Development of nuclear power plant diagnosis technique using neural networks
International Nuclear Information System (INIS)
Horiguchi, Masahiro; Fukawa, Naohiro; Nishimura, Kazuo
1991-01-01
A nuclear power plant diagnosis technique has been developed, called transient phenomena analysis, which employs neural network. The neural networks identify malfunctioning equipment by recognizing the pattern of main plant parameters, making it possible to locate the cause of an abnormality when a plant is in a transient state. In a case where some piece of equipment shows abnormal behavior, many plant parameters either directly or indirectly related to that equipment change simultaneously. When an abrupt change in a plant parameter is detected, changes in the 49 main plant parameters are classified into three types and a characteristic change pattern consisting of 49 data is defined. The neural networks then judge the cause of the abnormality from this pattern. This neural-network-based technique can recognize 100 patterns that are characterized by the causes of plant abnormality. (author)
Recognition of decays of charged tracks with neural network techniques
International Nuclear Information System (INIS)
Stimpfl-Abele, G.
1991-01-01
We developed neural-network learning techniques for the recognition of decays of charged tracks using a feed-forward network with error back-propagation. Two completely different methods are described in detail and their efficiencies for several NN architectures are compared with conventional methods. Excellent results are obtained. (orig.)
NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
Constantin Ilie
2009-05-01
Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in
International Nuclear Information System (INIS)
Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.
2011-01-01
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Neural network scatter correction technique for digital radiography
International Nuclear Information System (INIS)
Boone, J.M.
1990-01-01
This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique
THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS
Mary Violeta Bar
2014-01-01
The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...
Optical supervised filtering technique based on Hopfield neural network
Bal, Abdullah
2004-11-01
Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.
Optimal deep neural networks for sparse recovery via Laplace techniques
Limmer, Steffen; Stanczak, Slawomir
2017-01-01
This paper introduces Laplace techniques for designing a neural network, with the goal of estimating simplex-constraint sparse vectors from compressed measurements. To this end, we recast the problem of MMSE estimation (w.r.t. a pre-defined uniform input distribution) as the problem of computing the centroid of some polytope that results from the intersection of the simplex and an affine subspace determined by the measurements. Owing to the specific structure, it is shown that the centroid ca...
Microstructural characterization of materials by neural network technique
Energy Technology Data Exchange (ETDEWEB)
Barat, P. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A., E-mail: arnomitra@veccal.ernet.i [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, P.; Gayathri, N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)
2010-11-15
Ultrasonic signals received by pulse echo technique from plane parallel Zircaloy 2 samples of fixed thickness and of three different microstructures, were subjected to signal analysis, as conventional parameters like velocity and attenuation could not reliably discriminate them. The signals, obtained from these samples, were first sampled and digitized. Modified Karhunen Loeve Transform was used to reduce their dimensionality. A multilayered feed forward Artificial Neural Network was trained using a few signals in their reduced domain from the three different microstructures. The rest of the signals from the three samples with different microstructures were classified satisfactorily using this network.
A neural network technique for remeshing of bone microstructure.
Fischer, Anath; Holdstein, Yaron
2012-01-01
Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.
A neural network image reconstruction technique for electrical impedance tomography
International Nuclear Information System (INIS)
Adler, A.; Guardo, R.
1994-01-01
Reconstruction of Images in Electrical Impedance Tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. This paper presents a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse problem directly from finite element simulations of the forward problem. This inverse is adapted to the geometry of the medium and the signal-to-noise ratio (SNR) used during network training. Results show good conductivity reconstruction where measurement SNR is similar to the training conditions. The advantages of this method are its conceptual simplicity and ease of implementation, and the ability to control the compromise between the noise performance and resolution of the image reconstruction
Calibration Technique of the Irradiated Thermocouple using Artificial Neural Network
Energy Technology Data Exchange (ETDEWEB)
Hong, Jin Tae; Joung, Chang Young; Ahn, Sung Ho; Yang, Tae Ho; Heo, Sung Ho; Jang, Seo Yoon [KAERI, Daejeon (Korea, Republic of)
2016-05-15
To correct the signals, the degradation rate of sensors needs to be analyzed, and re-calibration of sensors should be followed periodically. In particular, because thermocouples instrumented in the nuclear fuel rod are degraded owing to the high neutron fluence generated from the nuclear fuel, the periodic re-calibration process is necessary. However, despite the re-calibration of the thermocouple, the measurement error will be increased until next re-calibration. In this study, based on the periodically calibrated temperature - voltage data, an interpolation technique using the artificial neural network will be introduced to minimize the calibration error of the C-type thermocouple under the irradiation test. The test result shows that the calculated voltages derived from the interpolation function have good agreement with the experimental sampling data, and they also accurately interpolate the voltages at arbitrary temperature and neutron fluence. That is, once the reference data is obtained by experiments, it is possible to accurately calibrate the voltage signal at a certain neutron fluence and temperature using an artificial neural network.
International Nuclear Information System (INIS)
Smith, Patrick I.
2003-01-01
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
International Nuclear Information System (INIS)
Saini, K. K.; Saini, Sanju
2008-01-01
Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.
International Nuclear Information System (INIS)
Denby, Bruce; Lindsey, Clark; Lyons, Louis
1992-01-01
The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive
Kiang, Richard K.
1992-01-01
Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T; Fukuoka, K; Shima, H [Oyo Corp., Tokyo (Japan); Mogi, T [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Spichak, V
1997-05-27
The research and development have been conducted to apply neural networks to interpretation technique for 3-D MT data. In this study, a data base of various data was made from the numerical modeling of 3-D fault model, and the data base management system was constructed. In addition, an unsupervised neural network for treating noise and a supervised neural network for estimating fault parameters such as dip, strike and specific resistance were made, and a basic neural network system was constructed. As a result of the application to the various data, basically sufficient performance for estimating the fault parameters was confirmed. Thus, the optimum MT data for this system were selected. In future, it is necessary to investigate the optimum model and the number of models for learning these neural networks. 3 refs., 5 figs., 2 tabs.
Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K
2005-01-01
Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873
Application of artificial neural networks with backpropagation technique in the financial data
Jaiswal, Jitendra Kumar; Das, Raja
2017-11-01
The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.
Directory of Open Access Journals (Sweden)
Jin-Li Sun
2014-06-01
Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.
Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
Directory of Open Access Journals (Sweden)
C. W. Dawson
2002-01-01
Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting
Fault diagnosis in nuclear power plants using an artificial neural network technique
International Nuclear Information System (INIS)
Chou, H.P.; Prock, J.; Bonfert, J.P.
1993-01-01
Application of artificial intelligence (AI) computational techniques, such as expert systems, fuzzy logic, and neural networks in diverse areas has taken place extensively. In the nuclear industry, the intended goal for these AI techniques is to improve power plant operational safety and reliability. As a computerized operator support tool, the artificial neural network (ANN) approach is an emerging technology that currently attracts a large amount of interest. The ability of ANNs to extract the input/output relation of a complicated process and the superior execution speed of a trained ANN motivated this study. The goal was to develop neural networks for sensor and process faults diagnosis with the potential of implementing as a component of a real-time operator support system LYDIA, early sensor and process fault detection and diagnosis
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
CSIR Research Space (South Africa)
Ngwangwa, HM
2008-07-01
Full Text Available on the road and driver to assess the integrity of road and vehicle infrastructure. In this paper, vehicle vibration data are applied to an artificial neural network to reconstruct the corresponding road surface profiles. The results show that the technique...
Directory of Open Access Journals (Sweden)
Yun-Yong Kim
2014-01-01
Full Text Available Diffusion coefficient from chloride migration test is currently used; however this cannot provide a conventional solution like total chloride contents since it depicts only ion migration velocity in electrical field. This paper proposes a simple analysis technique for chloride behavior using apparent diffusion coefficient from neural network algorithm with time-dependent diffusion phenomena. For this work, thirty mix proportions of high performance concrete are prepared and their diffusion coefficients are obtained after long term-NaCl submerged test. Considering time-dependent diffusion coefficient based on Fick’s 2nd Law and NNA (neural network algorithm, analysis technique for chloride penetration is proposed. The applicability of the proposed technique is verified through the results from accelerated test, long term submerged test, and field investigation results.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Development of neural network techniques for the analysis of JET ECE data
International Nuclear Information System (INIS)
Bartlett, D.V.; Bishop, C.M.
1993-01-01
This paper reports on a project currently in progress to develop neutral network techniques for the conversion of JET ECE spectra to electron temperature profiles. The aim is to obtain profiles with reduced measurement uncertainties by incorporating data from the LIDAR Thomson scattering diagnostic in the analysis, while retaining the faster time resolution of the ECE measurements. The properties of neural networks are briefly reviewed, and the reasons for using them in this application are explained. Some preliminary results are presented and the direction of future work is outlined. (orig.)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
The application of neural network techniques to magnetic and optical inverse problems
International Nuclear Information System (INIS)
Jones, H.V.
2000-12-01
The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
Surface Casting Defects Inspection Using Vision System and Neural Network Techniques
Directory of Open Access Journals (Sweden)
Świłło S.J.
2013-12-01
Full Text Available The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
2016-01-01
When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...
Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E
2015-01-01
To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.
International Nuclear Information System (INIS)
Feng Yi-Fu; Zhang Qing-Ling; Feng De-Zhi
2012-01-01
The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Nahid, Abdullah-Al; Mehrabi, Mohamad Ali; Kong, Yinan
2018-01-01
Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F -Measure value is achieved on both the 40x and 100x datasets.
International Nuclear Information System (INIS)
Lucas, Carla de Souza
2009-01-01
This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)
Breast Cancer Diagnosis using Artificial Neural Networks with Extreme Learning Techniques
Chandra Prasetyo Utomo; Aan Kardiana; Rika Yuliwulandari
2014-01-01
Breast cancer is the second cause of dead among women. Early detection followed by appropriate cancer treatment can reduce the deadly risk. Medical professionals can make mistakes while identifying a disease. The help of technology such as data mining and machine learning can substantially improve the diagnosis accuracy. Artificial Neural Networks (ANN) has been widely used in intelligent breast cancer diagnosis. However, the standard Gradient-Based Back Propagation Artificial Neural Networks...
Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network
Directory of Open Access Journals (Sweden)
Jung Hwan Lee
2017-08-01
Full Text Available In this paper, we propose a deep neural network (DNN-based automatic modulation classification (AMC for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Nair, Archana; Singh, Gurjeet; Mohanty, U. C.
2018-01-01
The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
M Jafarlou
2014-04-01
Full Text Available Physical properties of agricultural products such as volume are the most important parameters influencing grading and packaging systems. They should be measured accurately as they are considered for any good system design. Image processing and neural network techniques are both non-destructive and useful methods which are recently used for such purpose. In this study, the images of apples were captured from a constant distance and then were processed in MATLAB software and the edges of apple images were extracted. The interior area of apple image was divided into some thin trapezoidal elements perpendicular to longitudinal axis. Total volume of apple was estimated by the summation of incremental volumes of these elements revolved around the apple’s longitudinal axis. The picture of half cut apple was also captured in order to obtain the apple shape’s indentation volume, which was subtracted from the previously estimated total volume of apple. The real volume of apples was measured using water displacement method and the relation between the real volume and estimated volume was obtained. The t-test and Bland-Altman indicated that the difference between the real volume and the estimated volume was not significantly different (p>0.05 i.e. the mean difference was 1.52 cm3 and the accuracy of measurement was 92%. Utilizing neural network with input variables of dimension and mass has increased the accuracy up to 97% and the difference between the mean of volumes decreased to 0.7 cm3.
Directory of Open Access Journals (Sweden)
Hazlee Azil Illias
Full Text Available It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN and particle swarm optimisation (PSO techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.
Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634
Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)
Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network
International Nuclear Information System (INIS)
Salgado, Cesar M.; Brandao, Luis E.B.
2015-01-01
The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)
Development of a neural network technique for KSTAR Thomson scattering diagnostics
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H. [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of); Yamada, I. [National Institute Fusion Science, Toki, Gifu 509-5292 (Japan); Park, Jae Sun [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)
2016-11-15
Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.
International Nuclear Information System (INIS)
Hosseini-Ashrafi, M.E.; Bagherebadian, H.; Yahaqi, E.
1999-01-01
A method has been developed which, by using the geometric information from treatment sample cases, selects from a given data set an initial treatment plan as a step for treatment plan optimization. The method uses an artificial neural network (ANN) classification technique to select a best matching plan from the 'optimized' ANN database. Separate back-propagation ANN classifiers were trained using 50, 60 and 77 examples for three groups of treatment case classes (up to 21 examples from each class were used). The performance of the classifiers in selecting the correct treatment class was tested using the leave-one-out method; the networks were optimized with respect their architecture. For the three groups used in this study, successful classification fractions of 0.83, 0.98 and 0.93 were achieved by the optimized ANN classifiers. The automated response of the ANN may be used to arrive at a pre-plan where many treatment parameters may be identified and therefore a significant reduction in the steps required to arrive at the optimum plan may be achieved. Treatment planning 'experience' and also results from lengthy calculations may be used for training the ANN. (author)
Arabic Handwriting Recognition Using Neural Network Classifier
African Journals Online (AJOL)
pc
2018-03-05
Mar 5, 2018 ... an OCR using Neural Network classifier preceded by a set of preprocessing .... Artificial Neural Networks (ANNs), which we adopt in this research, consist of ... advantage and disadvantages of each technique. In [9],. Khemiri ...
Simple techniques for improving deep neural network outcomes on commodity hardware
Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.
2017-08-01
We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.
Detection of breast cancer using advanced techniques of data mining with neural networks
International Nuclear Information System (INIS)
Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M.
