. Nuclear activation techniques in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-15

    The analysis of the elemental composition of biological materials is presently undertaken on a large scale in many countries around the world One recent estimate puts the number of such analyses at six thousand million single-element determinations per year, of which about sixteen million are for the so-called trace elements. Since many of these elements are known to play an important role in relation to health and disease, there is considerable interest in learning more about the ways in which they function in living organisms. Nuclear activation techniques, generally referred to collectively as 'activation analysis' constitute an important group of methods for the analysis of the elemental composition of biological materials. Generally they rely on the use of a research nuclear reactor as a source of neutrons for bombarding small samples of biological material, followed by a measurement of the induced radioactivity to provide an estimate of the concentrations of elements. Other methods of activation with Bremsstrahlung and charged particles may also be used, and have their own special applications. These methods of in vitro analysis are particularly suitable for the study of trace elements. Another important group of methods makes use of neutrons from isotopic neutron sources or neutron generators to activate the whole body, or a part of the body, of a living patient. They are generally used for the study of major elements such as Ca, Na and N. All these techniques have previously been the subject of two symposia organised by the IAEA in 1967 and 1972. The present meeting was held to review some of the more recent developments in this field and also to provide a viewpoint on the current status of nuclear activation techniques vis-a-vis other competing non-nuclear methods of analysis.

  1. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  2. Communication patterns in the field of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Tomov, D.; Filipov, F.; Kolev, N.

    1986-01-01

    A scientometric analysis of publications presented in four secondary information sources on the problem of nuclear magnetic resonance in physics, biomedicine and technology was carried out. A dynamic growth of the number of articles in biomedicine over 1982 to 1984 was established. Secondary publications play an important role in scientific communications as revealed by citation analysis. (author)

  3. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size

  4. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  5. Techniques used for charged particle nuclear data evaluation at CNDC

    International Nuclear Information System (INIS)

    Zhuang Youxiang; Sun Zuxun

    1993-01-01

    The methods and techniques used for Charged Particle Nuclear Data (CPND) evaluation at Chinese Nuclear Data Center (CNDC) are summarized, including compilation and evaluation of experimental data, nuclear reaction theory and model calculation, systematics research and comprehensive recommendation etc

  6. Nuclear magnetic resonance imaging of the heart

    International Nuclear Information System (INIS)

    Smolorz, J.; Linden, A.; Schicha, H.; Sechtem, U.

    1988-01-01

    NMR imaging is a noninvasive technique that has been shown to provide high-quality images of the heart. Due to the signal characteristics of flowing blood, inherent contrast between blood pool and myocardium is achieved without the use of contrast media. This paper briefly describes technical aspects of NMR imaging of the heart, normal cardiovascular anatomy, applications of the technique in patients with ischemic heart disease, and the potential of NMR imaging for functional studies in various forms of heart disease. (orig.)

  7. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  8. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  9. Proton nuclear magnetic resonance studies on brain edema

    International Nuclear Information System (INIS)

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-01-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research

  10. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  11. Electron spin resonance (ESR), electron nuclear double resonance (ENDOR) and general triple resonance of irradiated biocarbonates

    International Nuclear Information System (INIS)

    Schramm, D.U.; Rossi, A.M.

    1996-01-01

    Several irradiated bicarbonates were studied by magnetic resonance techniques. Seven paramagnetic species, attributed to CO 2 - , SO 2 - and SO 3 - were identified. Comparison between radiation induced defects in bioaragonites and aragonite single-crystals show that isotropic and orthorhombic CO 2 - centers with broad line spectra are not produced in the latter samples. Vibrational and rotational properties of isotropic CO 2 - centers were studied from low temperature Q-band spectras. Vibrational frequency is determined from the 13 CO 2 - hyperfine spectrum and yielded ν 1.54 x 10 13 s -1 . The correlation time for isotropic CO 2 - , τc) = 1.2 x 10 -11 s (T = 300 K0, is typical of radicals rotating in liquids. ENDOR and General Triple spectroscopy show that orthorhombic CO 2 - centres are surrounded by water molecules located in the second nearest CO 2 2- sites at 5.14, 5.35 and 6.02 A. Water molecules replacing carbonates or as liquid inclusion of growth solution in local crystal imperfections may be responsible for the variety of orthorhombic and isotropic CO 2 - species, respectively. (author)

  12. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  13. Safety prediction technique for nuclear power plants

    International Nuclear Information System (INIS)

    Henry, C.D. III; Anderson, R.T.

    1985-01-01

    This paper presents a safety prediction technique (SPT) developed by Reliability Technology Associates (RTA) for nuclear power plants. It is based on a technique applied by RTA to assess the flight safety of US Air Force aircraft. The purpose of SPT is to provide a computerized technique for objective measurement of the effect on nuclear plant safety of component failure or procedural, software, or human error. A quantification is determined, called criticality, which is proportional to the probability that a given component or procedural-human action will cause the plant to operate in a hazardous mode. A hazardous mode is characterized by the fact that there has been a failure/error and the plant, its operating crew, and the public are exposed to danger. Whether the event results in an accident, an incident, or merely the exposure to danger is dependent on the skill and reaction of the operating crew as well as external influences. There are three major uses of SPT: (a) to predict unsafe situations so that corrective action can be taken before accidents occur, (b) to quantify the impact of equipment malfunction or procedural, software, or human error on safety and thereby establish priorities for proposed modifications, and (c) to provide a means of evaluating proposed changes for their impact on safety prior to implementation and to provide a method of tracking implemented changes

  14. Nuclear techniques in animal production and health

    Energy Technology Data Exchange (ETDEWEB)

    Moustgaard, J [Institute of Physiology, Endocrinology and Bloodgrouping, The Royal Veterinary and Agricultural University, Copenhagen (Denmark)

    1976-07-01

    In the fight against animal diseases, especially parasitic infections, nuclear techniques have also proved to be of great value, namely in the production of irradiated vaccines against helminthic diseases. In this context it should be stressed that reduced productivity due to protein loss caused by intestinal parasites is a problem of paramount economic importance in developing as well as developed countries. Recently radioisotopes in the so-called radioimmunoassays have also been applied in determination of the hormonal status of farm animals and to elucidate its relation to the environment and to the physiological and nutritional condition of the animal. This rapidly developing technique may make it possible to control the reproductive performance of cattle and sheep more efficiently than has hitherto been the case. Production of animal protein of a high biological value for human nutrition is still a problem of great concern for the less developed countries. Without doubt the use of nuclear techniques, hand in hand with other research methods, will be of great help in overcoming this condition, always provided that the countries in question possess the necessary equipment and trained personnel.

  15. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  16. Nuclear techniques in animal production and health

    International Nuclear Information System (INIS)

    Moustgaard, J.

    1976-01-01

    In the fight against animal diseases, especially parasitic infections, nuclear techniques have also proved to be of great value, namely in the production of irradiated vaccines against helminthic diseases. In this context it should be stressed that reduced productivity due to protein loss caused by intestinal parasites is a problem of paramount economic importance in developing as well as developed countries. Recently radioisotopes in the so-called radioimmunoassays have also been applied in determination of the hormonal status of farm animals and to elucidate its relation to the environment and to the physiological and nutritional condition of the animal. This rapidly developing technique may make it possible to control the reproductive performance of cattle and sheep more efficiently than has hitherto been the case. Production of animal protein of a high biological value for human nutrition is still a problem of great concern for the less developed countries. Without doubt the use of nuclear techniques, hand in hand with other research methods, will be of great help in overcoming this condition, always provided that the countries in question possess the necessary equipment and trained personnel

  17. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  18. Basic principles of applied nuclear techniques

    International Nuclear Information System (INIS)

    Basson, J.K.

    1976-01-01

    The technological applications of radioactive isotopes and radiation in South Africa have grown steadily since the first consignment of man-made radioisotopes reached this country in 1948. By the end of 1975 there were 412 authorised non-medical organisations (327 industries) using hundreds of sealed sources as well as their fair share of the thousands of radioisotope consignments, annually either imported or produced locally (mainly for medical purposes). Consequently, it is necessary for South African technologists to understand the principles of radioactivity in order to appreciate the industrial applications of nuclear techniques [af

  19. Nuclear analytical techniques in Cuban Sugar Industry

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  20. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  1. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  2. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    Science.gov (United States)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  3. Resonant nuclear battery may aid in mitigating the greenhouse effect

    International Nuclear Information System (INIS)

    Brown, P.M.

    1989-01-01

    A new process for the direct conversion of radioactive decay energy directly into electricity of a usable form is currently being developed by Peripheral Systems, Inc. of Portland, Oregon. United States Patent 4,835,433 was issued May 30, 1989 to protect this Resonant Nuclear Power Supply. When developed, this system promises cheap, reliable power from a package small and light enough to be mobile and an energy density great enough for use as a space-based power supply. One of the potential domestic applications could be to power electric automobiles. Use in highly populated areas would have a tremendous beneficial effect on the ecology. The principle of operation for the resonant nuclear power supply is an LCR (inductance capacitance resistance) resonant tank circuit oscillating at its self-resonant frequency (at resonance, the inductive reactance and the capacitive reactance cancel to leave the ohmic resistance of the circuit as the only major loss of energy). A means for absorbing the natural radioactive decay energy emitted from an alpha or beta source is provided in the primary tank circuit and contributes an amount of energy, by means of the beta voltaic effect, in excess of the energy required to sustain the oscillation of the LCR primary tank. A transformer is impedance matched to this oscillating primary circuit for efficient energy transfer of the excess energy to a secondary output circuit, which yields net electrical power in a high-frequency usable form to drive a load

  4. Nuclear structure studies of rare francium isotopes using Collinear Resonance Ionization Spectroscopy (CRIS)

    CERN Document Server

    AUTHOR|(CDS)2084441

    It was known for many years that nuclei possessing certain numbers of protons (Z) and neutrons (N), called the magic numbers (8,20,28,50,82,126...), exhibit characteristic behavior and are in general more stable than their neighboring isotopes. As the capabilities of producing isotopes with more extreme values of Z and N increased, it was realized that those spherical nuclei only represent a small fraction of the total number of isotopes and that most isotopes are deformed. In order to study exotic isotopes and their deformation, it was necessary to develop new experimental techniques that would be powerful enough to be able to cope with very small production yields, but precise enough to measure the nuclear properties (such as radii and moments) with relatively small uncertainties. One technique that can measure nuclear properties of scarcely produced isotopes is in-source resonant ionization, but this technique does not allow for sufficient precision to deduce nuclear quadrupole moments. Furthermore, this t...

  5. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  6. Missing and Spurious Level Corrections for Nuclear Resonances

    International Nuclear Information System (INIS)

    Mitchell, G E; Agvaanluvsan, U; Pato, M P; Shriner, J F

    2005-01-01

    Neutron and proton resonances provide detailed level density information. However, due to experimental limitations, some levels are missed and some are assigned incorrect quantum numbers. The standard method to correct for missing levels uses the experimental widths and the Porter-Thomas distribution. Analysis of the spacing distribution provides an independent determination of the fraction of missing levels. We have derived a general expression for such an imperfect spacing distribution using the maximum entropy principle and applied it to a variety of nuclear resonance data. The problem of spurious levels has not been extensively addressed

  7. Hybrid model for the decay of nuclear giant resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  8. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  9. Measure of hydrogen concentration profile in materials by resonant nuclear reactions

    International Nuclear Information System (INIS)

    Livi, R.P.; Zawislak, F.C.; Acquadro, J.C.

    1986-01-01

    The technique for determining the profile of hydrogen concentration in proximities of the surface of materials, is presented. The preliminary measurements were done, using the Pelletron accelerator at Sao Paulo University (USP), in Brazil, for the resonant-nuclear reaction 1 H( 19 F, α γ) 16 O. By using this reaction the technique is sensitive for concentrations above 500 ppm, which could be reduced to 100 ppm through special shieldings and other techniques to reduce the background radiation. (M.C.K.) [pt

  10. Environmental pollutants monitoring network using nuclear techniques

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1994-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the NSW Environment Protection Authority (EPA), Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 60,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 μm particle diameter cut off and samples for 24 hours using a stretched Teflon filter for each day. Accelerator-based Ion Beam Analysis(IBA) techniques are well suited to analyse the thousands of filter papers a year that originate from such a large scale aerosol sampling network. These techniques are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on a 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. This paper described the four simultaneous accelerator based IBA techniques used at ANSTO, to analyse for the following 24 elements H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. Each analysis requires only a few minutes of accelerator running time to complete. 15 refs., 9 figs

  11. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  12. Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, J.A.; Highet, R.J.; Pohl, L.R.; Monks, T.J.; Hinson, J.A.

    1985-09-01

    The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. The paper discusses the fundamentals of the technique and demonstrates the resolution of small long-range coupling constants.

  13. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  14. Charge-exchange giant resonances as probes of nuclear structure

    International Nuclear Information System (INIS)

    Blomgren, J.

    2001-09-01

    Giant resonances populated in charge-exchange reactions can reveal detailed information about nuclear structure properties, in spite of their apparent featurelessness. The (p,n) and (n,p) reactions - as well as their analog reactions - proceed via the same nuclear matrix element as beta decay. Thereby, they are useful for probing electroweak properties in nuclei, especially for those not accessible to beta decay. The nuclear physics aspects of double beta decay might be investigated in double charge-exchange reactions. detailed nuclear structure information, such as the presence of ground-state correlations, can be revealed via identification of 'first-forbidden' transitions. In addition, astrophysics aspects and halo properties of nuclei have been investigated in charge exchange. Finally, these experiments have questioned our knowledge of the absolute strength of the strong interaction

  15. Nuclear magnetic resonance spectroscopy in biochemistry

    International Nuclear Information System (INIS)

    Roberts, J.K.M.; Jardetzky, O.

    1985-01-01

    This chapter aims to provide an orienting overview of the main directions in which the field of biological application of NMR has developed, the kinds of biochemical or biological questions which can be studied by NMR, and the major specific NMR techniques useful for this purpose. This discussion is preceded by a brief exposition of the elementary concepts of NMR and supplemented by references to the literature that treats each topic in greater depth. Applications of NMR of interest in biochemistry are treated in three major categories: (1) determination of the structure of biologically active compounds - especially new natural products; (2) studies of biochemical reactions, or processes, especially in vivo; and (3) studies of macromolecular structure and dynamics. 122 refs.; 35 figs.; 3 tabs

  16. Nuclear techniques in Australian animal production

    International Nuclear Information System (INIS)

    1976-01-01

    In tropical and sub-tropical regions, the production of domestic animals is frequently depressed by the climatic and ecological conditions. These negative effects can be overcome to a great extent by improved methods of animal and land management. In animal research, nuclear techniques are playing an important role in the study of different aspects of nutrition, metabolism, reproduction and health of domestic animals. In response to the need expressed by Member States for more information on these techniques, the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture and the IAEA's Division of Technical Assistance organized a study tour to Australia, a country which has developed considerable expertise in agricultural and animal research. The purpose of the study tour was to enable veterinary and animal scientists and administrators from developing countries in Asia and the Far East to observe at first hand the ways in which animal production, particularly meat, milk and wool, can be increased in tropical and sub-tropical areas. Fourteen senior scientists and research directors from seven Asian countries (Bangladesh, India, Republic of Korea, Malaysia, Philippines, Sri Lanka and Thailand) participated. The counterpart organizations in Australia were the Australian Development Assistance Agency (ADAA) and the Commonwealth Scientific and Industrial Research Organization (CSIRO). The chief programmer and co-ordinator of the study tour was John E. Vercoe, officer-in-charge of CSIRO's Tropical Cattle Research Centre in Rockhampton, and a former IAEA staff member. The tour was financed by the United Nations Development Programme. The participants visited research facilities of universities, national and state laboratories and commercial cattle producers. The tour started at Sydney and proceeded north along the east coast of Australia to Townsville. On the way, major stops were made in Armidale, Grafton, Wollongbar, Brisbane and Rockhampton. In Rockhampton, a

  17. The production of radioisotopes for medical applications by the adiabatic resonance crossing (ARC) technique

    CERN Document Server

    Froment, P; Delbar, T; Ryckewaert, G; Tilquin, I; Vervier, J

    2002-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) technique has been proposed by Rubbia (Resonance enhanced neutron captures for element activation and waste transmutation, CERN-LHC/97-0040EET, 1997; TARC collaboration, Neutron-driven nuclear transmutation by adiabatic resonance crossing, CERN-SL-99-036EET, 1999; Abanades et al., Nucl. Instr. and Meth. A 487 (2002) 577) for element activation and waste transmutation. We investigate the possibility to use this technique for the industrial production of **9**9Mo and **1**2**5Xe by resonance neutron capture in **9**8Mo and **1**2**4Xe, respectively. Their daughters, i.e. **9**9**mTc and **1**2**5I, are widely used in medical applications. The high neutron flux needed is produced by bombarding a thick Be target with 65 or 75 MeV proton beam (few microamperes). This target is placed at the centre of a large cubic lead assembly (1.6 m side, purity: 99.999%). The neutrons are progressively slowed down by elastic scattering on lead, and their energies "scan" t...

