WorldWideScience

Sample records for techniques neural networks

  1. Recognition of decays of charged tracks with neural network techniques

    International Nuclear Information System (INIS)

    Stimpfl-Abele, G.

    1991-01-01

    We developed neural-network learning techniques for the recognition of decays of charged tracks using a feed-forward network with error back-propagation. Two completely different methods are described in detail and their efficiencies for several NN architectures are compared with conventional methods. Excellent results are obtained. (orig.)

  2. NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Constantin Ilie

    2009-05-01

    Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in

  3. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  4. A neural network technique for remeshing of bone microstructure.

    Science.gov (United States)

    Fischer, Anath; Holdstein, Yaron

    2012-01-01

    Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.

  5. Calibration Technique of the Irradiated Thermocouple using Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Tae; Joung, Chang Young; Ahn, Sung Ho; Yang, Tae Ho; Heo, Sung Ho; Jang, Seo Yoon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To correct the signals, the degradation rate of sensors needs to be analyzed, and re-calibration of sensors should be followed periodically. In particular, because thermocouples instrumented in the nuclear fuel rod are degraded owing to the high neutron fluence generated from the nuclear fuel, the periodic re-calibration process is necessary. However, despite the re-calibration of the thermocouple, the measurement error will be increased until next re-calibration. In this study, based on the periodically calibrated temperature - voltage data, an interpolation technique using the artificial neural network will be introduced to minimize the calibration error of the C-type thermocouple under the irradiation test. The test result shows that the calculated voltages derived from the interpolation function have good agreement with the experimental sampling data, and they also accurately interpolate the voltages at arbitrary temperature and neutron fluence. That is, once the reference data is obtained by experiments, it is possible to accurately calibrate the voltage signal at a certain neutron fluence and temperature using an artificial neural network.

  6. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  7. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  8. artificial neural network (ann)

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...

  9. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  10. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Science.gov (United States)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  11. Fundamental study of interpretation technique for 3-D magnetotelluric data using neural networks; Neural network wo mochiita sanjigen MT ho data kaishaku gijutsu no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T.; Fukuoka, K.; Shima, H. [Oyo Corp., Tokyo (Japan); Mogi, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Spichak, V.

    1997-05-27

    The research and development have been conducted to apply neural networks to interpretation technique for 3-D MT data. In this study, a data base of various data was made from the numerical modeling of 3-D fault model, and the data base management system was constructed. In addition, an unsupervised neural network for treating noise and a supervised neural network for estimating fault parameters such as dip, strike and specific resistance were made, and a basic neural network system was constructed. As a result of the application to the various data, basically sufficient performance for estimating the fault parameters was confirmed. Thus, the optimum MT data for this system were selected. In future, it is necessary to investigate the optimum model and the number of models for learning these neural networks. 3 refs., 5 figs., 2 tabs.

  12. Comparisons of neural networks to standard techniques for image classification and correlation

    Science.gov (United States)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  13. Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Marques Salgado, Cesar; Brandao, Luis E.B.; Schirru, Roberto; Pereira, Claudio M.N.A.; Silva, Ademir Xavier da; Ramos, Robson

    2009-01-01

    This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.

  14. Application of artificial neural networks with backpropagation technique in the financial data

    Science.gov (United States)

    Jaiswal, Jitendra Kumar; Das, Raja

    2017-11-01

    The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.

  15. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  16. Imaging techniques in digital forensic investigation: a study using neural networks

    Science.gov (United States)

    Williams, Godfried

    2006-09-01

    Imaging techniques have been applied to a number of applications, such as translation and classification problems in medicine and defence. This paper examines the application of imaging techniques in digital forensics investigation using neural networks. A review of applications of digital image processing is presented, whiles a Pedagogical analysis of computer forensics is also highlighted. A data set describing selected images in different forms are used in the simulation and experimentation.

  17. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  18. Comparing univariate techniques for tender price index forecasting: Box-Jenkins and neural network model

    Directory of Open Access Journals (Sweden)

    Olalekan Oshodi

    2017-09-01

    Full Text Available The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

  19. Neural and fuzzy computation techniques for playout delay adaptation in VoIP networks.

    Science.gov (United States)

    Ranganathan, Mohan Krishna; Kilmartin, Liam

    2005-09-01

    Playout delay adaptation algorithms are often used in real time voice communication over packet-switched networks to counteract the effects of network jitter at the receiver. Whilst the conventional algorithms developed for silence-suppressed speech transmission focused on preserving the relative temporal structure of speech frames/packets within a talkspurt (intertalkspurt adaptation), more recently developed algorithms strive to achieve better quality by allowing for playout delay adaptation within a talkspurt (intratalkspurt adaptation). The adaptation algorithms, both intertalkspurt and intratalkspurt based, rely on short term estimations of the characteristics of network delay that would be experienced by up-coming voice packets. The use of novel neural networks and fuzzy systems as estimators of network delay characteristics are presented in this paper. Their performance is analyzed in comparison with a number of traditional techniques for both inter and intratalkspurt adaptation paradigms. The design of a novel fuzzy trend analyzer system (FTAS) for network delay trend analysis and its usage in intratalkspurt playout delay adaptation are presented in greater detail. The performance of the proposed mechanism is analyzed based on measured Internet delays. Index Terms-Fuzzy delay trend analysis, intertalkspurt, intratalkspurt, multilayer perceptrons (MLPs), network delay estimation, playout buffering, playout delay adaptation, time delay neural networks (TDNNs), voice over Internet protocol (VoIP).

  20. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  1. Determination of Complex-Valued Parametric Model Coefficients Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    A. M. Aibinu

    2010-01-01

    Full Text Available A new approach for determining the coefficients of a complex-valued autoregressive (CAR and complex-valued autoregressive moving average (CARMA model coefficients using complex-valued neural network (CVNN technique is discussed in this paper. The CAR and complex-valued moving average (CMA coefficients which constitute a CARMA model are computed simultaneously from the adaptive weights and coefficients of the linear activation functions in a two-layered CVNN. The performance of the proposed technique has been evaluated using simulated complex-valued data (CVD with three different types of activation functions. The results show that the proposed method can accurately determine the model coefficients provided that the network is properly trained. Furthermore, application of the developed CVNN-based technique for MRI K-space reconstruction results in images with improve resolution.

  2. The application of neural network techniques to magnetic and optical inverse problems

    International Nuclear Information System (INIS)

    Jones, H.V.

    2000-12-01

    The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and

  3. Hybrid Clustering-GWO-NARX neural network technique in predicting stock price

    Science.gov (United States)

    Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.

    2017-09-01

    Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.

  4. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  5. Modelling fresh properties of self-compacting concrete using neural network technique

    NARCIS (Netherlands)

    Sonebi, Mohammed; Grunewald, S.; Cevik, Abdulkadir; Walraven, J.C.

    2016-01-01

    The purpose of this paper is to investigate the feasibility of using artificial neural network programming for the prediction of the fresh properties of self-compacting concrete. The input parameters of the neural network were the mix composition influencing the fresh properties of

  6. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    Science.gov (United States)

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  7. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  8. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  9. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    Science.gov (United States)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  10. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  11. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as some...... previous studies have indicated. When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. In fact, their parameters are not even globally...... on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting should be carried out recursively or directly. Comparisons of these two methodss exist for linear models and here these comparisons are extended to neural networks. Finally, a nonlinear model...

  12. A non-linear neural network technique for updating of river flow forecasts

    Directory of Open Access Journals (Sweden)

    A. Y. Shamseldin

    2001-01-01

    Full Text Available A non-linear Auto-Regressive Exogenous-input model (NARXM river flow forecasting output-updating procedure is presented. This updating procedure is based on the structure of a multi-layer neural network. The NARXM-neural network updating procedure is tested using the daily discharge forecasts of the soil moisture accounting and routing (SMAR conceptual model operating on five catchments having different climatic conditions. The performance of the NARXM-neural network updating procedure is compared with that of the linear Auto-Regressive Exogenous-input (ARXM model updating procedure, the latter being a generalisation of the widely used Auto-Regressive (AR model forecast error updating procedure. The results of the comparison indicate that the NARXM procedure performs better than the ARXM procedure. Keywords: Auto-Regressive Exogenous-input model, neural network, output-updating procedure, soil moisture accounting and routing (SMAR model

  13. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  14. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  15. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-02-09

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Estimation of Apple Volume and Its Shape Indentation Using Image Processing Technique and Neural Network

    Directory of Open Access Journals (Sweden)

    M Jafarlou

    2014-04-01

    Full Text Available Physical properties of agricultural products such as volume are the most important parameters influencing grading and packaging systems. They should be measured accurately as they are considered for any good system design. Image processing and neural network techniques are both non-destructive and useful methods which are recently used for such purpose. In this study, the images of apples were captured from a constant distance and then were processed in MATLAB software and the edges of apple images were extracted. The interior area of apple image was divided into some thin trapezoidal elements perpendicular to longitudinal axis. Total volume of apple was estimated by the summation of incremental volumes of these elements revolved around the apple’s longitudinal axis. The picture of half cut apple was also captured in order to obtain the apple shape’s indentation volume, which was subtracted from the previously estimated total volume of apple. The real volume of apples was measured using water displacement method and the relation between the real volume and estimated volume was obtained. The t-test and Bland-Altman indicated that the difference between the real volume and the estimated volume was not significantly different (p>0.05 i.e. the mean difference was 1.52 cm3 and the accuracy of measurement was 92%. Utilizing neural network with input variables of dimension and mass has increased the accuracy up to 97% and the difference between the mean of volumes decreased to 0.7 cm3.

  17. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN and particle swarm optimisation (PSO techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  18. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques

    Science.gov (United States)

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  19. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    Science.gov (United States)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  20. Method for Constructing Composite Response Surfaces by Combining Neural Networks with Polynominal Interpolation or Estimation Techniques

    Science.gov (United States)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2007-01-01

    A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode

  1. An Indoor Positioning Technique Based on a Feed-Forward Artificial Neural Network Using Levenberg-Marquardt Learning Method

    Science.gov (United States)

    Pahlavani, P.; Gholami, A.; Azimi, S.

    2017-09-01

    This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  2. Pre-optimization of radiotherapy treatment planning: an artificial neural network classification aided technique

    International Nuclear Information System (INIS)

    Hosseini-Ashrafi, M.E.; Bagherebadian, H.; Yahaqi, E.

    1999-01-01

    A method has been developed which, by using the geometric information from treatment sample cases, selects from a given data set an initial treatment plan as a step for treatment plan optimization. The method uses an artificial neural network (ANN) classification technique to select a best matching plan from the 'optimized' ANN database. Separate back-propagation ANN classifiers were trained using 50, 60 and 77 examples for three groups of treatment case classes (up to 21 examples from each class were used). The performance of the classifiers in selecting the correct treatment class was tested using the leave-one-out method; the networks were optimized with respect their architecture. For the three groups used in this study, successful classification fractions of 0.83, 0.98 and 0.93 were achieved by the optimized ANN classifiers. The automated response of the ANN may be used to arrive at a pre-plan where many treatment parameters may be identified and therefore a significant reduction in the steps required to arrive at the optimum plan may be achieved. Treatment planning 'experience' and also results from lengthy calculations may be used for training the ANN. (author)

  3. Simple techniques for improving deep neural network outcomes on commodity hardware

    Science.gov (United States)

    Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.

    2017-08-01

    We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.

  4. Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network.

    Science.gov (United States)

    Soltani, Mahmoud; Omid, Mahmoud; Alimardani, Reza

    2015-05-01

    Egg size is one of the important properties of egg that is judged by customers. Accordingly, in egg sorting and grading, the size of eggs must be considered. In this research, a new method of egg volume prediction was proposed without need to measure weight of egg. An accurate and efficient image processing algorithm was designed and implemented for computing major and minor diameters of eggs. Two methods of egg size modeling were developed. In the first method, a mathematical model was proposed based on Pappus theorem. In second method, Artificial Neural Network (ANN) technique was used to estimate egg volume. The determined egg volume by these methods was compared statistically with actual values. For mathematical modeling, the R(2), Mean absolute error and maximum absolute error values were obtained as 0.99, 0.59 cm(3) and 1.69 cm(3), respectively. To determine the best ANN, R(2) test and RMSEtest were used as selection criteria. The best ANN topology was 2-28-1 which had the R(2) test and RMSEtest of 0.992 and 0.66, respectively. After system calibration, the proposed models were evaluated. The results which indicated the mathematical modeling yielded more satisfying results. So this technique was selected for egg size determination.

  5. Detection of breast cancer using advanced techniques of data mining with neural networks

    International Nuclear Information System (INIS)

    Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M.

    2016-10-01

    The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)

  6. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques

    Science.gov (United States)

    Jain, Ashu; Srinivasulu, Sanaga

    2006-02-01

    This paper presents the findings of a study aimed at decomposing a flow hydrograph into different segments based on physical concepts in a catchment, and modelling different segments using different technique viz. conceptual and artificial neural networks (ANNs). An integrated modelling framework is proposed capable of modelling infiltration, base flow, evapotranspiration, soil moisture accounting, and certain segments of the decomposed flow hydrograph using conceptual techniques and the complex, non-linear, and dynamic rainfall-runoff process using ANN technique. Specifically, five different multi-layer perceptron (MLP) and two self-organizing map (SOM) models have been developed. The rainfall and streamflow data derived from the Kentucky River catchment were employed to test the proposed methodology and develop all the models. The performance of all the models was evaluated using seven different standard statistical measures. The results obtained in this study indicate that (a) the rainfall-runoff relationship in a large catchment consists of at least three or four different mappings corresponding to different dynamics of the underlying physical processes, (b) an integrated approach that models the different segments of the decomposed flow hydrograph using different techniques is better than a single ANN in modelling the complex, dynamic, non-linear, and fragmented rainfall runoff process, (c) a simple model based on the concept of flow recession is better than an ANN to model the falling limb of a flow hydrograph, and (d) decomposing a flow hydrograph into the different segments corresponding to the different dynamics based on the physical concepts is better than using the soft decomposition employed using SOM.

  7. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea.

    Science.gov (United States)

    Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie

    2014-01-01

    Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.