2016-10-01
The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)
Jain, Ashu; Srinivasulu, Sanaga
2006-02-01
This paper presents the findings of a study aimed at decomposing a flow hydrograph into different segments based on physical concepts in a catchment, and modelling different segments using different technique viz. conceptual and artificial neural networks (ANNs). An integrated modelling framework is proposed capable of modelling infiltration, base flow, evapotranspiration, soil moisture accounting, and certain segments of the decomposed flow hydrograph using conceptual techniques and the complex, non-linear, and dynamic rainfall-runoff process using ANN technique. Specifically, five different multi-layer perceptron (MLP) and two self-organizing map (SOM) models have been developed. The rainfall and streamflow data derived from the Kentucky River catchment were employed to test the proposed methodology and develop all the models. The performance of all the models was evaluated using seven different standard statistical measures. The results obtained in this study indicate that (a) the rainfall-runoff relationship in a large catchment consists of at least three or four different mappings corresponding to different dynamics of the underlying physical processes, (b) an integrated approach that models the different segments of the decomposed flow hydrograph using different techniques is better than a single ANN in modelling the complex, dynamic, non-linear, and fragmented rainfall runoff process, (c) a simple model based on the concept of flow recession is better than an ANN to model the falling limb of a flow hydrograph, and (d) decomposing a flow hydrograph into the different segments corresponding to the different dynamics based on the physical concepts is better than using the soft decomposition employed using SOM.
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
such as the neural network model is not appropriate if the data is generated by a linear mechanism. Hence, it might be appropriate to test the null of linearity prior to building a nonlinear model. We investigate whether this kind of pretesting improves the forecast accuracy compared to the case where...
Artificial neural networks in NDT
International Nuclear Information System (INIS)
Abdul Aziz Mohamed
2001-01-01
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.
2001-03-01
This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique
Directory of Open Access Journals (Sweden)
Rakan Kh. Antar
2017-12-01
Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.
Yang, D.-M.; Stronach, A. F.; MacConnell, P.; Penman, J.
2002-03-01
This paper addresses the development of a novel condition monitoring procedure for rolling element bearings which involves a combination of signal processing, signal analysis and artificial intelligence methods. Seven approaches based on power spectrum, bispectral and bicoherence vibration analyses are investigated as signal pre-processing techniques for application in the diagnosis of a number of induction motor rolling element bearing conditions. The bearing conditions considered are a normal bearing and bearings with cage and inner and outer race faults. The vibration analysis methods investigated are based on the power spectrum, the bispectrum, the bicoherence, the bispectrum diagonal slice, the bicoherence diagonal slice, the summed bispectrum and the summed bicoherence. Selected features are extracted from the vibration signatures so obtained and these are used as inputs to an artificial neural network trained to identify the bearing conditions. Quadratic phase coupling (QPC), examined using the magnitude of bispectrum and bicoherence and biphase, is shown to be absent from the bearing system and it is therefore concluded that the structure of the bearing vibration signatures results from inter-modulation effects. In order to test the proposed procedure, experimental data from a bearing test rig are used to develop an example diagnostic system. Results show that the bearing conditions examined can be diagnosed with a high success rate, particularly when using the summed bispectrum signatures.
Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat
2017-08-01
The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.
Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo
2017-01-01
Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.
Estimation of dew point temperature using neuro-fuzzy and neural network techniques
Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal
2013-11-01
This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.
Energy Technology Data Exchange (ETDEWEB)
Wijayasekara, Dumidu, E-mail: wija2589@vandals.uidaho.edu [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Manic, Milos [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Sabharwall, Piyush [Idaho National Laboratory, Idaho Falls, ID (United States); Utgikar, Vivek [Department of Chemical Engineering, University of Idaho, Idaho Falls, ID 83402 (United States)
2011-07-15
Highlights: > Performance prediction of PCHE using artificial neural networks. > Evaluating artificial neural network performance for PCHE modeling. > Selection of over-training resilient artificial neural networks. > Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing
International Nuclear Information System (INIS)
Wijayasekara, Dumidu; Manic, Milos; Sabharwall, Piyush; Utgikar, Vivek
2011-01-01
Highlights: → Performance prediction of PCHE using artificial neural networks. → Evaluating artificial neural network performance for PCHE modeling. → Selection of over-training resilient artificial neural networks. → Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the
Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia
Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg
2013-03-01
Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Abdullah, M. R; Maliki, A. B. H. M; Musa, R. M; Kosni, N. A; Juahir, H
2016-01-01
This study aims to predict the potential pattern of soccer technical skill on Malaysia youth soccer players relative performance using multivariate analysis and artificial neural network techniques. 184 male youth soccer players were recruited in Malaysia soccer academy (average age = 15.2±2.0) underwent to, physical fitness test, anthropometric, maturity, motivation and the level of skill related soccer. Unsupervised pattern recognition of principal component analysis (PCA) was used to ident...
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Mode Choice Modeling Using Artificial Neural Networks
Edara, Praveen Kumar
2003-01-01
Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...
Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.
2018-05-01
The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.
A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data
International Nuclear Information System (INIS)
Lefevre, Nathalie; Watson, Andrew J.; Watson, Adam R.
2005-01-01
Using about 138,000 measurements of surface pCO 2 in the Atlantic subpolar gyre (50-70 deg N, 60-10 deg W) during 1995-1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO 2 constructed using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric CO 2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring and summer due to biological activity. As an annual average the surface pCO 2 is higher than estimates based on available syntheses of surface pCO 2 . This supports earlier suggestions that the sink of CO 2 in the Atlantic subpolar gyre has decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well on the average values of pCO 2 and derived fluxes. However, when both techniques are used with a subset of the data, the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard deviation ranging from 3 to 11 μatm. The subpolar gyre is a net sink of CO 2 of 0.13 Gt-C/yr using the multiple linear regressions and 0.15 Gt-C/yr using the neural network, on average between 1995 and 1997. Both calculations were made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using the gas exchange coefficient of Wanninkhof
Neural network technique for orbit correction in accelerators/storage rings
International Nuclear Information System (INIS)
Bozoki, E.; Friedman, A.
1995-01-01
The authors are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between open-quotes kickclose quotes from the correctors and open-quotes responseclose quotes from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
Neural networks for aircraft control
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Land Cover Change Detection using Neural Network and Grid Cells Techniques
Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.
2017-12-01
In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation
Energy Technology Data Exchange (ETDEWEB)
Mol, Antonio Carlos A., E-mail: mol@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Pereira, Claudio Marcio N.A., E-mail: cmnap@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Freitas, Victor Goncalves G. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Rio de Janeiro, RJ (Brazil); Jorge, Carlos Alexandre F., E-mail: calexandre@ien.gov.br [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear Rua Helio de Almeida, 75, Ilha do Fundao, P.O. Box 68550, 21941-906 Rio de Janeiro, RJ (Brazil)
2011-02-15
This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.
International Nuclear Information System (INIS)
Mol, Antonio Carlos A.; Pereira, Claudio Marcio N.A.; Freitas, Victor Goncalves G.; Jorge, Carlos Alexandre F.
2011-01-01
This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.
Directory of Open Access Journals (Sweden)
A. S. Raja
2012-08-01
Full Text Available The word biometrics refers to the use of physiological or biological characteristics of human to recognize and verify the identity of an individual. Palmprint has become a new class of human biometrics for passive identification with uniqueness and stability. This is considered to be reliable due to the lack of expressions and the lesser effect of aging. In this manuscript a new Palmprint based biometric system based on neural networks self organizing maps (SOM is presented. The method is named as SOMP. The paper shows that the proposed SOMP method improves the performance and robustness of recognition. The proposed method is applied to a variety of datasets and the results are shown.
International Nuclear Information System (INIS)
Pagliaro, Antonio; D'Ali Staiti, G.; D'Anna, F.
2011-01-01
We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. In the present work the method is discussed and applied to a set of fully simulated vertical showers, in the experimental framework of ARGO-YBJ, to obtain hadron to gamma primary separation. We show that the presented approach gives very good results, leading, in the 1-10 TeV energy range, to a clear improvement of the discrimination power with respect to the existing figures for extended shower detectors.
The nuclear fuel rod character recognition system based on neural network technique
International Nuclear Information System (INIS)
Kim, Woong-Ki; Park, Soon-Yong; Lee, Yong-Bum; Kim, Seung-Ho; Lee, Jong-Min; Chien, Sung-Il.
1994-01-01
The nuclear fuel rods should be discriminated and managed systematically by numeric characters which are printed at the end part of each rod in the process of producing fuel assembly. The characters are used to examine manufacturing process of the fuel rods in the inspection process of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies to establish automatic manufacturing process of fuel assembly. In the developed character recognition system, mesh feature set extracted from each character written in the fuel rod is employed to train a neural network based on back-propagation algorithm as a classifier for character recognition system. Performance evaluation has been achieved on a test set which is not included in a training character set. (author)
Neural Network for Sparse Reconstruction
Directory of Open Access Journals (Sweden)
Qingfa Li
2014-01-01
Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.
Parameterization Of Solar Radiation Using Neural Network
International Nuclear Information System (INIS)
Jiya, J. D.; Alfa, B.
2002-01-01
This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values
DEFF Research Database (Denmark)
Agerskov, Claus; Mortensen, Rasmus M.; Bohr, Henrik G.
2015-01-01
A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors...... computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques....... mu-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drug-design.......925. The performance of 8 category networks (8 output classes for binding strength) obtained a prediction accuracy of above 60 %. After training the networks, tests were done on how well the systems could be used as an aid in designing candidate drug molecules. Specifically, it was shown how a selection of chemical...
International Nuclear Information System (INIS)
Amjady, Nima; Keynia, Farshid
2009-01-01
With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods.
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
Introduction to neural networks
International Nuclear Information System (INIS)
Pavlopoulos, P.
1996-01-01
This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix
Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.
Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R
2017-01-01
Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under
Mrozek, T.; Perlicki, K.; Tajmajer, T.; Wasilewski, P.
2017-08-01
The article presents an image analysis method, obtained from an asynchronous delay tap sampling (ADTS) technique, which is used for simultaneous monitoring of various impairments occurring in the physical layer of the optical network. The ADTS method enables the visualization of the optical signal in the form of characteristics (so called phase portraits) that change their shape under the influence of impairments such as chromatic dispersion, polarization mode dispersion and ASE noise. Using this method, a simulation model was built with OptSim 4.0. After the simulation study, data were obtained in the form of images that were further analyzed using the convolutional neural network algorithm. The main goal of the study was to train a convolutional neural network to recognize the selected impairment (distortion); then to test its accuracy and estimate the impairment for the selected set of test images. The input data consisted of processed binary images in the form of two-dimensional matrices, with the position of the pixel. This article focuses only on the analysis of images containing chromatic dispersion.
A new approach to the analysis of alpha spectra based on neural network techniques
Energy Technology Data Exchange (ETDEWEB)
Baeza, A.; Miranda, J. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Guillen, J., E-mail: fguillen@unex.es [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Corbacho, J.A. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Perez, R. [Dept. Technology of Computers and Communications, Polytechnics School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain)
2011-10-01
The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach-the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks-the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to {sup 208}Po, {sup 209}Po, and {sup 210}Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak
A new approach to the analysis of alpha spectra based on neural network techniques
International Nuclear Information System (INIS)
Baeza, A.; Miranda, J.; Guillen, J.; Corbacho, J.A.; Perez, R.
2011-01-01
The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach-the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks-the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to 208 Po, 209 Po, and 210 Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak. Then, the ANN
A new approach to the analysis of alpha spectra based on neural network techniques
Baeza, A.; Miranda, J.; Guillén, J.; Corbacho, J. A.; Pérez, R.
2011-10-01
The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach—the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks—the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to 208Po, 209Po, and 210Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak. Then, the ANN
Neural networks in signal processing
International Nuclear Information System (INIS)
Govil, R.
2000-01-01
Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)
Estimating surface soil moisture from SMAP observations using a Neural Network technique.
Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P
2018-01-01
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.
The Bjorken sum rule with Monte Carlo and Neural Network techniques
International Nuclear Information System (INIS)
Debbio, L. Del; Guffanti, A.; Piccione, A.
2009-01-01
Determinations of structure functions and parton distribution functions have been recently obtained using Monte Carlo methods and neural networks as universal, unbiased interpolants for the unknown functional dependence. In this work the same methods are applied to obtain a parametrization of polarized Deep Inelastic Scattering (DIS) structure functions. The Monte Carlo approach provides a bias-free determination of the probability measure in the space of structure functions, while retaining all the information on experimental errors and correlations. In particular the error on the data is propagated into an error on the structure functions that has a clear statistical meaning. We present the application of this method to the parametrization from polarized DIS data of the photon asymmetries A 1 p and A 1 d from which we determine the structure functions g 1 p (x,Q 2 ) and g 1 d (x,Q 2 ), and discuss the possibility to extract physical parameters from these parametrizations. This work can be used as a starting point for the determination of polarized parton distributions.
Neural network classification technique and machine vision for bread crumb grain evaluation
Zayas, Inna Y.; Chung, O. K.; Caley, M.
1995-10-01
Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.
Neural Network Algorithm for Particle Loading
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Energy Technology Data Exchange (ETDEWEB)
Bellotti, R.; Castellano, M. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Candusso, M.; Casolino, M.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1995-09-01
The detectors used in the TS93 balloon flight produced a large volume of information for each cosmic ray trigger. Some of the data was visual in nature, other portions contained energy deposition and timing information. The data sets are amenable to conventional analysis techniques but there is no assurance that conventional techniques make full use of subtle correlations and relations amongst the detector responses. With the advent of neural network technologies, particularly adept at classification of complex phenomena, it would seem appropriate to explore the utility of neural network techniques to classify particles observed with the instruments. In this paper neural network based methodology for signal/background discrimination in a cosmic ray space experiment is discussed. Results are presented for electron and positron classification in the TS93 flight data set and will be compared to conventional analyses.