  18. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    International Nuclear Information System (INIS)

    2011-01-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  19. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  20. Quality system implementation for nuclear analytical techniques

    International Nuclear Information System (INIS)

    2004-01-01

    techniques. The methodology provided is appropriate for: (a) Analysis of radionuclides as in alpha, beta, and gamma spectrometry for environmental and human-made radioactivity investigations; (b) Analysis of trace, minor and major elements using nuclear and related analytical techniques such as neutron activation analysis, X ray fluorescence, PIXE, etc. This training guidebook can be used by staff of analytical laboratories as a starting kit to better understand the quality assurance and quality control principles as prescribed in the ISO 17025 standard. It follows a logical order related to practical laboratory work rather than the formal clauses as given by the standard. It can be used as a stand alone textbook. However, in some cases, cross-reference is given to the ISO 17025 clauses hence it is recommended to consult the ISO standard for exact wording of specific requirements

  1. E2 nuclear resonance effects in pionic and kaonic atoms

    International Nuclear Information System (INIS)

    Batty, C.J.; Biagi, S.F.; Blecher, M.

    1977-09-01

    The attenuation due to the E2 nuclear resonance effect has been measured in hadronic atoms using pions with 111 Cd and 112 Cd, and for kaons with 122 Sn. Energies of the relevant X-ray and γ-ray transitions and of the X-ray cascade intensities have also been measured so as to give a self-consistent set of information. The results are found to be in very good agreement with theoretical calculations. (author)

  2. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    Newman, R.J.

    1984-01-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  3. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.J. (Glasgow Western Infirmary (UK))

    1984-09-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin.

  4. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  5. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    OpenAIRE

    Noemi Proietti; Donatella Capitani; Valeria Di Tullio

    2018-01-01

    In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance) in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable...

  6. Nuclear magnetic resonance tomography in Hallervorden-Spatz's syndrome

    International Nuclear Information System (INIS)

    Vogl, T.; Bauer, M.; Seiderer, M.; Rath, M.

    1984-01-01

    Two patients (mother and son) with Hallervorden-Spatz's syndrome were examined both via CT and Nuclear Magnetic Resonance (NMR), using different measuring modes. In the patient with progressing disease pathological findings were seen in the right and left putamen with CT and NMR. All examinations in the mother with a less progressive syndrome were without any result. Information obtained via NMR did not yield significantly more relevant data than computed tomography. (orig.) [de

  7. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  8. Measurement of changes in nuclear charge radii of 2r by laser-induced resonance fluorescence

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Marinova, K.P.; Markov, B.N.; Khoang Tkhi Kim Khueh; Chan Kong Tam; Kul'dzhanov, B.K.

    1987-01-01

    The optical isotopic shifts of Zr stable isotopes have been measured in three atomic transitions of type 4d 2 5s 2 → 4d 2 5s5p using the technique of laser-induced resonance fluorescence. The changes of nuclear mean-square charge radius Δ 2 > have been determined. The extracted values of Δ 2 > are compared to predictions of the droplet model. It is shown that the droplet model calculations can be made to agree with the experimental results, if changes of nuclear dynamical octupole deformation and of surface diffuseness parameter are taken into account

  9. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1999-01-01

    Full text: During the last year, the activity of our department was spread over basic research in nuclear physics (standard spectroscopy, more exotic regions close to the elementary particle physics, theoretical studies of heavy ion interactions), high energy atomic physics, applications of and nuclear physics (environmental studies, effects of irradiation, ion production). Some effort was focused on teaching - actually, four Ph. D. students are working for their degrees. Some of us were involved in organisation and further activity of the ''Radioactive Waste'' exhibition in Swierk. Our research is performed on our facilities (C30 cyclotron, low background detection facility), and in close co-operation with the Heavy Ion Laboratory of the Warsaw University, Jagellonian University in Cracow, Military Technical Academy in Warsaw, Institute of Electronic Technology and Materials in Warsaw and some foreign centers like GSI in Darmstadt, MPI in Heidelberg and KFA in Juelich (Germany), PSI in Villigen (Switzerland), University of Notre Dame, Argonne National Lab., Lawrence Berkeley Lab. and Los Alamos National Lab. (USA). The reader is invited to find some of our recent results on the next pages; together with a list of publications. Nevertheless some activities are worth mentioning: Nuclear spectroscopic studies were concentrated on Z or N 50 nuclei - determination of excited level schemes of 182,183 Ir, 180,181,182 Os and 110 Sn and 132 Ce was continued and some new effects found. The most precise lifetime of the A hyperon in very heavy hypernuclei was measured(COSY-13 project). The search of muon number forbidden nuclear μ - e nuclear conversion was continued (SINDRUM II coll.). Heavy ion interactions leading to fusion or fission processes were studied theoretically, and the experiments are in preparation. The experimental studies of atomic effects in bare, H- and He- like very heavy atoms and X ray spectroscopy of heavy ion atomic collisions were continued at GSI

  10. Value of nuclear magnetic resonance imaging in cardiology

    International Nuclear Information System (INIS)

    Cabon-Martin, C.

    1987-01-01

    The present study summarizes an experience with Magnetic Resonance Imaging (MRI) in the evaluation of twelve patients with a variety of cardiac abnormalities (myocardial infarction, mural thrombi, obstructive cardiomyopathy, pericarditis). The results are compared with clinical data, with measurements from other techniques such as two-dimensional echocardiography and with the images in normal subjects. An anticipated advantage of MRI is the ability to provide better tissue characterization, than has been attained with other imaging techniques, by relaxation time measurement [fr

  11. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible.

  12. Immunodiagnosis of parasitic infections using nuclear techniques

    International Nuclear Information System (INIS)

    1985-07-01

    This report documents the recommendations of the ''Advisory Group on Immunodiagnosis of Parasitic Infections Using Nuclear Techniques'' with a focus on malaria, schistosomiasis and filariasis. Radionuclide tracers are considered an important component of present and future immunological methods for the assessment of the host's humoral and cellular immunity to the parasite and the detection of parasite antigen(s) in human body fluids. The Advisory Group has concluded that there is a continuing need for the development and application of immunodiagnostic methods in parasitic diseases. This report concerns methods which are currently or potentially applicable to immunodiagnostic investigations in parasitic diseases. Reference is made, where appropriate, to recent developments in research which may lead to improvement and standardization of methods now available and the development of new methodology. Separate abstracts on various papers presented were prepared

  13. Nuclear techniques for a cleaner environment

    International Nuclear Information System (INIS)

    1995-01-01

    Highlights of the major IAEA programme for nuclear techniques and research which have direct contribution towards improvement of the environment are presented. These include topics in the areas of food and agriculture, hydrology, environmental monitoring, and marine sciences. Joint IAEA and FAO programmes in food and agriculture covers topics such as: control of insects and pests, monitoring of pesticides in ecosystem and food irradiation. In hydrology, development and management of water resources, water pollution assessment, cleaning of flue gases and sewage sludge, etc are being undertaken primarily in developing countries. Environmental monitoring is conducted with particular emphasis to when there is an accidental release of radioactivity into the environment, as happened to the Chernobyl accident

  14. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Nicolau, Veronica; Montoro, Silvia; Pratta, Nora; Giandomenico, Angel Di

    1999-01-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  15. Nuclear analytical techniques in Cuban sugar industry

    International Nuclear Information System (INIS)

    Diaz R, O.; Griffith M, J.

    1997-01-01

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  16. Determination of contraband using fast neutron resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Whang, J. [Kyunghee Univ., Dept. of Nuclear Engineering, Yongin-shi, Kyongki-do (Korea, Republic of)

    2004-07-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  17. Determination of contraband using fast neutron resonance technique

    International Nuclear Information System (INIS)

    Bae, J.; Whang, J.

    2004-01-01

    'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)

  18. Recent applications of nuclear track emulsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics (Russian Federation)

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  19. Learning curve estimation techniques for nuclear industry

    International Nuclear Information System (INIS)

    Vaurio, Jussi K.

    1983-01-01

    Statistical techniques are developed to estimate the progress made by the nuclear industry in learning to prevent accidents. Learning curves are derived for accident occurrence rates based on actuarial data, predictions are made for the future, and compact analytical equations are obtained for the statistical accuracies of the estimates. Both maximum likelihood estimation and the method of moments are applied to obtain parameters for the learning models, and results are compared to each other and to earlier graphical and analytical results. An effective statistical test is also derived to assess the significance of trends. The models used associate learning directly to accidents, to the number of plants and to the cumulative number of operating years. Using as a data base nine core damage accidents in electricity-producing plants, it is estimated that the probability of a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year

  20. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  1. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.

    Science.gov (United States)

    Mueller-Klieser, W; Schaefer, C; Walenta, S; Rofstad, E K; Fenton, B M; Sutherland, R M

    1990-03-15

    The energy and oxygenation status of tumors from two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) were assessed using three independent techniques. Tumor energy metabolism was investigated in vivo by 31P nuclear magnetic resonance spectroscopy. After nuclear magnetic resonance measurements, tumors were frozen in liquid nitrogen to determine the tissue ATP concentration by imaging bioluminescence and to register the intracapillary oxyhemoglobin (HbO2) saturation using the cryospectrophotometric method. There was a positive correlation between the nucleoside triphosphate beta/total resonance ratio or a negative correlation between the Pi/total resonance ratio and the model ATP concentration obtained by bioluminescence, respectively. This was true for small tumors with no extended necrosis irrespective of tumor type. Moreover, a positive correlation was obtained between the HbO2 saturations and the ATP concentration measured with bioluminescence. The results demonstrate the potential of combined studies using noninvasive, integrating methods and high-resolution imaging techniques for characterizing the metabolic milieu in tumors.

  2. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  3. Nuclear techniques in marine metal exploration

    International Nuclear Information System (INIS)

    Michaelis, W.

    1979-01-01

    The growing concern about the future availability of raw materials has increasingly drawn attention to the extensive marine metalliferous mineral deposits. Nuclear techniques can provide powerful analytical tools for exploring these resources. The measurement of natural gamma radiation, X-ray fluorescence analysis and a variety of neutron techniques based on 252 Cf, (α,n) and (d,n) sources are now in use or appear to make progress. Improvement of the relevant cross sections could considerably advance the technical development both in the field and in the laboratory. Particular consideration should be given to a number of energy-dependent cross sections pertaining to neutron and gamma transport in field application of activation analysis or radiative capture, to neutron cross sections for production of gamma rays from inelastic collisions, to cross sections of threshold reactions which either ensure elemental selectivity or are the source of elemental interferences and, finally, to cross sections for quasi-prompt activation with 14 MeV neutrons. (orig.) [de

  4. Calculation of the probability of overlapping one family of nuclear levels with resonances of an independent family

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1982-01-01

    Calculations of the resonance integrals of particular isotopes in a mixture of isotopes show that the overlapping of the resonances of one isotope by resonances of other isotopes affects the final values of effective cross sections. The same effect might adversely influence those nondestructive techniques which assay fissile materials on the basis of resonance effects. Of relevance for these applications is the knowledge of the probability of overlapping resonances of a family of nuclear levels (class 1) with resonances of an independent family (class 2). For the sequence of class 1 resonances we calculate the probability distribution, p(delta), to find a class 2, first-neighbor resonance at distance (in energy) delta from a class 1 resonance; integration of p(delta) over the average finite width of the resonances would give the aforementioned probability of overlapping. Because a class 1 resonance can have a class 1 or a class 2 resonance as a first neighbor, the resultant p(delta) is not given by the distribution of spacings of the composite family

  5. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    International Nuclear Information System (INIS)

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  6. Aquaculture investigations with nuclear energy techniques

    International Nuclear Information System (INIS)

    Heredia Salazar, Brunilda

    1997-01-01

    The culture of aquatic organisms, especially that of fishes under controlled conditions, up to their harvesting, processing, commercialization and consumption, has been pointed out as an activity that produces a lot of benefits, among them: the obtention high proteic valued food, the incorporation to the economy of lands not usefull for agriculture activities, the increment of fishing resources, the recycling of organic matter produced in the units, the regional development, the generation of employment, technologies and foreign currencies. Several research areas are identified that can be developed, using the nuclear technologies, for example in the reproduction, nutrition, diagnose and control of illnesses, environmental monitoring and quality certification of products. In the concerning to the Venezuelan aquaculture, investigations are required that need to use those techniques. For example: 1) Production of autochthonous inductive agents, by means of radioinmunoenssay (RIA), to determine the gonadotropines coming from the hypophysis of fish cultivated with the purpose of gathering the glands in its best moment, to generate the final maturation and spawn in autochthonous species. 2) Genetic improvement of cultivated species through the knowledge of the genetic load of different lines and breeds found in the natural means, and to achieve its maintenance to solve inbreeding problems, in autochthonous species aswell in as in exotic ones, by the use of marking techniques (ADE, RFLA and microsatellite techniques). 3) Nutritional and feeding studies of species under commertial culture, especially on the effect of the aflatoxins in the inputs or the portions, substances that influence in a negative way the aquatic nutrition. In this case, competitive immunoassays of enzymes bounded (ELISA) and radioinmunoessays. 4) Illness diagnose, by means of the ELISA kit, specifically of the more common illness in fishes cultivated in the country [es

  7. Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

    CERN Document Server

    Gottberg, Alexander; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-01-01

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β-NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  8. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iles, R A; Hind, A J; Chalmers, R A

    1986-12-15

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.). 18 refs.; 4 figs.; 3 tabs.

  9. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Costa, Paula de M.; Tavares, Maria I.B.

    2005-01-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  10. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iles, R.A.; Hind, A.J.; Chalmers, R.A.

    1986-01-01

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.)