  8. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  9. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  10. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  11. Projecting impacts of climate change on water availability using artificial neural network techniques

    Science.gov (United States)

    Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo

    2017-01-01

    Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.

  12. A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Zohir Dibi

    2009-11-01

    Full Text Available Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…. We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor’s response characteristics and eliminate its dependency on the environmental parameters. The corrector’s responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration. The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering. The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor’s responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  13. Evolutionary programming technique for reducing complexity of artifical neural networks for breast cancer diagnosis

    Science.gov (United States)

    Lo, Joseph Y.; Land, Walker H., Jr.; Morrison, Clayton T.

    2000-06-01

    An evolutionary programming (EP) technique was investigated to reduce the complexity of artificial neural network (ANN) models that predict the outcome of mammography-induced breast biopsy. By combining input variables consisting of mammography lesion descriptors and patient history data, the ANN predicted whether the lesion was benign or malignant, which may aide in reducing the number of unnecessary benign biopsies and thus the cost of mammography screening of breast cancer. The EP has the ability to optimize the ANN both structurally and parametrically. An EP was partially optimized using a data set of 882 biopsy-proven cases from Duke University Medical Center. Although many different architectures were evolved, the best were often perceptrons with no hidden nodes. A rank ordering of the inputs was performed using twenty independent EP runs. This confirmed the predictive value of the mass margin and patient age variables, and revealed the unexpected usefulness of the history of previous breast cancer. Further work is required to improve the performance of the EP over all cases in general and calcification cases in particular.

  14. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    International Nuclear Information System (INIS)

    Wijayasekara, Dumidu; Manic, Milos; Sabharwall, Piyush; Utgikar, Vivek

    2011-01-01

    Highlights: → Performance prediction of PCHE using artificial neural networks. → Evaluating artificial neural network performance for PCHE modeling. → Selection of over-training resilient artificial neural networks. → Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the

  15. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  16. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    Science.gov (United States)

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371

  17. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence.

    Science.gov (United States)

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method.

  18. Analysis of Drug Design for a Selection of G Protein-Coupled Neuro-Receptors Using Neural Network Techniques

    DEFF Research Database (Denmark)

    Agerskov, Claus; Mortensen, Rasmus M.; Bohr, Henrik G.

    2015-01-01

    A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors...... computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques....

  19. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  20. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  1. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  2. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data

    International Nuclear Information System (INIS)

    Lefevre, Nathalie; Watson, Andrew J.; Watson, Adam R.

    2005-01-01

    Using about 138,000 measurements of surface pCO 2 in the Atlantic subpolar gyre (50-70 deg N, 60-10 deg W) during 1995-1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO 2 constructed using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric CO 2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring and summer due to biological activity. As an annual average the surface pCO 2 is higher than estimates based on available syntheses of surface pCO 2 . This supports earlier suggestions that the sink of CO 2 in the Atlantic subpolar gyre has decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well on the average values of pCO 2 and derived fluxes. However, when both techniques are used with a subset of the data, the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard deviation ranging from 3 to 11 μatm. The subpolar gyre is a net sink of CO 2 of 0.13 Gt-C/yr using the multiple linear regressions and 0.15 Gt-C/yr using the neural network, on average between 1995 and 1997. Both calculations were made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using the gas exchange coefficient of Wanninkhof

  3. Neural network technique for orbit correction in accelerators/storage rings

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.

    1995-01-01

    The authors are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between open-quotes kickclose quotes from the correctors and open-quotes responseclose quotes from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture

  4. Neural network technique for orbit correction in accelerators/storage rings

    Science.gov (United States)

    Bozoki, Eva; Friedman, Aharon

    1994-08-01

    We are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between ``kick'' from the correctors and ``response'' from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture.

  5. Electron tomography based on highly limited data using a neural network reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Eva [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Pelt, Daniël M. [CWI, Science Park 123, 1098 XG Amsterdam (Netherlands); Bals, Sara, E-mail: sara.bals@uantwerpen.be [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, Kees Joost [CWI, Science Park 123, 1098 XG Amsterdam (Netherlands); Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden (Netherlands); iMinds-Visionlab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-11-15

    Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape. - Highlights: • We propose a new approach for electron tomography based on artifical neural networks, which reduces the number of projection images with a factor of 5 or more. • This reconstruction algorithm allows us to examine the 3D shape of a broad range of nanostructures in a statistical manner. • NN-FBP reconstructions of highly limited data yield comparable quality to full data SIRT reconstructions.

  6. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  7. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  8. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  9. Land Cover Change Detection using Neural Network and Grid Cells Techniques

    Science.gov (United States)

    Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.

    2017-12-01

    In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation

  10. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  11. Tomography using neural networks

    International Nuclear Information System (INIS)

    Demeter, G.; Zoletnik, S.

    1997-01-01

    Neural networks have been used for fast measurement evaluation in plasma physics, including nonlinear curve fitting to experimental data. Such an approach for fast evaluation of tomographic measurements was utilized on the MT-1M tokamak, especially in the study of impurity injection using laser accelerated pellets and of the transport of these injected impurities. Neural networks were studied for fast processing of tomographic data and large numbers of tomographic data

  12. The nuclear fuel rod character recognition system based on neural network technique

    International Nuclear Information System (INIS)

    Kim, Woong-Ki; Park, Soon-Yong; Lee, Yong-Bum; Kim, Seung-Ho; Lee, Jong-Min; Chien, Sung-Il.

    1994-01-01

    The nuclear fuel rods should be discriminated and managed systematically by numeric characters which are printed at the end part of each rod in the process of producing fuel assembly. The characters are used to examine manufacturing process of the fuel rods in the inspection process of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies to establish automatic manufacturing process of fuel assembly. In the developed character recognition system, mesh feature set extracted from each character written in the fuel rod is employed to train a neural network based on back-propagation algorithm as a classifier for character recognition system. Performance evaluation has been achieved on a test set which is not included in a training character set. (author)

  13. A NEW RECOGNITION TECHNIQUE NAMED SOMP BASED ON PALMPRINT USING NEURAL NETWORK BASED SELF ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    A. S. Raja

    2012-08-01

    Full Text Available The word biometrics refers to the use of physiological or biological characteristics of human to recognize and verify the identity of an individual. Palmprint has become a new class of human biometrics for passive identification with uniqueness and stability. This is considered to be reliable due to the lack of expressions and the lesser effect of aging. In this manuscript a new Palmprint based biometric system based on neural networks self organizing maps (SOM is presented. The method is named as SOMP. The paper shows that the proposed SOMP method improves the performance and robustness of recognition. The proposed method is applied to a variety of datasets and the results are shown.

  14. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Pereira, Claudio Marcio N.A.; Freitas, Victor Goncalves G.; Jorge, Carlos Alexandre F.

    2011-01-01

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  15. Parameterization Of Solar Radiation Using Neural Network

    International Nuclear Information System (INIS)

    Jiya, J. D.; Alfa, B.

    2002-01-01

    This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values

  16. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.

    Science.gov (United States)

    Singh, A; Quek, C; Cho, S Y

    2008-04-01

    Earlier clustering techniques such as the modified learning vector quantization (MLVQ) and the fuzzy Kohonen partitioning (FKP) techniques have focused on the derivation of a certain set of parameters so as to define the fuzzy sets in terms of an algebraic function. The fuzzy membership functions thus generated are uniform, normal, and convex. Since any irregular training data is clustered into uniform fuzzy sets (Gaussian, triangular, or trapezoidal), the clustering may not be exact and some amount of information may be lost. In this paper, two clustering techniques using a Kohonen-like self-organizing neural network architecture, namely, the unsupervised discrete clustering technique (UDCT) and the supervised discrete clustering technique (SDCT), are proposed. The UDCT and SDCT algorithms reduce this data loss by introducing nonuniform, normal fuzzy sets that are not necessarily convex. The training data range is divided into discrete points at equal intervals, and the membership value corresponding to each discrete point is generated. Hence, the fuzzy sets obtained contain pairs of values, each pair corresponding to a discrete point and its membership grade. Thus, it can be argued that fuzzy membership functions generated using this kind of a discrete methodology provide a more accurate representation of the actual input data. This fact has been demonstrated by comparing the membership functions generated by the UDCT and SDCT algorithms against those generated by the MLVQ, FKP, and pseudofuzzy Kohonen partitioning (PFKP) algorithms. In addition to these clustering techniques, a novel pattern classifying network called the Yager fuzzy neural network (FNN) is proposed in this paper. This network corresponds completely to the Yager inference rule and exhibits remarkable generalization abilities. A modified version of the pseudo-outer product (POP)-Yager FNN called the modified Yager FNN is introduced that eliminates the drawbacks of the earlier network and yi- elds

  17. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods. (author)

  18. Introduction to neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.

    1996-01-01

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  19. Detection of apnea using a short-window FFT technique and an artificial neural network

    Science.gov (United States)

    Waldemark, Karina E.; Agehed, Kenneth I.; Lindblad, Thomas; Waldemark, Joakim T. A.

    1998-03-01

    Sleep apnea is characterized by frequent prolonged interruptions of breathing during sleep. This syndrome causes severe sleep disorders and is often responsible for development of other diseases such as heart problems, high blood pressure and daytime fatigue, etc. After diagnosis, sleep apnea is often successfully treated by applying positive air pressure (CPAP) to the mouth and nose. Although effective, the (CPAP) equipment takes up a lot of space and the connected mask causes a lot of inconvenience for the patients. This raised interest in developing new techniques for treatment of sleep apnea syndrome. Several studies have indicated that electrical stimulation of the hypoglossal nerve and muscle in the tongue may be a useful method for treating patients with severe sleep apnea. In order to be able to successfully prevent the occurrence of apnea it is necessary to have some technique for early and fast on-line detection or prediction of the apnea events. This paper suggests using measurements of respiratory airflow (mouth temperature). The signal processing for this task includes the use of a short window FFT technique and uses an artificial back propagation neural net to model or predict the occurrence of apneas. The results show that early detection of respiratory interruption is possible and that the delay time for this is small.

  20. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  1. A new approach to the analysis of alpha spectra based on neural network techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, A.; Miranda, J. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Guillen, J., E-mail: fguillen@unex.es [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Corbacho, J.A. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Perez, R. [Dept. Technology of Computers and Communications, Polytechnics School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain)

    2011-10-01

    The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach-the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks-the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to {sup 208}Po, {sup 209}Po, and {sup 210}Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak

  2. A new approach to the analysis of alpha spectra based on neural network techniques

    International Nuclear Information System (INIS)

    Baeza, A.; Miranda, J.; Guillen, J.; Corbacho, J.A.; Perez, R.

    2011-01-01

    The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach-the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks-the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to 208 Po, 209 Po, and 210 Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak. Then, the ANN

  3. A new approach to the analysis of alpha spectra based on neural network techniques

    Science.gov (United States)

    Baeza, A.; Miranda, J.; Guillén, J.; Corbacho, J. A.; Pérez, R.

    2011-10-01

    The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach—the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks—the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to 208Po, 209Po, and 210Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak. Then, the ANN

  4. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  5. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    Science.gov (United States)

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  6. Classification of RF transients in space using digital signal processing and neural network techniques

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Blain, P.C.; Briles, S.D.; Jones, R.G.

    1995-02-01

    The FORTE{prime} (Fast On-Orbit Recording of Transient Events) small satellite experiment scheduled for launch in October, 1995 will attempt to measure and classify electromagnetic transients as sensed from space. The FORTE{prime} payload will employ an Event Classifier to perform onboard classification of radio frequency transients from terrestrial sources such as lightning. These transients are often dominated by a constantly changing assortment of man-made ``clutter`` such as TV, FM, and radar signals. The FORTE{prime} Event Classifier, or EC, uses specialized hardware to implement various signal processing and neural network algorithms. The resulting system can process and classify digitized records of several thousand samples onboard the spacecraft at rates of about a second per record. In addition to reducing dowlink rates, the EC minimizes command uplink data by normally using uploaded algorithm sequences rather than full code modules (although it is possible for full code modules to be uploaded from the ground). The FORTE{prime} Event Classifier experiment combines science and engineering in an evolutionary step toward useful and robust adaptive processing systems in space.

  7. Neural network classification technique and machine vision for bread crumb grain evaluation

    Science.gov (United States)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  8. A method to detect single and multiple delamination problems using a combined neural network technique and genetic algorithm optimization

    Science.gov (United States)

    Le, Hieu The

    This thesis develops a new method to detect delaminations in composite laminates using a combination of finite element method, artificial neural networks, and genetic algorithms. Next, this newly developed method is applied to successfully solve delamination detection problems. Delaminations in a composite laminate with various sizes and locations are considered in the present studies. The improved layerwise shear deformation theory is implemented into the finite element method and used to calculate responses of laminates with single and multiple delaminations. Mappings between the natural frequencies and delamination characteristics are first determined from the developed models. These data are then used to train artificial neural networks of multiplayer perceptron using back-propagation. These trained artificial neural networks are in turn used as an approximate tool to calculate the responses of the delaminated laminates and to feed the data to the delamination detection process. Two different approaches for handling the neural network models are applied in the work and are presented for comparison. The delamination detection problem is formulated as an optimization problem with mixed type design variables. A genetic algorithm, which is a guided probabilistic search technique based on the simulation of Darwin's principle of evolution and natural selection, is developed to solve this optimization problem. Single through-the-width delamination, single internal delamination, and multiple through-the-width delaminations are separately considered for detection study. At last, the application is extended to the most challenging problem, which is the detection of general delamination. Various factors affecting the detection process such as the finite element convergence factor and the laminate geometry factor are also examined. Case studies are made and the findings are summarized in detail in each chapter of the dissertation. It is found that the newly developed

  9. A modified artificial neural network based prediction technique for tropospheric radio refractivity.

    Science.gov (United States)

    Javeed, Shumaila; Alimgeer, Khurram Saleem; Javed, Wajahat; Atif, M; Uddin, Mueen

    2018-01-01

    Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002-2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results

  10. Neural Network Algorithm for Particle Loading

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given

  11. Artificial neural networks in forecasting tourists’ flow, an intelligent technique to help the economic development of tourism in Albania.