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Neural Networks and Micromechanics
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
International Nuclear Information System (INIS)
Torres, Walmir Maximo
2008-01-01
A technique for level measurement in pressure vessels was developed using thermal probes with internal cooling and artificial neural networks (ANN's). This new concept of thermal probes was experimentally tested in an experimental facility (BETSNI) with two test sections, ST1 and ST2. Two different thermal probes were designed and constructed: concentric tubes probe and U tube probe. A data acquisition system (DAS) was assembled to record the experimental data during the tests. Steady state and transient level tests were carried out and the experimental data obtained were used as learning and recall data sets in the ANN's program RETRO-05 that simulate a multilayer perceptron with backpropagation. The results of the analysis show that the technique can be applied for level measurements in pressure vessel. The technique is applied for a less input temperature data than the initially designed to the probes. The technique is robust and can be used in case of lack of some temperature data. Experimental data available in literature from electrically heated thermal probe were also used in the ANN's analysis producing good results. The results of the ANN's analysis show that the technique can be improved and applied to level measurements in pressure vessels. (author)
Direct adaptive control using feedforward neural networks
Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira
2003-01-01
ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...
International Nuclear Information System (INIS)
Fukatsu, Hiroshi
2007-01-01
This paper describes assessment of the lossless compression of a new efficient compression technique (JIS system) using neural network that the author and co-workers have recently developed. At first, theory is explained for encoding and decoding the data. Assessment is done on 55 images each of chest digital roentgenography, digital mammography, 64-row multi-slice CT, 1.5 Tesla MRI, positron emission tomography (PET) and digital subtraction angiography, which are lossless-compressed by the present JIS system to see the compression rate and loss. For comparison, those data are also JPEG lossless-compressed. Personal computer (PC) is an Apple MacBook Pro with configuration of Boot Camp for Windows environment. The present JIS system is found to have a more than 4 times higher efficiency than the usual compressions which compressing the file volume to only 1/11 in average, and thus to be importantly responsible to the increasing medical imaging data. (R.T.)
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Neural networks for triggering
International Nuclear Information System (INIS)
Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
International Nuclear Information System (INIS)
Kapur, G.S.; Sastry, M.I.S.; Jaiswal, A.K.; Sarpal, A.S.
2004-01-01
The present paper describes various classification techniques like cluster analysis, principal component (PC)/factor analysis to classify different types of base stocks. The API classification of base oils (Group I-III) has been compared to a more detailed NMR derived chemical compositional and molecular structural parameters based classification in order to point out the similarities of the base oils in the same group and the differences between the oils placed in different groups. The detailed compositional parameters have been generated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopic methods. Further, oxidation stability, measured in terms of rotating bomb oxidation test (RBOT) life, of non-conventional base stocks and their blends with conventional base stocks, has been quantitatively correlated with their 1 H NMR and elemental (sulphur and nitrogen) data with the help of multiple linear regression (MLR) and artificial neural networks (ANN) techniques. The MLR based model developed using NMR and elemental data showed a high correlation between the 'measured' and 'estimated' RBOT values for both training (R=0.859) and validation (R=0.880) data sets. The ANN based model, developed using fewer number of input variables (only 1 H NMR data) also showed high correlation between the 'measured' and 'estimated' RBOT values for training (R=0.881), validation (R=0.860) and test (R=0.955) data sets
Program Helps Simulate Neural Networks
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Analysis of neural networks in terms of domain functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
An Experimental Technique for Structural Diagnostic Based on Laser Vibrometry and Neural Networks
Directory of Open Access Journals (Sweden)
Paolo Castellini
2000-01-01
Full Text Available In recent years damage detection techniques based on vibration data have been largely investigated with promising results for many applications. In particular, several attempts have been made to determine which kind of data should be extracted for damage monitoring.
Tshisaphungo, Mpho; Habarulema, John Bosco; McKinnell, Lee-Anne
2018-06-01
In this paper, the modeling of the ionospheric foF 2 changes during geomagnetic storms by means of neural network (NN) and linear regression (LR) techniques is presented. The results will lead to a valuable tool to model the complex ionospheric changes during disturbed days in an operational space weather monitoring and forecasting environment. The storm-time foF 2 data during 1996-2014 from Grahamstown (33.3°S, 26.5°E), South Africa ionosonde station was used in modeling. In this paper, six storms were reserved to validate the models and hence not used in the modeling process. We found that the performance of both NN and LR models is comparable during selected storms which fell within the data period (1996-2014) used in modeling. However, when validated on storm periods beyond 1996-2014, the NN model gives a better performance (R = 0.62) compared to LR model (R = 0.56) for a storm that reached a minimum Dst index of -155 nT during 19-23 December 2015. We also found that both NN and LR models are capable of capturing the ionospheric foF 2 responses during two great geomagnetic storms (28 October-1 November 2003 and 6-12 November 2004) which have been demonstrated to be difficult storms to model in previous studies.
Neural networks, D0, and the SSC
International Nuclear Information System (INIS)
Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.
1989-01-01
We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs
Using neural networks in software repositories
Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.
1992-01-01
The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.
Machine Learning Topological Invariants with Neural Networks
Zhang, Pengfei; Shen, Huitao; Zhai, Hui
2018-02-01
In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Application of neural network to CT
International Nuclear Information System (INIS)
Ma, Xiao-Feng; Takeda, Tatsuoki
1999-01-01
This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)
International Nuclear Information System (INIS)
Azimi, R.; Ghayekhloo, M.; Ghofrani, M.
2016-01-01
Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar
A Learning Method for Neural Networks Based on a Pseudoinverse Technique
Directory of Open Access Journals (Sweden)
Chinmoy Pal
1996-01-01
Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.
International Nuclear Information System (INIS)
Astvatsaturov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Shigaev, V.; Paplevka, A.; Sushkov, S.; Bosman, M.; Nessi, M.
1995-01-01
Advantages of artificial neural networks techniques in handling data from highly granulated ATLAS hadron calorimeter (HC) are shown in application to isolated π/μ separation task in the range 3 T T muons have a significant probability to be absorbed in the calorimeter and therefore they cannot be reliably registered by the muon detector. The comparative analysis of main characteristics is presented for several neural net discriminators and a linear threshold discriminator operating on energy deposition in the last depth of HC. The analysis is based on MC data obtained with ATLAS simulation programs. 9 refs., 12 figs
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural networks at the Tevatron
International Nuclear Information System (INIS)
Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.
1992-10-01
This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF
Neural Networks for the Beginner.
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Energy Technology Data Exchange (ETDEWEB)
Fukuoka, K; Kobayashi, T [OYO Corp., Tokyo (Japan); Mogi, T [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Spichak, V
1997-10-22
Behavior of neural networks relative to noise and the constitution of an optimum network are studied for the construction of a 3-D MT data interpretation system using neural networks. In the study, the relationship is examined between the noise level of educational data and the noise level of the neural network to be constructed. After examination it is found that the neural network is effective in interpreting data whose noise level is the same as that of educational data; it cannot correctly interpret data that it has not met in the educational stage even if such data is free of noise; that the optimum number of neurons in a hidden layer is approximately 40 in a network architecture using the current system; and that the neuron gain function enhances recognition capability when a logistic function is used in the hidden layer and a linear function is used in the output layer. 2 refs., 7 figs., 2 tabs.
International Nuclear Information System (INIS)
Dumonteil, E.
2009-01-01
Various variance-reduction techniques are used in Monte Carlo particle transport. Most of them rely either on a hypothesis made by the user (parameters of the exponential biasing, mesh and weight bounds for weight windows, etc.) or on a previous calculation of the system with, for example, a deterministic solver. This paper deals with a new acceleration technique, namely, auto-adaptative neural network biasing. Indeed, instead of using any a priori knowledge of the system, it is possible, at a given point in a simulation, to use the Monte Carlo histories previously simulated to train a neural network, which, in return, should be able to provide an estimation of the adjoint flux, used then for biasing the simulation. We will describe this method, detail its implementation in the Monte Carlo code Tripoli4, and discuss its results on two test cases. (author)
Artificial neural networks for plasma spectroscopy analysis
International Nuclear Information System (INIS)
Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.
1992-01-01
Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Directory of Open Access Journals (Sweden)
Foday Conteh
2017-09-01
Full Text Available In recent years, the use of renewable energy sources in micro-grids has become an effectivemeans of power decentralization especially in remote areas where the extension of the main power gridis an impediment. Despite the huge deposit of natural resources in Africa, the continent still remains inenergy poverty. Majority of the African countries could not meet the electricity demand of their people.Therefore, the power system is prone to frequent black out as a result of either excess load to the systemor generation failure. The imbalance of power generation and load demand has been a major factor inmaintaining the stability of the power systems and is usually responsible for the under frequency andunder voltage in power systems. Currently, load shedding is the most widely used method to balancebetween load and demand in order to prevent the system from collapsing. But the conventional methodof under frequency or under voltage load shedding faces many challenges and may not perform asexpected. This may lead to over shedding or under shedding, causing system blackout or equipmentdamage. To prevent system cascade or equipment damage, appropriate amount of load must beintentionally and automatically curtailed during instability. In this paper, an effective load sheddingtechnique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system isproposed. The combined techniques take into account the actual system state and the exact amount ofload needs to be curtailed at a faster rate as compared to the conventional method. Also, this methodis able to carry out optimal load shedding for any input range other than the trained data. Simulationresults obtained from this work, corroborate the merit of this algorithm.
Elshambaky, Hossam Talaat
2018-01-01
Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
Directory of Open Access Journals (Sweden)
Awatif Soaded Alsaqqar
2016-06-01
Full Text Available In this research an Artificial Neural Network (ANN technique was applied for the prediction of Ryznar Index (RI of the flowing water from WTPs in Al-Karakh side (left side in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3 have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.
Neural network tagging in a toy model
International Nuclear Information System (INIS)
Milek, Marko; Patel, Popat
1999-01-01
The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Optical Neural Network Classifier Architectures
National Research Council Canada - National Science Library
Getbehead, Mark
1998-01-01
We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...
Memristor-based neural networks
International Nuclear Information System (INIS)
Thomas, Andy
2013-01-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)
An introduction to neural network methods for differential equations
Yadav, Neha; Kumar, Manoj
2015-01-01
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Time series prediction: statistical and neural techniques
Zahirniak, Daniel R.; DeSimio, Martin P.
1996-03-01
In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.
Daily Nigerian peak load forecasting using artificial neural network ...
African Journals Online (AJOL)
A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...
Neural networks for event filtering at D/O/
International Nuclear Information System (INIS)
Cutts, D.; Hoftun, J.S.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.
1989-01-01
Neural networks may provide important tools for pattern recognition in high energy physics. We discuss an initial exploration of these techniques, presenting the result of network simulations of several filter algorithms. The D0 data acquisition system, a MicroVAX farm, will perform critical event selection; we describe a possible implementation of neural network algorithms in this system. 7 refs., 4 figs
Artificial Neural Networks For Hadron Hadron Cross-sections
International Nuclear Information System (INIS)
ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.
2011-01-01
In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
This article presents a novel technique to distinguish between magnetizing inrush current and internal fault current of power transformer. An algorithm has been developed around the theme of the conventional differential protection method in which parallel combination of Probabilistic Neural Network (PNN) and Power ...
A locality aware convolutional neural networks accelerator
Shi, R.; Xu, Z.; Sun, Z.; Peemen, M.C.J.; Li, A.; Corporaal, H.; Wu, D.
2015-01-01
The advantages of Convolutional Neural Networks (CNNs) with respect to traditional methods for visual pattern recognition have changed the field of machine vision. The main issue that hinders broad adoption of this technique is the massive computing workload in CNN that prevents real-time
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.
2016-01-01
We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Classification of behavior using unsupervised temporal neural networks
International Nuclear Information System (INIS)
Adair, K.L.
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem
Deep Neural Network Detects Quantum Phase Transition
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Energy Technology Data Exchange (ETDEWEB)
Dong Lijun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail: chenxg@lzu.edu.cn; Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)
2007-05-15
The determination of proteins with 2-(4-chloro-2-phosphonophenylazo)-7-(4-iodophenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (CPA-pI) by Rayleigh light scattering (RLS) was studied in this paper. The weak RLS of CPA-pI and BSA can be enhanced greatly by the addition of Al{sup 3+} at the pH 5.6 and an enhanced RLS signal was produced at 365-385 nm. Based on the reaction of CPA-pI, Al{sup 3+} and proteins, a new quantitative determination method for proteins has been developed. The effect of three variables for the determination of proteins was optimized by means of artificial neural networks (ANNs) using extended delta-bar-delta (EDBD) algorithms with the optimal network structure of 3-5-1. This method is very sensitive (2.5-35.4 {mu}g/ml for bovine serum albumin (BSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. Six samples of protein in human serum were determined and the maximum relative error is no more than 2% and the recovery is between 95% and 105%.
International Nuclear Information System (INIS)
Kim, Jae Joon
2004-01-01
Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented
Identifying Tracks Duplicates via Neural Network
Sunjerga, Antonio; CERN. Geneva. EP Department
2017-01-01
The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.
International Nuclear Information System (INIS)
Iloghalu, E.M.