  11. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  12. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  13. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  14. Resonant laser techniques for combustion and flow diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Fritzon, Rolf

    1998-05-01

    This thesis presents results from two areas of research. Firstly, the resonant coherent laser techniques polarization spectroscopy (PS), degenerate four-wave mixing (DFWM) and stimulated emission (SE) have been developed in the general field of combustion diagnostics. Secondly, laser induced fluorescence (LIF) has been developed and applied for the visualization of mixture fractions in turbulent non reacting flows. PS was developed for instantaneous two-dimensional imaging of minor species in flames, the technique being demonstrated on OH and NO. Various aspects of imaging and of detection in general were investigated. Two-photon induced PS was demonstrated for the detection of NH{sub 3}, CO and N{sub 2} molecules. LIF was monitored simultaneously to allow a quantitative comparison between the techniques. Furthermore, PS and DFWM were developed for instantaneous two-dimensional OH temperature imaging. Through a novel experimental approach based on the use of a dual-wavelength dye laser and a diffraction grating the temperature imaging measurements were performed using only one laser and one CCD camera. A comparison between the two techniques was made. SE was through a crossed-beam arrangement developed for spatially resolved detection of flame species. Two-dimensional LIF was developed and applied for measuring mixture fractions in the shear layer between two co-flowing turbulent gaseous jets. The technique was further applied in a study of the mixing of a turbulent water jet impinging orthogonally onto a flat surface. Average concentration fields in the center-plane of the jet was compared with results from large eddy simulations and with data from the literature 221 refs, 48 figs, 5 tabs

  15. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  16. Background estimation techniques in searches for heavy resonances at CMS

    CERN Document Server

    Benato, Lisa

    2017-01-01

    Many Beyond Standard Model theories foresee the existence of heavy resonances (over 1 TeV) decaying into final states that include a high-energetic, boosted jet and charged leptons or neutrinos. In these very peculiar conditions, Monte Carlo predictions are not reliable enough to reproduce accurately the expected Standard Model background. A data-Monte Carlo hybrid approach (alpha method) has been successfully adopted since Run 1 in searches for heavy Higgs bosons performed by the CMS Collaboration. By taking advantage of data in signal-free control regions, determined exploiting the boosted jet substructure, predictions are extracted in the signal region. The alpha method and jet substructure techniques are described in detail, along with some recent results obtained with 2016 Run 2 data collected by the CMS detector.

  17. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  18. Magnetic resonance techniques for investigation of multiple sclerosis

    Science.gov (United States)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  19. Testing techniques in nuclear, petroleum and metallurgic industries

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The nondestructive testing techniques by ultrasonic waves, eddy currents, acoustic emission used by Intercontrole (a CEA's affiliated firm in nuclear petrochemical, and engineering site measurements) are presented [fr

  20. Nuclear techniques to address HAB concerns

    International Nuclear Information System (INIS)

    Vu Nhu Ngoc; Phan Son; Nguyen Ngoc Lam and Chu Van Thuoc

    2004-01-01

    In December, 1998, The Project Formulation meeting on application of Nuclear Techniques to address red tide (Harmful Algal Bloom concerns) was held in Manila Philippines. This is an IAEA/RCA project with the participation of Australia, China, Indonesia, Malaysia, Pakistan, The Philippines, Thailand and Vietnam. The main objectives of this project (RAS/8/076) included: - Conduct of segmentation studies to gain information on the natural histories of sediments and to correlated these with Red Tide occurrences. - Development of descriptive and predictive of the behaviour of Algal Bloom as affected by the interplay of the causative organism with the environment parameters in the water column and sediments. - Development and field testing of a rapid assay technique based on tritium - labeled saxitoxin for toxin determination. The first phase has been completed in 2002 and the second phase will be completed in 2004. In the two years of 2001 - 2002 Ted Tide occurred in very larger area in Vietnam, for example, in the coast of Binh Thuan Province with the density of 39.10 9 cells/litre. The Ministry of science - technology environment of Vietnam has support 5.000 USD each years for sediment and algal sampling in Cam Ranh Bay (Nha Trang, 11 o 45N and 10 o 15E) and Ha Long Bay in the North - East of Vietnam (21 o 15 and 107 o 3E) and in 2003 in Tuy Phong Bay (Binh Thuan province) (10 o 15N, 108 o 45E). Three sediment core has been taken from Cam Ranh Bay, Ha Long Bay and Tuy Phong Bay. The volume of sediment core is Φ = 8 cm and h = 60 cm. The algal samples have been collected by Bongo nets in Cam Ranh, Ha Long Bay and Tuy Phong Bay. (author)

  1. Locating techniques for nuclear power stations

    International Nuclear Information System (INIS)

    Hayashi, Masao

    1983-01-01

    The basic thought in locating nuclear power stations is to examine carefully the suitability of sites and the safety of plants, and in the end, to perfect the safety of public. In Japan, effort is exerted to obtain the trust of local people by carrying out investigation, research and examination from respective standpoints of the government, institutes and industries. The author has engaged in the standardization of the investigation, test and analysis regarding the aseismatic capability of ground, the verifying project in Tadotsu of the coupled vibration of ground and structures, the evaluation of the performance of large vibration tables, the future concept of new locating procedure and so on in the last more than ten years. The technological classification of ground, the technological meaning of active faults, the procedure of the aseismatic design of plants, the difference of earthquake input force according to various locating methods, 12 rules regarding the attenuation of vibration of ground, and the concept of new locating method in the 21st century are explained. As the new locating techniques applicable to central Japan, diluvial ground location, floating location in tunnels, underground location, offshore location and so on must be promoted. (Kako, I.)

  2. Nuclear analytical techniques for nanotoxicology studies

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Zhao, Y.L.; Chai, Z.F.

    2011-01-01

    With the rapid development of nanotechnology and its applications, a wide variety of nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. The potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. It is important to consider the environmental, health and safety aspects at an early stage of nanomaterial development and application in order to more effectively identify and manage potential human and environmental health impacts from nanomaterial exposure. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology. Nuclear analytical techniques (NATs) can play an important role in such studies due to their intrinsic merits such as high sensitivity, good accuracy, high space resolution, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. In this paper, the applications of NATs in nanotoxicological and nano-ecotoxicological studies are outlined, and some recent results obtained in our laboratory are reported. (orig.)

  3. Nuclear Techniques in Agriculture: Status and Applications

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-01-01

    This paper is focused on the role of nuclear techniques and their applications in agriculture science for plant and animal production, and to study the relationships among soil, plant, air, water, nutrients and agricultural pests. For example, carbon isotope discrimination 12 C/ 13 C can be used to select appropriate plant genotypes which are tolerant to drought and salinity stress. Using 15 N to study, symbiotic N 2 fixation, inorganic N dynamics in the soil, plant system, mineralization of organic N in soils, efficient use of chemical and organic N fertilizers and microbial protein production in ruminants. Neutron gauges are used for soil moisture measurements to assess crop water use efficiencies, crops water requirements, and irrigation scheduling for conventional and new methods of irrigation. The use of environmental isotopes ( 18 O, 2 H, 3 H and 14 C) in hydrology; and 137 Cs to study soil erosion. Using 32 P to study the fate of applied P fertilizers (chemical fractionation and availability), their use efficiency and phosphorus metabolism in animals. Ionizing radiation is used to improve the quality and productivity of major crops, to induce mutations, to improve the metabolisable and digestible energy of unconventional feeds and the nutritive value of agricultural residues, and to protect crops against agricultural pests and in food conservation. Radioimmunoassay is used in studies to improve the production and reproductive performance of indigenous small ruminants. (author)

  4. Display of cross sectional anatomy by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hinshaw, W.S.; Andrew, E.R.; Bottomley, P.A.; Holland, G.N.; Moore, W.S.; Worthington, B.S.

    1978-01-01

    High definition cross-sectional images produced by a new nuclear magnetic resonace (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique. (author)

  5. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  6. Nuclear Magnetic Resonance spectroscopy studies of proteins-glycoconjugates interactions

    OpenAIRE

    Marchetti, Roberta

    2013-01-01

    This PhD thesis work has been focused on the analysis of the structural requisites for recognition and binding between proteins and glycoconjugates, essential for the comprehension of mechanisms of paramount importance in chemistry, biology and biomedicine. A large variety of techniques, such as crystallographic analysis, titration microcalorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy, allows the elucidation of molecular recognition events. In the last years...

  7. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  8. Applications of nuclear magnetic resonance spectroscopy to certifiable food colors

    International Nuclear Information System (INIS)

    Marmion, D.M.

    Nuclear magnetic resonance spectroscopy was found suitable for the identification of individual colours, for distinguishing individual colours from colour mixtures, for the identification and semi-quantitative determination of the individual colours in mixtures and for proofs of the adulteration of certified colours adding noncertified colours. The method is well suited for observing the purity of colours and may also be used as the control method in the manufacture of colours and in assessing their stability and their resistance to increased temperature and light. (M.K.)

  9. Nuclear magnetic resonance characterization of apple juice containing enzyme preparations

    International Nuclear Information System (INIS)

    Prestes, Rosilene A.; Almeida, Denise Milleo; Barison, Andersson; Pinheiro, Luis Antonio; Wosiacki, Gilvan

    2012-01-01

    In this work, 1 H nuclear magnetic resonance ( 1 H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym Yieldmash and Ultrazym AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes. (author)

  10. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Wang Chuan; Hao Liang; Zhao Lian-Jie

    2011-01-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed. (general)

  11. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  12. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2018-01-01

    Full Text Available In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable NMR sensors which allow non-destructive and non-invasive investigation in situ. The diversity among cases reported demonstrates that NMR can be extensively applied in the field of cultural heritage.

  13. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  14. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, G. K., E-mail: gks@aps.anl.gov [Argonne National Laboratory (United States); Roehlsberger, R. [Deutsches Elektronen Synchrotron, DESY (Germany)

    2008-02-15

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  15. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon

  16. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)

  17. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial

    International Nuclear Information System (INIS)

    Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.

    2010-01-01

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.

  18. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  19. Application of nuclear resonance scattering for in vivo measurements

    International Nuclear Information System (INIS)

    Wielopolski, L.; Vartsky, D.; Cohn, S.H.

    1983-01-01

    Nuclear resonance scattering is applied in our laboratory to measure hepatic and cardiac iron overload. For iron analysis, a gaseous source of 4 mg MnCl 2 is introduced into an evacuated quartz vial. Following irradiation in a nuclear reactor, 56 Mn decays by beta emission to the 847-keV level of 56 Fe, which subsequently decays to the ground state of 56 Fe with a 7 ps half-life. The principal aim of this work is to evaluate the efficacy of the iron chelation therapy. Serial measurements over a time period of 6 to 12 months of a given patient will enable us to see how the iron is removed from the critical organs

  20. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  2. Development of nuclear magnetic resonance tomography technology - TORM

    International Nuclear Information System (INIS)

    Tannus, A.

    1987-01-01

    The development of hardware and software necessary to implement the Magnetic Resonance Imaging (MRI) techniques is described. The major subjects were the construction of an aquisition and control system which allowed the operation of a pulsed Fourier NMR spectrometer as a NMR Tomograph; further it was oriented the developing of a NMR spectrometer whose parameters could be easily reconfigured by the controlling system. As a result a sofisticated equipment which allows, more than the proposed, working with high resolution spectroscopic techniques and spectroscopy in solids, was obtained. Since the basic techniques employed in NMR and CT Tomographs are well known, a great emphasis was also given on the understanding of the image reconstruction techniques that constitutes today the frontier of research in this area. The results obtained with the system described here are considered good, comparable to the results from commercial units developed in cooperation with imaging groups located in universities abroad. (author) [pt

  3. Study of γ-irradiated lithographic polymers by electron spin resonance and electron nuclear double resonance

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1982-01-01

    The room temperature gamma irradiation degradation of the lithographic polymers, poly(methylmethacrylate) (PMMA), poly(methyl-α-chloroacrylate) (PMCA), poly(methyl-α-fluoroacrylate) (PMFA), and poly(methylacrylonitrile) (PMCN), have been studied by electron spin resonance and electron nuclear double resonance (ENDOR) to assess their molecular degradation processes of relevance to electron beam lithography. Two classes of radicals are found, chain radicals and chain scission radicals. PMMA and PMCA mainly form chain scission radicals consistent with degradation while for PMCN the resolution is poorer, and this is only probable. PMFA forms mainly chain radicals consistent with predominant crosslinking. The total radical yield is greatest in PMCA and PMCN. ENDOR is used to assess the compactness of the radiation degradation region for PMMA and PMCA and hence the potential resolution of the resist; this appears to be about the same for these methacrylate polymers

  4. Nuclear techniques and professional education at InSTEC

    International Nuclear Information System (INIS)

    Díaz Rizo, Oscar; D’Alessandro Rodríguez, Katia; Gelen Rudnikas, Alina; López Pino, Neivy; Borroto Portela, Jorge; Domínguez Catasús, Judith; Abreu Díaz, Aida M.

    2015-01-01

    The paper includes the most relevant results obtained by InSTEC´s Group of Nuclear Applications in the last 25 years, in the development of nuclear techniques and its application in different social areas. The impact of applied research on graduated and post graduated education in nuclear careers as well as the social recognition of the university community are presented. (author)

  5. Nuclear medicine techniques in the assessment of alkaptonuria.

    Science.gov (United States)

    Vinjamuri, Sobhan; Ramesh, Chandakacharla N; Jarvis, Jonathan; Gallagher, Jim A; Ranganath, Lakshminarayana L

    2011-10-01

    Alkaptonuria is a rare autosomal recessive disorder due to a lack of the enzyme homogentisate dioxygenase, leading to ochronosis, a process of accumulation of a melanin-like polymer of homogentisic acid in cartilage and other collagenous structures. Patients develop severe osteoarthropathy that resembles osteoarthritis. Although the diagnosis of alkaptonuria is not particularly challenging in view of the blue-black discolouration of visible connective tissue and the presence of homogentisic acid in urine, the natural history of alkaptonuria remains poorly understood. Patients would benefit immensely from an objective assessment of their disease status and from a clearer understanding of the pathophysiology and associated physical changes. Isotope bone scans, which are commonly used to identify the extent of involvement of bones in cancerous processes, have also been increasingly used for characterizing the extent of arthropathy in conditions such as osteoarthritis and rheumatoid arthritis. Semiquantitative scores based on the extent of involvement of joints have been used to describe the involvement of large joints in the context of symptomatic treatment for osteoarthritis. A similar semiquantitative isotope bone scan score depending on the involvement of the number of large joints in patients with alkaptonuria can be formulated and validated in a suitable cohort of patients. Bone densitometry measurement using dual-energy X-ray absorptiometry scanning is an internationally accepted tool to assess the risk and extent of osteoporosis, and is increasingly used to assess the additional fracture risk in patients with arthropathy. We believe that, currently, nuclear medicine techniques can provide useful information, which can be incorporated into disease severity scores for alkaptonuria. Once the biological basis for alkaptonuria is better understood, it is feasible that nuclear medicine techniques of even greater sensitivity and specificity can be developed, thereby

  6. Contribution of nuclear techniques towards a sustainable agriculture

    International Nuclear Information System (INIS)

    Muniz Ugarte, O.

    1997-01-01

    The papers mentions the main nuclear techniques applied in order to achieve a sustainable agriculture, the technical support given to Cuba by the IAEA mainly in training and in the creation of a infrastructure (Laboratories) to enable the application of nuclear techniques to agricultural research related to soil fertility, plant nutrition and water usage

  7. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  8. The isoscalar giant dipole resonance and nuclear incompressibility

    International Nuclear Information System (INIS)

    Garg, U.

    2000-01-01

    Complete text of publication follows. The current status of the experimental work on the ISOSCALAR giant dipole resonance (ISGDR) will be reviewed. ISGDR is an exotic mode of collective nuclear vibration and can be described as a hydrodynamical density oscillation in which the volume of the nucleus remains constant and the state can be visualized in the form of a compression wave-analogous to a sound wave-oscillating back and forth through the nucleus. [1] Convincing evidence for the ISGDR has now been obtained in inelastic α-scattering measurements at 200 MeV (IUCF) [2], 240 MeV (Texas A and M) [3] and 400 MeV (RCNP, Osaka) [4]. In all nuclei studied so far, the ISGDR strength is observed to be spread over a rather wide excitation-energy range (up to ∼ 15 MeV). The excitation energy of the ISGDR is related to the nuclear incompressibility, K ∞ . The ISGDR results so far point to a value for K ∞ that is ∼ 30-40% lower than the obtained from the energies of the other compressional mode, the giant monopole resonance. Results from recent theoretical attempts to reconcile this difference will be presented. This work has been supported in part by the U.S. National Science Foundation. (author)

  9. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  10. Proton nuclear magnetic resonance spectroscopy of plasma lipoproteins in malignancy

    International Nuclear Information System (INIS)

    Nabholtz, J.M.; Rossignol, A.; Farnier, M.; Gambert, P.; Tremeaux, J.C.; Friedman, S.; Guerrin, J.