    Directory of Open Access Journals (Sweden)

    Dezdemona Gjylapi

    2014-07-01

    The aim of this paper is to present the neural network usage in the tourists’ number forecasting and to determine the trends of the future tourist inflow, thus helping tourism management agencies in making scientific based financial decisions.

  12. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  13. Use of neural network techniques to identify cosmic ray electrons and positrons during the 1993 balloon flight of the NMSU/Wizard-TS93 instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, R.; Castellano, M. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Candusso, M.; Casolino, M.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1995-09-01

    The detectors used in the TS93 balloon flight produced a large volume of information for each cosmic ray trigger. Some of the data was visual in nature, other portions contained energy deposition and timing information. The data sets are amenable to conventional analysis techniques but there is no assurance that conventional techniques make full use of subtle correlations and relations amongst the detector responses. With the advent of neural network technologies, particularly adept at classification of complex phenomena, it would seem appropriate to explore the utility of neural network techniques to classify particles observed with the instruments. In this paper neural network based methodology for signal/background discrimination in a cosmic ray space experiment is discussed. Results are presented for electron and positron classification in the TS93 flight data set and will be compared to conventional analyses.

  14. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  15. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  16. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  17. Development of a technique for level measurement in pressure vessels using thermal probes and artificial neural networks

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo

    2008-01-01

    A technique for level measurement in pressure vessels was developed using thermal probes with internal cooling and artificial neural networks (ANN's). This new concept of thermal probes was experimentally tested in an experimental facility (BETSNI) with two test sections, ST1 and ST2. Two different thermal probes were designed and constructed: concentric tubes probe and U tube probe. A data acquisition system (DAS) was assembled to record the experimental data during the tests. Steady state and transient level tests were carried out and the experimental data obtained were used as learning and recall data sets in the ANN's program RETRO-05 that simulate a multilayer perceptron with backpropagation. The results of the analysis show that the technique can be applied for level measurements in pressure vessel. The technique is applied for a less input temperature data than the initially designed to the probes. The technique is robust and can be used in case of lack of some temperature data. Experimental data available in literature from electrically heated thermal probe were also used in the ANN's analysis producing good results. The results of the ANN's analysis show that the technique can be improved and applied to level measurements in pressure vessels. (author)

  18. Neural Networks and Micromechanics

    Science.gov (United States)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  19. Neural Network Studies

    Science.gov (United States)

    1993-07-01

    simpler linearly separable majority function (Ahmad, Tesauro , 1988), the former has limited applicability to realistic problems and the latter has been...anwered. 6. References Ahmad, S., G. Tesauro , "Scaling and Generalization in Neural Networks: A Case Study", Proceedings of the 1988 Connectionist

  20. Neural Networks for Flight Control

    Science.gov (United States)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  1. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    Science.gov (United States)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  2. Development and assessment of compression technique for medical images using neural network. I. Assessment of lossless compression

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi

    2007-01-01

    This paper describes assessment of the lossless compression of a new efficient compression technique (JIS system) using neural network that the author and co-workers have recently developed. At first, theory is explained for encoding and decoding the data. Assessment is done on 55 images each of chest digital roentgenography, digital mammography, 64-row multi-slice CT, 1.5 Tesla MRI, positron emission tomography (PET) and digital subtraction angiography, which are lossless-compressed by the present JIS system to see the compression rate and loss. For comparison, those data are also JPEG lossless-compressed. Personal computer (PC) is an Apple MacBook Pro with configuration of Boot Camp for Windows environment. The present JIS system is found to have a more than 4 times higher efficiency than the usual compressions which compressing the file volume to only 1/11 in average, and thus to be importantly responsible to the increasing medical imaging data. (R.T.)

  3. Computation within cultured neural networks.

    Science.gov (United States)

    DeMarse, T; Cadotte, A; Douglas, P; He, P; Trinh, V

    2004-01-01

    In this paper we present three related areas of research we are pursuing to study neural computation in vitro. Rat cortical neurons cultured on 60 channel multielectrode array (MEA) allow the researcher to measure from and stimulate sixty different sites across a small population of neurons grown in vitro. Using this system we can send stimulation patterns into the network and study how these living neural networks compute by measuring its outputs. Our first series of studies uses chaotic control techniques to study the dynamics and potentially control the behavior of cortical network. At the same time, we are beginning to apply a model of computation called the liquid state machine or LSM model developed by Wolfgang Maass to provide a firm mathematical framework from which to proceed with our investigations. Each of these components is integrated into a third area investigating the role of computation and feedback using a real-time sensory-motor feedback robotic flight system.

  4. Optimizing an Industrial Scale Naphtha Catalytic Reforming Plant Using a Hybrid Artificial Neural Network and Genetic Algorithm Technique

    Directory of Open Access Journals (Sweden)

    Sepehr Sadighi

    2015-07-01

    Full Text Available In this paper, a hybrid model for estimating the activity of a commercial Pt-Re/Al2O3 catalyst in an industrial scale heavy naphtha catalytic-reforming unit (CRU is presented. This model is also capable of predicting research octane number (RON and yield of gasoline. In the proposed model, called DANN, the decay function of heterogeneous catalysts is combined with a recurrent-layer artificial neural network. During a life cycle (919 days, fifty-eight points are selected for building and training the DANN (60%, nineteen data points for testing (20%, and the remained ones for validating steps. Results show that DANN can acceptably estimate the activity of catalyst during its life in consideration of all process variables. Moreover, it is confirmed that the proposed model is capable of predicting RON and yield of gasoline for unseen (validating data with AAD% (average absolute deviation of 0.272% and 0.755%, respectively. After validating the model, the octane barrel level (OCB of the plant is maximized by manipulating the inlet temperature of reactors, and hydrogen to hydrocarbon molar ratio whilst all process limitations are taken into account. During a complete life cycle results show that the decision variables, generated by the optimization program, can increase the RON, process yield and OCB of CRU to about 1.15%, 3.21%, and 4.56%, respectively. © 2015 BCREC UNDIP. All rights reserved.Received: 27th July 2014; Revised: 31st May 2015; Accepted: 31th May 2015 How to Cite: Sadighi, S., Mohaddecy, R.S., Norouzian, A. (2015. Optimizing an Industrial Scale Naphtha Catalytic Reforming Plant Using a Hybrid Artificial Neural Network and Genetic Algorithm Technique. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2: 210-220. (doi:10.9767/bcrec.10.2.7171.210-220 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7171.210-220  

  5. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  6. VLSI Cells Placement Using the Neural Networks

    International Nuclear Information System (INIS)

    Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah

    2008-01-01

    The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network

  7. Neural networks for triggering

    International Nuclear Information System (INIS)

    Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab

  8. Structured Pyramidal Neural Networks.

    Science.gov (United States)

    Soares, Alessandra M; Fernandes, Bruno J T; Bastos-Filho, Carmelo J A

    2017-02-09

    The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.

  9. Artificial neural/chemical networks

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    What strikes the attention of a neural network designer is that the chemicals seem to work not so much on individual neural circuits as on neural cell assemblies. These are large blocks of neural networks that carry out high level tasks using their constituent networks as needed. It follows to us that we might seek ways of achieving that same sort of behavior in an artificial neural network. In what follows, we provide two examples of how that might be done in an artificial system.

  10. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  11. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  12. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  13. Accelerating Learning By Neural Networks

    Science.gov (United States)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  14. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglova

    2008-11-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  15. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  16. Learning Maneuvers Using Neural Network Models

    Science.gov (United States)

    1994-08-07

    parametric function approximators such as neural networks ( Tesauro 1991). The prediction process runs in a series of epochs. Each epoch ends when a...function approximator such as a neural network. This technique has recently been used successfully on a large complex problem, Backgammon, by Tesauro (1991...Morgan Kaufman. Tesauro , G. J. (1991). Practical Issues in Temporal Difference Learning. Report RC 17223 (76307), IBM T. J. Watson Research Center

  17. Using neural networks in software repositories

    Science.gov (United States)

    Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.

    1992-01-01

    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.

  18. Neural networks, D0, and the SSC

    International Nuclear Information System (INIS)

    Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.

    1989-01-01

    We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs

  19. Machine Learning Topological Invariants with Neural Networks

    Science.gov (United States)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  20. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  1. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting

    International Nuclear Information System (INIS)

    Azimi, R.; Ghayekhloo, M.; Ghofrani, M.

    2016-01-01

    Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar

  2. Application of neural network to CT

    International Nuclear Information System (INIS)

    Ma, Xiao-Feng; Takeda, Tatsuoki

    1999-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)

  3. Flight control with adaptive critic neural network

    Science.gov (United States)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  4. A Learning Method for Neural Networks Based on a Pseudoinverse Technique

    Directory of Open Access Journals (Sweden)

    Chinmoy Pal

    1996-01-01

    Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.

  5. Improvement in separation of isolated muons and pions at low pT in ATLAS hadron calorimeter using artificial neural networks technique

    International Nuclear Information System (INIS)

    Astvatsaturov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Shigaev, V.; Paplevka, A.; Sushkov, S.; Bosman, M.; Nessi, M.

    1995-01-01

    Advantages of artificial neural networks techniques in handling data from highly granulated ATLAS hadron calorimeter (HC) are shown in application to isolated π/μ separation task in the range 3 T T muons have a significant probability to be absorbed in the calorimeter and therefore they cannot be reliably registered by the muon detector. The comparative analysis of main characteristics is presented for several neural net discriminators and a linear threshold discriminator operating on energy deposition in the last depth of HC. The analysis is based on MC data obtained with ATLAS simulation programs. 9 refs., 12 figs

  6. Neural-network-based prediction techniques for single station modeling and regional mapping of the foF2 and M(3000F2 ionospheric characteristics

    Directory of Open Access Journals (Sweden)

    T. D. Xenos

    2002-01-01

    Full Text Available In this work, Neural-Network-based single-station hourly daily foF2 and M(3000F2 modelling of 15 European ionospheric stations is investigated. The data used are neural networks and hourly daily values from the period 1964- 1988 for training the neural networks and from the period 1989-1994 for checking the prediction accuracy. Two types of models are presented for the F2-layer critical frequency prediction and two for the propagation factor M(3000F2. The first foF2 model employs the E-layer local noon calculated daily critical frequency (foE12 and the local noon F2- layer critical frequency of the previous day. The second foF2 model, which introduces a new regional mapping technique, employs the Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon. The first M(3000F2 model employs the E-layer local noon calculated daily critical frequency (foE12, its ± 3 h deviations and the local noon cosine of the solar zenith angle (cos c12. The second model, which introduces a new M(3000F2 mapping technique, employs Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon.

  7. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  8. Optoelectronic Implementation of Neural Networks

    Indian Academy of Sciences (India)

    optical neural network using photo refractive crystals and realized interconnection density of 10 8 to. 1010 per cm3. • B Javidi and others designed a correlato.,. based two-layer neural network associated with a supervised perceptron learning algorithm for r~al-time face recognition. electronic wiring altogether and replace it ...

  9. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  10. Fundamental study on the interpretation technique for 3-D MT data using neural networks. 2; Neural network wo mochiita sanjigen MT ho data kaishaku gijutsu ni kansuru kisoteki kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, K.; Kobayashi, T. [OYO Corp., Tokyo (Japan); Mogi, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Spichak, V.

    1997-10-22

    Behavior of neural networks relative to noise and the constitution of an optimum network are studied for the construction of a 3-D MT data interpretation system using neural networks. In the study, the relationship is examined between the noise level of educational data and the noise level of the neural network to be constructed. After examination it is found that the neural network is effective in interpreting data whose noise level is the same as that of educational data; it cannot correctly interpret data that it has not met in the educational stage even if such data is free of noise; that the optimum number of neurons in a hidden layer is approximately 40 in a network architecture using the current system; and that the neuron gain function enhances recognition capability when a logistic function is used in the hidden layer and a linear function is used in the output layer. 2 refs., 7 figs., 2 tabs.

  11. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  12. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  13. An effective Load shedding technique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Foday Conteh

    2017-09-01

    Full Text Available In recent years, the use of renewable energy sources in micro-grids has become an effectivemeans of power decentralization especially in remote areas where the extension of the main power gridis an impediment. Despite the huge deposit of natural resources in Africa, the continent still remains inenergy poverty. Majority of the African countries could not meet the electricity demand of their people.Therefore, the power system is prone to frequent black out as a result of either excess load to the systemor generation failure. The imbalance of power generation and load demand has been a major factor inmaintaining the stability of the power systems and is usually responsible for the under frequency andunder voltage in power systems. Currently, load shedding is the most widely used method to balancebetween load and demand in order to prevent the system from collapsing. But the conventional methodof under frequency or under voltage load shedding faces many challenges and may not perform asexpected. This may lead to over shedding or under shedding, causing system blackout or equipmentdamage. To prevent system cascade or equipment damage, appropriate amount of load must beintentionally and automatically curtailed during instability. In this paper, an effective load sheddingtechnique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system isproposed. The combined techniques take into account the actual system state and the exact amount ofload needs to be curtailed at a faster rate as compared to the conventional method. Also, this methodis able to carry out optimal load shedding for any input range other than the trained data. Simulationresults obtained from this work, corroborate the merit of this algorithm.

  14. Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt

    Science.gov (United States)

    Elshambaky, Hossam Talaat

    2018-01-01

    Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.

  15. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  16. Oscillatory neural networks.

    Science.gov (United States)

    Selverston, A I; Moulins, M

    1985-01-01

    Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG

  17. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...

  18. Top tagging with deep neural networks [Vidyo

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.

  19. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  20. An introduction to neural network methods for differential equations

    CERN Document Server

    Yadav, Neha; Kumar, Manoj

    2015-01-01

    This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...

  1. Neural Networks For Robot Control

    National Research Council Canada - National Science Library

    Nasr, Chaiban

    2001-01-01

    ...; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed-loop 2D planar robot arm and comparison with the use of proportional-integral-differential (PID) controllers...