2002-01-01
Artificial neural network is a virtual intelligence tool, which mimics the human brain to do analysis and come out with results. Its application in petroleum engineering is very recent and is gradually evolving and is set to dominate or take over other analytical tools used in the Exploration and Production industry.There are two types of neural network namely, unsupervised and supervised neural networks. A proper combination of these two types of neural networks produces high-resolution results.In this work, interpreted core data was depth matched to well logs and 5 genetic units were calibrated to define the combined log responses for each genetic unit. These combined log responses were then used to train the supervised neural networks to recognise and interpret these units elsewhere in the field. Thereafter, the unsupervised neural network was run to generate classes within the cored interval. The results were then compared with the supervised network output and were then extrapolated vertically and laterally to other parts of the field.This technique having been used successfully to perform automatic interpretation of genetic units and lithofacies associations in reservoir scale is also very useful and applicable in exploration. Specific reservoirs or stratigraphic units can be automatically interpreted across a wide area using well data controlled by one or a combination of lithostratigraphy, allostratigraphy, sequence stratigraphy and biostratigraphy.Using this technique, well data cost and time are saved tremendously. It is the key to achieving computerised Basin-Scale Reservoir characterisation for the Niger Delta
International Nuclear Information System (INIS)
Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas
2001-01-01
Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost
A fuzzy neural network for sensor signal estimation
International Nuclear Information System (INIS)
Na, Man Gyun
2000-01-01
In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique. Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors
International Nuclear Information System (INIS)
Hou Zhijian; Lian Zhiwei; Yao Ye; Yuan Xinjian
2006-01-01
A novel method integrating rough sets (RS) theory and an artificial neural network (ANN) based on data-fusion technique is presented to forecast an air-conditioning load. Data-fusion technique is the process of combining multiple sensors data or related information to estimate or predict entity states. In this paper, RS theory is applied to find relevant factors to the load, which are used as inputs of an artificial neural-network to predict the cooling load. To improve the accuracy and enhance the robustness of load forecasting results, a general load-prediction model, by synthesizing multi-RSAN (MRAN), is presented so as to make full use of redundant information. The optimum principle is employed to deduce the weights of each RSAN model. Actual prediction results from a real air-conditioning system show that, the MRAN forecasting model is better than the individual RSAN and moving average (AMIMA) ones, whose relative error is within 4%. In addition, individual RSAN forecasting results are better than that of ARIMA
Entropy Learning in Neural Network
Directory of Open Access Journals (Sweden)
Geok See Ng
2017-12-01
Full Text Available In this paper, entropy term is used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence entropy approach is proposed to dampen the early creation of such nodes. The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.
Classes of feedforward neural networks and their circuit complexity
Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter
1992-01-01
This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Neural network to diagnose lining condition
Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.
2018-03-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.
Medical Imaging with Neural Networks
International Nuclear Information System (INIS)
Pattichis, C.; Cnstantinides, A.
1994-01-01
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
neural networks, such as learning, adapting and copying by means of parallel ... to provide robust recognition of hand-printed English text. Engine idle and misfiring .... and s represents the bounded activation function of a neuron. It is typically ...
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Intelligent neural network diagnostic system
International Nuclear Information System (INIS)
Mohamed, A.H.
2010-01-01
Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.
Medical Imaging with Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)
1994-12-31
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.
Numerical experiments with neural networks
International Nuclear Information System (INIS)
Miranda, Enrique.
1990-01-01
Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)
Spin glasses and neural networks
International Nuclear Information System (INIS)
Parga, N.; Universidad Nacional de Cuyo, San Carlos de Bariloche
1989-01-01
The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.)
Tomographic image reconstruction using Artificial Neural Networks
International Nuclear Information System (INIS)
Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.
2004-01-01
A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.
Adaptive nonlinear control using input normalized neural networks
International Nuclear Information System (INIS)
Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong
2008-01-01
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small
Neural network application to diesel generator diagnostics
International Nuclear Information System (INIS)
Logan, K.P.
1990-01-01
Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns
Adaptive competitive learning neural networks
Directory of Open Access Journals (Sweden)
Ahmed R. Abas
2013-11-01
Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.
Integrating neural network technology and noise analysis
International Nuclear Information System (INIS)
Uhrig, R.E.; Oak Ridge National Lab., TN
1995-01-01
The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)
Vibration monitoring with artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
Optical resonators and neural networks
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
Diagnosis method utilizing neural networks
International Nuclear Information System (INIS)
Watanabe, K.; Tamayama, K.
1990-01-01
Studies have been made on the technique of neural networks, which will be used to identify a cause of a small anomalous state in the reactor coolant system of the ATR (Advance Thermal Reactor). Three phases of analyses were carried out in this study. First, simulation for 100 seconds was made to determine how the plant parameters respond after the occurence of a transient decrease in reactivity, flow rate and temperature of feed water and increase in the steam flow rate and steam pressure, which would produce a decrease of water level in a steam drum of the ATR. Next, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters: neutron flux, flow rate of coolant, steam or feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, learning of neural networks composed of 96 input, 4-9 hidden and 5 output layer units was done by use of the generalized delta rule, namely a back-propagation algorithm. These convergent computations were continued as far as the difference between the desired outputs, 1 for direct cause or 0 for four other ones and actual outputs reached less than 10%. (1) Coherency functions were not governed by decreasing rate of reactivity in the range of 0.41x10 -2 dollar/s to 1.62x10 -2 dollar /s or by decreasing depth of the feed water temperature in the range of 3 deg C to 10 deg C or by a change of 10% or less in the three other causes. Change in coherency functions only depended on the type of cause. (2) The direct cause from the other four ones could be discriminated with 0.94+-0.01 of output level. A maximum of 0.06 output height was found among the other four causes. (3) Calculation load which is represented as products of learning times and numbers of the hidden units did not depend on the
Design of Robust Neural Network Classifiers
DEFF Research Database (Denmark)
Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads
1998-01-01
This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...... suggest to adapt the outlier probability and regularisation parameters by minimizing the error on a validation set, and a simple gradient descent scheme is derived. In addition, the framework allows for constructing a simple outlier detector. Experiments with artificial data demonstrate the potential...
Inversion of a lateral log using neural networks
International Nuclear Information System (INIS)
Garcia, G.; Whitman, W.W.
1992-01-01
In this paper a technique using neural networks is demonstrated for the inversion of a lateral log. The lateral log is simulated by a finite difference method which in turn is used as an input to a backpropagation neural network. An initial guess earth model is generated from the neural network, which is then input to a Marquardt inversion. The neural network reacts to gross and subtle data features in actual logs and produces a response inferred from the knowledge stored in the network during a training process. The neural network inversion of lateral logs is tested on synthetic and field data. Tests using field data resulted in a final earth model whose simulated lateral is in good agreement with the actual log data
neural network based model o work based model of an industrial oil
African Journals Online (AJOL)
eobe
technique. g, Neural Network Model, Regression, Mean Square Error, PID controller. ... during the training processes. An additio ... used to carry out simulation studies of the mode .... A two-layer feed-forward neural network with Matlab.
Photon spectrometry utilizing neural networks
International Nuclear Information System (INIS)
Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.
2015-01-01
Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)
SEVERITY CLASSIFICATION OF MICROANEURYSMS USING NEURAL NETWORK
Directory of Open Access Journals (Sweden)
Shree Divya R
2014-01-01
Full Text Available Diabetic Retinopathy is one of the most common causes of blindness that leads to the loss of vision to the human eye. Several methods have been proposed to detect several defects of the human eye like hemorrhages, exudates etc. which are to be considered as the major symptoms. Among them, Microaneurysms should be considered as one of the severe condition for the early blindness. Several techniques have been proposed based on this, but they have certain drawbacks. A new technique called neural network taken for presentation, helps to detect and determine the severity of Microaneurysms which would be able to give a better performance than the existing techniques.
Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.
2012-04-01
The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the
McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying
2009-01-01
Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of
International Nuclear Information System (INIS)
Sakai, Takayuki; Soneda, Naoki
1994-01-01
In PWR plants, an automatic recognition system of Eddy Current Testing (ECT) signals of steam generator tubes are strongly required to reduce inspectors' labor and to improve the reliability of the testing. Although the neural-network technique is very promising for this kind of system, it is necessary to evaluate its applicability to ECT signals throughly, where a database of the relationship of the defects and ECT signals plays a very important role. In this paper, a three dimensional finite element analysis system of electromagnetic field, which consists of an FEM code and pre/post processor, is developed to generate a database of ECT signals. T-Ω method and the edge element are employed in the FEM code to reduce the required computer memory. The code is verified through some comparisons with experiments and other calculations. (author)
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Geochemical characterization of oceanic basalts using artificial neural network
Digital Repository Service at National Institute of Oceanography (India)
Das, P.; Iyer, S.D.
method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...
IMNN: Information Maximizing Neural Networks
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Scheduling with artificial neural networks
Gürgün, Burçkaan
1993-01-01
Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
A comparative study of two neural networks for document retrieval
International Nuclear Information System (INIS)
Hui, S.C.; Goh, A.
1997-01-01
In recent years there has been specific interest in adopting advanced computer techniques in the field of document retrieval. This interest is generated by the fact that classical methods such as the Boolean search, the vector space model or even probabilistic retrieval cannot handle the increasing demands of end-users in satisfying their needs. The most recent attempt is the application of the neural network paradigm as a means of providing end-users with a more powerful retrieval mechanism. Neural networks are not only good pattern matchers but also highly versatile and adaptable. In this paper, we demonstrate how to apply two neural networks, namely Adaptive Resonance Theory and Fuzzy Kohonen Neural Network, for document retrieval. In addition, a comparison of these two neural networks based on performance is also given
Artificial neural network based approach to transmission lines protection
International Nuclear Information System (INIS)
Joorabian, M.
1999-05-01
The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
are examined. The models are separated into three groups representing input/output descriptions as well as state space descriptions: - Models, where all in- and outputs are measurable (static networks). - Models, where some inputs are non-measurable (recurrent networks). - Models, where some in- and some...... outputs are non-measurable (recurrent networks with incomplete state information). The three groups are ordered in increasing complexity, and for each group it is shown how to solve the problems concerning training and application of the specific model type. Of particular interest are the model types...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Gas Classification Using Deep Convolutional Neural Networks
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-01
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723
Wavelet neural network load frequency controller
International Nuclear Information System (INIS)
Hemeida, Ashraf Mohamed
2005-01-01
This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one
Gas Classification Using Deep Convolutional Neural Networks.
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-08
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).
Iris Data Classification Using Quantum Neural Networks
International Nuclear Information System (INIS)
Sahni, Vishal; Patvardhan, C.
2006-01-01
Quantum computing is a novel paradigm that promises to be the future of computing. The performance of quantum algorithms has proved to be stunning. ANN within the context of classical computation has been used for approximation and classification tasks with some success. This paper presents an idea of quantum neural networks along with the training algorithm and its convergence property. It synergizes the unique properties of quantum bits or qubits with the various techniques in vogue in neural networks. An example application of Fisher's Iris data set, a benchmark classification problem has also been presented. The results obtained amply demonstrate the classification capabilities of the quantum neuron and give an idea of their promising capabilities
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Neutron spectrometry and dosimetry by means of evolutive neural networks
International Nuclear Information System (INIS)
Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.
2008-01-01
The artificial neural networks and the genetic algorithms are two relatively new areas of research, which have been subject to a growing interest during the last years. Both models are inspired by the nature, however, the neural networks are interested in the learning of a single individual, which is defined as fenotypic learning, while the evolutionary algorithms are interested in the adaptation of a population to a changing environment, that which is defined as genotypic learning. Recently, the use of the technology of neural networks has been applied with success in the area of the nuclear sciences, mainly in the areas of neutron spectrometry and dosimetry. The structure (network topology), as well as the learning parameters of a neural network, are factors that contribute in a significant way with the acting of the same one, however, it has been observed that the investigators in this area, carry out the selection of the network parameters through the essay and error technique, that which produces neural networks of poor performance and low generalization capacity. From the revised sources, it has been observed that the use of the evolutionary algorithms, seen as search techniques, it has allowed him to be possible to evolve and to optimize different properties of the neural networks, just as the initialization of the synaptic weights, the network architecture or the training algorithms without the human intervention. The objective of the present work is focused in analyzing the intersection of the neural networks and the evolutionary algorithms, analyzing like it is that the same ones can be used to help in the design processes and training of a neural network, this is, in the good selection of the structural parameters and of network learning, improving its generalization capacity, in such way that the same one is able to reconstruct in an efficient way neutron spectra and to calculate equivalent doses starting from the counting rates of a Bonner sphere
Analog neural networks in an upgraded muon trigger for the DZero detector
International Nuclear Information System (INIS)
Fortner, M.R.
1992-04-01
The use of analog neural networks as part of the DZero muon detector is considered. A study was made of tracking through a single muon chamber using neural network techniques. A hardware application based on Intel's ETANN ship was designed and used in a test beam at Fermi National Accelerator Laboratory. Plans to implement a neural network trigger in DZero are also discussed
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Online fouling detection in electrical circulation heaters using neural networks
Energy Technology Data Exchange (ETDEWEB)
Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D
2003-06-01
Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)
Neural Networks through Shared Maps in Mobile Devices
Directory of Open Access Journals (Sweden)
William Raveane
2014-12-01
Full Text Available We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.
Discrete-time BAM neural networks with variable delays
Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi
2007-07-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.
Discrete-time BAM neural networks with variable delays
International Nuclear Information System (INIS)
Liu Xinge; Tang Meilan; Martin, Ralph; Liu Xinbi
2007-01-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development
Analysis of complex systems using neural networks
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Finite connectivity attractor neural networks
International Nuclear Information System (INIS)
Wemmenhove, B; Coolen, A C C
2003-01-01
We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous
Energy Technology Data Exchange (ETDEWEB)
Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico)
2016-10-15
The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)
Hybrid digital signal processing and neural networks applications in PWRs
International Nuclear Information System (INIS)
Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.
1991-01-01
Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications
ABOUT HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, hybrid bidirectional associative memory neural networks with discrete delays is considered. By ingeniously importing real parameters di > 0(i = 1,2,···,n) which can be adjusted, we establish some new sufficient conditions for the dynamical characteristics of hybrid bidirectional associative memory neural networks with discrete delays by the method of variation of parameters and some analysis techniques. Our results generalize and improve the related results in [10,11]. Our work is significant...
Research of convolutional neural networks for traffic sign recognition
Stadalnikas, Kasparas
2017-01-01
In this thesis the convolutional neural networks application for traffic sign recognition is analyzed. Thesis describes the basic operations, techniques that are commonly used to apply in the image classification using convolutional neural networks. Also, this paper describes the data sets used for traffic sign recognition, their problems affecting the final training results. The paper reviews most popular existing technologies – frameworks for developing the solution for traffic sign recogni...