    1988-01-01

    A recent study described a method of detecting malignant tumors by water-supressed proton nuclear magnetic resonance (1 H NMR) study of plasma. We performed a similar study of the W 1/2, a mean of the full width at half height of the resonances of the methyl and methylene groups of the lipids of plasma lipoproteins which is inversely related to the spin-spin apparent relaxation time (T 2 * ). W 1/2 values were measured at a fixed baseline width of 310 Hz. The study was prospective and blinded and comprised 182 subjects consisting of 40 controls, 68 patients with untreated malignancies, 45 with malignant tumors undergoing therapy and 29 benign tumor patients. No differences were seen between any groups that could serve as a basis for a useful clinical test. The major difficulty in the determination of W 1/2 was due to interference of metabolite protons (particularly lactate) within the lipoprotein resonance signal. Triglyceride level was seen to correlate inversely with W 1/2 within malignant patient groups. These discrepant results may be related to differing triglyceride-rich very low density lipoprotein (VLDL) levels in the ;atient populations of each study. We conclude that the water-suppressed 1H NMR of plasma lipoproteins is not a valid measurement for assessing malignancy. (orig.)

  11. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    The subject is covered in chapters, entitled: nature of isotopes and radiation; nuclear reactions; working with radioisotopes; detection systems and instrumentation; radioassay; radioisotopes and tracer principles; stable isotopes as tracers - mainly the use of 15 N; activation analysis for biological samples; x-ray fluorescence spectrography for plants and soils; autoradiography; isotopes in soils studies; isotopic tracers in field experimentation; nuclear techniques in plant science; nuclear techniques for soil water; radiation and other induced mutation in plant breeding. (author)

  12. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    A scientific textbook concerning the use of nuclear techniques in agricultural and biological studies has been written. In the early chapters, basic radiation physics principles are described including the nature of isotopes and radiation, nuclear reactions, working with radioisotopes, detection systems and instrumentation, radioassay and tracer techniques. The remaining chapters describe the applications of various nuclear techniques including activation analysis for biological samples, X-ray fluorescence spectrography for plants and soils, autoradiography, isotopes in soils studies, isotopic tracers in field experimentation, nuclear techniques in plant function and soil water studies and radiation-induced mutations in plant breeding. The principles and methods of these nuclear techniques are described in a straightforward manner together with details of many possible agricultural and biological studies which students could perform. (U.K.)

  13. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  14. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M., E-mail: lacognata@lns.infn.it [Laboratori Nazionali del Sud - INFN, Catania (Italy); Kiss, G. G. [ATOMKI, Debrecen (Hungary); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A& M University, College Station, Texas (United States); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Trippella, O. [Sezione di Perugia - INFN, Perugia (Italy)

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  15. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...... solutions of the same ionic strength. Saturation with a solution that contained divalent ions caused a major shift on the distribution of the relaxation time. The changes were probably due to precipitats forming extra internal surface in the sample. Sonic velocities were relatively low in the MgCl2 solution...

  17. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  18. An interferometric complementarity experiment in a bulk nuclear magnetic resonance ensemble

    International Nuclear Information System (INIS)

    Peng Xinhua; Zhu Xiwen; Fang Ximing; Feng Mang; Liu Maili; Gao Kelin

    2003-01-01

    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability D quantifying the amount of which-way (WW) information to the fringe visibility V characterizing the wave feature of a quantum entity, in a bulk ensemble by nuclear magnetic resonance (NMR) techniques. We are primarily concerned about the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of D by an alternative geometric strategy and investigate the relation between D and entanglement. By measuring D and V independently, it turns out that the duality relation D 2 + V 2 = 1 holds for pure quantum states of the markers

  19. Nuclear magnetic resonance zeugmatographic imaging of the heart: application to the study of ventricular septal defect

    International Nuclear Information System (INIS)

    Heneghan, M.A.; Biancaniello, T.M.; Heidel, E.; Peterson, S.B.; Marsh, M.J.; Lauterbur, P.C.

    1982-01-01

    The present work was undertaken to determine the applicability of nuclear magnetic resonance (NMR) imaging to the study of congenital heart disease. Three-dimensional proton density images of preserved lamb hearts with and without an artificially created ventricular septal defect were reconstructed and displayed in multiple planes. Sections obtained in the sagittal plane through the ventricular septum clearly showed the size, shape, and location of the defect. Results of these experiments suggest that NMR zeugmatography will become a valuable addition to existing imaging techniques for the study of congenital heart disease

  20. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  1. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  2. Nuclear Resonance Fluorescence off 54Cr: The Onset of the Pygmy Dipole Resonance

    Science.gov (United States)

    Ries, P. C.; Beck, T.; Beller, J.; Krishichayan; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pai, H.; Pietralla, N.; Romig, C.; Savran, D.; Schilling, M.; Tornow, W.; Werner, V.; Zweidinger, M.

    2016-06-01

    Low-lying electric and magnetic dipole excitations (E1 and M1) below the neutron separation threshold, particularly the Pygmy Dipole Resonance (PDR), have drawn considerable attention in the last years. So far, mostly moderately heavy nuclei in the mass regions around A = 90 and A = 140 were examined with respect to the PDR. In the present work, the systematics of the PDR have been extended by measuring excitation strengths and parity quantum numbers of J = 1 states in lighter nuclei near A = 50 in order to gather information on the onset of the PDR. The nuclei 50,52,54Cr and 48,50Ti were examined via bremsstrahlung produced at the DArmstadt Superconducting electron Linear Accelerator (S-DALINAC) with photon energies up to 9.7 MeV with the method of nuclear resonance fluorescence. Numerous excited states were observed, many of which for the first time. The parity quantum numbers of these states have been determined at the High Intensity Gamma-ray Source (HIγS) of the Triangle Universities Nuclear Laboratory in Durham, NC, USA. Informations to the methods and the experimental setups will be provided and the results on 54Cr achieved will be discussed with respect to the onset of the PDR.

  3. Nuclear Fusion Rate Study of a Muonic Molecule via Nuclear Threshold Resonances

    Science.gov (United States)

    Faghihi, F.; Eskandari, M. R.

    This work follows our previous calculations of the ground state binding energy, size, and the effective nuclear charge of the muonic T3 molecule, using the Born-Oppenheimer adiabatic approximation. In our past articles, we showed that the system possesses two minimum positions, the first one at the muonic distance and the second at the atomic distance. Also, the symmetric planner vibrational model assumed between the two minima and the approximated potential were calculated. Following from the previous studies, we now calculate the fusion rate of the T3 muonic molecule according to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions.

  4. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  5. An absolute nuclear magnetic resonance magnetometer; Magnetometre absolu a resonance magnetique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, A [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-10-15

    After an introduction in which the various work undertaken since the discovery of nuclear magnetic resonance is rapidly reviewed, the author describes briefly In the first chapter three types of NMR magnetometers, giving the advantages and disadvantages of each of them and deducing from this the design of the apparatus having the greatest number of qualities Chapter II is devoted to the crossed coil nuclear oscillator which operates continuously over a wide range (800 gamma). To avoid an error due to a carrying over the frequency, the measurement is carried out using bands of 1000 {gamma}. Chapter III deals with frequency measurements. The author describes an original arrangement which makes possible the frequency-field conversion with an accuracy of {+-} 5 x 10{sup -6}, and the differential measurement between two nuclear oscillators. The report finishes with a conclusion and a few recordings. (author) [French] Apres une introduction rappelant les divers travaux effectues en resonance magnetique nucleaire depuis sa mise en evidence, l'auteur decrit sommairement dans le premier chapitre trois types de magnetometre a R.M.N. enumerant les avantages et les inconvenients de chacun a partir desquels il projet, l'appareillage reunissant le maximum de qualites. Le chapitre II est consacre a l'oscillateur nucleaire a bobines croisees permettant un fonctionnement continu dons une large plage (800 gamma). Pour eviter une erreur due a l'entrainement de frequence, la mesure s'effectue par bandes de 1000 {gamma} chacune. Le chapitre III traite la mesure de frequence. L'auteur expose un montage original permettant la traduction frequence-champ avec une precision egale a {+-} 5.10{sup -6}, et la mesure differentielle entre deux oscillateurs nucleaires. Une conclusion et quelques enregistrements terminent ce travail. (auteur)

  6. Online monitoring of biofouling using coaxial stub resonator technique

    NARCIS (Netherlands)

    Hoog-Antonyuk, N.A.; Mayer, M.J.J.; Miedema, H.; Olthuis, Wouter; Tomaszweska, A.A.; Paulitsch-Fuchs, A.H.; van den Berg, Albert

    Here we demonstrate the proof-of-principle that a coaxial stub resonator can be used to detect early stages of biofilm formation. After promising field tests using a stub resonator with a stainless steel inner conductor as sensitive element, the sensitivity of the system was improved by using a

  7. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  8. Dictionary of nuclear sciences and techniques

    International Nuclear Information System (INIS)

    Bigot, B.; Santarini, G.

    2008-01-01

    This reference book has been totally reworked in its fourth edition, in order to answer the needs of the numerous sectors of activity concerned by nuclear sciences and technologies: radiation protection, cancerology, neurology and pharmacology in the medical sector, power generation and more generally energy production, micro-electronics, quality control and on-line analysis in many industrial sectors, patrimony preservation, food safety, environmental and paleo-climate studies in relation with climate prospective, etc. This complete overview of the nuclear world integrates the regulatory aspects, necessary to shade light on it, and many other technological innovations. Elaborated with harmonization, clarification and exhaustiveness concerns, this dictionary is the result of a large consensus among the French-speaking nuclear community. It includes some 4800 entries with more than 250 color illustrations and an English-French glossary. Its aim is to offer to everyone a precise vocabulary, fully shared by everybody and necessary for exchanges and debates clarity. (J.S.)

  9. Nuclear analysis techniques as a component of thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, J.R.; Hutton, J.T.; Habermehl, M.A. [Adelaide Univ., SA (Australia); Van Moort, J. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    In luminescence dating, an age is found by first measuring dose accumulated since the event being dated, then dividing by the annual dose rate. Analyses of minor and trace elements performed by nuclear techniques have long formed an essential component of dating. Results from some Australian sites are reported to illustrate the application of nuclear techniques of analysis in this context. In particular, a variety of methods for finding dose rates are compared, an example of a site where radioactive disequilibrium is significant and a brief summary is given of a problem which was not resolved by nuclear techniques. 5 refs., 2 tabs.

  10. Nuclear analysis techniques as a component of thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, J R; Hutton, J T; Habermehl, M A [Adelaide Univ., SA (Australia); Van Moort, J [Tasmania Univ., Sandy Bay, TAS (Australia)

    1997-12-31

    In luminescence dating, an age is found by first measuring dose accumulated since the event being dated, then dividing by the annual dose rate. Analyses of minor and trace elements performed by nuclear techniques have long formed an essential component of dating. Results from some Australian sites are reported to illustrate the application of nuclear techniques of analysis in this context. In particular, a variety of methods for finding dose rates are compared, an example of a site where radioactive disequilibrium is significant and a brief summary is given of a problem which was not resolved by nuclear techniques. 5 refs., 2 tabs.

  11. 10th Australian conference on nuclear techniques of analysis. Proceedings

    International Nuclear Information System (INIS)

    1998-01-01

    These proceedings contains abstracts and extended abstracts of 80 lectures and posters presented at the 10th Australian conference on nuclear techniques of analysis hosted by the Australian National University in Canberra, Australia from 24-26 of November 1997. The conference was divided into sessions on the following topics : ion beam analysis and its applications; surface science; novel nuclear techniques of analysis, characterization of thin films, electronic and optoelectronic material formed by ion implantation, nanometre science and technology, plasma science and technology. A special session was dedicated to new nuclear techniques of analysis, future trends and developments. Separate abstracts were prepared for the individual presentation included in this volume

  12. 10th Australian conference on nuclear techniques of analysis. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    These proceedings contains abstracts and extended abstracts of 80 lectures and posters presented at the 10th Australian conference on nuclear techniques of analysis hosted by the Australian National University in Canberra, Australia from 24-26 of November 1997. The conference was divided into sessions on the following topics : ion beam analysis and its applications; surface science; novel nuclear techniques of analysis, characterization of thin films, electronic and optoelectronic material formed by ion implantation, nanometre science and technology, plasma science and technology. A special session was dedicated to new nuclear techniques of analysis, future trends and developments. Separate abstracts were prepared for the individual presentation included in this volume.

  13. Programmable quantum-state discriminator by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Gopinath, T.; Das, Ranabir; Kumar, Anil

    2005-01-01

    A programmable quantum-state discriminator is implemented by using nuclear magnetic resonance. We use a two-qubit spin-1/2 system, one for the data qubit and one for the ancilla (program) qubit. This device does the unambiguous (error-free) discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and elliptically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla qubit. It is also shown that the probability of discrimination depends on the angle of the unitary operator of the protocol and ellipticity of the data qubit state

  14. Nuclear magnetic resonance tomography of the cervical canal

    Energy Technology Data Exchange (ETDEWEB)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-12-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla.

  15. Nuclear magnetic resonance tomography of the cervical canal

    International Nuclear Information System (INIS)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-01-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla. (orig.) [de

  16. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  17. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  18. Conveyor belt weigher using a nuclear technique

    International Nuclear Information System (INIS)

    Magal, B.S.

    1976-01-01

    Principles of operation of different types of continuous conveyor belt weighing machines developed for use in factories for bulk weighing of material on conveyor belts without interupting the material flow, are briefly mentioned. The design of nuclear weighing scale making use of the radiation absorption property of the material used is described in detail. The radiation source, choice of the source, detector and geometry of such a weighing scale are discussed. The nucleonic belt weigher is compared with the gravimetric belt weigher system. The advantages of the nuclear system are pointed out. The assembly drawing of the electronics, calibration procedure and performance evaluation are given. (A.K.)

  19. Quantitative magnetic resonance techniques in the evaluation of intracranial tuberculomas

    International Nuclear Information System (INIS)

    Vasudev, M.K.; Jayakumar, P.N.; Srikanth, S.G.; Nagarajan, K.; Mohanty, A.

    2007-01-01

    Purpose: To evaluate intracranial tuberculomas using quantitative magnetic resonance (MR) techniques such as T2 relaxometry, magnetization transfer (MT), and diffusion-weighted imaging (DWI). Material and Methods: Thirty-three patients with intracranial tuberculomas (histologically confirmed in 22) were evaluated using proton density/T2-weighted, T1-weighted (with and without MT), and echo-planar diffusion-weighted imaging sequences. T2 relaxation times, MT ratios (MTR), and apparent diffusion coefficient (ADC) values were calculated from the center of the lesion, the periphery, perilesional edema, and contralateral normal white matter. The mean and standard deviation values of each variable were calculated and correlated using Pearson's test (P = 0.05). Results: The measured mean values of T2 relaxation time, MTR, and ADC in the center of lesions were 155.5 ms, 14.1, and 1.27x10-3 mm 2 /s, respectively, compared to 117 ms, 23.72, and 0.74x10-3 mm 2 /s in normal white matter, and a T2 relaxation time of 187.45 ms in normal gray matter. Significant inverse correlations were noted between T2 relaxation values and MTR (P<0.001) and between MTR and ADC (P = 0.046). Significant positive correlation was seen between T2 relaxation and ADC values (P = 0.03). Conclusion: Intracranial tuberculomas are characterized by relatively short T2 relaxation times (compared to normal gray matter), decreased MTR, and mostly no restriction of diffusion. A combination of these quantitative parameters could be of help in the noninvasive diagnosis of tuberculomas

  20. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  1. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  2. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  3. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  4. Indirect techniques in nuclear astrophysics: a review.