  2. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  3. Backpropagation neural networks: pattern recognition

    OpenAIRE

    Studenikin, Oleg

    2005-01-01

    In this Master’s degree work artificial neural networks and back propagation learning algorithm for human faces and pattern recognition are analyzed. In the second part of work artificial neural networks and their architecture and structures models are analyzed. In the third part of article the backpropagation procedure and procedures theoretical learning principle are analyzed. In the fourth part different kinds of ANN methods and patterns extracting methods in recognition, learning and ...

  4. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network. (BPNN). This analysis is carried out following a series of experiments ...

  5. Neural networks for event filtering at D/O/

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1989-01-01

    Neural networks may provide important tools for pattern recognition in high energy physics. We discuss an initial exploration of these techniques, presenting the result of network simulations of several filter algorithms. The D0 data acquisition system, a MicroVAX farm, will perform critical event selection; we describe a possible implementation of neural network algorithms in this system. 7 refs., 4 figs

  6. Daily Nigerian peak load forecasting using artificial neural network ...

    African Journals Online (AJOL)

    A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...

  7. Time series prediction: statistical and neural techniques

    Science.gov (United States)

    Zahirniak, Daniel R.; DeSimio, Martin P.

    1996-03-01

    In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.

  8. Artificial Neural Networks For Hadron Hadron Cross-sections

    International Nuclear Information System (INIS)

    ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.

    2011-01-01

    In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  9. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  10. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  11. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  12. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    This article presents a novel technique to distinguish between magnetizing inrush current and internal fault current of power transformer. An algorithm has been developed around the theme of the conventional differential protection method in which parallel combination of Probabilistic Neural Network (PNN) and Power ...

  13. Optimal control learning with artificial neural networks

    International Nuclear Information System (INIS)

    Martinez, J.M.; Parey, C.; Houkari, M.

    1993-01-01

    This paper shows neural networks capabilities in optimal control applications of non linear dynamic systems. Our method is issued of a classical method concerning the direct research of the optimal control using gradient techniques. We show that neural approach and backpropagation paradigm are able to solve efficiently equations relative to necessary conditions for an optimizing solution. We have taken into account the known capabilities of multi layered networks in approximation functions. And for dynamic systems, we have generalized the indirect learning of inverse model adaptive architecture that is capable to define an optimal control in relation to a temporal criterion. (orig.)

  14. Clustering: a neural network approach.

    Science.gov (United States)

    Du, K-L

    2010-01-01

    Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  15. Classification of behavior using unsupervised temporal neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Adair, K.L. [Florida State Univ., Tallahassee, FL (United States). Dept. of Computer Science; Argo, P. [Los Alamos National Lab., NM (United States)

    1998-03-01

    Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.

  16. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  17. Classification of behavior using unsupervised temporal neural networks

    International Nuclear Information System (INIS)

    Adair, K.L.

    1998-03-01

    Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem

  18. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  19. Fault Diagnosis Using Artificial Neural Network

    International Nuclear Information System (INIS)

    Maayof, R.M.A.; Abdelwahed, S.M.; Ayad, N.M.A.; Elmeniawy, N.M.H.

    2004-01-01

    This paper represents a special diagnostic system for handling and curing the possible failures of the Cairo Fourier Diffractometer Facility (CFDF). Two intelligent techniques, the neural network system (back propagation method) and the rule-based expert system are discussed. Both systems are integrated together as a pre-processor loosely coupled in order to build the proposed hybrid expert system. The inputs to the neural network level are the indicators conditions (symptoms), from the CFDF control panel. The outputs correspond to the status of the main parts of the CFDF. The rule-based expert system takes the inputs and outputs of the neural networks and also information from the user, to isolate and define precisely the possible faults of the CFDF. It has been found that the developed diagnostic system is both adequate and flexible for the CFDF

  20. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  1. Neural Networks Applied to Optimal Flight Control

    OpenAIRE

    McKelvey, Tomas

    1992-01-01

    This paper presents a method for developing control laws for nonlinear systems based on an optimal control formulation. Due to the nonlinearities of the system, no analytical solution exists. The method proposed here uses the 'black box' structure of a neural network to model a feedback control law. The network is trained with the back-propagation learning method by using examples of optimal control produced with a differential dynamic programming technique. Two different optimal control prob...

  2. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  3. Identifying Tracks Duplicates via Neural Network

    CERN Document Server

    Sunjerga, Antonio; CERN. Geneva. EP Department

    2017-01-01

    The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.

  4. Application of Neural Networks Technique in depositional environment interpretation for the Niger Delta a Novel computer-Based methodology for 3-D reservoir geological modelling and exploration studies. (The pilot application in X-Field, Niger Delta)

    International Nuclear Information System (INIS)

    Iloghalu, E.M.

    2002-01-01

    Artificial neural network is a virtual intelligence tool, which mimics the human brain to do analysis and come out with results. Its application in petroleum engineering is very recent and is gradually evolving and is set to dominate or take over other analytical tools used in the Exploration and Production industry.There are two types of neural network namely, unsupervised and supervised neural networks. A proper combination of these two types of neural networks produces high-resolution results.In this work, interpreted core data was depth matched to well logs and 5 genetic units were calibrated to define the combined log responses for each genetic unit. These combined log responses were then used to train the supervised neural networks to recognise and interpret these units elsewhere in the field. Thereafter, the unsupervised neural network was run to generate classes within the cored interval. The results were then compared with the supervised network output and were then extrapolated vertically and laterally to other parts of the field.This technique having been used successfully to perform automatic interpretation of genetic units and lithofacies associations in reservoir scale is also very useful and applicable in exploration. Specific reservoirs or stratigraphic units can be automatically interpreted across a wide area using well data controlled by one or a combination of lithostratigraphy, allostratigraphy, sequence stratigraphy and biostratigraphy.Using this technique, well data cost and time are saved tremendously. It is the key to achieving computerised Basin-Scale Reservoir characterisation for the Niger Delta

  5. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  6. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  7. Classes of feedforward neural networks and their circuit complexity

    NARCIS (Netherlands)

    Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter

    1992-01-01

    This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a

  8. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...... concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction...

  9. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  10. Voltage sags and transient detection and classification using half/one-cycle windowing techniques based on continuous s-transform with neural network

    Science.gov (United States)

    Daud, Kamarulazhar; Abidin, Ahmad Farid; Ismail, Ahmad Puad

    2017-08-01

    This paper was conducted to detect and classify the different power quality disturbance (PQD) using Half and One-Cycle Windowing Technique (WT) based on Continuous S-Transform (CST) and Neural Network (NN). The system using 14 bus bars based on IEEE standard had been designing using MATLAB©/Simulink to provide PQD data. The datum of PQD is analyzed by using WT based on CST to extract features and it characteristics. Besides, the study focused an important issue concerning the identification of PQD selection and detection, the feature and characteristics of two types of signals such as voltage sag and transient signal are obtained. After the feature extraction, the classified process had been done using NN to show the percentage of classification PQD either voltage sags or transients. The analysis show which selection of cycle for windowing technique can provide the smooth detection of PQD and the suitable characteristic to provide the highest percentage of classification of PQD.

  11. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  12. Artificial Neural Networks for Beginners

    OpenAIRE

    Gershenson, Carlos

    2003-01-01

    The scope of this teaching package is to make a brief induction to Artificial Neural Networks (ANNs) for people who have no previous knowledge of them. We first make a brief introduction to models of networks, for then describing in general terms ANNs. As an application, we explain the backpropagation algorithm, since it is widely used and many other algorithms are derived from it. The user should know algebra and the handling of functions and vectors. Differential calculus is recommendable, ...

  13. Interest Rate Forecasting with Neural Networks

    OpenAIRE

    Jan Täppinen

    1998-01-01

    This paper compares neural networks and linear regression models in interest rate forecasting using US term structure data. The expectations hypothesis gets some extra support from the neural network model as compared to the regression model. A neural network with the whole yield curve spectre from the difference between 1 and 3-month rates to the difference between 5 and 10-year rates predicts changes in interest rates quite well. However, during 1994?1995 the neural networks (as well as the...

  14. Neural network to diagnose lining condition

    Science.gov (United States)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.

    2018-03-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.

  15. Numerical experiments with neural networks

    International Nuclear Information System (INIS)

    Miranda, Enrique.

    1990-01-01

    Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)

  16. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Artificial Neural Networks A Brief Introduction. Jitendra R Raol Sunilkumar S Mankame. General Article Volume 1 Issue 2 February 1996 pp 47-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Optoelectronic Implementation of Neural Networks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    works. They have the ability to learn from empirical datal information. They find use in computer science and control engineering fields. In recent years artificial ... However there are vast differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of biologically derived NNs ...

  19. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  20. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  1. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  2. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  3. Automatic target identification using neural networks

    Science.gov (United States)

    Abdallah, Mahmoud A.; Samu, Tayib I.; Grissom, William A.

    1995-10-01

    Neural network theories are applied to attain human-like performance in areas such as speech recognition, statistical mapping, and target recognition or identification. In target identification, one of the difficult tasks has been the extraction of features to be used to train the neural network which is subsequently used for the target's identification. The purpose of this paper is to describe the development of an automatic target identification system using features extracted from a specific class of targets. The extracted features were the graphical representations of the silhouettes of the targets. Image processing techniques and some Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT eliminates variations in the extracted features due to rotation or scaling. A Neural Network was trained with the extracted features using the Learning Vector Quantization paradigm. An identification system was set up to test the algorithm. The image processing software was interfaced with MATLAB Neural Network Toolbox via a computer program written in C language to automate the target identification process. The system performed well as at classified the objects used to train it irrespective of rotation, scaling, and translation. This automatic target identification system had a classification success rate of about 95%.

  4. Noise in genetic and neural networks

    Science.gov (United States)

    Swain, Peter S.; Longtin, André

    2006-06-01

    Both neural and genetic networks are significantly noisy, and stochastic effects in both cases ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with researchers in one often being unaware of similar work in the other. In this Special Issue, we focus on bridging this gap and present a collection of papers from both fields together. For each field, the networks studied range from just a single gene or neuron to endogenous networks. In this introductory article, we describe the sources of noise in both genetic and neural systems. We discuss the modeling techniques in each area and point out similarities. We hope that, by reading both sets of papers, ideas developed in one field will give insight to scientists from the other and that a common language and methodology will develop.

  5. Fuzzy logic and neural network technologies

    Science.gov (United States)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  6. Inversion of a lateral log using neural networks

    International Nuclear Information System (INIS)

    Garcia, G.; Whitman, W.W.

    1992-01-01

    In this paper a technique using neural networks is demonstrated for the inversion of a lateral log. The lateral log is simulated by a finite difference method which in turn is used as an input to a backpropagation neural network. An initial guess earth model is generated from the neural network, which is then input to a Marquardt inversion. The neural network reacts to gross and subtle data features in actual logs and produces a response inferred from the knowledge stored in the network during a training process. The neural network inversion of lateral logs is tested on synthetic and field data. Tests using field data resulted in a final earth model whose simulated lateral is in good agreement with the actual log data

  7. Artificial Neural Network Model for Predicting Compressive

    OpenAIRE

    Salim T. Yousif; Salwa M. Abdullah

    2013-01-01

      Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum...

  8. Neural network based facial recognition system

    Science.gov (United States)

    Luebbers, Paul G.; Uwechue, Okechukwu A.; Pandya, Abhijit S.

    1994-03-01

    Researchers have for many years tried to develop machine recognition systems using video images of the human face as the input, with limited success. This paper presents a technique for recognizing individuals based on facial features using a novel multi-layer neural network architecture called `PWRNET'. We envision a real-time version of this technique to be used for high security applications. Two systems are proposed. One involves taking a grayscale video image and using it directly, the other involves decomposing the grayscale image into a series of binary images using the isodensity regions of the image. Isodensity regions are the areas within an image where the intensity is within a certain range. The binary image is produced by setting the pixels inside this intensity range to one, and the rest of the pixels in the image to zero. Features based on moments are subsequently extracted from these grayscale images. These features are then used for classification of the image. The classification is accomplished using an artificial neural network called `PWRNET', which produces a polynomial expression of the trained network. There is one neural network for each individual to be identified, with an output value which is either positive or negative identification. A detailed development of the design is presented, and identification for small population of individuals is presented. It is shown that the system is effective for variations in both scale and translation, which are considered to be reasonable variations for this type of facial identification.

  9. Photon spectrometry utilizing neural networks

    International Nuclear Information System (INIS)

    Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.

    2015-01-01

    Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)

  10. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  11. Prediction of malignant breast lesions from MRI features: a comparison of artificial neural network and logistic regression techniques.

    Science.gov (United States)

    McLaren, Christine E; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-07-01

    Dynamic contrast-enhanced magnetic resonance imaging is a clinical imaging modality for the detection and diagnosis of breast lesions. Analytic methods were compared for diagnostic feature selection and the performance of lesion classification to differentiate between malignant and benign lesions in patients. The study included 43 malignant and 28 benign histologically proved lesions. Eight morphologic parameters, 10 gray-level co-occurrence matrix texture features, and 14 Laws texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for the selection of the best predictors of malignant lesions among the normalized features. Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with an area under the receiver-operating characteristic curve (AUC) of 0.82 and accuracy of 0.76. The diagnostic performance of these four features computed on the basis of logistic regression yielded an AUC of 0.80 (95% confidence interval [CI], 0.688-0.905), similar to that of ANN. The analysis also showed that the odds of a malignant lesion decreased by 48% (95% CI, 25%-92%) for every increase of 1 standard deviation in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model composed of compactness, normalized radial length entropy, and gray-level sum average was selected, and it had the highest overall accuracy, 0.75, among all models, with an AUC of 0.77 (95% CI, 0.660-0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors compactness and Law_LS had an AUC of 0.79 (95% CI, 0.672-0.898). The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive

  12. Advancement of the Eddy Current Testing using neural network technique. Development of 3-D finite element analysis sytem of elctro-magnetic field

    International Nuclear Information System (INIS)

    Sakai, Takayuki; Soneda, Naoki

    1994-01-01

    In PWR plants, an automatic recognition system of Eddy Current Testing (ECT) signals of steam generator tubes are strongly required to reduce inspectors' labor and to improve the reliability of the testing. Although the neural-network technique is very promising for this kind of system, it is necessary to evaluate its applicability to ECT signals throughly, where a database of the relationship of the defects and ECT signals plays a very important role. In this paper, a three dimensional finite element analysis system of electromagnetic field, which consists of an FEM code and pre/post processor, is developed to generate a database of ECT signals. T-Ω method and the edge element are employed in the FEM code to reduce the required computer memory. The code is verified through some comparisons with experiments and other calculations. (author)

  13. Stability prediction of berm breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.

    widely analyzed using well-known formulae given by Hudson (1958) and Van der Meer (1988). The armour weight is calculated using Hudson equation. Although these formulae are formulated based on the many experimental results, still they show disagreement... network techniques in predicting the stability of rubble mound breakwater. They have used neural network with high epochs upto 50,000. According to them, it is found that neural network predicted better stability values and less armour weights...