Directory of Open Access Journals (Sweden)
Mustafa Akpinar
2017-06-01
Full Text Available The increase of energy consumption in the world is reflected in the consumption of natural gas. However, this increment requires additional investment. This effect leads imbalances in terms of demand forecasting, such as applying penalties in the case of error rates occurring beyond the acceptable limits. As the forecasting errors increase, penalties increase exponentially. Therefore, the optimal use of natural gas as a scarce resource is important. There are various demand forecast ranges for natural gas and the most difficult range among these demands is the day-ahead forecasting, since it is hard to implement and makes predictions with low error rates. The objective of this study is stabilizing gas tractions on day-ahead demand forecasting using low-consuming subscriber data for minimizing error using univariate artificial bee colony-based artificial neural networks (ANN-ABC. For this purpose, households and low-consuming commercial users’ four-year consumption data between the years of 2011–2014 are gathered in daily periods. Previous consumption values are used to forecast day-ahead consumption values with sliding window technique and other independent variables are not taken into account. Dataset is divided into two parts. First, three-year daily consumption values are used with a seven day window for training the networks, while the last year is used for the day-ahead demand forecasting. Results show that ANN-ABC is a strong, stable, and effective method with a low error rate of 14.9 mean absolute percentage error (MAPE for training utilizing MAPE with a univariate sliding window technique.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
Forecasting PM10 in metropolitan areas: Efficacy of neural networks
International Nuclear Information System (INIS)
Fernando, H.J.S.; Mammarella, M.C.; Grandoni, G.; Fedele, P.; Di Marco, R.; Dimitrova, R.; Hyde, P.
2012-01-01
Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or ‘nodes’ capable of ‘learning through training’ via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations.Highlights: ► Neural Network is an alternative technique to photochemical modelling. ► Neutral Networks can be as effective as traditional air photochemical modelling. ► Neural Networks are much easier and quicker to implement in health warning system. - Neutral networks are as effective as photochemical modelling for air quality predictions, but are much easier, quicker and economical to implement in air pollution (or health) warning systems.
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Multistability in bidirectional associative memory neural networks
International Nuclear Information System (INIS)
Huang Gan; Cao Jinde
2008-01-01
In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results
Multistability in bidirectional associative memory neural networks
Huang, Gan; Cao, Jinde
2008-04-01
In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.
Defect detection on videos using neural network
Directory of Open Access Journals (Sweden)
Sizyakin Roman
2017-01-01
Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.
Solving inversion problems with neural networks
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Drift chamber tracking with neural networks
International Nuclear Information System (INIS)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed
Particle identification using artificial neural networks at BESIII
International Nuclear Information System (INIS)
Qin Gang; Lv Junguang; Bian Jianming; Chinese Academy of Sciences, Beijing
2008-01-01
A multilayered perceptrons' neural network technique has been applied in the particle identification at BESIII. The networks are trained in each sub-detector level. The NN output of sub-detectors can be sent to a sequential network or be constructed as PDFs for a likelihood. Good muon-ID, electron-ID and hadron-ID are obtained from the networks by using the simulated Monte Carlo samples. (authors)
Neural Network Based Load Frequency Control for Restructuring ...
African Journals Online (AJOL)
Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Neural Network Classifier Based on Growing Hyperspheres
Czech Academy of Sciences Publication Activity Database
Jiřina Jr., Marcel; Jiřina, Marcel
2000-01-01
Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Interpretable neural networks with BP-SOM
Weijters, A.J.M.M.; Bosch, van den A.P.J.; Pobil, del A.P.; Mira, J.; Ali, M.
1998-01-01
Artificial Neural Networks (ANNS) are used successfully in industry and commerce. This is not surprising since neural networks are especially competitive for complex tasks for which insufficient domain-specific knowledge is available. However, interpretation of models induced by ANNS is often
The neural network approach to parton fitting
International Nuclear Information System (INIS)
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-01-01
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits
Neural Network to Solve Concave Games
Liu, Zixin; Wang, Nengfa
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Memory in Neural Networks and Glasses
Heerema, M.
2000-01-01
The thesis tries and models a neural network in a way which, at essential points, is biologically realistic. In a biological context, the changes of the synapses of the neural network are most often described by what is called `Hebb's learning rule'. On careful analysis it is, in fact, nothing but a
Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea
2016-12-01
The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.
International Nuclear Information System (INIS)
Landeras, Gorka; López, José Javier; Kisi, Ozgur; Shiri, Jalal
2012-01-01
Highlights: ► Solar radiation estimation based on Gene Expression Programming is unexplored. ► This approach is evaluated for the first time in this study. ► Other artificial intelligence models (ANN and ANFIS) are also included in the study. ► New alternatives for solar radiation estimation based on temperatures are provided. - Abstract: Surface incoming solar radiation is a key variable for many agricultural, meteorological and solar energy conversion related applications. In absence of the required meteorological sensors for the detection of global solar radiation it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). A comparison was also made among these techniques and traditional temperature based global solar radiation estimation equations. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SS RMSE ), MAE-based skill score (SS MAE ) and r 2 criterion of Nash and Sutcliffe criteria were used to assess the models’ performances. An ANN (a four-input multilayer perceptron with 10 neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m −2 d −1 of RMSE). The ability of GEP approach to model global solar radiation based on daily atmospheric variables was found to be satisfactory.
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Applications of neural networks in high energy physics
International Nuclear Information System (INIS)
Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.
1990-01-01
Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab
Analysis of wave directional spreading using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
describes how a representative spreading parameter could be arrived at from easily available wave parameters such as significant wave height and average zero-cross wave period, using the technique of neural networks. It is shown that training of the network...
Signal Processing and Neural Network Simulator
Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.
1995-04-01
The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Hierarchical modular granular neural networks with fuzzy aggregation
Sanchez, Daniela
2016-01-01
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
Stable architectures for deep neural networks
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
A neural network model for credit risk evaluation.
Khashman, Adnan
2009-08-01
Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.
Introduction to neural networks in high energy physics
International Nuclear Information System (INIS)
Therhaag, J.
2013-01-01
Artificial neural networks are a well established tool in high energy physics, playing an important role in both online and offline data analysis. Nevertheless they are often perceived as black boxes which perform obscure operations beyond the control of the user, resulting in a skepticism against any results that may be obtained using them. The situation is not helped by common explanations which try to draw analogies between artificial neural networks and the human brain, for the brain is an even more complex black box itself. In this introductory text, I will take a problem-oriented approach to neural network techniques, showing how the fundamental concepts arise naturally from the demand to solve classification tasks which are frequently encountered in high energy physics. Particular attention is devoted to the question how probability theory can be used to control the complexity of neural networks. (authors)
Enhancing neural-network performance via assortativity
International Nuclear Information System (INIS)
Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.
2011-01-01
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Mass reconstruction with a neural network
International Nuclear Information System (INIS)
Loennblad, L.; Peterson, C.; Roegnvaldsson, T.
1992-01-01
A feed-forward neural network method is developed for reconstructing the invariant mass of hadronic jets appearing in a calorimeter. The approach is illustrated in W→qanti q, where W-bosons are produced in panti p reactions at SPS collider energies. The neural network method yields results that are superior to conventional methods. This neural network application differs from the classification ones in the sense that an analog number (the mass) is computed by the network, rather than a binary decision being made. As a by-product our application clearly demonstrates the need for using 'intelligent' variables in instances when the amount of training instances is limited. (orig.)
Neural network recognition of mammographic lesions
International Nuclear Information System (INIS)
Oldham, W.J.B.; Downes, P.T.; Hunter, V.
1987-01-01
A method for recognition of mammographic lesions through the use of neural networks is presented. Neural networks have exhibited the ability to learn the shape andinternal structure of patterns. Digitized mammograms containing circumscribed and stelate lesions were used to train a feedfoward synchronous neural network that self-organizes to stable attractor states. Encoding of data for submission to the network was accomplished by performing a fractal analysis of the digitized image. This results in scale invariant representation of the lesions. Results are discussed
A neural network approach to burst detection.
Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J
2002-01-01
This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.
Collision avoidance using neural networks
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Neural networks: a biased overview
International Nuclear Information System (INIS)
Domany, E.
1988-01-01
An overview of recent activity in the field of neural networks is presented. The long-range aim of this research is to understand how the brain works. First some of the problems are stated and terminology defined; then an attempt is made to explain why physicists are drawn to the field, and their main potential contribution. In particular, in recent years some interesting models have been introduced by physicists. A small subset of these models is described, with particular emphasis on those that are analytically soluble. Finally a brief review of the history and recent developments of single- and multilayer perceptrons is given, bringing the situation up to date regarding the central immediate problem of the field: search for a learning algorithm that has an associated convergence theorem
Energy Technology Data Exchange (ETDEWEB)
Entchev, Evgueniy; Yang, Libing [Integrated Energy Systems Laboratory, CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario (Canada)
2007-06-30
This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW{sub el} SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy. (author)
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Nonlinear programming with feedforward neural networks.
Energy Technology Data Exchange (ETDEWEB)
Reifman, J.
1999-06-02
We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.
Neural networks and orbit control in accelerators
International Nuclear Information System (INIS)
Bozoki, E.; Friedman, A.
1994-01-01
An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to 'kicks' and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given
Hopfield neural network in HEP track reconstruction
International Nuclear Information System (INIS)
Muresan, Raluca; Pentia, Mircea
1996-01-01
This work uses neural network technique (Hopfield method) to reconstruct particle tracks starting from a data set obtained with a coordinate detector system placed around a high energy accelerated particle interaction region. A learning algorithm for finding the optimal connection of the signal points have been elaborated and tested. We used a single layer neutral network with constraints in order to obtain the particle tracks drawn through the detected signal points. The dynamics of the systems is given by the MFT equations which determine the system evolution to a minimum energy function. We carried out a computing program that has been tested on a lot of Monte Carlo simulated data. With this program we obtained good results even for noise/signal ratio 200. (authors)
Applications of neural networks to mechanics
International Nuclear Information System (INIS)
1997-01-01
Neural networks have become powerful tools in engineer's techniques. The aim of this conference was to present their application to concrete cases in the domain of mechanics, including the preparation and use of materials. Artificial neurons are non-linear organs which provide an output signal that depends on several differently weighted input signals. Their connection into networks allows to solve problems for which the driving laws are not well known. The applications discussed during this conference deal with: the driving of machines or processes, the control of machines, materials or products, the simulation and forecasting, and the optimization. Three papers dealing with the control of spark ignition engines, the regulation of heating floors and the optimization of energy consumptions in industrial buildings were selected for ETDE and one paper dealing with the optimization of the management of a reprocessed plutonium stock was selected for INIS. (J.S.)
Bio-inspired spiking neural network for nonlinear systems control.
Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M
2018-08-01
Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural network regulation driven by autonomous neural firings
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Neural network classification of sweet potato embryos
Molto, Enrique; Harrell, Roy C.
1993-05-01
Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Stock market index prediction using neural networks
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Applications of neural network to numerical analyses
International Nuclear Information System (INIS)
Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali
1999-01-01
Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)
Periodicity and stability for variable-time impulsive neural networks.
Li, Hongfei; Li, Chuandong; Huang, Tingwen
2017-10-01
The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Network Machine Learning and Dimension Reduction for Data Visualization
Liles, Charles A.
2014-01-01
Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.
Identification of illicit drugs by using SOM neural networks
Energy Technology Data Exchange (ETDEWEB)
Liang Meiyan; Shen Jingling; Wang Guangqin [Beijing Key Lab for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100037 (China)], E-mail: liangyan661982@163.com, E-mail: jinglingshen@gmail.com, E-mail: pywgq2004@163.com
2008-07-07
Absorption spectra of six illicit drugs were measured by using the terahertz time-domain spectroscopy technique in the range 0.2-2.6 THz and then clustered with self-organization feature map (SOM) artificial neural network. After the network training process, the spectra collected at another time were identified successfully by the well-trained SOM network. An effective distance was introduced as a quantitative criterion to decide which cluster the new spectra were affiliated with.
Identification of illicit drugs by using SOM neural networks
International Nuclear Information System (INIS)
Liang Meiyan; Shen Jingling; Wang Guangqin
2008-01-01
Absorption spectra of six illicit drugs were measured by using the terahertz time-domain spectroscopy technique in the range 0.2-2.6 THz and then clustered with self-organization feature map (SOM) artificial neural network. After the network training process, the spectra collected at another time were identified successfully by the well-trained SOM network. An effective distance was introduced as a quantitative criterion to decide which cluster the new spectra were affiliated with
Stochastic synchronization of coupled neural networks with intermittent control
International Nuclear Information System (INIS)
Yang Xinsong; Cao Jinde
2009-01-01
In this Letter, we study the exponential stochastic synchronization problem for coupled neural networks with stochastic noise perturbations. Based on Lyapunov stability theory, inequality techniques, the properties of Weiner process, and adding different intermittent controllers, several sufficient conditions are obtained to ensure exponential stochastic synchronization of coupled neural networks with or without coupling delays under stochastic perturbations. These stochastic synchronization criteria are expressed in terms of several lower-dimensional linear matrix inequalities (LMIs) and can be easily verified. Moreover, the results of this Letter are applicable to both directed and undirected weighted networks. A numerical example and its simulations are offered to show the effectiveness of our new results.
Prediction of proteasome cleavage motifs by neural networks
DEFF Research Database (Denmark)
Kesimir, C.; Nussbaum, A.K.; Schild, H.
2002-01-01
physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Parameter extraction with neural networks
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs
The quest for a Quantum Neural Network
Schuld, M.; Sinayskiy, I.; Petruccione, F.
2014-01-01
With the overwhelming success in the field of quantum information in the last decades, the "quest" for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quant...
A gentle introduction to artificial neural networks.
Zhang, Zhongheng
2016-10-01
Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.
Directory of Open Access Journals (Sweden)
S. Nakaoka
2013-09-01
Full Text Available This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters – sea surface temperature (SST, mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS – are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES. The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM to 20.2 μatm (for independent dataset. We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
user
secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...