    Science.gov (United States)

    Tribble, R E; Bertulani, C A; Cognata, M La; Mukhamedzhanov, A M; Spitaleri, C

    2014-10-01

    In this review, we discuss the present status of three indirect techniques that are used to determine reaction rates for stellar burning processes, asymptotic normalization coefficients, the Trojan Horse method and Coulomb dissociation. A comprehensive review of the theory behind each of these techniques is presented. This is followed by an overview of the experiments that have been carried out using these indirect approaches.

  5. Method and apparatus for imaging substances in biological samples by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Shaw, D.

    1984-01-01

    A method of determining the distribution of non-proton nuclei having a magnetic moment in a biological sample is described. It comprises subjecting the sample to a magnetic field, irradiating the sample with RF radiation at a proton magnetic resonance frequency and deriving a first NMR signal, indicative of electromagnetic absorption of the sample at the proton magnetic resonance frequency. A second such NMR signal at the proton resonance frequency is then derived from the sample in the presence of RF radiation at the nuclear magnetic resonance frequency of the non-proton nuclei so as to decouple protons in the sample from the non-proton nuclei. By applying an imaging technique, an image indicative of the spatial variation of the difference between the first and second signals can be produced. Imaging may be performed on the difference between the two NMR signals, or on each NMR signal followed by subtraction of the images. The method can be used to trace how a 13 C-labelled material introduced into a patient, and its breakdown products, become distributed. (author)

  6. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  7. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  8. Use of the image by nuclear magnetic resonance (nucleography) in obstetrical aspects. Part 1. Emprego da imagem por ressonancia magnetica nuclear (nucleografia) em obstetricia. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Lacreta, O [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1987-09-01

    Nuclear magnetic resonance (nucleography) is a new method to study human body. In this paper the physical principles on nuclear magnetic resonance and its applications to the pregnant women are presented. (author).

  9. Technique for simultaneous adjustment of large nuclear data libraries

    International Nuclear Information System (INIS)

    Harris, D.R.; Wilson, W.B.

    1975-01-01

    Adjustment of the nuclear data base to agree with integral observations in design work has been limited in part by problems in the required inversion of matrices. It is shown that this inversion problem can be circumvented and arbitrarily large nuclear data libraries can be adjusted simultaneously when the basic data are uncorrelated. The technique is illustrated by adjusting nuclear data to integral observations made on fast reactor benchmark critical assemblies. 3 tables

  10. Pygmy quadrupole resonance as a manifestation of the nuclear skin

    Energy Technology Data Exchange (ETDEWEB)

    Tsoneva, Nadia [Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2016-07-01

    Recently, a new mode of nuclear excitation called pygmy quadrupole resonance (PQR) was theoretically predicted in the framework of energy-density functional (EDF) theory plus three-phonon quasiparticle-phonon model (QPM) in Sn isotopic chain. It is closely connected with higher order multipole vibrations of nuclear skin induced by the action of the electromagnetic and hadronic external fields. The predictions initiated new experiments using ({sup 17}O,{sup 17}O{sup '}γ), (α,α{sup '}γ) and (γ,γ{sup '}) reactions which were carried out in {sup 124}Sn nucleus. The aim was to probe for the first time experimentally, the possibility of existence of PQR. The detailed analysis of the obtained experimental results in comparison with the EDF+QPM theory indicates clearly the presence of a multitude of discrete low-energy 2{sup +} excitations of neutron type which can be addressed to PQR mode. The independent measurements of B(E2) values with different probes and the theory allow to identify the dominant isoscalar character of these states. Furthermore, newly determined γ-decay branching ratios exclude a statistical origin of the PQR strength. The latter are important to discriminate between PQR and multiphonon excitations.

  11. Nuclear magnetic resonance method and apparatus for reducing motion artifacts

    International Nuclear Information System (INIS)

    Bailes, D.R.

    1988-01-01

    A nuclear magnetic resonance apparatus for imaging a region of a body in which part of the region is moving with a motion such that its displacement with respect to time is a nonmonotonic function during a time period over which a plurality of NMR data signals, which together define an image, are collected. The apparatus is described comprising: excitation means arranged to excite nuclear magnetic spins preferentially in the region; encoding means arranged to encode the magnetic spins; data collection means arranged to collect data signals representative of encoded magnetic spins; display means responsive to collected data signals to display an image of the region; measuring means arranged to produce an output indicative of the displacement of the moving part of the region; and control means for controlling the encoding means during the time period in dependence on the output of the measuring means so that data signals collected during the time period are collected in an order dependent on the motion such that motion artifacts are reduced

  12. The single chip microcomputer technique in an intelligent nuclear instrument

    International Nuclear Information System (INIS)

    Wang Tieliu; Sun Punan; Wang Ying

    1995-01-01

    The authors present that how to acquire and process the output signals from the nuclear detector adopting single chip microcomputer technique, including working principles and the designing method of the computer's software and hardware in the single chip microcomputer instrument

  13. Robust control technique for nuclear power plants

    International Nuclear Information System (INIS)

    Murphy, G.V.; Bailey, J.M.

    1989-03-01

    This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs

  14. 8. Nuclear magnetic resonance users meeting; 1. Luso-Brazilian NMR meeting. Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The NMR Users Meeting is held every year in Brazil and its eighth edition took place from May 7 - 11, 2001 together with the first Luso-Brazilian Meeting on Nuclear Magnetic Resonance. The extended abstracts book comprise: ten major conferences, four plenary lectures delivered by enterprise representatives (three from USA and one from Germany), six talks about the state-of-the-art of NMR methods (especially bi and tri-dimensional new techniques) and summaries of results from one hundred and twenty four research works. Among these research results which have been discussed, one hundred and sixteen were presented as congress panels/posters and eight as oral communications. The major topics of the scientific and technological research works are thus distributed: 63% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 19% in materials science (including petroleum), 8% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 8% about theoretical aspects related to nuclear magnetic resonance and 2% regarding improvements in NMR instrumental techniques

  15. Program of nuclear techniques application (triennial 88-89-90)

    International Nuclear Information System (INIS)

    1988-01-01

    A real analysis of the potentiality and the possibility from Nuclear Energetic Research Institute (IPEN) Sao Paulo, Brazil in realize the researches and developments for offering specialized services of nuclear techniques for using in bioengineering, industry, isotope production, IEA-R1 reactor irradiation and radiation detectors and sensors are described. (author)

  16. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  17. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  18. Industrial applications of nuclear techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1981-01-01

    Application of radioisotope techniques in a number of Polish industries was reviewed. Studies on the usage of radiotracer as an evaluation method for technological processes were carried out and the advantages of such application were discussed

  19. Indirect techniques in nuclear astrophysics: a review

    International Nuclear Information System (INIS)

    Tribble, R E; Mukhamedzhanov, A M; Bertulani, C A; Cognata, M La; Spitaleri, C

    2014-01-01

    In this review, we discuss the present status of three indirect techniques that are used to determine reaction rates for stellar burning processes, asymptotic normalization coefficients, the Trojan Horse method and Coulomb dissociation. A comprehensive review of the theory behind each of these techniques is presented. This is followed by an overview of the experiments that have been carried out using these indirect approaches. (review article)

  20. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  1. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  2. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  3. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Wendy [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Ren, Lei, E-mail: lei.ren@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Cai, Jing [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Zhang, You [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Chang, Zheng; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-06-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  4. Carbon and deuterium nuclear magnetic resonance in solids

    Energy Technology Data Exchange (ETDEWEB)

    Shattuck, Thomas Wayne [Univ. of California, Berkeley, CA (United States)

    1976-07-01

    In Chapter I we present the results on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13, spins. These dynamics are an important consideration in the efficiency of proton enhancement double-resonance techniques and they also provide good experimental models for statistical theories of cross relaxation. In order to test these theories we present a comparison of the experimental and theoretical proton dipolar fluctuation correlation time τc, which is experimentally 110 ± 15 μsec and theoretically 122 μsec for adamantane. These double resonance considerations provide the background for extensions to deuterium and double quantum effects discussed in Chapter II. In Chapter II an approach to high resolution nmr of deuterium in solids is described. The m = 1 → -1 transition is excited by a double quantum process and the decay of coherence Q(τ) is monitored. Fourier transformation yields a deuterium spectrum devoid of quadrupole splittings and broadening. If the deuterium nuclei are dilute and the protons are spin decoupled, the double-quantum spectrum is a high resolution one and yields information on the deuterium chemical shifts Δω. The relationship Q(τ) ~ cos 2Δωτ is checked and the technique is applied to a single crystal of oxalic acid dihydrate enriched to ~ 10% in deuterium. The carboxyl and the water deuterium shifts are indeed resolved and the anisotropy of the carboxyl shielding tensor is estimated to be Δσ = 32 ± 3 ppm. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described. The m = 1 → -1 double quantum transition and the m = ± 1 → 0 single quantum transitions may all be polarized and we present the derivation of the Hartmann-Hahn cross polarization conditions for each case. In addition the dynamics of the double quantum process

  5. Recent advances in nuclear techniques for environmental radioactivity monitoring

    International Nuclear Information System (INIS)

    Kumar, Ajay; Tripathi, R.M.

    2016-01-01

    The environmental radioactivity monitoring was first started in the late 1950s following the global fallout from testing of nuclear weapons in the atmosphere. Nuclear analytical techniques are generally classified into two categories: destructive and non-destructive. Destructive techniques are carried out through several analytical methods such as α-spectrometry, liquid Scintillation counting system, solid state nuclear track detector, spectrophotometry, fluorimetry, atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), chromatography techniques, electro-analytical techniques etc. However, nondestructive methods include gamma spectrometry, X-Ray fluorescence (XRF) spectrometry, neutron activation analysis (NAA) etc. The development of radiochemical methods and measurement techniques using alpha and gamma spectrometry have been described in brief

  6. Nuclear techniques and the fight against pollution

    International Nuclear Information System (INIS)

    1970-01-01

    The picturesque city of Salzburg was the scene of an important symposium, called to discuss one of the most pressing problems of our civilization - environmental pollution. Industrialization and urbanization, prerequisites of modern life, have a reverse side: contamination of water resources, atmospheric deterioration, soils poisoned by industrial toxicants. Pollutants are dispersed every day, threatening the health of man, endangering other forms of life, and jeopardizing the equilibrium of the biosphere in the long-term. What can be done to solve the problems which have already been created? In particular, what can nuclear science contribute to diagnosis and therapy? (author)

  7. Proceedings of the nuclear magnetic resonance user meeting. Anais do Encontro de Usuarios de Ressonancia Magnetica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.).

  8. Innovative financing techniques for nuclear power exports

    International Nuclear Information System (INIS)

    Mercaldo, E.L.

    1983-06-01

    The author makes general comments regarding the possible conflict between project risks, sponsors' ability to assume these risks, and the requirements and objectives of all project benficiaries: sponsors, lenders, consumers and government. To reconcile these conflicts there is an increasing use of project finance techniques to finance large capital projects

  9. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    Science.gov (United States)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  10. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Amezcua, Carlos A; Szabo, Christina M

    2013-06-01

    In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. [2010. J Pharm Sci 99(8):3334-3342], three nonglycosylated proteins spanning a molecular weight range of 6.5-67 kDa were analyzed. A simple statistical method termed easy comparability of HOS by NMR (ECHOS-NMR) was developed. In this method, HOS similarity between two samples is measured via the correlation coefficient derived from linear regression analysis of binned NMR spectra. Applications of this method include HOS comparability assessment during new product development, manufacturing process changes, supplier changes, next-generation products, and the development of biosimilars to name just a few. We foresee ECHOS-NMR becoming a routine technique applied to comparability exercises used to complement data from other analytical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  11. Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effects of paramagnetic proton signal enhancement

    International Nuclear Information System (INIS)

    Brady, T.J.; Goldman, M.R.; Pykett, I.L.; Buonanno, F.S.; Kistler, J.P.; Newhouse, J.H.; Burt, C.T.; Hinshaw, W.S.; Pohost, G.M.

    1982-01-01

    In a study to evaluate the potential of proton nuclear magnetic resonance (NMR) imaging with and without manganese contrast enhancement for detecting acute myocardial infarction, 12 dogs underwent 90-minute occlusion of the left circumflex coronary artery. Transverse-section NMR images of the excised, nonbeating heart were obtained at 1-cm intervals using the steady-state-free-precession (SSFP) technique. All NMR images revealed detailed structure of the heart. The three hearts without manganese showed no difference in intensity between the normal and the ischemic posterior regions, whereas those with manganese demonstrated a clearly demarcated zone of reduced signal intensity consistent with the ischemic zone. It is concluded that high-resolution tomograms of the excised canine myocardium can be obtained using proton NMR imaging. With the SSFP imaging technique, proton signal enhancement with manganese infusion is necessary to differentiate between ischemic and nonischemic myocardium after 90 minutes of coronary occlusion

  12. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Clifford N. [Univ. of California, Irvine, CA (United States)

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass MΔAfor production of the Δ(1232) resonance by neutrino, with the result MΔA = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q2. I proceed by varying the value of MΔA in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  13. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Colvin, M; Krishnan, V V

    2003-01-01

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  14. Tools and methods for teaching magnetic resonance concepts and techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    2012-01-01

    Teaching of MRI methodology can be challenging for teachers as well as students. To support student learning, two graphical simulators for exploration of basic magnetic resonance principles are here introduced. The first implements a simple compass needle analogy implemented for day one of NMR...... and MRI education. After a few minutes of use, any user with minimal experience of magnetism will be able to explain the basic magnetic resonance principle. A second piece of software, the Bloch Simulator, aims much further, as it can be used to demonstrate and explore a wide range of phenomena including...

  15. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Sernicki, J.