  14. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  15. Chaotic wandering motion in connected neural networks

    Science.gov (United States)

    Ohno, Takashi; Shimizu, Toshihiro

    2000-06-01

    A new type of neural network is proposed. In a system, which consists of one host network and three terminal networks, the associative memory problem is investigated. In each network different patterns are stored. It is shown that each network can retrieve the patterns stored in other networks, and the terminal networks exhibit synchronized behavior. The time evolution and the mechanism of retrieval investigated. .

  16. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  17. Artificial neural networks: theoretical background and pharmaceutical applications: a review.

    Science.gov (United States)

    Wesolowski, Marek; Suchacz, Bogdan

    2012-01-01

    In recent times, there has been a growing interest in artificial neural networks, which are a rough simulation of the information processing ability of the human brain, as modern and vastly sophisticated computational techniques. This interest has also been reflected in the pharmaceutical sciences. This paper presents a review of articles on the subject of the application of neural networks as effective tools assisting the solution of various problems in science and the pharmaceutical industry, especially those characterized by multivariate and nonlinear dependencies. After a short description of theoretical background and practical basics concerning the computations performed by means of neural networks, the most important pharmaceutical applications of neural networks, with suitable references, are demonstrated. The huge role played by neural networks in pharmaceutical analysis, pharmaceutical technology, and searching for the relationships between the chemical structure and the properties of newly synthesized compounds as candidates for drugs is discussed.

  18. Artificial neural network based approach to transmission lines protection

    International Nuclear Information System (INIS)

    Joorabian, M.

    1999-05-01

    The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection

  19. A comparative study of two neural networks for document retrieval

    International Nuclear Information System (INIS)

    Hui, S.C.; Goh, A.

    1997-01-01

    In recent years there has been specific interest in adopting advanced computer techniques in the field of document retrieval. This interest is generated by the fact that classical methods such as the Boolean search, the vector space model or even probabilistic retrieval cannot handle the increasing demands of end-users in satisfying their needs. The most recent attempt is the application of the neural network paradigm as a means of providing end-users with a more powerful retrieval mechanism. Neural networks are not only good pattern matchers but also highly versatile and adaptable. In this paper, we demonstrate how to apply two neural networks, namely Adaptive Resonance Theory and Fuzzy Kohonen Neural Network, for document retrieval. In addition, a comparison of these two neural networks based on performance is also given

  20. Gas Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-08

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).

  1. Iris Data Classification Using Quantum Neural Networks

    International Nuclear Information System (INIS)

    Sahni, Vishal; Patvardhan, C.

    2006-01-01

    Quantum computing is a novel paradigm that promises to be the future of computing. The performance of quantum algorithms has proved to be stunning. ANN within the context of classical computation has been used for approximation and classification tasks with some success. This paper presents an idea of quantum neural networks along with the training algorithm and its convergence property. It synergizes the unique properties of quantum bits or qubits with the various techniques in vogue in neural networks. An example application of Fisher's Iris data set, a benchmark classification problem has also been presented. The results obtained amply demonstrate the classification capabilities of the quantum neuron and give an idea of their promising capabilities

  2. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  3. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  4. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  5. Design of neural networks for classification of remotely sensed imagery

    Science.gov (United States)

    Chettri, Samir R.; Cromp, Robert F.; Birmingham, Mark

    1992-01-01

    Classification accuracies of a backpropagation neural network are discussed and compared with a maximum likelihood classifier (MLC) with multivariate normal class models. We have found that, because of its nonparametric nature, the neural network outperforms the MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on parallel hardware like the MasPar MP-1 currently at GSFC. Other important discussions are centered around training and classification times of the two methods, and sensitivity to the training data. Finally, we discuss future work in the area of classification and neural nets.

  6. Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios

    Science.gov (United States)

    Mendes, David; Marengo, José A.

    2010-05-01

    Several studies have been devoted to dynamic and statistical downscaling for both climate variability and climate change. This paper introduces an application of temporal neural networks for downscaling global climate model output and autocorrelation functions. This method is proposed for downscaling daily precipitation time series for a region in the Amazon Basin. The downscaling models were developed and validated using IPCC AR4 model output and observed daily precipitation. In this paper, five AOGCMs for the twentieth century (20C3M; 1970-1999) and three SRES scenarios (A2, A1B, and B1) were used. The performance in downscaling of the temporal neural network was compared to that of an autocorrelation statistical downscaling model with emphasis on its ability to reproduce the observed climate variability and tendency for the period 1970-1999. The model test results indicate that the neural network model significantly outperforms the statistical models for the downscaling of daily precipitation variability.

  7. Neural Networks in Nonlinear Aircraft Control

    Science.gov (United States)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  8. Analysis of IMS spectra using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, S.E.

    1992-01-01

    Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.

  9. Analysis of IMS spectra using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, S.E.

    1992-09-01

    Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.

  10. Neutron spectrometry and dosimetry by means of evolutive neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2008-01-01

    The artificial neural networks and the genetic algorithms are two relatively new areas of research, which have been subject to a growing interest during the last years. Both models are inspired by the nature, however, the neural networks are interested in the learning of a single individual, which is defined as fenotypic learning, while the evolutionary algorithms are interested in the adaptation of a population to a changing environment, that which is defined as genotypic learning. Recently, the use of the technology of neural networks has been applied with success in the area of the nuclear sciences, mainly in the areas of neutron spectrometry and dosimetry. The structure (network topology), as well as the learning parameters of a neural network, are factors that contribute in a significant way with the acting of the same one, however, it has been observed that the investigators in this area, carry out the selection of the network parameters through the essay and error technique, that which produces neural networks of poor performance and low generalization capacity. From the revised sources, it has been observed that the use of the evolutionary algorithms, seen as search techniques, it has allowed him to be possible to evolve and to optimize different properties of the neural networks, just as the initialization of the synaptic weights, the network architecture or the training algorithms without the human intervention. The objective of the present work is focused in analyzing the intersection of the neural networks and the evolutionary algorithms, analyzing like it is that the same ones can be used to help in the design processes and training of a neural network, this is, in the good selection of the structural parameters and of network learning, improving its generalization capacity, in such way that the same one is able to reconstruct in an efficient way neutron spectra and to calculate equivalent doses starting from the counting rates of a Bonner sphere

  11. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  12. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  13. Oil reservoir properties estimation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  14. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  15. Online fouling detection in electrical circulation heaters using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D

    2003-06-01

    Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)

  16. System Identification for Nonlinear Control Using Neural Networks

    Science.gov (United States)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  17. Neural Networks through Shared Maps in Mobile Devices

    Directory of Open Access Journals (Sweden)

    William Raveane

    2014-12-01

    Full Text Available We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.

  18. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  19. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  20. CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Daniel E. Walsh; Shaohai Yu

    2003-12-05

    Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).

  1. A novel neural networks training algorithm based on PSO:application to nuclear reactors accidents diagnosis

    International Nuclear Information System (INIS)

    Elaraby, S.M.; Zaky, M.M.; Emara, M.M.; El-metwally, K.

    2004-01-01

    Nuclear plant accidents can cause injuries to operators, public as well as environment. Hence, advanced fault diagnosis techniques for nuclear plants are necessary to early detect, isolate and diagnose faults and accidents. This paper presents a new technique for accidents diagnosis of nuclear plants based on artificial neural networks. A new training technique based on particle swarm optimization (PSO) has been investigated to train the neural network. Results show the effectiveness of the technique for neural network training to diagnose nuclear reactor accidents

  2. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  3. Artificial Neural Networks and Concentration Residual Augmented ...

    African Journals Online (AJOL)

    Artificial Neural Networks and Concentration Residual Augmented Classical Least Squares for the Simultaneous Determination of Diphenhydramine, Benzonatate, Guaifenesin and Phenylephrine in their Quaternary Mixture.

  4. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  5. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  6. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...... of the Aachen Aphasia Test (AAT). First a coarse classification was achieved by using an assessment of spontaneous speech of the patient. This classifier produced correct results in 87% of the test cases. For a second test, data analysis tools were used to select four features out of the 30 available test...

  7. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  8. Finite connectivity attractor neural networks

    Science.gov (United States)

    Wemmenhove, B.; Coolen, A. C. C.

    2003-09-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous.

  9. Improving Maritime Domain Awareness Using Neural Networks for Target of Interest Classification

    Science.gov (United States)

    2015-03-01

    feature extraction are contained in 23 Appendix C. The MATLAB code for training, testing, and classification using MATLAB’S Neural Network Toolbox ...the implementation of the feature extraction techniques in MATLAB, implementation of the neural networks using the MATLAB Neural Network Toolbox , and...values, and segmenting the object from the background. The MATLAB Neural Network Toolbox ™ was utilized for the classification of objects used in this

  10. Detection of breast cancer using advanced techniques of data mining with neural networks; Deteccion de cancer de mama usando tecnicas avanzadas de mineria de datos con redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2016-10-15

    The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)

  11. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  12. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  13. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  14. Artificial neural networks: current status in cardiovascular medicine.

    Science.gov (United States)

    Itchhaporia, D; Snow, P B; Almassy, R J; Oetgen, W J

    1996-08-01

    Artificial neural networks are a form of artificial computer intelligence that have been the subject of renewed research interest in the last 10 years. Although they have been used extensively for problems in engineering, they have only recently been applied to medical problems, particularly in the fields of radiology, urology, laboratory medicine and cardiology. An artificial neural network is a distributed network of computing elements that is modeled after a biologic neural system and may be implemented as a computer software program. It is capable of identifying relations in input data that are not easily apparent with current common analytic techniques. The functioning artificial neural network's knowledge is built on learning and experience from previous input data. On the basis of this prior knowledge, the artificial neural network can predict relations found in newly presented data sets. In cardiology, artificial neural networks have been successfully applied to problems in the diagnosis and treatment of coronary artery disease and myocardial infarction, in electrocardiographic interpretation and detection of arrhythmias and in image analysis in cardiac radiography and sonography. This report focuses on the current status of artificial neural network technology in cardiovascular medical research.

  15. Defect detection on videos using neural network

    Directory of Open Access Journals (Sweden)

    Sizyakin Roman

    2017-01-01

    Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.

  16. Bacterial colony counting by Convolutional Neural Networks.

    Science.gov (United States)

    Ferrari, Alessandro; Lombardi, Stefano; Signoroni, Alberto

    2015-01-01

    Counting bacterial colonies on microbiological culture plates is a time-consuming, error-prone, nevertheless fundamental task in microbiology. Computer vision based approaches can increase the efficiency and the reliability of the process, but accurate counting is challenging, due to the high degree of variability of agglomerated colonies. In this paper, we propose a solution which adopts Convolutional Neural Networks (CNN) for counting the number of colonies contained in confluent agglomerates, that scored an overall accuracy of the 92.8% on a large challenging dataset. The proposed CNN-based technique for estimating the cardinality of colony aggregates outperforms traditional image processing approaches, becoming a promising approach to many related applications.

  17. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  18. Network acceleration techniques

    Science.gov (United States)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  19. Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain)

    International Nuclear Information System (INIS)

    Landeras, Gorka; López, José Javier; Kisi, Ozgur; Shiri, Jalal

    2012-01-01

    Highlights: ► Solar radiation estimation based on Gene Expression Programming is unexplored. ► This approach is evaluated for the first time in this study. ► Other artificial intelligence models (ANN and ANFIS) are also included in the study. ► New alternatives for solar radiation estimation based on temperatures are provided. - Abstract: Surface incoming solar radiation is a key variable for many agricultural, meteorological and solar energy conversion related applications. In absence of the required meteorological sensors for the detection of global solar radiation it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). A comparison was also made among these techniques and traditional temperature based global solar radiation estimation equations. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SS RMSE ), MAE-based skill score (SS MAE ) and r 2 criterion of Nash and Sutcliffe criteria were used to assess the models’ performances. An ANN (a four-input multilayer perceptron with 10 neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m −2 d −1 of RMSE). The ability of GEP approach to model global solar radiation based on daily atmospheric variables was found to be satisfactory.

  20. Artificial neural networks environmental forecasting in comparison with multiple linear regression technique: From heavy metals to organic micropollutants screening in agricultural soils

    Science.gov (United States)

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2016-12-01

    The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.

  1. Design of a Seismic Reflection Multi-Attribute Workflow for Delineating Karst Pore Systems Using Neural Networks and Statistical Dimensionality Reduction Techniques

    Science.gov (United States)

    Ebuna, D. R.; Kluesner, J.; Cunningham, K. J.; Edwards, J. H.

    2016-12-01

    An effective method for determining the approximate spatial extent of karst pore systems is critical for hydrological modeling in such environments. When using geophysical techniques, karst features are especially challenging to constrain due to their inherent heterogeneity and complex seismic signatures. We present a method for mapping these systems using three-dimensional seismic reflection data by combining applications of machine learning and modern data science. Supervised neural networks (NN) have been successfully implemented in seismic reflection studies to produce multi-attributes (or meta-attributes) for delineating faults, chimneys, salt domes, and slumps. Using a seismic reflection dataset from southeast Florida, we develop an objective multi-attribute workflow for mapping karst in which potential interpreter bias is minimized by applying linear and non-linear data transformations for dimensionality reduction. This statistical approach yields a reduced set of input seismic attributes to the NN by eliminating irrelevant and overly correlated variables, while still preserving the vast majority of the observed data variance. By initiating the supervised NN from an eigenspace that maximizes the separation between classes, the convergence time and accuracy of the computations are improved since the NN only needs to recognize small perturbations to the provided decision boundaries. We contend that this 3D seismic reflection, data-driven method for defining the spatial bounds of karst pore systems provides great value as a standardized preliminary step for hydrological characterization and modeling in these complex geological environments.