Directory of Open Access Journals (Sweden)
Huaiqin Wu
2012-01-01
Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
Using function approximation to determine neural network accuracy
International Nuclear Information System (INIS)
Wichman, R.F.; Alexander, J.
2013-01-01
Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)
water demand prediction using artificial neural network
African Journals Online (AJOL)
user
2017-01-01
Jan 1, 2017 ... Interface for activation and deactivation of valves. •. Interface demand ... process could be done and monitored at the computer terminal as expected of a .... [15] Arbib, M. A.The Handbook of Brain Theory and Neural. Networks.
Hopfield neural network in HEP track reconstruction
International Nuclear Information System (INIS)
Muresan, R.; Pentia, M.
1997-01-01
In experimental particle physics, pattern recognition problems, specifically for neural network methods, occur frequently in track finding or feature extraction. Track finding is a combinatorial optimization problem. Given a set of points in Euclidean space, one tries the reconstruction of particle trajectories, subject to smoothness constraints.The basic ingredients in a neural network are the N binary neurons and the synaptic strengths connecting them. In our case the neurons are the segments connecting all possible point pairs.The dynamics of the neural network is given by a local updating rule wich evaluates for each neuron the sign of the 'upstream activity'. An updating rule in the form of sigmoid function is given. The synaptic strengths are defined in terms of angle between the segments and the lengths of the segments implied in the track reconstruction. An algorithm based on Hopfield neural network has been developed and tested on the track coordinates measured by silicon microstrip tracking system
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Quantum Entanglement in Neural Network States
Directory of Open Access Journals (Sweden)
Dong-Ling Deng
2017-05-01
Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our
Feed forward neural networks modeling for K-P interactions
International Nuclear Information System (INIS)
El-Bakry, M.Y.
2003-01-01
Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data
Neural network monitoring of resistive welding
International Nuclear Information System (INIS)
Quero, J.M.; Millan, R.L.; Franquelo, L.G.; Canas, J.
1994-01-01
Supervision of welding processes is one of the most important and complicated tasks in production lines. Artificial Neural Networks have been applied for modeling and control of ph physical processes. In our paper we propose the use of a neural network classifier for on-line non-destructive testing. This system has been developed and installed in a resistive welding station. Results confirm the validity of this novel approach. (Author) 6 refs
Neural Network Models for Time Series Forecasts
Tim Hill; Marcus O'Connor; William Remus
1996-01-01
Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...
Energy Technology Data Exchange (ETDEWEB)
Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp [Faculty of Radiological Technology, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 (Japan); Fujita, Hiroshi [Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194 (Japan); Yamamuro, Osamu; Tamaki, Tsuneo [East Nagoya Imaging Diagnosis Center, 3-4-26 Jiyugaoka, Chikusa-ku, Nagoya, Aichi 464-0044 (Japan)
2016-06-15
Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules
International Nuclear Information System (INIS)
Teramoto, Atsushi; Fujita, Hiroshi; Yamamuro, Osamu; Tamaki, Tsuneo
2016-01-01
Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules
Reliability analysis of a consecutive r-out-of-n: F system based on neural networks
International Nuclear Information System (INIS)
Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada
2009-01-01
In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.
Advances in neural networks computational and theoretical issues
Esposito, Anna; Morabito, Francesco
2015-01-01
This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.
Application of neural networks in CRM systems
Directory of Open Access Journals (Sweden)
Bojanowska Agnieszka
2017-01-01
Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Sheridan, C.; O'Farrell, M.; Lewis, E.; Lyons, W. B.; Flanagan, C.; Jackman, N.
2006-02-01
This paper reports on two methods of classifying the spectral data from an optical fibre based sensor system as used in the food industry. The first method uses a feed-forward back-propagation artificial neural network while the second method involves using Kohonen self-organizing maps. The sensor monitors the food colour online as the food cooks by examining the reflected light from both the surface and the core of the product. The combination of using principal component analysis and back-propagation neural networks has been successfully investigated previously. In this paper, results obtained using this method are compared with results obtained using a self-organizing map trained on the principal components. The principal components used to train both classifiers are ordered in a 'colourscale'—a scale developed to allow several products of similar colour to be tested using a single network that had been trained using the colourscale. The results presented show that both classifiers perform well, and that any differences that arise occur at the boundaries of the classes.
Neural-Network Object-Recognition Program
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Klasifikasi Paket Jaringan Berbasis Analisis Statistik dan Neural Network
Directory of Open Access Journals (Sweden)
Harsono Harsono
2018-01-01
Full Text Available Distributed Denial-of-Service (DDoS is one of network attack technique which increased every year, especially in both of intensity and volume. DDoS attacks are still one of the world's major Internet threats and become a major problem of cyber-world security. Research in this paper aims to establish a new approach on network packets classification, which can be a basis for framework development on Distributed Denial-of-Service (DDoS attack detection systems. The proposed approach to solving the problem on network packet classification is by combining statistical data quantification methods with neural network methods. Based on the test, it is found that the average percentage of neural network classification accuracy against network data packet is 92.99%.
Qualitative analysis and control of complex neural networks with delays
Wang, Zhanshan; Zheng, Chengde
2016-01-01
This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.
Use of neural networks in the analysis of complex systems
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Chiral topological phases from artificial neural networks
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
Forecasting Monsoon Precipitation Using Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a ＇new＇ data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.
Energy Technology Data Exchange (ETDEWEB)
Shimada, N; Kozawa, T [Japan National Oil Corp., Tokyo (Japan); Nishikawa, N; Tani, A [Fuji Research Institute Corp., Tokyo (Japan)
1997-05-27
Neural network is used for the prediction of porosity and permeability using logging data as reservoir characteristics, and the validity of this method is verified. For the prediction of reservoir characteristics by the use of seismic survey data, composite seismic survey records obtained by density logging and acoustic logging are used to experiment the prediction of porosity and permeability continuous along lines of wells. A 3-output back propagation network is used for analysis. There is a possibility that this technique when optimized will improve on prediction accuracy. Furthermore, in the case of characteristics mapping, 3-dimensional seismic data is applied to a carbonate rock reservoir for predicting spatial porosity and permeability. This technique facilitates the comprehensive analysis of core data, well data, and seismic survey data, enabling the derivation of a high-precision spatial distribution of reservoir characteristics. Efforts will continue for further improvement on prediction accuracy. 6 refs., 7 figs., 3 tabs.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Directory of Open Access Journals (Sweden)
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
NEURAL NETWORKS FOR STOCK MARKET OPTION PRICING
Directory of Open Access Journals (Sweden)
Sergey A. Sannikov
2017-03-01
Full Text Available Introduction: The use of neural networks for non-linear models helps to understand where linear model drawbacks, coused by their specification, reveal themselves. This paper attempts to find this out. The objective of research is to determine the meaning of “option prices calculation using neural networks”. Materials and Methods: We use two kinds of variables: endogenous (variables included in the model of neural network and variables affecting on the model (permanent disturbance. Results: All data are divided into 3 sets: learning, affirming and testing. All selected variables are normalised from 0 to 1. Extreme values of income were shortcut. Discussion and Conclusions: Using the 33-14-1 neural network with direct links we obtained two sets of forecasts. Optimal criteria of strategies in stock markets’ option pricing were developed.
Hardware implementation of stochastic spiking neural networks.
Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni
2012-08-01
Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.
BWR fuel cycle optimization using neural networks
International Nuclear Information System (INIS)
Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro
2011-01-01
Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.
Advanced neural network-based computational schemes for robust fault diagnosis
Mrugalski, Marcin
2014-01-01
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...
Noise Analysis studies with neural networks
International Nuclear Information System (INIS)
Seker, S.; Ciftcioglu, O.
1996-01-01
Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)
Self-organized critical neural networks
International Nuclear Information System (INIS)
Bornholdt, Stefan; Roehl, Torsten
2003-01-01
A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters
Directory of Open Access Journals (Sweden)
J. Sharmila
2016-01-01
Full Text Available Web mining related exploration is getting the chance to be more essential these days in view of the reason that a lot of information is overseen through the web. Web utilization is expanding in an uncontrolled way. A particular framework is required for controlling such extensive measure of information in the web space. Web mining is ordered into three noteworthy divisions: Web content mining, web usage mining and web structure mining. Tak-Lam Wong has proposed a web content mining methodology in the exploration with the aid of Bayesian Networks (BN. In their methodology, they were learning on separating the web data and characteristic revelation in view of the Bayesian approach. Roused from their investigation, we mean to propose a web content mining methodology, in view of a Deep Learning Algorithm. The Deep Learning Algorithm gives the interest over BN on the basis that BN is not considered in any learning architecture planning like to propose system. The main objective of this investigation is web document extraction utilizing different grouping algorithm and investigation. This work extricates the data from the web URL. This work shows three classification algorithms, Deep Learning Algorithm, Bayesian Algorithm and BPNN Algorithm. Deep Learning is a capable arrangement of strategies for learning in neural system which is connected like computer vision, speech recognition, and natural language processing and biometrics framework. Deep Learning is one of the simple classification technique and which is utilized for subset of extensive field furthermore Deep Learning has less time for classification. Naive Bayes classifiers are a group of basic probabilistic classifiers in view of applying Bayes hypothesis with concrete independence assumptions between the features. At that point the BPNN algorithm is utilized for classification. Initially training and testing dataset contains more URL. We extract the content presently from the dataset. The
Escherichia coli growth modeling using neural network | Shamsudin ...
African Journals Online (AJOL)
technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.
Back propagation and Monte Carlo algorithms for neural network computations
International Nuclear Information System (INIS)
Junczys, R.; Wit, R.
1996-01-01
Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)
Quantum Measurements: From Bayes Rule to Neural Networks
DEFF Research Database (Denmark)
Greplova, Eliska
2017-01-01
Quantum technologies are becoming more and more introduced into the devices that we use in the daily life, such as quantum dot based television screens or quantum cryptographic channels for encoding financial transactions. Given the limits of the silicon computer chips, it will in the near future...... learning techniques such as artificial neural networks....
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Face Recognition using Artificial Neural Network | Endeshaw | Zede ...
African Journals Online (AJOL)
Face recognition (FR) is one of the biometric methods to identify the individuals by the features of face. Two Face Recognition Systems (FRS) based on Artificial Neural Network (ANN) have been proposed in this paper based on feature extraction techniques. In the first system, Principal Component Analysis (PCA) has been ...
A neural network for the Bragg synthetic curves recognition
International Nuclear Information System (INIS)
Reynoso V, M.R.; Vega C, J.J.; Fernandez A, J.; Belmont M, E.; Policroniades R, R.; Moreno B, E.
1996-01-01
A ionization chamber was employed named Bragg curve spectroscopy. The Bragg peak amplitude is a monotone growing function of Z, which permits to identify elements through their measurement. A better technique for this measurement is to improve the use of neural networks with the purpose of the identification of the Bragg curve. (Author)
Mean square exponential stability of stochastic delayed Hopfield neural networks
International Nuclear Information System (INIS)
Wan Li; Sun Jianhua
2005-01-01
Stochastic effects to the stability property of Hopfield neural networks (HNN) with discrete and continuously distributed delay are considered. By using the method of variation parameter, inequality technique and stochastic analysis, the sufficient conditions to guarantee the mean square exponential stability of an equilibrium solution are given. Two examples are also given to demonstrate our results
Improving Artificial Neural Network Forecasts with Kalman Filtering ...
African Journals Online (AJOL)
In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...
Neural network application to the neutral meson recognition
International Nuclear Information System (INIS)
Lefevre, F.; Delagrange, H.; Merrouch, R.; Ostendorf, R.; Schutz, Y.; Matulewicz, T.
1991-01-01
The combinatorial background produced by high photon multiplicities expected in TAPS experiments causes problems in precise meson recognition. We use neural networks to reduce this background. First we give a description of this technique, hereafter the first results obtained by applying this method to simulated events and future perspective will be discussed [fr
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Deformable image registration using convolutional neural networks
Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.
2018-01-01
Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Learning drifting concepts with neural networks
Biehl, Michael; Schwarze, Holm
1993-01-01
The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using
Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks
van den Dries, Sjoerd; Wiering, Marco A.
This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network
EEG Artifact Removal Using a Wavelet Neural Network
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
Neural network based photovoltaic electrical forecasting in south Algeria
International Nuclear Information System (INIS)
Hamid Oudjana, S.; Hellal, A.; Hadj Mahammed, I
2014-01-01
Photovoltaic electrical forecasting is significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants, and it is important task in renewable energy electrical system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic electrical forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) for one year of 2013 using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic electrical forecasting error. (author)
Impact parameter determination in experimental analysis using neural network
International Nuclear Information System (INIS)
Haddad, F.; David, C.; Freslier, M.; Aichelin, J.; Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.
1997-01-01
A neural network is used to determine the impact parameter in 40 Ca + 40 Ca reactions. The effect of the detection efficiency as well as the model dependence of the training procedure have been studied carefully. An overall improvement of the impact parameter determination of 25 % is obtained using this technique. The analysis of Amphora 40 Ca+ 40 Ca data at 35 MeV per nucleon using a neural network shows two well separated classes of events among the selected 'complete' events. (authors)
Periodic bidirectional associative memory neural networks with distributed delays
Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde
2006-05-01
Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal...), forecasting of runoff (Crespo and Mora, 1993), concrete strength (Kasperkiewicz et al., 1995). The uses of neural network in the coastal the wave conditions will change from year to year, thus a proper statistical and climatological treatment requires several...
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
A stochastic learning algorithm for layered neural networks
International Nuclear Information System (INIS)
Bartlett, E.B.; Uhrig, R.E.
1992-01-01
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given
Embedding recurrent neural networks into predator-prey models.
Moreau, Yves; Louiès, Stephane; Vandewalle, Joos; Brenig, Leon
1999-03-01
We study changes of coordinates that allow the embedding of ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models-also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form (Brenig, L. (1988). Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Physics Letters A, 133(7-8), 378-382), where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoid. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network. We expect that this transformation will permit the application of existing techniques for the analysis of Lotka-Volterra systems to recurrent neural networks. Furthermore, our results show that Lotka-Volterra systems are universal approximators of dynamical systems, just as are continuous-time neural networks.