    2005-01-01

    Full text:Research activities in our Department in the last year were focused on traditional domains of nuclear physics: heavy-ion reactions and nuclear spectroscopy, but also on medium-energy elementary particle physics, neutrino physics, as well as atomic physics. Along with the group of nuclear and atomic physicists, our Department encompasses a team working on medical physics and another team engaged in ecology and environmental physics. We maintain our collaboration with FZ Juelich (Germany) continuing experiments on the COSY storage ring, aimed at studying heavy hyperons produced in pp collisions. Recently, evidence for a new hyperon has been obtained. At PSI Villigen (Switzerland) rare pion- and muon decays have been studied using the large PIBETA detector. The branching ratio for the pion beta decay was measured with six times better accuracy than previously. From the precise measurements of the radiative pion decay the pion axial form factor was evaluated (four times more precisely). Some anomaly, which can not be explained by the Standard Model, was observed in this process. In the field of neutrino physics, data collected with the T600 module of the cosmic ray detector ICARUS in Pavia (Italy) have been analysed. In collaboration with the Department of Nuclear Theory, conditions to observe the fascinating process of neutrino-less double electron capture were further examined from the point of view of the fundamental question of the neutrino nature and mass. Our involvement in the CHIMERA/ISOSPIN Collaboration resulted in interesting studies of semi-peripheral nucleus-nucleus collisions at the Fermi energy range. In particular, a new method of determination of the time scale of the emission of intermediate mass fragments was developed. We continued the collaboration with LBNL Berkeley (USA) and IEP Warsaw University on a theoretical model of the synthesis of super-heavy elements. A comprehensive description of the model with extensive predictions of the

  16. Methods and techniques of nuclear in-core fuel management

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-04-01

    Review of methods of nuclear in-core fuel management (the minimal critical mass problem, minimal power peaking) and calculational techniques: reactorphysical calculations (point reactivity models, continuous refueling, empirical methods, depletion perturbation theory, nodal computer programs); optimization techniques (stochastic search, linear programming, heuristic parameter optimization). (orig./HP)

  17. Correlation techniques in nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Bastl, W.

    1976-01-01

    Ever increasing effects are recently being made to monitor the mechanical behaviour of the nuclear power plants during operation. For technical as well as economical reasons one is forced to make do with the smallest number of sensors. In order to still obtain efficient control systems, an attempt is made on the one hand to make use of the already existing operational instrumentation, on the other hand to obtain a maximum of information by specific use of few additional sensors. In both cases, correlation analysis plays a large role because an optimum positioning of the sensor is seldom possible and thus, as a rule, the interesting information must be separated from very noisy signals. (orig./LH) [de

  18. Department of Nuclear Spectroscopy and Technique: Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    2000-01-01

    Full text: Research activities of the Department in 1999 were concentrated on medium and low energy nuclear physics, atomic physics of the exotic bare or single electron atoms and on selected applications of nuclear physics. Experiments in the medium energy physics are carried out using large facilities: ANKE in KFA Juelich (Germany) and SINDRUM 2 at PSI Villigen (Switzerland). In the low energy our physicists continue collaboration with Heavy Ion Laboratory of Warsaw University, and large international gamma multidetector facilities like GAMMASPHERE. The heavy ion beams of GSI in Darmstadt (Germany) and PSI are used for studies of atomic effects. Our C-30 proton cyclotron delivers beam to study modification of optical properties of laser crystals and our low background gamma detection facility is used to measure radioactive contamination of the environment. The theoretical work is devoted to study the fusion of the heavy nuclei with the particular interest in production of new isotopes with very small probabilities. The reader is invited to find some of our recent results on the next pages, together with a list of papers published this year. Nevertheless it is worthwhile to emphasize: Observation of helium like hole states in the ionized high Z atoms; Tests of the Langevin Dynamics of Nucleus-Nucleus Collisions; Study of Radiative Electron Capture into bare U ions; First lifetime measurements using the DSAM method on Warsaw Cyclotron; Optimisation of the electron beam flue gas purification using the genetic controller. Some of us are also involved in teaching and in supervision of students and graduate students. Financial support received from the State Committee for Scientific Research and Maria Sklodowska-Curie Polish-American Foundation is acknowledged. (author)

  19. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  20. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  1. Application of nuclear magnetic resonance in osteoporosis evaluation; Aplicacoes de ressonancia magnetica nuclear na avaliacao de osteoporose

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Montrazi, Elton T.; Bonagamba, Tito J., E-mail: elton.montrazi@gmail.com, E-mail: tito@ifsc.usp.br [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Cesar, Reinaldo, E-mail: reinaldofisica@gmail.com [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2013-07-01

    In this work, initially ceramic samples of known porosity were used. These ceramic samples were saturated with water. The nuclear magnetic resonance signal due to relaxation processes that the hydrogen nucleus water contained in the pores of this ceramic material was measured. Then these samples were subjected to a process of drying and measures successively. As the water contained in pores greater evaporates the intensity of signal decreases and shows the sign because of the smaller pores. The analysis of this drying process gives a qualitative assessment of the pore size of the material. In a second step, bones of animals of unknown porosity underwent the same methodology for evaluating osteoporosis. Also a sample of human vertebra in a unique manner, with the same purpose was measured. Combined with other techniques is a quantitative evaluation of the possible porosity.

  2. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  3. Nuclear and related techniques in parasitology

    International Nuclear Information System (INIS)

    Hayunga, E.G.; Stek, M. Jr.

    1986-05-01

    The course, entitled ''Atomic Energy Applications in Parasitology'', was offered by the Uniformed Services University of the Health Sciences, Bethesda, USA, during the summer of 1983. The course began with an exhaustive introduction to radiation physics, then encompassed a variety of practical applications including irradiation attenuation, radioisotope labeling, tracer techniques and radioimmunoassays. This laboratory manual was written by the faculty in an attempt to document the learning experience of the training course and to provide a detailed description of state-of-the-art technology, methods and procedures with up-to-date-references. A separate abstract was prepared for each of the 25 chapters in this manual

  4. Bipolar programmable current supply for superconducting nuclear magnetic resonance magnets

    Science.gov (United States)

    Koivuniemi, Jaakko; Luusalo, Reeta; Hakonen, Pertti

    1998-09-01

    In high resolution continuous-wave nuclear magnetic resonance (NMR) work well-reproducible, linear sweeps of current are needed. We have developed a microcontroller based programmable current supply, tested with superconducting magnets with inductance of 10 mH and 10 H. We achieved a resolution and noise of 4 ppm. The supply has an internal sweep with programmable ramping rate and a possibility for remote operation from a computer with either GPIB or RS232 interface. It is based on an 18-bit D/A converter. The maximum output current is ±10 A, the sweep rate can be set between 1 μA/s-140 mA/s, and the maximum output voltage is ±2.5 V. In work at ultralow temperatures, especially in superconducting quantum interference device NMR, all rf interference to the experiment should be avoided. One of the sources of this kind of unwanted input is the digital switching noise of fast logic devices. We discuss this problem in the context of our design.

  5. Characterization of Canadian coals by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ripmeester, J.

    1983-06-01

    Apparent aromaticities of a series of Canadian coals of different rank were estimated by solid state nuclear magnetic resonance spectroscopy. The aromaticities varied from 0.57 for a lignite up to 0.86 for a semi-anthracite coal. The aromaticities correlated well with fixed carbon and oxygen content of the coals as well as with the mean reflectance of the coals. Correlations were also established between aromaticities and the H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the coals. Uncertainties in calculation of the hypothetical H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios, from experimental data were pointed out. Structural parameters of the chars derived from the coals by pyrolysis at 535 C were, also, estimated. The H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the chars were markedly lower than those of coals. This was complemented by higher apparent aromaticities of the chars compared with the coals. (21 refs.)

  6. Phosphorus nuclear magnetic resonance imaging in solid bone

    International Nuclear Information System (INIS)

    Li, Limin.

    1990-01-01

    Phosphorus ( 31 P) nuclear magnetic resonance (NMR) double-pulse transient experiments of solid bone have shown that the spins dephased by the dipolar spin-spin interactions can be refocused with a 90 degree-β pulse sequence so that an echo is observable at some time following the second pulse. The decay time constant of the maximum echo amplitude is larger than that of the free induction decay (FID) signal from a single 90 degree pulse. Depending on the nutation angle of the second pulse, the former decay time constant is about three-five times as long as the latter one. The dipolar-echo properties of the bone may be relevant with the interpair dipolar interactions. The experiments have also show that, in general, the time for the transient signal from the double pulses to reach the maximum amplitude is not equal to the pulse separation. This can be attributed to the effect of the heteronuclear dipolar interactions. In addition, it is found experimentally that refocused gradients applied only in a time interval of the formation of an echo have the capability of phase-encoding spatial information. Based on this, a new imaging method was proposed. With the method, several 31 P images of the solid bone samples have been obtained. The picture element size is 1-1.5 mm with very good signal-to-noise ratios. The imaging ability of the refocused gradients may be relevant with the inhomogeneous local field produced by the interpair dipolar interactions

  7. Visualization of cerebellopontine angle lesions by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ochiai, Chikayuki; Takakura, Kintomo; Machida, Tohru; Araki, Tsutomu; Iio, Masahiro; Basugi, Norihiko.

    1983-01-01

    The preliminary results from the clinical use a prototype whole body nuclear magnetic resonance (NMR) machine constructed by Toshiba Inc. are presented. Cranial NMR scans were performed on more than 30 cases with broad spectrum of neurologic diseases using saturation-recovery and inversion-recovery sequences with a field strength of 1500 Gauss. Selective excitation sequence was used for the slice selection and filtered backprojection was used to reconstruct the images. They were displayed on a 256 x 256 matrix as 12 mm thick sections. Data aquisition time varied between 3 and 12 minutes. Our initial experiences with six cases harboring cerebellopontine angle lesions discolsed advantages and disadvantages of NMR imaging in comparison with X-ray CT. The advantages were the absence of linear artifacts from the surrounding bone, the marked gray-white matter differentiation, and the variety of tomographic planes available. The disadvantages included the lack of bone detail, the lack of visualization of the major intracranial vessels, and the long time required for scanning (several minutes per slice). Although much continued evaluation is necessary, NMR seems to have vast potential as a diagnostic tool. (author)

  8. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  9. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  10. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    International Nuclear Information System (INIS)

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-01-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function

  11. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  12. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  13. Nuclear resonance fluorescence of {sup 203,205}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Fabian; Fritzsche, Matthias; Pietralla, Norbert; Savran, Deniz; Weller, Henry; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner [Triangle Universities Nuclear Laboratory, Duke University, Durham (United States); Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    In order to investigate the dipole strength distribution in Thalium isotopes we have studied Nuclear Resonance Fluorescence of a sample composed of natural Thallium (consisting of 30% {sup 203}Tl and 70% {sup 205}Tl). Unpolarized bremsstrahlung with photo energies up to 7.5 MeV was used at the High Intensity Photon Setup (HIPS) at S-DALINAC at the IKP Darmstadt. 24 fluorescent {gamma}-ray transitions were observed, 19 of them for the first time. For the assignment of the polarity of two prominent {gamma}-ray transitions, one at 4.7 MeV and one at 4.9 MeV, the polarized photon beam of the High Intensity {gamma}-ray Source (HI{gamma}S) at Duke University was used. The experiment at HI{gamma}S revealed the existence of a photo-excited state of {sup 205}Tl at an excitation energy of 4.971 MeV that exhibits a transition to the first excited state at 203 keV.

  14. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  15. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  16. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Sehgal, Akansha

    2014-01-01

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  17. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  18. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    International Nuclear Information System (INIS)

    Kohlrautz, Jonas

    2017-01-01

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T 1 measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T 1 was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu 2 (BO 3 ) 2 . Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa 2 CuO 4+δ for underdoped, optimally doped, and overdoped materials revealed

  19. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrautz, Jonas

    2017-05-22

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T{sub 1} measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T{sub 1} was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa{sub 2}CuO{sub 4+δ} for underdoped, optimally doped, and

  20. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  1. Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry

    Directory of Open Access Journals (Sweden)

    Xinyu Li

    2016-01-01

    Full Text Available Water plays a very important role in wood and wood products. The molecular motion of water in wood is susceptible to thermal activation. Thermal energy makes water molecules more active and weakens the force between water and wood; therefore, the water molecules dynamic properties are greatly influenced. Molecular dynamics study is important for wood drying; this paper therefore focuses on water molecular dynamics in wood through fast field cycling nuclear magnetic resonance relaxometry techniques. The results show that the spin-lattice relaxation rate decreases with the Larmor frequency. Nuclear magnetic resonance dispersion profiles at different temperatures could separate the relaxation contribution of water in bigger pores and smaller pores. The T1 distribution from wide to narrow at 10 MHz Larmor frequency reflects the shrinkage of pore size with the higher temperature. The dependence of spin-lattice relaxation rate on correlation time for water molecular motion based on BPP (proposed by Bloembergen, Purcell, and Pound theory shows that water correlation time increases with higher temperature, and its activation energy, calculated using the Arrhenius transformation equation, is 9.06±0.53 kJ/mol.

  2. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  3. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  4. Modern insect control: Nuclear techniques and biotechnology

    International Nuclear Information System (INIS)

    1988-01-01

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F 1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F 1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  5. Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury

    Science.gov (United States)

    Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.

    2008-01-01

    Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091

  6. Nuclear techniques used in agricultural research in Turkey

    International Nuclear Information System (INIS)

    Halitligil, M.B.

    1999-01-01

    Nuclear techniques that are in use in agricultural research in Turkey are : a.) techniques for monitoring and assessing the environmental pollution - such as monitoring the pesticides residues in food and soil using 14 C labelled pesticide's ; also plant root investigations using 32 P; b.) techniques for reducing the impact of increased plant productivity - such as the use of N tagged chemicals for optimizing the N fertilizer use and to determine the N 2 - fixation capacities of legumes. Also improving the water management practices - such as the determination of soil water , soil moisture characteristic cures and the leaching in soils by using the neutron probe; c.) techniques for agricultural resource development - such as the use of 60 Co and 137 Cs for obtaining new genotypes. The benefits and disadvantages of the application of nuclear techniques in agricultural research will be reviewed

  7. Department of Nuclear Spectroscopy and Technique - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    method for the `Pomorzany` coal power plant coordinated by the Institute of Nuclear Chemistry and Technology under the supervision of the IAEA in Vienna. (author).

  8. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Kozlowski, T.

    1997-01-01

    coordinated by the Institute of Nuclear Chemistry and Technology under the supervision of the IAEA in Vienna. (author)

  9. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    International Nuclear Information System (INIS)

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding

  10. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  11. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  12. Nuclear isovector giant resonances excited by pion single charge exchange

    International Nuclear Information System (INIS)

    King, B.H.

    1993-07-01

    This thesis is an experimental study of isovector giant resonances in light nuclei excited by pion single charge exchange reactions. Giant dipole resonances in light nuclei are known to be highly structured. For the mass 9 and 13 giant dipole resonances, isospin considerations were found to be very important to understanding this structure. by comparing the excitation functions from cross section measurements of the (π + , π 0 ) and (π, π 0 ) inclusive reactions, the authors determined the dominant isospin structure of the analog IVGR's. The comparison was made after decomposing the cross section into resonant and non-resonant components. This decomposition is made in the framework of strong absorption and quasi-free scattering. Measurements in the region of the isovector giant dipole resonances (IVGDR) were made to cover the inclusive angular distributions out to the second minimum. Study of the giant resonance decay process provides further understanding of the resonances. This study was carried out by observing the (π + , π 0 p) coincident reactions involving the resonances of 9 B and 13 N excited from 9 Be and 13 C nuclei. These measurements determined the spectra of the decay protons. This method also permitted a decomposition of the giant resonances into their isospin components. The multipolarities of the resonances were revealed by the decay proton angular correlations which, for dipoles, are of the form 1 + A 2 P 2 (cos θ)

  13. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  14. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  15. Improved biomass utilization through the use of nuclear techniques

    International Nuclear Information System (INIS)

    1988-10-01

    Biomass is a major by-product resource of agriculture and food manufacturing, but it is under-utilized as a source of food, fibre, and chemicals. Nuclear techniques provide unique tools for studies of the capabilities of micro-organisms in methane digestor operation and in the transformation of lignocellulosic materials to useful products. Nuclear techniques have also been effectively employed as mutagenic agents in the preparation of more efficient microbial strains for the conversion of biomass. This report reviews the variety and diversity of such applications with focus on the development of microbial processes to utilize agricultural wastes and by-products. The value of nuclear techniques is manifestly demonstrated in the production of efficient microbial mutant strains, in the tracing of metabolic pathways, in the monitoring of lignin degradation and also of fermenter operation. Refs, figs and tabs

  16. Development of the fundamental techniques for nuclear forensics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongho; Song, Kyuseok; Ha, Younggeun; Lee, Sunyoung; Choi, Heedong

    2013-08-15

    The main goal of this project is to develop the fundamental techniques of physical and chemical analysis of the target materials, and data interpretation methods to identify the origin and the production attributions of intercepted illicit nuclear or radioactive materials. This also includes production of analytical data for domestic nuclear materials to be used in establishment of national nuclear material data library. As the result of the R and D of this project, we developed the analytical techniques for H and O isotopes to identify the origin of the target samples, the techniques of chemical treatments of water type and soil type samples, and the fundamental research on the gamma spectroscopy for nuclear forensics. We also performed the study on the national collaboration plan on nuclear forensics, and fundamental research and the target materials and analytical requirements for analytical data production of domestic nuclear materials to construct a national data library. Most of the R and D's in the schedule of this project have not been performed due to the early termination of the project by the decision of the government.