  2. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...

  3. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  4. Neural Network to Solve Concave Games

    OpenAIRE

    Liu, Zixin; Wang, Nengfa

    2014-01-01

    The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.

  5. Neural network classification - A Bayesian interpretation

    Science.gov (United States)

    Wan, Eric A.

    1990-01-01

    The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.

  6. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  7. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  8. Recognizing changing seasonal patterns using neural networks

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)

    1997-01-01

    textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or

  9. A Survey of Neural Network Publications.

    Science.gov (United States)

    Vijayaraman, Bindiganavale S.; Osyk, Barbara

    This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…

  10. Some Examples of Identification with Neural Networks

    OpenAIRE

    Sjöberg, Jonas

    1994-01-01

    In this report some examples on system identification of non-linear systems with neural networks are presented. The systems being identified all have different kinds of non-linearities, more or less known. The examples in this paper show that these non-linearities can be successfully modeled by non-linear models based on neural networks.

  11. Neural network monitoring of resistance welding processes

    OpenAIRE

    Quero Reboul, José Manuel; Millán Vázquez de la Torre, Rafael Luis; García Franquelo, Leopoldo; Cañas, J.

    1994-01-01

    Control of weld quality is one of the most important and complex processes to be carried out on production lines. Neural networks have shown good results in fields such as modelling and control of physical processes. It is suggested in this article that a neural classifier should be used to carry out non‐destructive on‐line analysis. This system has been developed and installed at resistance welding stations. Results confirm the validity of neural networks used for this type of application.

  12. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  13. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  14. Unsupervised pre-training for fully convolutional neural networks

    NARCIS (Netherlands)

    Wiehman, Stiaan; Kroon, Steve; Villiers, De Hendrik

    2017-01-01

    Unsupervised pre-Training of neural networks has been shown to act as a regularization technique, improving performance and reducing model variance. Recently, fully convolutional networks (FCNs) have shown state-of-The-Art results on various semantic segmentation tasks. Unfortunately, there is no

  15. Detection of Wildfires with Artificial Neural Networks

    Science.gov (United States)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty

  16. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  17. Stable architectures for deep neural networks

    Science.gov (United States)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  18. Hierarchical modular granular neural networks with fuzzy aggregation

    CERN Document Server

    Sanchez, Daniela

    2016-01-01

    In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.

  19. Guidance for the verification and validation of neural networks

    CERN Document Server

    Pullum, L; Darrah, M

    2007-01-01

    Guidance for the Verification and Validation of Neural Networks is a supplement to the IEEE Standard for Software Verification and Validation, IEEE Std 1012-1998. Born out of a need by the National Aeronautics and Space Administration's safety- and mission-critical research, this book compiles over five years of applied research and development efforts. It is intended to assist the performance of verification and validation (V&V) activities on adaptive software systems, with emphasis given to neural network systems. The book discusses some of the difficulties with trying to assure adaptive systems in general, presents techniques and advice for the V&V practitioner confronted with such a task, and based on a neural network case study, identifies specific tasking and recommendations for the V&V of neural network systems.

  20. Classification of Aggregates Using Basic Shape Parameters Through Neural Networks

    Directory of Open Access Journals (Sweden)

    Mahmut SİNECEN

    2010-02-01

    Full Text Available In this paper, the aim is to classify natural or crushed aggregates by using concrete and asphalt mixes through Artificial Neural Networks. For classification, it was a used the feature vector which was calculated by using digital image processing techniques. Of the five different type coarse aggregates images were taken with 45o and 90o by a 10 Mp (Sony DSC-R1 and 7.1 Mp (Canon EOS 350D camera. Aggregates images were processed and analyzed by using MATLAB Image Processing and Neural Network Toolbox. Classification process was made with totally 18 feature vectors, which is 9 vectors each angles, by neural network. Results showed image processing and neural networks which are important methods for founding shape parameters and classification of aggregates, and performance, cost and time consuming factors of automation systems in aggregate sources will be effective with these methods.

  1. A neural network model for credit risk evaluation.

    Science.gov (United States)

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  2. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    competing models. Since all models are trained on the same data, a key issue is to take this dependency into account. The optimal split of the data set of size N into a cross-validation set of size Nγ and a training set of size N(1-γ) is discussed. Asymptotically (large data sees), γopt→1......This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model....... This enables the formulation of a bulk of new generalization performance measures. Numerical results demonstrate the viability of the approach compared to the standard technique of using algebraic estimates like the FPE. Moreover, we consider the problem of comparing the generalization performance of different...

  3. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  4. Infrared Spectral Classification with Artificial Neural Networks and Classical Pattern Recognition

    National Research Council Canada - National Science Library

    Mayfield, Howard

    2000-01-01

    .... Computer-assisted classification tools, including pattern recognition and artificial neural network techniques, have been applied to a collection of infrared spectra of organophosphorus compounds...

  5. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    /plain; charset=UTF-8 ~lffE~fSTE?rS'ponsoredShort-Term Training Programme on EtiStal Erosion Areas (CEA) - Protection & Management ~_.Jai_ .........~••_ •. 06 - 18, January, 2003 II LECTURE VOLUME II Dr. A. Vittal Hegde Co-ordinator Dr. Subba Rao Co...Clion & Management " 6-18, Jal1uory 2003 at NlTK. Suralhkal 227 NEURAL·NETWORK The word 'Neural Network' is used to normally describe the "Artificial Neural Network"(ANN). Biological neural networks are much more complicated in their elementary structures than...

  6. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction......, simulation and filtering of dynamic, non-linear, multi-variable and noisy processes in a very satisfactory manner. The further examinations mainly concentrate on two models, the Non-linear ARMAX (NARMAX) model representing input/output description, and the Non-linear Innovation state Space (NISS) model (a...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  7. Geophysical phenomena classification by artificial neural networks

    Science.gov (United States)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  8. Artificial neural networks in neurosurgery.

    Science.gov (United States)

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Local Dynamics in Trained Recurrent Neural Networks

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-01

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  10. Local Dynamics in Trained Recurrent Neural Networks.

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-23

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  11. Applications of neural networks to mechanics

    International Nuclear Information System (INIS)

    1997-01-01

    Neural networks have become powerful tools in engineer's techniques. The aim of this conference was to present their application to concrete cases in the domain of mechanics, including the preparation and use of materials. Artificial neurons are non-linear organs which provide an output signal that depends on several differently weighted input signals. Their connection into networks allows to solve problems for which the driving laws are not well known. The applications discussed during this conference deal with: the driving of machines or processes, the control of machines, materials or products, the simulation and forecasting, and the optimization. Three papers dealing with the control of spark ignition engines, the regulation of heating floors and the optimization of energy consumptions in industrial buildings were selected for ETDE and one paper dealing with the optimization of the management of a reprocessed plutonium stock was selected for INIS. (J.S.)

  12. Neural networks and orbit control in accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.

    1994-01-01

    An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to 'kicks' and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given

  13. Robust Planning and Control Using Neural Networks

    Science.gov (United States)

    1990-06-30

    hyperspace . We have been investigating CMAC neural networks with tapered, rather than rectangular, receptive fields. Such networks promise better (continuous...CMOS Logic Cell Arrays.’ UNH Intelligent Structures Group Report ECE.IS.90.01, Feb. 6,1990. Miller, W. T., Box, B. A., Whitney, E. C., and Glynn, J...M., ’Design and Implementation of a High Speed CMAC Neural Network Using Logic Programmable CMOS Logic Cell Arrays." To be presented at the Naval

  14. Pattern recognition using chaotic neural networks

    OpenAIRE

    Tan, Z.; Hepburn, B. S.; Tucker, C.; Ali, M. K.

    1998-01-01

    Pattern recognition by chaotic neural networks is studied using a hyperchaotic neural network as model. Virtual basins of attraction are introduced around unstable periodic orbits which are then used as patterns. Search for periodic orbits in dynamical systems is treated as a process of pattern recognition. The role of synapses on patterns in chaotic networks is discussed. It is shown that distorted states having only limited information of the patterns are successfully recognized.

  15. Pattern recognition using chaotic neural networks

    Directory of Open Access Journals (Sweden)

    Z. Tan

    1998-01-01

    Full Text Available Pattern recognition by chaotic neural networks is studied using a hyperchaotic neural network as model. Virtual basins of attraction are introduced around unstable periodic orbits which are then used as patterns. Search for periodic orbits in dynamical systems is treated as a process of pattern recognition. The role of synapses on patterns in chaotic networks is discussed. It is shown that distorted states having only limited information of the patterns are successfully recognized.

  16. Structured neural networks for pattern recognition.

    Science.gov (United States)

    Murino, V

    1998-01-01

    This paper proposes a novel approach for the design of structures of neural networks for pattern recognition. The basic idea lies in subdividing the whole classification problem in smaller and simpler problems at different levels, each managed by appropriate components of a complex neural architecture. Three neural structures are presented and applied in a surveillance system aimed at monitoring a railway waiting room classifying potential dangerous situations. Each architecture is composed by nodes, which are actual multilayer perceptrons trained to discriminate between subsets of classes until a complete separation among the classes is achieved. This approach showed better performances with respect to a classical statistical classification procedures and to a single neural network.

  17. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Weight Constraints in Neural Networks

    Directory of Open Access Journals (Sweden)

    Subha Fernando

    2012-01-01

    Full Text Available Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from 10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution, so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher turnover rate of postsynaptic receptors.

  19. Neural network classification of sweet potato embryos

    Science.gov (United States)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  20. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  1. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  2. Applications of neural network to numerical analyses

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali

    1999-01-01

    Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)

  3. Decision boundary feature extraction for neural networks

    Science.gov (United States)

    Lee, Chulhee; Landgrebe, David A.

    1992-01-01

    We propose a new feature extraction method for neural networks. The method is based on the recently published decision boundary feature extraction algorithm. It has been shown that all the necessary features for classification can be extracted from the decision boundary. To apply the decision boundary feature extraction method, we first define the decision boundary in neural networks. Next, we propose a procedure for extracting all the necessary features for classification from the decision boundary. The proposed algorithm preserves the characteristics of neural networks, which can define arbitrary decision boundary. Experiments show promising results.

  4. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  5. Periodicity and stability for variable-time impulsive neural networks.

    Science.gov (United States)

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of illicit drugs by using SOM neural networks

    Science.gov (United States)

    Liang, Meiyan; Shen, Jingling; Wang, Guangqin

    2008-07-01

    Absorption spectra of six illicit drugs were measured by using the terahertz time-domain spectroscopy technique in the range 0.2-2.6 THz and then clustered with self-organization feature map (SOM) artificial neural network. After the network training process, the spectra collected at another time were identified successfully by the well-trained SOM network. An effective distance was introduced as a quantitative criterion to decide which cluster the new spectra were affiliated with.

  7. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  8. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  9. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  10. Object Classification Using Substance Based Neural Network

    Directory of Open Access Journals (Sweden)

    P. Sengottuvelan

    2014-01-01

    Full Text Available Object recognition has shown tremendous increase in the field of image analysis. The required set of image objects is identified and retrieved on the basis of object recognition. In this paper, we propose a novel classification technique called substance based image classification (SIC using a wavelet neural network. The foremost task of SIC is to remove the surrounding regions from an image to reduce the misclassified portion and to effectively reflect the shape of an object. At first, the image to be extracted is performed with SIC system through the segmentation of the image. Next, in order to attain more accurate information, with the extracted set of regions, the wavelet transform is applied for extracting the configured set of features. Finally, using the neural network classifier model, misclassification over the given natural images and further background images are removed from the given natural image using the LSEG segmentation. Moreover, to increase the accuracy of object classification, SIC system involves the removal of the regions in the surrounding image. Performance evaluation reveals that the proposed SIC system reduces the occurrence of misclassification and reflects the exact shape of an object to approximately 10–15%.

  11. Maximum Entropy Approaches to Living Neural Networks

    Directory of Open Access Journals (Sweden)

    John M. Beggs

    2010-01-01

    Full Text Available Understanding how ensembles of neurons collectively interact will be a key step in developing a mechanistic theory of cognitive processes. Recent progress in multineuron recording and analysis techniques has generated tremendous excitement over the physiology of living neural networks. One of the key developments driving this interest is a new class of models based on the principle of maximum entropy. Maximum entropy models have been reported to account for spatial correlation structure in ensembles of neurons recorded from several different types of data. Importantly, these models require only information about the firing rates of individual neurons and their pairwise correlations. If this approach is generally applicable, it would drastically simplify the problem of understanding how neural networks behave. Given the interest in this method, several groups now have worked to extend maximum entropy models to account for temporal correlations. Here, we review how maximum entropy models have been applied to neuronal ensemble data to account for spatial and temporal correlations. We also discuss criticisms of the maximum entropy approach that argue that it is not generally applicable to larger ensembles of neurons. We conclude that future maximum entropy models will need to address three issues: temporal correlations, higher-order correlations, and larger ensemble sizes. Finally, we provide a brief list of topics for future research.

  12. A gentle introduction to artificial neural networks.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-10-01

    Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.

  13. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...