Integrated evolutionary computation neural network quality controller for automated systems
Energy Technology Data Exchange (ETDEWEB)
Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering
1999-06-01
With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.
Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks
DEFF Research Database (Denmark)
Wan, Can; Song, Yonghua; Xu, Zhao
2016-01-01
probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....
Vibration analysis in nuclear power plant using neural networks
International Nuclear Information System (INIS)
Loskiewicz-Buczak, A.; Alguindigue, I.E.
1993-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems
Control of GMA Butt Joint Welding Based on Neural Networks
DEFF Research Database (Denmark)
Christensen, Kim Hardam; Sørensen, Torben
2004-01-01
This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality......-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training....
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neutron spectrometry with artificial neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.
2005-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
International Nuclear Information System (INIS)
Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose
2006-01-01
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem
Using neural networks to describe tracer correlations
Directory of Open Access Journals (Sweden)
D. J. Lary
2004-01-01
Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4 (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.
Neural network based multiscale image restoration approach
de Castro, Ana Paula A.; da Silva, José D. S.
2007-02-01
This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.
Inverting radiometric measurements with a neural network
Measure, Edward M.; Yee, Young P.; Balding, Jeff M.; Watkins, Wendell R.
1992-02-01
A neural network scheme for retrieving remotely sensed vertical temperature profiles was applied to observed ground based radiometer measurements. The neural network used microwave radiance measurements and surface measurements of temperature and pressure as inputs. Because the microwave radiometer is capable of measuring 4 oxygen channels at 5 different elevation angles (9, 15, 25, 40, and 90 degs), 20 microwave measurements are potentially available. Because these measurements have considerable redundancy, a neural network was experimented with, accepting as inputs microwave measurements taken at 53.88 GHz, 40 deg; 57.45 GHz, 40 deg; and 57.45, 90 deg. The primary test site was located at White Sands Missile Range (WSMR), NM. Results are compared with measurements made simultaneously with balloon borne radiosonde instruments and with radiometric temperature retrievals made using more conventional retrieval algorithms. The neural network was trained using a Widrow-Hoff delta rule procedure. Functions of date to include season dependence in the retrieval process and functions of time to include diurnal effects were used as inputs to the neural network.
Efficient Cancer Detection Using Multiple Neural Networks.
Shell, John; Gregory, William D
2017-01-01
The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings.
The feasibility of using neural networks to obtain cross sections from electron swarm data
International Nuclear Information System (INIS)
Morgan, W.L.
1991-01-01
This paper reports that although still more a curiosity than an accepted technique in computational modeling, the very new field of neural computing is beginning to find applications in physics. Presented in some background on neural computing and a discussion on the use of neural networks to obtain electron-impact cross sections from measured drift velocities, characteristic energies, and other swarm data. This is what is known as an inverse problem, a class of problems for which neural networks may be frequently superior to other numerical algorithms. Momentum transfer cross sections obtained for a model problem and for xenon using a neural network are presented
Fusion of neural computing and PLS techniques for load estimation
Energy Technology Data Exchange (ETDEWEB)
Lu, M.; Xue, H.; Cheng, X. [Northwestern Polytechnical Univ., Xi' an (China); Zhang, W. [Xi' an Inst. of Post and Telecommunication, Xi' an (China)
2007-07-01
A method to predict the electric load of a power system in real time was presented. The method is based on neurocomputing and partial least squares (PLS). Short-term load forecasts for power systems are generally determined by conventional statistical methods and Computational Intelligence (CI) techniques such as neural computing. However, statistical modeling methods often require the input of questionable distributional assumptions, and neural computing is weak, particularly in determining topology. In order to overcome the problems associated with conventional techniques, the authors developed a CI hybrid model based on neural computation and PLS techniques. The theoretical foundation for the designed CI hybrid model was presented along with its application in a power system. The hybrid model is suitable for nonlinear modeling and latent structure extracting. It can automatically determine the optimal topology to maximize the generalization. The CI hybrid model provides faster convergence and better prediction results compared to the abductive networks model because it incorporates a load conversion technique as well as new transfer functions. In order to demonstrate the effectiveness of the hybrid model, load forecasting was performed on a data set obtained from the Puget Sound Power and Light Company. Compared with the abductive networks model, the CI hybrid model reduced the forecast error by 32.37 per cent on workday, and by an average of 27.18 per cent on the weekend. It was concluded that the CI hybrid model has a more powerful predictive ability. 7 refs., 1 tab., 3 figs.
Application of neural networks to waste site screening
International Nuclear Information System (INIS)
Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.
1993-02-01
Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report
Metaheuristic Algorithms for Convolution Neural Network.
Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni
2016-01-01
A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).
Metaheuristic Algorithms for Convolution Neural Network
Directory of Open Access Journals (Sweden)
L. M. Rasdi Rere
2016-01-01
Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.
Feedforward Nonlinear Control Using Neural Gas Network
Machón-González, Iván; López-García, Hilario
2017-01-01
Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the ...
Liu, Jinkun
2013-01-01
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Nano-topography Enhances Communication in Neural Cells Networks
Onesto, V.
2017-08-23
Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.
Foreign currency rate forecasting using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Open quantum generalisation of Hopfield neural networks
Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.
2018-03-01
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.
Reconstruction of neutron spectra through neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.
2003-01-01
A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)
Eddy Current Flaw Characterization Using Neural Networks
International Nuclear Information System (INIS)
Song, S. J.; Park, H. J.; Shin, Y. K.
1998-01-01
Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw
Neural Network Classifiers for Local Wind Prediction.
Kretzschmar, Ralf; Eckert, Pierre; Cattani, Daniel; Eggimann, Fritz
2004-05-01
This paper evaluates the quality of neural network classifiers for wind speed and wind gust prediction with prediction lead times between +1 and +24 h. The predictions were realized based on local time series and model data. The selection of appropriate input features was initiated by time series analysis and completed by empirical comparison of neural network classifiers trained on several choices of input features. The selected input features involved day time, yearday, features from a single wind observation device at the site of interest, and features derived from model data. The quality of the resulting classifiers was benchmarked against persistence for two different sites in Switzerland. The neural network classifiers exhibited superior quality when compared with persistence judged on a specific performance measure, hit and false-alarm rates.
Cooperative and supportive neural networks
International Nuclear Information System (INIS)
Sree Hari Rao, V.; Raja Sekhara Rao, P.
2007-01-01
This Letter deals with the concepts of co-operation and support among neurons existing in a network which contribute to their collective capabilities and distributed operations. Activational dynamical properties of these networks are discussed
Convergent dynamics for multistable delayed neural networks
International Nuclear Information System (INIS)
Shih, Chih-Wen; Tseng, Jui-Pin
2008-01-01
This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory
Accident scenario diagnostics with neural networks
International Nuclear Information System (INIS)
Guo, Z.
1992-01-01
Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks
Selection of radio pulsar candidates using artificial neural networks
Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.
2010-01-01
Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.
Supervised learning in spiking neural networks with FORCE training.
Nicola, Wilten; Clopath, Claudia
2017-12-20
Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.
Underwater Acoustic Networking Techniques
Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele
2012-01-01
This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Forecasting Water Levels Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Shreenivas N. Londhe
2011-06-01
Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Generating Seismograms with Deep Neural Networks
Krischer, L.; Fichtner, A.
2017-12-01
The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.
Directory of Open Access Journals (Sweden)
Min-Joo Kang
Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.
Kang, Min-Joo; Kang, Je-Won
2016-01-01
A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.
Neural networks prove effective at NOx reduction
Energy Technology Data Exchange (ETDEWEB)
Radl, B.J. [Pegasus Technologies, Mentor, OH (USA)
2000-05-01
The availability of low cost computer hardware and software is opening up possibilities for the use of artificial intelligence concepts, notably neural networks, in power plant control applications, delivering lower costs, greater efficiencies and reduced emissions. One example of a neural network system is the NeuSIGHT combustion optimisation system, developed by Pegasus Technologies, a subsidiary of KFx Inc. It can help reduce NOx emissions, improve heat rate and enable either deferral or elimination of capital expenditures. on other NOx control technologies, such as low NOx burners, SNCR and SCR. This paper illustrates these benefits using three recent case studies. 4 figs.
Avoiding object by robot using neural network
International Nuclear Information System (INIS)
Prasetijo, D.W.
1997-01-01
A Self controlling robot is necessary in the robot application in which operator control is difficult. Serial method such as process on the computer of van newman is difficult to be applied for self controlling robot. In this research, Neural network system for robotic control system was developed by performance expanding at the SCARA. In this research, it was shown that SCARA with application at Neural network system can avoid blocking objects without influence by number and density of the blocking objects, also departure and destination paint. robot developed by this study also can control its moving by self
Alpha spectral analysis via artificial neural networks
International Nuclear Information System (INIS)
Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.
1994-10-01
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
Target recognition based on convolutional neural network
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
Livermore Big Artificial Neural Network Toolkit
Energy Technology Data Exchange (ETDEWEB)
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Quantitative phase microscopy using deep neural networks
Li, Shuai; Sinha, Ayan; Lee, Justin; Barbastathis, George
2018-02-01
Deep learning has been proven to achieve ground-breaking accuracy in various tasks. In this paper, we implemented a deep neural network (DNN) to achieve phase retrieval in a wide-field microscope. Our DNN utilized the residual neural network (ResNet) architecture and was trained using the data generated by a phase SLM. The results showed that our DNN was able to reconstruct the profile of the phase target qualitatively. In the meantime, large error still existed, which indicated that our approach still need to be improved.
Neural network approach to radiologic lesion detection
International Nuclear Information System (INIS)
Newman, F.D.; Raff, U.; Stroud, D.
1989-01-01
An area of artificial intelligence that has gained recent attention is the neural network approach to pattern recognition. The authors explore the use of neural networks in radiologic lesion detection with what is known in the literature as the novelty filter. This filter uses a linear model; images of normal patterns become training vectors and are stored as columns of a matrix. An image of an abnormal pattern is introduced and the abnormality or novelty is extracted. A VAX 750 was used to encode the novelty filter, and two experiments have been examined
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
Neural network segmentation of magnetic resonance images
International Nuclear Information System (INIS)
Frederick, B.
1990-01-01
Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover, once trained, they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network; by varying imaging parameters, MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. This paper reports that a neural network classifier for image segmentation was implanted on a Sun 4/60, and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter, white matter, cerebrospinal fluid, bone, and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities, and the image was subsequently segmented by the classifier
Neural network classification of quark and gluon jets
International Nuclear Information System (INIS)
Graham, M.A.; Jones, L.M.; Herbin, S.
1995-01-01
We demonstrate that there are characteristics common to quark jets and to gluon jets regardless of the interaction that produced them. The classification technique we use depends on the mass of the jet as well as the center-of-mass energy of the hard subprocess that produces the jet. In addition, we present the quark-gluon separability results of an artificial neural network trained on three-jet e + e - events at the Z 0 mass, using a back-propagation algorithm. The inputs to the network are the longitudinal momenta of the leading hadrons in the jet. We tested the network with quark and gluon jets from both e + e - →3 jets and bar pp→2 jets. Finally, we compare the performance of the artificial neural network with the results of making well chosen physical cuts
Handwritten Sindhi Character Recognition Using Neural Networks
Directory of Open Access Journals (Sweden)
Shafique Ahmed Awan
2018-01-01
Full Text Available OCR (OpticalCharacter Recognition is a technology in which text image is used to understand and write text by machines. The work on languages containing isolated characters such as German, English, French and others is at its peak. The OCR and ICR (Intelligent Character Recognition research in Sindhi script is currently at in starting stages and not sufficient work have been cited in this area even though Sindhi language is rich in culture and history. This paper presents one of the initial steps in recognizing Sindhi handwritten characters. The isolated characters of Sindhi script written by thesubjects have been recognized. The various subjects were asked to write Sindhi characters in unconstrained form and then the written samples were collected and scanned through a flatbed scanner. The scanned documents were preprocessedwith the help of binary conversion, removing noise by pepper noise and the lines were segmented with the help of horizontal profile technique. The segmented lines were used to extract characters from scanned pages.This character segmentation was done by vertical projection. The extracted characters have been used to extract features so that the characters can be classified easily. Zoning was used for the feature extraction technique. For the classification, neural network has been used. The recognized characters converted into editable text with an average accuracy of 85%.
A neural network method for solving a system of linear variational inequalities
International Nuclear Information System (INIS)
Lan Hengyou; Cui Yishun
2009-01-01
In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.
Methods and procedures for the verification and validation of artificial neural networks
Taylor, Brian J
2006-01-01
Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. This volume introduces some of the methods and techniques used for the verification and validation of neural networks and adaptive systems.
Applicability of neural networks to etalon fringe filtering in laser spectrometers
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-05-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
Applicability of Neural Networks to Etalon Fringe Filtering in Laser Spectrometers
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-01-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
Neutron spectrum unfolding using neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.
2004-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)
Analysis of Recurrent Analog Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
1998-06-01
Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.
Statistical physics of interacting neural networks
Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido
2001-12-01
Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.
Neural network determination of parton distributions: the nonsinglet case
International Nuclear Information System (INIS)
Del Debbio, Luigi; Forte, Stefano; Latorre, Jose I.; Piccione, Andrea; Rojo, Joan
2007-01-01
We provide a determination of the isotriplet quark distribution from available deep-inelastic data using neural networks. We give a general introduction to the neural network approach to parton distributions, which provides a solution to the problem of constructing a faithful and unbiased probability distribution of parton densities based on available experimental information. We discuss in detail the techniques which are necessary in order to construct a Monte Carlo representation of the data, to construct and evolve neural parton distributions, and to train them in such a way that the correct statistical features of the data are reproduced. We present the results of the application of this method to the determination of the nonsinglet quark distribution up to next-to-next-to-leading order, and compare them with those obtained using other approaches
Computational chaos in massively parallel neural networks
Barhen, Jacob; Gulati, Sandeep
1989-01-01
A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...