  17. Development of the fundamental techniques for nuclear forensics

    International Nuclear Information System (INIS)

    Park, Jongho; Song, Kyuseok; Ha, Younggeun; Lee, Sunyoung; Choi, Heedong

    2013-08-01

    The main goal of this project is to develop the fundamental techniques of physical and chemical analysis of the target materials, and data interpretation methods to identify the origin and the production attributions of intercepted illicit nuclear or radioactive materials. This also includes production of analytical data for domestic nuclear materials to be used in establishment of national nuclear material data library. As the result of the R and D of this project, we developed the analytical techniques for H and O isotopes to identify the origin of the target samples, the techniques of chemical treatments of water type and soil type samples, and the fundamental research on the gamma spectroscopy for nuclear forensics. We also performed the study on the national collaboration plan on nuclear forensics, and fundamental research and the target materials and analytical requirements for analytical data production of domestic nuclear materials to construct a national data library. Most of the R and D's in the schedule of this project have not been performed due to the early termination of the project by the decision of the government

  18. Significantly improving nuclear resonance fluorescence non-destructive assay by using the integral resonance transmission method and photofission

    International Nuclear Information System (INIS)

    Angell, Christopher T.; Hayakawa, Takehito; Shizuma, Toshiyuki; Hajima, Ryoichi

    2013-01-01

    Non-destructive assay (NDA) of 239 Pu in spent nuclear fuel or melted fuel using a γ-ray beam is possible using self absorption and the integral resonance transmission method. The method uses nuclear resonance absorption where resonances in 239 Pu remove photons from the beam, and the selective absorption is detected by measuring the decrease in scattering in a witness target placed in the beam after the fuel, consisting of the isotope of interest, namely 239 Pu. The method is isotope specific, and can use photofission or scattered γ-rays to assay the 239 Pu. It overcomes several problems related to NDA of melted fuel, including the radioactivity of the fuel, and the unknown composition and geometry. This talk will explain the general method, and how photofission can be used to assay specific isotopes, and present example calculations. (author)

  19. Electron-spin-resonance techniques in fuel research

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    E.s.r. techniques provide a sensitive means of identifying the free radicals present in pyrolytic and combustion reactions, and determining their concentration. This article explains the theoretical basis of these techniques and indicates the scope of the work recently initiated with the e.s.r. spectrometer at the Division of Coal Research.

  20. Technical and economic benefits of nuclear techniques in ore processing

    International Nuclear Information System (INIS)

    1989-08-01

    This report is the outcome of an Advisory Group Meeting organized by the Agency and hosted by the Institute of Physics and Nuclear Techniques, the Academy of Mining and Metallurgy in Krakow, Poland. The purpose of the meeting was to assess the technical and economic benefits of applying nuclear techniques in ore processing industry. Nucleonic control systems and nuclear on-line analytical techniques as well as radioisotope tracer tests and their applications in metallic ore-processing, coal production, and cement fabrication were discussed. This report contains a summary and the presentations dealing with nuclear techniques for process control made at this meeting. Using a number of case-histories as examples, it illustrates technical and economic benefits obtainable by the installation of nuclear process control instrumentation. It is expected to be useful for everybody dealing with ore and coal production, but especially for administrative personnel and engineers who plan and implement national development programmes related to mineral resources. Refs, figs and tabs

  1. Contribution to the study of nuclear resonance in magnetic media (1963)

    International Nuclear Information System (INIS)

    Hartmann-Boutron, F.

    1963-06-01

    An attempt is made to interpret the results of nuclear magnetic resonance experiments made by various workers on ferro and ferrimagnetic compounds of the iron group. The problems encountered are the following: effects of the dipolar fields and the hyperfine structure anisotropy; signal intensity; frequency pulling due to the Suhl-Nakamura interaction between nuclear spins ; nuclear relaxation and ferrimagnetic resonance in single domain samples of impure YIG; nuclear relaxation in the Bloch walls of insulators. The results of our calculations are generally in good agreement with experiment. (author) [fr

  2. Handbook of multifrequency electron paramagnetic resonance data and techniques

    CERN Document Server

    Misra, Sushil K

    2014-01-01

    This handbook is aimed to deliver an up-to-date account of some of the recently developed experimental and theoretical methods in EPR, as well as a complete up-to-date listing of the experimentally determined values of multifrequency transition-ion spin Hamiltonian parameters by Sushil Misra, reported in the past 20 years, extending such a listing published by him in the Handbook on Electron Spin Resonance, volume 2. This extensive data tabulation makes up roughly 60% of the book`s content. It is complemented by the first full compilation of hyperfine splittings and g-factors for aminoxyl (nit

  3. Online monitoring of biofouling using coaxial stub resonator technique

    Directory of Open Access Journals (Sweden)

    N.A. Hoog

    2015-03-01

    Analysis of the biofilm and the stub resonator signal, both as function of time, indicates that the sensor allows detection of early stages of biofilm formation. In addition, the sensor signal clearly discriminates between the first stages of biofilm formation (characterized by separated, individual spots of bacterial growth on the glass beads and the presence of a nearly homogeneous biofilm later on in time. Model simulations based on the transmission line theory predict a shift of the sensor response in the same direction and order of magnitude as observed in the biofouling experiments, thereby confirming the operating principle of the sensor.

  4. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    International Nuclear Information System (INIS)

    Alexeev, P.

    2017-04-01

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in "1"9"3Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO_2 and in Ruddlesden-Popper (RP) phases of strontium iridates Sr_n_+_1Ir_nO_3_n_+_1 (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO_2, SrIrO_3 and Sr_2IrO_4 have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field on Ir nucleus have been determined for

  5. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, P.

    2017-04-15

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in {sup 193}Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO{sub 2} and in Ruddlesden-Popper (RP) phases of strontium iridates Sr{sub n+1}Ir{sub n}O{sub 3n+1} (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO{sub 2}, SrIrO{sub 3} and Sr{sub 2}IrO{sub 4} have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field

  6. Nuclear magnetic resonance data of C36H30Br2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  7. Nuclear magnetic resonance data of C36H30Cl2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  8. Nuclear quadrupole resonance applied for arsenic oxide study; Estudo do oxido de arsenio atraves de ressonancia quadrupolar nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Correia, J A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T{sub 1}), the spin-spin relaxation time (T{sub 2}) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180{sup 0} C pulse is applied after a 90{sup 0} C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90{sup 0} C - 180{sup 0} C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author).

  9. Practical applications of activation analysis and other nuclear techniques

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1982-01-01

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of γ rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed

  10. Statistical uncertainties of nondestructive assay for spent nuclear fuel by using nuclear resonance fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Toshiyuki, E-mail: shizuma.toshiyuki@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Hayakawa, Takehito; Angell, Christopher T.; Hajima, Ryoichi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Minato, Futoshi; Suyama, Kenya [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Seya, Michio [Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1198 (Japan); Johnson, Micah S. [Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, CA 94550 (United States); Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 9519 (United States); McNabb, Dennis P. [Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, CA 94550 (United States)

    2014-02-11

    We estimated statistical uncertainties of a nondestructive assay system using nuclear resonance fluorescence (NRF) for spent nuclear fuel including low-concentrations of actinide nuclei with an intense, mono-energetic photon beam. Background counts from radioactive materials inside the spent fuel were calculated with the ORIGEN2.2-UPJ burn-up computer code. Coherent scattering contribution associated with Rayleigh, nuclear Thomson, and Delbrück scattering was also considered. The energy of the coherent scattering overlaps with that of NRF transitions to the ground state. Here, we propose to measure NRF transitions to the first excited state to avoid the coherent scattering contribution. Assuming that the total NRF cross-sections are in the range of 3–100 eV b at excitation energies of 2.25, 3.5, and 5 MeV, statistical uncertainties of the NRF measurement were estimated. We concluded that it is possible to assay 1% actinide content in the spent fuel with 2.2–3.2% statistical precision during 4000 s measurement time for the total integrated cross-section of 30 eV b at excitation energies of 3.5–5 MeV by using a photon beam with an intensity of 10{sup 6} photons/s/eV. We also examined both the experimental and theoretical NRF cross-sections for actinide nuclei. The calculation based on the quasi-particle random phase approximation suggests the existence of strong magnetic dipole resonances at excitation energies ranging from 2 to 6 MeV with the scattering cross-sections of tens eV b around 5 MeV in {sup 238}U.

  11. Industrial applications of radioisotopes: techniques and procedures of (NTIS) Nuclear Techniques Industrial Service

    International Nuclear Information System (INIS)

    Smith, S.W.; Kruger, J.

    1985-06-01

    Radioisotope handling procedures followed by personnel of the Nuclear Techniques Industrial Service (NTIS) during the conduction of investigations in industry are described. Possible radiological implications as a result of the various measuring techniques and different types of plants are discussed. Conditions under which permanent authorization has been granted for the use of radioisotopes are mentioned

  12. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy; Avaliacao da polivinilpirrolidona e do colageno por ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paula de M.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: pmcosta@ima.ufrj.br

    2005-07-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  13. Science and history explored by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baias, Maria Antoaneta

    2009-01-01

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13 C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation of keratin fibers from wool and hair. A model describing both the effect of thermal denaturation and the effect of different chemical treatments on keratin fibers is presented. Proton NMR spectroscopy was used for studying the proton exchange in Sulfonated Polyether Ether Ketone proton exchange membranes revealing that the water exchange processes in hydrated SPEEK-silica membranes are more efficient when low concentrations of polyethoxysiloxane (PEOS) are used for the membrane preparation. Proton 1D exchange spectroscopy combined with transverse relaxation measurements offered good insight in the state of water in hydrated SPEEK/SiO 2 membranes revealing that concentrations of 5%-10% wt. PEOS could enhance the electrical conductivity of PEM. Hyperpolarized 129 Xe NMR spectroscopy was successfully applied for monitoring the free radical polymerization reactions of methyl methacrylate, methyl acrylate and the copolymerization of methyl methacrylate and methyl acrylate. The observation of Xe chemical shift and linewidths during the reactions reveal information about the polymer chain growths during the polymerizations. The successful application of the NMR-MOUSE to visualise the different anatomical layers with varying proton densities opens the possibility of its use in clinical studies such as osteoporosis for bone density measurements. The NMR-MOUSE was also successfully applied for the analysis of violins and bows and a classification of the violins and bows as a function of

  14. Nuclear Magnetic Resonance Imaging in Endodontics: A Review.

    Science.gov (United States)

    Di Nardo, Dario; Gambarini, Gianluca; Capuani, Silvia; Testarelli, Luca

    2018-04-01

    This review analyzes the increasing role of magnetic resonance imaging (MRI) in dentistry and its relevance in endodontics. Limits and new strategies to develop MRI protocols for endodontic purposes are reported and discussed. Eligible studies were identified by searching the PubMed databases. Only original articles on dental structures, anatomy, and endodontics investigated by in vitro and in vivo MRI were included in this review. Original articles on MRI in dentistry not concerning anatomy and endodontics were excluded. All the consulted studies showed well-defined images of pathological conditions such as caries and microcracks. The enhanced contrast of pulp provided a high-quality reproduction of the tooth shape and root canal in vitro and in vivo. Assessment of periapical lesions is possible even without the use of contrast medium. MRI is a nonionizing technique characterized by high tissue contrast and high image resolution of soft tissues; it could be considered a valid and safe diagnostic investigation in endodontics because of its potential to identify pulp tissues, define root canal shape, and locate periapical lesions. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Neutron Resonance Theory for Nuclear Reactor Applications: Modern Theory and Practices.

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Richard N. [Argonne National Lab. (ANL), Argonne, IL (United States); Blomquist, Roger N. [Argonne National Lab. (ANL), Argonne, IL (United States); Leal, Luiz C. [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States)

    2016-09-24

    The neutron resonance phenomena constitute one of the most fundamental subjects in nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear interaction and the treatment of the neutronic balance in reactor fuel lattices become intertwined. The latter requires the detailed knowledge of resonance structures of many nuclides of practical interest to the development of nuclear energy. The most essential element in reactor physics is to provide an accurate account of the intricate balance between the neutrons produced by the fission process and neutrons lost due to the absorption process as well as those leaking out of the reactor system. The presence of resonance structures in many major nuclides obviously plays an important role in such processes. There has been a great deal of theoretical and practical interest in resonance reactions since Fermi’s discovery of resonance absorption of neutrons as they were slowed down in water. The resonance absorption became the center of attention when the question was raised as to the feasibility of the self-sustaining chain reaction in a natural uranium-fueled system. The threshold of the nuclear era was crossed almost eighty years ago when Fermi and Szilard observed that a substantial reduction in resonance absorption is possible if the uranium was made into the form of lumps instead of a homogeneous mixture with water. In the West, the first practical method for estimating the resonance escape probability in a reactor cell was pioneered by Wigner et al in early forties.

  16. Quantum erasers and probing classifications of entanglement via nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Teklemariam, G.; Fortunato, E.M.; Pravia, M.A.; Sharf, Y.; Havel, T.F.; Cory, D.G.; Bhattaharyya, A.; Hou, J.

    2002-01-01

    We report the implementation of two- and three-spin quantum erasers using nuclear magnetic resonance (NMR). Quantum erasers provide a means of manipulating quantum entanglement, an important resource for quantum information processing. Here, we first use a two-spin system to illustrate the essential features of quantum erasers. The extension to a three-spin 'disentanglement eraser' shows that entanglement in a subensemble can be recovered if a proper measurement of the ancillary system is carried out. Finally, we use the same pair of orthogonal decoherent operations used in quantum erasers to probe the two classes of entanglement in tripartite quantum systems: the Greenberger-Horne-Zeilinger state and the W state. A detailed presentation is given of the experimental decoherent control methods that emulate the loss of phase information in strong measurements, and the use of NMR decoupling techniques to implement partial trace operations

  17. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  18. 12. Nuclear magnetic resonance users meeting; 3. Iberoamerican NMR meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The NMR Users Meeting is held every year in Brazil and its twelfth edition took place from May 4 - 8, 2009 together with the third Iberoamerican NMR Meeting. The extended abstracts book comprise: five plenary lectures, six major conferences, three mini-conferences and summaries of results from one hundred and two research works. Among these research results which have been discussed, ninety three were presented as congress panels/posters and nine as oral communications. The major topics of the scientific and technological research works are thus distributed: 65% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 16% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 11% in materials science (including petroleum and alternative fuels), and 8% regarding theoretical aspects related to nuclear magnetic resonance or improvements in NMR instrumental techniques.

  19. 31P nuclear magnetic resonance surface coil study of ischemic preconditioned isolated perfused rat heart

    International Nuclear Information System (INIS)

    Yan Yongbin; Luo Xuechun; Zhang Riqing; Wang Xiaoyin; Zuo Lin; Liu Wei

    2000-01-01

    ischemic preconditioning (IPC) will protect the heart from the damage caused by a subsequent long ischemia period. 31 P spectra of isolated perfused rat heart measured by the nuclear magnetic resonance (NMR) surface coil technique can be used to continually, dynamically and noninvasively obtain metabolism information. This paper explores the IPC mechanisms by NMR. This study shows that IPC has no effect on enhancing the ATP and PCr levels during reperfusion but makes significantly slows and smooths the changes of intracellular pH and ATP during ischemia periods. The ATP and PCr recovery rate of the IPC group after ischemia is significantly higher than that of the control group. In conclusion, the above results support that IPC can protect the rat heart by reducing damage during the ischemia period

  20. Determination of moisture in black coal using pulsed nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Sowerby, B.D.; Lynch, L.J.; Webster, D.S.