  14. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  15. Memory pattern analysis of cellular neural networks

    International Nuclear Information System (INIS)

    Zeng Zhigang; Huang Deshuang; Wang Zengfu

    2005-01-01

    In this Letter, we have shown that the n-dimensional cellular neural network and delay cellular neural network can have not more than 3 n memory patterns, can have 2 n memory patterns which are locally exponentially stable. And we have obtained the estimates of attractive domain of such 2 n locally exponentially stable memory patterns. In addition, we have derived the conditions that the equilibrium point is locally exponentially stable when the equilibrium point locate the designated position. Some sufficient conditions have been obtained to guarantee the global exponential stability for the cellular neural networks. Those conditions can be directly derived from the parameters of the neural networks, are very easy to verified. The results presented in this Letter are the improvement and extension of the existed ones. Finally, the validity and performance of the results are illustrated by two simulation results

  16. Control Augmentation Using Adaptive Fuzzy Neural Networks

    Science.gov (United States)

    Kato, Akio; Wada, Yoshihisa

    Control to improve control characteristics of aircraft, CA (Control Augmentation), is used to realize the desirable motion of aircraft corresponding to pilot's control action. When the control laws using fuzzy inference were designed, trial and error was repeated for optimization of the parameter. Here, in designing control laws using fuzzy neural networks, the systematic optimization of the parameter was possible using the learning algorithm usually used in neural networks, by expressing the fuzzy inference in the form of neural networks. Here, the control laws, which learned the characteristics of the aircraft for one flight condition only, were used in all flight conditions without changing any parameter. Evaluation of the designed control laws showed good performance in all flight conditions. This proves that fuzzy neural networks are an effective and flexible method when applied to control laws for control augmentation of aircraft.

  17. Imbibition well stimulation via neural network design

    Science.gov (United States)

    Weiss, William

    2007-08-14

    A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.

  18. Using Neural Networks in Diagnosing Breast Cancer

    National Research Council Canada - National Science Library

    Fogel, David

    1997-01-01

    .... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...

  19. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  20. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  1. Isolated Speech Recognition Using Artificial Neural Networks

    National Research Council Canada - National Science Library

    Polur, Prasad

    2001-01-01

    .... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...

  2. Pilot Model Using Neural Networks

    Science.gov (United States)

    Kato, Akio; Matsubara, Genyo; Nakamura, Takeshi

    The motion of an aircraft controlled by a pilot is decided depending on the characteristics of a man-machine system. Although analysis and investigation are usually performed using a mathematical model of the aircraft including the control system, a method for making a mathematical model of the pilot, which is necessary for the analysis and study of man-machine systems, has not been established. Although a method for constructing a mathematical model of a pilot using a transfer function 1) has been reported, it is thought that a more accurate and more flexible pilot model may be obtained by applying a neural network (NN). Therefore, various studies have examined a pilot model to which a NN has been applied. As a result, it has been clarified that the application of a NN to a pilot model provides better performance compared to the case of applying a transfer function. Moreover, it has also been clarified that a single versatile pilot model, which can deal with various conditions, can be obtained by applying a NN and studying the control results under various conditions.

  3. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  4. Neural network applications to measurement calibration verification in power plants

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Peng, C.M.; Colley, R.W.

    1991-01-01

    Nuclear power plant operations and safety rely on the proper operation of the plant monitoring, controls and protection systems. These systems in turn, depend on plant instrumentation for a correct reporting of equipments status and the thermofluid condition of the process. The incorrect reading can be due to instrument failure or drift in calibration. Plant instrumentation are therefore recalibrated on a periodic basis. This is a time consuming and costly operation. This paper presents the preliminary results of an EPRI sponsored research project to develop a neural network-based analytical redundancy technique for instrument calibration reduction. The neural network will be used to predict the reading of a target instrument using readings from other dissimilar instruments. This technique is similar to the conventional on-line parameter identification and model-based observer methods. A methodology for selecting required dissimilar instruments inter-related to the target instrument, and determining the neural network structure is presented

  5. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    International Nuclear Information System (INIS)

    Teramoto, Atsushi; Fujita, Hiroshi; Yamamuro, Osamu; Tamaki, Tsuneo

    2016-01-01

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules

  6. Neural Photo Editing with Introspective Adversarial Networks

    OpenAIRE

    Brock, Andrew; Lim, Theodore; Ritchie, J. M.; Weston, Nick

    2016-01-01

    The increasingly photorealistic sample quality of generative image models suggests their feasibility in applications beyond image generation. We present the Neural Photo Editor, an interface that leverages the power of generative neural networks to make large, semantically coherent changes to existing images. To tackle the challenge of achieving accurate reconstructions without loss of feature quality, we introduce the Introspective Adversarial Network, a novel hybridization of the VAE and GA...

  7. Novel LDPC Decoder via MLP Neural Networks

    OpenAIRE

    Karami, Alireza; Attari, Mahmoud Ahmadian

    2014-01-01

    In this paper, a new method for decoding Low Density Parity Check (LDPC) codes, based on Multi-Layer Perceptron (MLP) neural networks is proposed. Due to the fact that in neural networks all procedures are processed in parallel, this method can be considered as a viable alternative to Message Passing Algorithm (MPA), with high computational complexity. Our proposed algorithm runs with soft criterion and concurrently does not use probabilistic quantities to decide what the estimated codeword i...

  8. Genetic Algorithms for Evolving Deep Neural Networks

    OpenAIRE

    David, Eli; Greental, Iddo

    2017-01-01

    In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser...

  9. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  10. Monitoring food quality using an optical fibre based sensor system—a comparison of Kohonen and back-propagation neural network classification techniques

    Science.gov (United States)

    Sheridan, C.; O'Farrell, M.; Lewis, E.; Lyons, W. B.; Flanagan, C.; Jackman, N.

    2006-02-01

    This paper reports on two methods of classifying the spectral data from an optical fibre based sensor system as used in the food industry. The first method uses a feed-forward back-propagation artificial neural network while the second method involves using Kohonen self-organizing maps. The sensor monitors the food colour online as the food cooks by examining the reflected light from both the surface and the core of the product. The combination of using principal component analysis and back-propagation neural networks has been successfully investigated previously. In this paper, results obtained using this method are compared with results obtained using a self-organizing map trained on the principal components. The principal components used to train both classifiers are ordered in a 'colourscale'—a scale developed to allow several products of similar colour to be tested using a single network that had been trained using the colourscale. The results presented show that both classifiers perform well, and that any differences that arise occur at the boundaries of the classes.

  11. Application of neural networks in CRM systems

    Directory of Open Access Journals (Sweden)

    Bojanowska Agnieszka

    2017-01-01

    Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.

  12. Klasifikasi Paket Jaringan Berbasis Analisis Statistik dan Neural Network

    Directory of Open Access Journals (Sweden)

    Harsono Harsono

    2018-01-01

    Full Text Available Distributed Denial-of-Service (DDoS is one of network attack technique which increased every year, especially in both of intensity and volume. DDoS attacks are still one of the world's major Internet threats and become a major problem of cyber-world security. Research in this paper aims to establish a new approach on network packets classification, which can be a basis for framework development on Distributed Denial-of-Service (DDoS attack detection systems. The proposed approach to solving the problem on network packet classification is by combining statistical data quantification methods with neural network methods. Based on the test, it is found that the average percentage of neural network classification accuracy against network data packet is 92.99%.

  13. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  14. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  15. Fast Fingerprint Classification with Deep Neural Network

    DEFF Research Database (Denmark)

    Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela

    2018-01-01

    Reducing the number of comparisons in automated fingerprint identification systems is essential when dealing with a large database. Fingerprint classification allows to achieve this goal by dividing fingerprints into several categories, but it presents still some challenges due to the large intra......-class variations and the small inter-class variations. The vast majority of the previous methods uses global characteristics, in particular the orientation image, as features of a classifier. This makes the feature extraction stage highly dependent on preprocessing techniques and usually computationally expensive....... In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....

  16. Reservoir characterization using artificial neural network; Neural network wo mochiita choryuso tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N.; Kozawa, T. [Japan National Oil Corp., Tokyo (Japan); Nishikawa, N.; Tani, A. [Fuji Research Institute Corp., Tokyo (Japan)

    1997-05-27

    Neural network is used for the prediction of porosity and permeability using logging data as reservoir characteristics, and the validity of this method is verified. For the prediction of reservoir characteristics by the use of seismic survey data, composite seismic survey records obtained by density logging and acoustic logging are used to experiment the prediction of porosity and permeability continuous along lines of wells. A 3-output back propagation network is used for analysis. There is a possibility that this technique when optimized will improve on prediction accuracy. Furthermore, in the case of characteristics mapping, 3-dimensional seismic data is applied to a carbonate rock reservoir for predicting spatial porosity and permeability. This technique facilitates the comprehensive analysis of core data, well data, and seismic survey data, enabling the derivation of a high-precision spatial distribution of reservoir characteristics. Efforts will continue for further improvement on prediction accuracy. 6 refs., 7 figs., 3 tabs.

  17. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  18. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  19. NEURAL NETWORKS FOR STOCK MARKET OPTION PRICING

    Directory of Open Access Journals (Sweden)

    Sergey A. Sannikov

    2017-03-01

    Full Text Available Introduction: The use of neural networks for non-linear models helps to understand where linear model drawbacks, coused by their specification, reveal themselves. This paper attempts to find this out. The objective of research is to determine the meaning of “option prices calculation using neural networks”. Materials and Methods: We use two kinds of variables: endogenous (variables included in the model of neural network and variables affecting on the model (permanent disturbance. Results: All data are divided into 3 sets: learning, affirming and testing. All selected variables are normalised from 0 to 1. Extreme values of income were shortcut. Discussion and Conclusions: Using the 33-14-1 neural network with direct links we obtained two sets of forecasts. Optimal criteria of strategies in stock markets’ option pricing were developed.

  20. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  1. Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build

  2. Self-organized critical neural networks

    International Nuclear Information System (INIS)

    Bornholdt, Stefan; Roehl, Torsten

    2003-01-01

    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters

  3. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  4. A COMPARATIVE ANALYSIS OF WEB INFORMATION EXTRACTION TECHNIQUES DEEP LEARNING vs. NAÏVE BAYES vs. BACK PROPAGATION NEURAL NETWORKS IN WEB DOCUMENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    J. Sharmila

    2016-01-01

    Full Text Available Web mining related exploration is getting the chance to be more essential these days in view of the reason that a lot of information is overseen through the web. Web utilization is expanding in an uncontrolled way. A particular framework is required for controlling such extensive measure of information in the web space. Web mining is ordered into three noteworthy divisions: Web content mining, web usage mining and web structure mining. Tak-Lam Wong has proposed a web content mining methodology in the exploration with the aid of Bayesian Networks (BN. In their methodology, they were learning on separating the web data and characteristic revelation in view of the Bayesian approach. Roused from their investigation, we mean to propose a web content mining methodology, in view of a Deep Learning Algorithm. The Deep Learning Algorithm gives the interest over BN on the basis that BN is not considered in any learning architecture planning like to propose system. The main objective of this investigation is web document extraction utilizing different grouping algorithm and investigation. This work extricates the data from the web URL. This work shows three classification algorithms, Deep Learning Algorithm, Bayesian Algorithm and BPNN Algorithm. Deep Learning is a capable arrangement of strategies for learning in neural system which is connected like computer vision, speech recognition, and natural language processing and biometrics framework. Deep Learning is one of the simple classification technique and which is utilized for subset of extensive field furthermore Deep Learning has less time for classification. Naive Bayes classifiers are a group of basic probabilistic classifiers in view of applying Bayes hypothesis with concrete independence assumptions between the features. At that point the BPNN algorithm is utilized for classification. Initially training and testing dataset contains more URL. We extract the content presently from the dataset. The

  5. Improving Artificial Neural Network Forecasts with Kalman Filtering ...

    African Journals Online (AJOL)

    In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...

  6. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Four different statistical techniques,viz.,curve fitting,Auto Regressive Integrated Moving Average Model (ARIMA),extrapolation with periodic function and Artificial Neural Networks (ANN)are employed to predict wind speed.These methods require wind speeds of previous hours as input.It has been found that wind speed can ...

  7. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...

  8. Radar signal design problem with neural network processing

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Binary and ternary sequences with peaky autocorrelation, measured in terms of high discrimination and merit factor have been searched earlier, using optimization techniques. It is shown that the use of neural network processing of the return signal is much more advantageous. It opens up a new signal design ...

  9. Face Recognition using Artificial Neural Network | Endeshaw | Zede ...

    African Journals Online (AJOL)

    Face recognition (FR) is one of the biometric methods to identify the individuals by the features of face. Two Face Recognition Systems (FRS) based on Artificial Neural Network (ANN) have been proposed in this paper based on feature extraction techniques. In the first system, Principal Component Analysis (PCA) has been ...

  10. Mean square exponential stability of stochastic delayed Hopfield neural networks

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    Stochastic effects to the stability property of Hopfield neural networks (HNN) with discrete and continuously distributed delay are considered. By using the method of variation parameter, inequality technique and stochastic analysis, the sufficient conditions to guarantee the mean square exponential stability of an equilibrium solution are given. Two examples are also given to demonstrate our results

  11. Back propagation and Monte Carlo algorithms for neural network computations

    International Nuclear Information System (INIS)

    Junczys, R.; Wit, R.

    1996-01-01

    Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)

  12. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  13. A neural network for the Bragg synthetic curves recognition

    International Nuclear Information System (INIS)

    Reynoso V, M.R.; Vega C, J.J.; Fernandez A, J.; Belmont M, E.; Policroniades R, R.; Moreno B, E.

    1996-01-01

    A ionization chamber was employed named Bragg curve spectroscopy. The Bragg peak amplitude is a monotone growing function of Z, which permits to identify elements through their measurement. A better technique for this measurement is to improve the use of neural networks with the purpose of the identification of the Bragg curve. (Author)

  14. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    with MATLAB Simulink Power System Toolbox. The simulation study results of this novel technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability. Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic ...

  15. Multi-robot Coordination by using Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    A. Gacsadi

    2008-05-01

    Full Text Available Vision-based algorithms for multi-robot coordination,are presented in this paper. Cellular Neural Networks (CNNsprocessing techniques are used for real time motion planning ofthe robots. The CNN methods are considered an advantageoussolution for image processing in autonomous mobile robotsguidance.

  16. RBF neural network based H∞ synchronization for unknown chaotic ...

    Indian Academy of Sciences (India)

    control (Bai & Lonngen 1997, Bai & Lonngren 2000), time-delay feedback approach (Park. 2005, Ahn 2010), backstepping design technique (Wu & Lu 2003, Hu et al 2005), complete synchronization (Zhan et al 2003), and so on, have been successfully applied to the chaos synchronization. In recent years, neural networks ...