Stability prediction of berm breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Manjunath, Y.R.
In the present study, an artificial neural network method has been applied to predict the stability of berm breakwaters. Four neural network models are constructed based on the parameters which influence the stability of breakwater. Training...
Parameter Identification by Bayes Decision and Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1994-01-01
The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Stability of Neutral Fractional Neural Networks with Delay
Institute of Scientific and Technical Information of China (English)
LI Yan; JIANG Wei; HU Bei-bei
2016-01-01
This paper studies stability of neutral fractional neural networks with delay. By introducing the definition of norm and using the uniform stability, the suﬃcient condition for uniform stability of neutral fractional neural networks with delay is obtained.
One weird trick for parallelizing convolutional neural networks
Krizhevsky, Alex
2014-01-01
I present a new way to parallelize the training of convolutional neural networks across multiple GPUs. The method scales significantly better than all alternatives when applied to modern convolutional neural networks.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer ... N-hexane (HPLC grade) was purchased from. Fisher Scientific. ..... Simultaneous Quantification of Seven Flavonoids in.
Classification of Urinary Calculi using Feed-Forward Neural Networks
African Journals Online (AJOL)
NJD
Genetic algorithms were used for optimization of neural networks and for selection of the ... Urinary calculi, infrared spectroscopy, classification, neural networks, variable ..... note that the best accuracy is obtained for whewellite, weddellite.
Deep Gate Recurrent Neural Network
2016-11-22
and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2009-11-01
Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
A short-term neural network memory
Energy Technology Data Exchange (ETDEWEB)
Morris, R.J.T.; Wong, W.S.
1988-12-01
Neural network memories with storage prescriptions based on Hebb's rule are known to collapse as more words are stored. By requiring that the most recently stored word be remembered precisely, a new simple short-term neutral network memory is obtained and its steady state capacity analyzed and simulated. Comparisons are drawn with Hopfield's method, the delta method of Widrow and Hoff, and the revised marginalist model of Mezard, Nadal, and Toulouse.
Learning-parameter adjustment in neural networks
Heskes, Tom M.; Kappen, Bert
1992-06-01
We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.
Advanced Applications of Neural Networks and Artificial Intelligence: A Review
Koushal Kumar; Gour Sundar Mitra Thakur
2012-01-01
Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...
Feature to prototype transition in neural networks
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Applying Gradient Descent in Convolutional Neural Networks
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
Artificial neural networks in neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neural networks to predict exosphere temperature corrections
Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe
2013-10-01
Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.
Energy Complexity of Recurrent Neural Networks
Czech Academy of Sciences Publication Activity Database
Šíma, Jiří
2014-01-01
Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014
Epileptiform spike detection via convolutional neural networks
DEFF Research Database (Denmark)
Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz
2016-01-01
The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Convolutional Neural Networks - Generalizability and Interpretations
DEFF Research Database (Denmark)
Malmgren-Hansen, David
from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Fast Fingerprint Classification with Deep Neural Network
DEFF Research Database (Denmark)
Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela
2018-01-01
. In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Application of neural networks in experimental physics
International Nuclear Information System (INIS)
Kisel', I.V.; Neskromnyj, V.N.; Ososkov, G.A.
1993-01-01
The theoretical foundations of numerous models of artificial neural networks (ANN) and their applications to the actual problems of associative memory, optimization and pattern recognition are given. This review contains also numerous using of ANN in the experimental physics both as the hardware realization of fast triggering systems for even selection and for the following software implementation of the trajectory data recognition
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Image Encryption and Chaotic Cellular Neural Network
Peng, Jun; Zhang, Du
Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.
Based on BP Neural Network Stock Prediction
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Artificial neural networks in neutron dosimetry
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A.; Gallego, E.; Lorente, A.
2005-01-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ 2 - test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Separable explanations of neural network decisions
DEFF Research Database (Denmark)
Rieger, Laura
2017-01-01
Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage. Pe...
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron ..... Engelbrecht A P, Cloete I, Geldenhuys J, Zurada J M 1995 Automatic scaling using gamma learning for feedforward neural networks. From natural to artificial computing.
Method of Creation of “Core-Gisseismic Attributes” Dependences With Use of Trainable Neural Networks
Directory of Open Access Journals (Sweden)
Gafurov Denis
2016-01-01
Full Text Available The study describes methodological techniques and results of geophysical well logging and seismic data interpretation by means of trainable neural networks. Objects of research are wells and seismic materials of Talakan field. The article also presents forecast of construction and reservoir properties of Osa horizon. The paper gives an example of creation of geological (lithological -facial model of the field based on developed methodical techniques of complex interpretation of geologicgeophysical data by trainable neural network. The constructed lithological -facial model allows specifying a geological structure of the field. The developed methodical techniques and the trained neural networks may be applied to adjacent sites for research of carbonate horizons.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
International Nuclear Information System (INIS)
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin
2009-01-01
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
On-line plant-wide monitoring using neural networks
International Nuclear Information System (INIS)
Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.
1992-06-01
The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
Prediction based chaos control via a new neural network
International Nuclear Information System (INIS)
Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui
2008-01-01
In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network
Neural networks in economic modelling : An empirical study
Verkooijen, W.J.H.
1996-01-01
This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a
Tensor Basis Neural Network v. 1.0 (beta)
Energy Technology Data Exchange (ETDEWEB)
2017-03-28
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used. In this study, we evaluated the performance of these neural networks on three established bench mark time series prediction problems. Results from the experiments showed that Jordan neural network performed significantly ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...
Fuzzy logic, neural networks, and soft computing
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial
Identifying Jets Using Artifical Neural Networks
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
Application of neural networks to waste site screening
Energy Technology Data Exchange (ETDEWEB)
Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)
1993-03-01
Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.
Moving image compression and generalization capability of constructive neural networks
Ma, Liying; Khorasani, Khashayar
2001-03-01
To date numerous techniques have been proposed to compress digital images to ease their storage and transmission over communication channels. Recently, a number of image compression algorithms using Neural Networks NNs have been developed. Particularly, several constructive feed-forward neural networks FNNs have been proposed by researchers for image compression, and promising results have been reported. At the previous SPIE AeroSense conference 2000, we proposed to use a constructive One-Hidden-Layer Feedforward Neural Network OHL-FNN for compressing digital images. In this paper, we first investigate the generalization capability of the proposed OHL-FNN in the presence of additive noise for network training and/ or generalization. Extensive experimental results for different scenarios are presented. It is revealed that the constructive OHL-FNN is not as robust to additive noise in input image as expected. Next, the constructive OHL-FNN is applied to moving images, video sequences. The first, or other specified frame in a moving image sequence is used to train the network. The remaining moving images that follow are then generalized/compressed by this trained network. Three types of correlation-like criteria measuring the similarity of any two images are introduced. The relationship between the generalization capability of the constructed net and the similarity of images is investigated in some detail. It is shown that the constructive OHL-FNN is promising even for changing images such as those extracted from a football game.
Genetic optimization of neural network architecture
International Nuclear Information System (INIS)
Harp, S.A.; Samad, T.
1994-03-01
Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
A neural network model for non invasive subsurface stratigraphic identification
International Nuclear Information System (INIS)
Sullivan, John M. Jr.; Ludwig, Reinhold; Lai Qiang
2000-01-01
Ground-Penetrating Radar (GRP) is a powerful tool to examine the stratigraphy below ground surface for remote sensing. Increasingly GPR has also found applications in microwave NDE as an interrogation tool to assess dielectric layers. Unfortunately, GPR data is characterized by a high degree of uncertainty and natural physical ambiguity. Robust decomposition routines are sparse for this application. We have developed a hierarchical set of neural network modules which split the task of layer profiling into consecutive stages. Successful GPR profiling of the subsurface stratigraphy is of key importance for many remote sensing applications including microwave NDE. Neural network modules were designed to accomplish the two main processing goals of recognizing the 'subsurface pattern' followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. We used an adaptive transform technique to transform raw GPR data into a small feature vector containing the most representative and discriminative features of the signal. This information formed the input for the neural network processing units. This strategy reduced the number of required training samples for the neural network by orders of magnitude. The entire processing system was trained using the adaptive transformed feature vector inputs and tested with real measured GPR data. The successful results of this system establishes the feasibility the feasibility of delineating subsurface layering nondestructively
THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE
Directory of Open Access Journals (Sweden)
António José Silva
2007-03-01
Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports
Proceedings of the Neural Network Workshop for the Hanford Community
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.
1994-01-01
These proceedings were generated from a series of presentations made at the Neural Network Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are reproduced in these proceedings. This workshop was sponsored by the Computing and Information Sciences Department in the Molecular Science Research Center (MSRC) at the Pacific Northwest Laboratory (PNL). Artificial neural networks constitute a new information processing technology that is destined within the next few years, to provide the world with a vast array of new products. A major reason for this is that artificial neural networks are able to provide solutions to a wide variety of complex problems in a much simpler fashion than is possible using existing techniques. In recognition of these capabilities, many scientists and engineers are exploring the potential application of this new technology to their fields of study. An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical system, or even an electro-chemical system designed to emulate some of the brain`s rudimentary structure as well as some of the learning processes that are believed to take place in the brain. For a very wide range of applications in science, engineering, and information technology, ANNs offer a complementary and potentially superior approach to that provided by conventional computing and conventional artificial intelligence. This is because, unlike conventional computers, which have to be programmed, ANNs essentially learn from experience and can be trained in a straightforward fashion to carry out tasks ranging from the simple to the highly complex.
Vibration monitoring of EDF rotating machinery using artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Neural network construction via back-propagation
International Nuclear Information System (INIS)
Burwick, T.T.
1994-06-01
A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Directory of Open Access Journals (Sweden)
R. Soundararajan
2015-01-01
Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.
Directory of Open Access Journals (Sweden)
Babak Fakhim
2013-01-01
Full Text Available In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt% of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise.
Forecasting of electricity prices with neural networks
Energy Technology Data Exchange (ETDEWEB)
Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Romeo, Luis M. [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)]. E-mail: luismi@unizar.es; Gil, Antonia [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)
2006-08-15
During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools.
Neural Network Based Models for Fusion Applications
Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff
2017-10-01
Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-Ânetwork (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.
HAWC Energy Reconstruction via Neural Network
Marinelli, Samuel; HAWC Collaboration
2016-03-01
The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.
Forecasting of electricity prices with neural networks
International Nuclear Information System (INIS)
Gareta, Raquel; Romeo, Luis M.; Gil, Antonia
2006-01-01
During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools
Enhanced memory performance thanks to neural network assortativity
International Nuclear Information System (INIS)
Franciscis, S. de; Johnson, S.; Torres, J. J.
2011-01-01
The behaviour of many complex dynamical systems has been found to depend crucially on the structure of the underlying networks of interactions. An intriguing feature of empirical networks is their assortativity--i.e., the extent to which the degrees of neighbouring nodes are correlated. However, until very recently it was difficult to take this property into account analytically, most work being exclusively numerical. We get round this problem by considering ensembles of equally correlated graphs and apply this novel technique to the case of attractor neural networks. Assortativity turns out to be a key feature for memory performance in these systems - so much so that for sufficiently correlated topologies the critical temperature diverges. We predict that artificial and biological neural systems could significantly enhance their robustness to noise by developing positive correlations.
An Artificial Neural Network for Data Forecasting Purposes
Directory of Open Access Journals (Sweden)
Catalina Lucia COCIANU
2015-01-01
Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
CERN. Geneva
2017-01-01
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted Z' decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a paramet...
Neural networks in continuous optical media
International Nuclear Information System (INIS)
Anderson, D.Z.
1987-01-01
The authors' interest is to see to what extent neural models can be implemented using continuous optical elements. Thus these optical networks represent a continuous distribution of neuronlike processors rather than a discrete collection. Most neural models have three characteristic features: interconnections; adaptivity; and nonlinearity. In their optical representation the interconnections are implemented with linear one- and two-port optical elements such as lenses and holograms. Real-time holographic media allow these interconnections to become adaptive. The nonlinearity is achieved with gain, for example, from two-beam coupling in photorefractive media or a pumped dye medium. Using these basic optical elements one can in principle construct continuous representations of a number of neural network models. The authors demonstrated two devices based on continuous optical elements: an associative memory which recalls an entire object when addressed with a partial object and a tracking novelty filter which identifies time-dependent features in an optical scene. These devices demonstrate the potential of distributed optical elements to implement more formal models of neural networks
Artificial Neural Network for Location Estimation in Wireless Communication Systems
Directory of Open Access Journals (Sweden)
Chien-Sheng Chen
2012-03-01
Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.
Artificial neural network for location estimation in wireless communication systems.
Chen, Chien-Sheng
2012-01-01
In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
International Nuclear Information System (INIS)
Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.
1995-11-01
In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Application of neural networks and cellular automata to calorimetric problems
Energy Technology Data Exchange (ETDEWEB)
Brenton, V; Fonvieille, H; Guicheney, C; Jousset, J; Roblin, Y; Tamin, F; Grenier, P
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author). 9 refs.; Submitted to Nuclear Instruments and Methods (NL).
Global robust exponential stability for interval neural networks with delay
International Nuclear Information System (INIS)
Cui Shihua; Zhao Tao; Guo Jie
2009-01-01
In this paper, new sufficient conditions for globally robust exponential stability of neural networks with either constant delays or time-varying delays are given. We show the sufficient conditions for the existence, uniqueness and global robust exponential stability of the equilibrium point by employing Lyapunov stability theory and linear matrix inequality (LMI) technique. Numerical examples are given to show the approval of our results.
Application of neural networks and cellular automata to calorimetric problems
International Nuclear Information System (INIS)
Brenton, V.; Fonvieille, H.; Guicheney, C.; Jousset, J.; Roblin, Y.; Tamin, F.; Grenier, P.
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author)