    1987-01-01

    Pulsed nuclear magnetic resonance (n.m.r.) spectrometry was investigated as a technique for moisture determination in fine product coal from eight Australian coal washeries. Measurements were made on samples of diameter 8 and 12 mm and length 10 and 120 mm at frequencies from 6.5 to 60 MHz. The ratio of intensities of the water and coal components in the free-induction decay signal can be used to determine moisture to within approx. 0.4-0.7 wt% over the range 0-26 wt% moisture, independent of sample density. This accuracy is independent of particle size (up to 1 mm) and little affected by coal rank, sample length or n.m.r. frequency. (author)

  1. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    International Nuclear Information System (INIS)

    Ji-Cheng, Zhang; Kao-Ping, Song; Er-Long, Yang; Li, Liu

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency. (fundamental areas of phenomenology (including applications))

  2. Some notes on data analysis for nuclear resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Michael Y., E-mail: myhu@aps.anl.gov [Argonne National Laboratory (United States)

    2016-12-15

    Nuclear Resonant Inelastic X-ray Scattering (NRIXS) is a spectroscopy method to study atomic vibrations and dynamics, currently done with synchrotron radiation at a few high energy third generation facilities. It finds a wide range of applications in condensed matter physics, materials science, chemistry, biophysics, geosciences, and high-pressure researches. Many atomic dynamics and lattice thermodynamics information can be derived from NRIXS measurements. Phonon Density of States (DOS) characterizes lattice dynamics of a material and can be derived under the quasi-harmonic approximation. Combined with modeling and simulations, results from NRIXS can provide unique and clarifying insights into many fields of research. As for a spectroscopic technique, in order to be able to provide reliable information, close attention should be paid to many issues during experiments and data analysis afterwards. Here we discuss several issues relevant to its data analysis, namely, those of multiple sites, background treatments, and error estimates for some derived quantities.

  3. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  4. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  5. Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Marjanska, Malgorzata; Chuang, Isaac L.; Kubinec, Mark G.

    2000-01-01

    1 H- 13 C heteronuclear dipolar couplings are used to produce the NMR (nuclear magnetic resonance) version of a two bit controlled-NOT quantum logic gate. This gate is coupled with the Hadamard gate to complete a circuit which generates the Einstein-Podolsky-Rosen (EPR) state which is the maximally entangled state of a pair of spins. The EPR state is crucial for the potential exponential speed advantage of quantum computers over their classical counterparts. We sample the deviation density matrix of the two spin system to verify the presence of the EPR state. EPR state lifetimes are also measured with this technique, thereby demonstrating the viability of liquid crystals as a platform for quantum computing. (c) 2000 American Institute of Physics

  6. Nuclear assay of coal. Volume 4. Moisture determination in coal: survey of electromagnetic techniques. Final report

    International Nuclear Information System (INIS)

    Bevan, R.; Luckie, P.; Gozani, T.; Brown, D.R.; Bozorgmanesh, H.; Elias, E.

    1979-01-01

    This survey consists of two basic parts. The first consists of a survey of various non-nuclear moisture determination techniques. Three techniques are identified as promising for eventual on-line application with coal; these are the capacitance, microwave attenuation, and nuclear magnetic resonance (NMR) techniques. The second part is devoted to an in-depth analysis of these three techniques and the current extent to which they have been applied to coal. With a given coal type, accuracies of +- 1% absolute in moisture content are achievable with all three techniques. The accuracy of the two electromagnetic techniques has been demonstrated in the laboratory and on-line in coal burning plants, whereas only small samples have been analyzed with NMR. The current shortcoming of the simple electromagnetic techniques is the sensitivity of calibrations to physical parameters and coal type. NMR is currently limited by small sample sizes and non-rugged design. These findings are summarized and a list of manufacturers of moisture analyzers is given in the Appendix

  7. Methods for magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  8. Technique of obstetric pelvimetry by magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Sigmund, G.; Wenz, W.; Bauer, M.; DeGregorio, G.; Henne, K.

    1991-01-01

    Magnetic resonance imaging (MRL) allows for the first time direct determination of maternal pelvic dimensions without ionising radiation. Phantom measurements and the correlation with traditional pelvimetric measurements in 10 patients after Caesarean section have shown mean differences of ± 2 mm, with a maximum of 5 mm. The evaluation of pelvic configuration is obtained analogous to the conventional roentgenogram. In addition to conventional or digital X-ray pelvimetry, the soft tissues of the maternal pelvis and the presenting part of the foetus is delineated with high contrast. Positioning in the body coil can be accomplished even late in pregnancy or in impending labour, acceptance by the pregnant women being high. Whereas in a given indication after delivery conventional X-ray pelvimetry continues to be performed, antenatally MRI pelvimetry has now been established in our Departments as the method of choice - based on meanwhile 107 examinations. Present drawbacks are the relatively high cost and the limited availability of MR units. (orig.) [de

  9. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  10. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Prawer, S; Gonon, P; Walker, R; Dooley, S; Bettiol, A; Pearce, J [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  11. Nuclear techniques of analysis in diamond synthesis and annealing

    International Nuclear Information System (INIS)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J.

    1996-01-01

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs

  12. Toshiba's developments on construction techniques of nuclear power plants

    International Nuclear Information System (INIS)

    Hayashi, Y.; Itoh, N.

    1987-01-01

    Reliable and economic energy supplies are fundamental requirements of energy policies in Japan. To accomplish these needs, nuclear power plants are being increased in Japan. In recent years, construction cost increases and schedule extensions have affected the capital cost of nuclear energy, compared with fossil power plants, due to lower costs of oil and coal. On the other hand, several severe regulations have been applied to nuclear power plant designs. High-quality and cooperative engineering and harmonized design of equipment and parts are strongly required. Therefore, reduced construction costs and scheduling, as well as higher quality and reliability, are the most important items for nuclear industry. Toshiba has developed new construction techniques, as well as design and engineering tools for control and management, that demonstrate the positive results achieved in the shorter construction period of 1100-MW(electric) nuclear power plants. The normal construction period so far is 64 months, whereas the current construction period is 52 months. (New construction techniques are partially applied). In future years, the construction period will be lowered to 48 months. (New construction techniques are fully applied). A construction period is defined as time from the start of rock inspection to the start of commercial operation

  13. Conference on Techniques of Nuclear and Conventional Analysis and Applications

    International Nuclear Information System (INIS)

    2012-01-01

    Full text : With their wide scope, particularly in the areas of environment, geology, mining, industry and life sciences; analysis techniques are of great importance in research as fundamental and applied. The Conference on Techniques for Nuclear and Conventional Analysis and Applications (TANCA) are Registered in the national strategy of opening of the University and national research centers on their local, national and international levels. This conference aims to: Promoting nuclear and conventional analytical techniques; Contribute to the creation of synergy between the different players involved in these techniques include, Universities, Research Organizations, Regulatory Authorities, Economic Operators, NGOs and others; Inform and educate potential users of the performance of these techniques; Strengthen exchanges and links between researchers, industry and policy makers; Implement a program of inter-laboratory comparison between Moroccan one hand, and their foreign counterparts on the other; Contribute to the research training of doctoral students and postdoctoral scholars. Given the relevance and importance of the issues related to environment and impact on cultural heritage, this fourth edition of TANCA is devoted to the application of analytical techniques for conventional and nuclear Questions ied to environment and its impact on cultural heritage.

  14. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  15. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  16. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  17. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    Science.gov (United States)

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-07

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  18. Nuclear techniques in schistosomiasis: Towards a schistosome vaccine

    International Nuclear Information System (INIS)

    Taylor, D.W.

    1986-01-01

    The paper reviews recent advances in schistosome research achieved through the application of nuclear techniques and aimed at the development of a vaccine. Two principal areas are discussed: first, immune effector mechanisms; and secondly, the application of hybridoma and recombinant DNA technology to the problem of production of large quantities of parasite antigens suitable for inclusion in an experimental vaccine. (author)

  19. Nuclear techniques in agriculture and industry in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1993-01-01

    The presentation describes the application of nuclear techniques related to information acquisition by radiotracer and isotope-instrument getting physical parameters from measured substances, medical diagnostic information, evolution of novel substances or modification of materials through interaction of ionizing radiation with matter,mutation breeding in agriculture, cancer therapy in medicine, sterilization of medical products

  20. Nuclear and radiation techniques - state of art and development trends

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1995-01-01

    The state of art and development trends of nuclear and radiation techniques in Poland and worldwide have been presented. Among them the radiometric gages, radiation technologies, radiotracer methods and measuring systems for pipeline and vessels, brightness control have been described and their applications in industry, agriculture, health and environment protection have been shown and discussed. 35 refs, 1 fig

  1. Application of nuclear analysis techniques in ancient chinese porcelain

    International Nuclear Information System (INIS)

    Feng Songlin; Xu Qing; Feng Xiangqian; Lei Yong; Cheng Lin; Wang Yanqing

    2005-01-01

    Ancient ceramic was fired with porcelain clay. It contains various provenance information and age characteristic. It is the scientific foundation of studying Chinese porcelain to analyze and research the ancient ceramic with modern analysis methods. According to the property of nuclear analysis technique, its function and application are discussed. (authors)

  2. Optimizing Nuclear Reactor Operation Using Soft Computing Techniques

    NARCIS (Netherlands)

    Entzinger, J.O.; Ruan, D.; Kahraman, Cengiz

    2006-01-01

    The strict safety regulations for nuclear reactor control make it di±cult to implement new control techniques such as fuzzy logic control (FLC). FLC however, can provide very desirable advantages over classical control, like robustness, adaptation and the capability to include human experience into

  3. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    Science.gov (United States)

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  4. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  5. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  6. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  7. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  8. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.

    2004-01-01

    Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period. (author)

  9. Nuclear techniques used in soil fertility and plant nutrition

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: Nuclear techniques, which include the usage of radioactive and stable isotopes, had been used in soil fertility, plant nutrition, plant breeding, plant protection and food preservation research works after 1950s. Ultimately these nuclear techniques contributed greatly in increased plant production. In general, it is possible to separate the nuclear techniques used in soil fertility and plant nutrition into two groups. The first group is the use of radioactive and stable isotopes as a tracer in order to find out the optimum fertilization rate of plants precisely. The second group is the use of neutron probe in determining the soil moisture at different periods of the growing season and at various soil depths precisely without any difficulty. In research works where conventional techniques are used, it is not possible to identify how much of the nutrient taken up by the plant came from applied fertilizer or soil. However, when tracer techniques are used in research works it is possible to identify precisely which amount of the nutrient taken from fertilizer or from soil. Therefore, the nuclear techniques are very important in finding out which variety of fertilizer and how much of it must be used. The determination of the soil moisture is very important in finding the water needs of the plants for a good growth. Soil moisture contents changes often during the growth period, so it must be determined very frequently in order to determine the amount of irrigation that has to be done. Conventional soil moisture determination (gravimetric method) is very laborious especially when it has to be done frequently. However, by using neutron probe soil moisture determinations can be done very easily any time during the plant growth period

  10. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  11. Research achievements in Bangladesh agriculture using nuclear techniques

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1997-01-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN 3 ). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using 51 Cr-EDTA and 125 I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come

  12. Research achievements in Bangladesh agriculture using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, M.A. [Bangladesh Institute of Nuclear Agriculture, Mymensingh, (Bangladesh)

    1997-10-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN{sub 3}). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using {sup 51}Cr-EDTA and {sup 125}I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come 32 refs., 1 tab.

  13. The influence of temperature in the characterization of nuclear resonance

    International Nuclear Information System (INIS)

    Campos, T.P.R. de; Martinez, A.S.

    1986-01-01

    A detailed analysis carried out to determine the temperature effects on the selection of different types of resonance for Resonance Integral calculations is presented. The type of approximation (WR, IR or NR) to be applied to the slowing down integral of the neutron balance equation depends on the relationship between the average energy lost by the neutron and the practical width. A method to include the temperature dependence in the ratio ΔE/GAMMA sub(p) is proposed. The results allowed us to show that this dependence negligence may lead to large errors in the Resonance Integral calculation. (Author) [pt

  14. Magnetic resonance angiography of the neck vessels: technique and anatomy

    International Nuclear Information System (INIS)

    Carriero, A.; Salute, L.

    1990-01-01

    The authors identified the standard projections for studying neck vessels with magnetic resonance angiography. Sixty volunteers underwent angio-MR of the arterial neck vessels with FISP 3D FT sequences obtained on the coronal and sagittal planes. The gradient-echo sequence (FISP 3D FT) was acquired with TR=0.04-0.08 s and TE=15 ms, with 25 grade flip angle. Single excitated slices of thickness ranging from 1-2 mm were included in the acquisition volume. Theses sequences were subsequently processed by the maximum intensity projection method. Two radiologist examined our results to choose the optimal projections. We used a semi-quantitative scale which allowed us to distinguish 3 different diagnostic levels for each projection: well-visualized vessels, poorly-visualized, and non-visualized ones. For each section axial rotations were performed ranging from 0 grade to 180 grade, with 15 grade i ntervals. On the coronal plane, rotations from 45 grade to 45 grade were the optimal ones to visualize the studied vessels. The 0 grade- 15 grade- 30 grade- 45 grade- 135 grade- 165 grade- 180 grade projections allowed the common carotids to be clearly demonstrated together with the verterbal arteries. The other projections appeared to be useless for diagnostic purposes. On the saggittal plane, rotations from 60 grade to 120 grade were the optimal ones. The 90 grade projection allowed the demonstration of all the big arterial vessel of the neck, including carotid bifurcation and internal and external carotids. The assessment of the optimal diagnostic projections for angio-MR of the neck vessels is helpful to reduce post-processing time. As a matter of fact, the immediate visualization, during the examination, of the standard projections allows further acquisitions to be obtained- if needed- to try to solve specific diagnostic doubts

  15. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance. [Pulse radiolysis of methanol in D/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.

  16. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  17. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  18. Evaluation of surface nuclear magnetic resonance-estimated subsurface water content

    International Nuclear Information System (INIS)

    Mueller-Petke, M; Dlugosch, R; Yaramanci, U

    2011-01-01

    The technique of nuclear magnetic resonance (NMR) has found widespread use in geophysical applications for determining rock properties (e.g. porosity and permeability) and state variables (e.g. water content) or to distinguish between oil and water. NMR measurements are most commonly made in the laboratory and in boreholes. The technique of surface NMR (or magnetic resonance sounding (MRS)) also takes advantage of the NMR phenomenon, but by measuring subsurface rock properties from the surface using large coils of some tens of meters and reaching depths as much as 150 m. We give here a brief review of the current state of the art of forward modeling and inversion techniques. In laboratory NMR a calibration is used to convert measured signal amplitudes into water content. Surface NMR-measured amplitudes cannot be converted by a simple calibration. The water content is derived by comparing a measured amplitude with an amplitude calculated for a given subsurface water content model as input for a forward modeling that must account for all relevant physics. A convenient option to check whether the measured signals are reliable or the forward modeling accounts for all effects is to make measurements in a well-defined environment. Therefore, measurements on top of a frozen lake were made with the latest-generation surface NMR instruments. We found the measured amplitudes to be in agreement with the calculated amplitudes for a model of 100 % water content. Assuming then both the forward modeling and the measurement to be correct, the uncertainty of the model is calculated with only a few per cent based on the measurement uncertainty.

  19. Comparison between magnetic resonance findings and conventional techniques (ultrasonography and mammography) in breast disease

    International Nuclear Information System (INIS)

    Martin, J.L.; Garofono, J.M.; Berquet, A.; Fernandez, F.J.; Fuentes, P.; Alvarez de Cienfuegos, E.

    1996-01-01

    Although mammography is indisputably the best diagnostic method for detecting breast abnormalities, there are other techniques, such as ultrasonography and magnetic resonance, which are increasingly widely employed as additional indispensable aids. The present work compares mammography, ultrasound and magnetic resonance images of normal breast and of the major pathologies that can be observed in breast, including sclerosing adenosis, giant fibroadenoma, multifocal carcinoma, fibrocystic breast disease, infiltrating duct carcinoma, colloid carcinoma, radical scar, abscess and breast prosthesis. (Author) 10 refs

  20. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'