  17. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks controller is showed that the proposed controller can generate an improved ... The same technique is then applied to control a system compose of two single units tied together though a power line.

  18. Fin-and-tube condenser performance evaluation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-05-15

    The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)

  19. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  20. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  1. Estimating Conditional Distributions by Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1998-01-01

    Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...

  2. Medical Text Classification Using Convolutional Neural Networks.

    Science.gov (United States)

    Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro

    2017-01-01

    We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

  3. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  4. EEG Artifact Removal Using a Wavelet Neural Network

    Science.gov (United States)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  5. RAM-based neural networks for data mining applications

    Science.gov (United States)

    Agehed, Kenneth I.; Eide, Age J.; Lindblad, Thomas; Lindsey, Clark S.; Szekely, Geza; Waldemark, Joakim T. A.; Waldemark, Karina E.

    1999-03-01

    We discuss possible new hardware and software techniques for handling very large databases such as image archives. In particular, we investigate how high capacity solid-state `disks' could be used to speed the database processing by algorithms that require considerably memory space. One such algorithm, for example, called the RAM neural network, or weightless neural network, needs a number of large lookup tables to perform most efficiently. The solid state disks could provide fast storage both for the algorithm and the data. We also briefly discuss development of an algorithm to cluster images of similar objects. This algorithm could also benefit from a large cache of fast memory storage.

  6. Monitoring of RSG-GAS Core with Using Neural Network

    International Nuclear Information System (INIS)

    Pinem, Surian

    2004-01-01

    Monitoring of RSG-GAS core using neural network technique was performed. Monitoring of the core is very important for the reactor safety and the maintenance. Neural network reactor modeled from normal operation data and detected anomaly in the core are earlier compared to conventional alarm system. In the experiment, signal was taken from neutron detector JKT-03 CX811, JKT-03 CX821, and JKT-03 CX831. Calculation result showed deviation between measurement and estimated value within the error boundary, so reactor core is in the normal condition. (author)

  7. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  8. Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

    NARCIS (Netherlands)

    van den Dries, Sjoerd; Wiering, Marco A.

    2012-01-01

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network

  9. Neural network for sonogram gap filling

    DEFF Research Database (Denmark)

    Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai

    1995-01-01

    . The neural network is trained on part of the data and the network is pruned by the optimal brain damage procedure in order to reduce the number of parameters in the network, and thereby reduce the risk of overfitting. The neural predictor is compared to using a linear filter for the mean and variance time......In duplex imaging both an anatomical B-mode image and a sonogram are acquired, and the time for data acquisition is divided between the two images. This gives problems when rapid B-mode image display is needed, since there is not time for measuring the velocity data. Gaps then appear...

  10. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  11. Vibration analysis in nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Loskiewicz-Buczak, A.; Alguindigue, I.E.

    1993-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems

  12. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Neutron spectrometry using artificial neural networks

    International Nuclear Information System (INIS)

    Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose

    2006-01-01

    An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem

  14. Neutron spectrometry with artificial neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.

    2005-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  15. Neutron spectrometry with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2005-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  16. Neural-fitted TD-leaf learning for playing Othello with structured neural networks.

    Science.gov (United States)

    van den Dries, Sjoerd; Wiering, Marco A

    2012-11-01

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network connectivity patterns are used to decrease the number of learning parameters and to deal more effectively with the structural credit assignment problem, which is to change individual network weights based on the obtained feedback. Furthermore, the structured neural networks are trained with the novel neural-fitted temporal difference (TD) learning algorithm to create a system that can exploit most of the training experiences and enhance learning speed and performance. Finally, we use the neural-fitted TD-leaf algorithm to learn more effectively when look-ahead search is performed by the game-playing program. Our extensive experimental study clearly indicates that the proposed method outperforms linear networks and fully connected neural networks or evaluation functions evolved with evolutionary algorithms.

  17. A neural network approach to cloud classification

    Science.gov (United States)

    Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.

    1990-01-01

    It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.

  18. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  19. Neural network technologies for image classification

    Science.gov (United States)

    Korikov, A. M.; Tungusova, A. V.

    2015-11-01

    We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.

  20. Inverting radiometric measurements with a neural network

    Science.gov (United States)

    Measure, Edward M.; Yee, Young P.; Balding, Jeff M.; Watkins, Wendell R.

    1992-02-01

    A neural network scheme for retrieving remotely sensed vertical temperature profiles was applied to observed ground based radiometer measurements. The neural network used microwave radiance measurements and surface measurements of temperature and pressure as inputs. Because the microwave radiometer is capable of measuring 4 oxygen channels at 5 different elevation angles (9, 15, 25, 40, and 90 degs), 20 microwave measurements are potentially available. Because these measurements have considerable redundancy, a neural network was experimented with, accepting as inputs microwave measurements taken at 53.88 GHz, 40 deg; 57.45 GHz, 40 deg; and 57.45, 90 deg. The primary test site was located at White Sands Missile Range (WSMR), NM. Results are compared with measurements made simultaneously with balloon borne radiosonde instruments and with radiometric temperature retrievals made using more conventional retrieval algorithms. The neural network was trained using a Widrow-Hoff delta rule procedure. Functions of date to include season dependence in the retrieval process and functions of time to include diurnal effects were used as inputs to the neural network.

  1. Application of neural networks to waste site screening

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.

    1993-02-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report

  2. Metaheuristic Algorithms for Convolution Neural Network.

    Science.gov (United States)

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  3. Metaheuristic Algorithms for Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    L. M. Rasdi Rere

    2016-01-01

    Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.

  4. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  5. Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network

    Directory of Open Access Journals (Sweden)

    Hui ZHU

    2008-02-01

    Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.

  6. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  7. Nano-topography Enhances Communication in Neural Cells Networks.

    Science.gov (United States)

    Onesto, V; Cancedda, L; Coluccio, M L; Nanni, M; Pesce, M; Malara, N; Cesarelli, M; Di Fabrizio, E; Amato, F; Gentile, F

    2017-08-29

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a  = 0-30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  8. LVQ and backpropagation neural networks applied to NASA SSME data

    Science.gov (United States)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  9. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  10. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  11. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  12. Kannada character recognition system using neural network

    Science.gov (United States)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  13. Open quantum generalisation of Hopfield neural networks

    Science.gov (United States)

    Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.

    2018-03-01

    We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.

  14. Neural Network Classifiers for Local Wind Prediction.

    Science.gov (United States)

    Kretzschmar, Ralf; Eckert, Pierre; Cattani, Daniel; Eggimann, Fritz

    2004-05-01

    This paper evaluates the quality of neural network classifiers for wind speed and wind gust prediction with prediction lead times between +1 and +24 h. The predictions were realized based on local time series and model data. The selection of appropriate input features was initiated by time series analysis and completed by empirical comparison of neural network classifiers trained on several choices of input features. The selected input features involved day time, yearday, features from a single wind observation device at the site of interest, and features derived from model data. The quality of the resulting classifiers was benchmarked against persistence for two different sites in Switzerland. The neural network classifiers exhibited superior quality when compared with persistence judged on a specific performance measure, hit and false-alarm rates.

  15. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  16. Equivalence of Conventional and Modified Network of Generalized Neural Elements

    Directory of Open Access Journals (Sweden)

    E. V. Konovalov

    2016-01-01

    Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.

  17. Differential Protection of Generator by Using Neural Network, Fuzzy Neural and Fuzzy Neural Petri Net

    OpenAIRE

    Prof. Dr. Abduladhem A. Ali; Prof. Dr. Abduladhem A. Ali; Ahmed Thamer Radhi

    2012-01-01

    This paper deals with the applications of Artificial Intelligence techniques for detecting internalfaults in Power generators. Three techniques are used which are Neural Net (NN), FuzzyNeural Net (FNN) and Fuzzy Neural Petri Net (FNPN) to implement differential protection ofgenerator. MATLAB toolbox has been used for simulations and generation of faults data fortraining the programs for different faults cases and to implement the relays. Results ofdifferent fault cases are presented and these...

  18. Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

    OpenAIRE

    Khawaldeh, Saed; Pervaiz, Usama; Elsharnoby, Mohammed; Alchalabi, Alaa Eddin; Al-Zubi, Nayel

    2017-01-01

    Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algo...

  19. Neural networks and particle physics

    CERN Document Server

    Peterson, Carsten

    1993-01-01

    1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection

  20. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  1. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  2. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  3. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  4. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  5. Generating Seismograms with Deep Neural Networks

    Science.gov (United States)

    Krischer, L.; Fichtner, A.

    2017-12-01

    The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of

  6. Identification of the non-linear systems using internal recurrent neural networks

    Directory of Open Access Journals (Sweden)

    Bogdan CODRES

    2006-12-01

    Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.

  7. Inferring network interactions using recurrent neural networks and swarm intelligence.

    Science.gov (United States)

    Ressom, Habtom W; Zhang, Yuji; Xuan, Jianhua; Wang, Yue; Clarke, Robert

    2006-01-01

    We present a novel algorithm combining artificial neural networks and swarm intelligence (SI) methods to infer network interactions. The algorithm uses ant colony optimization (ACO) to identify the optimal architecture of a recurrent neural network (RNN), while the weights of the RNN are optimized using particle swarm optimization (PSO). Our goal is to construct an RNN that mimics the true structure of an unknown network and the time-series data that the network generated. We applied the proposed hybrid SI-RNN algorithm to infer a simulated genetic network. The results indicate that the algorithm has a promising potential to infer complex interactions such as gene regulatory networks from time-series gene expression data.

  8. Neural networks advances and applications 2

    CERN Document Server

    Gelenbe, E

    1992-01-01

    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  9. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  10. Alpha spectral analysis via artificial neural networks

    International Nuclear Information System (INIS)

    Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.

    1994-10-01

    An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system

  11. Automatic identification of species with neural networks

    Directory of Open Access Journals (Sweden)

    Andrés Hernández-Serna

    2014-11-01

    Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  12. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    . A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  13. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  14. Predicting the survival of diabetes using neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction

  15. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    cial intelligence. However to understand the basics of ANNs, a knowledge of neurobiology is not necessary. Yet, it is a good idea to understand how ANNs have been derived from real biological neural systems (see Figures 1,2 and the accompanying boxes). The soma of the cell body receives inputs from other neurons via.

  16. Effective learning in recurrent max-min neural networks.

    Science.gov (United States)

    Loe, Kia Fock; Teow, Loo Nin

    1998-04-01

    Max and min operations have interesting properties that facilitate the exchange of information between the symbolic and real-valued domains. As such, neural networks that employ max-min activation functions have been a subject of interest in recent years. Since max-min functions are not strictly differentiable, we propose a mathematically sound learning method based on using Fourier convergence analysis of side-derivatives to derive a gradient descent technique for max-min error functions. We then propose a novel recurrent max-min neural network model that is trained to perform grammatical inference as an application example. Comparisons made between this model and recurrent sigmoidal neural networks show that our model not only performs better in terms of learning speed and generalization, but that its final weight configuration allows a deterministic finite automation (DFA) to be extracted in a straightforward manner. In essence, we are able to demonstrate that our proposed gradient descent technique does allow max-min neural networks to learn effectively.

  17. Handwritten Sindhi Character Recognition Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Shafique Ahmed Awan

    2018-01-01

    Full Text Available OCR (OpticalCharacter Recognition is a technology in which text image is used to understand and write text by machines. The work on languages containing isolated characters such as German, English, French and others is at its peak. The OCR and ICR (Intelligent Character Recognition research in Sindhi script is currently at in starting stages and not sufficient work have been cited in this area even though Sindhi language is rich in culture and history. This paper presents one of the initial steps in recognizing Sindhi handwritten characters. The isolated characters of Sindhi script written by thesubjects have been recognized. The various subjects were asked to write Sindhi characters in unconstrained form and then the written samples were collected and scanned through a flatbed scanner. The scanned documents were preprocessedwith the help of binary conversion, removing noise by pepper noise and the lines were segmented with the help of horizontal profile technique. The segmented lines were used to extract characters from scanned pages.This character segmentation was done by vertical projection. The extracted characters have been used to extract features so that the characters can be classified easily. Zoning was used for the feature extraction technique. For the classification, neural network has been used. The recognized characters converted into editable text with an average accuracy of 85%.

  18. Exploiting network redundancy for low-cost neural network realizations.

    NARCIS (Netherlands)

    Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT

    1996-01-01

    A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting

  19. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  20. The applications of neural networks in the core location analysis of extensive air showers

    International Nuclear Information System (INIS)

    Perrett, J.C.; Stekelenborg, J.T.P.M. van

    1991-01-01

    We describe the teaching and implementation of a neural network to estimate the core position and energy of extensive air showers recorded by the South Pole air shower experiment, SPASE. The neural network was found to be approximately 300 times faster than the traditional χ 2 minimization technique previously used and as accurate. (Author)

  1. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    Science.gov (United States)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  2. Methods and procedures for the verification and validation of artificial neural networks

    CERN Document Server

    Taylor, Brian J

    2006-01-01

    Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. This volume introduces some of the methods and techniques used for the verification and validation of neural networks and adaptive systems.

  3. Neutron spectrum unfolding using neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2004-01-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  4. Neural network signal understanding for instrumentation

    DEFF Research Database (Denmark)

    Pau, L. F.; Johansen, F. S.

    1990-01-01

    A report is presented on the use of neural signal interpretation theory and techniques for the purpose of classifying the shapes of a set of instrumentation signals, in order to calibrate devices, diagnose anomalies, generate tuning/settings, and interpret the measurement results. Neural signal...... understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given......, and an explanation facility designed to help neural signal understanding is described. The results are compared to those obtained with a knowledge-based signal interpretation system using the same instrument and data...

  5. Semantic Networks and Neural Nets.

    Science.gov (United States)

    1984-06-01

    and memory retrieval [Anderson 83]. Most other work using semantic network models assumes that the network is passive and is interpreted by a control...representation also permits representation of sufficient conditions. Imagine that being blue is a sufficient property of blueberries i.e. "if something...B BALL .LB 25 3. Inference in memory networks Section 2 described a notation for representing knowledge and also provided a partial specification of

  6. Principal component analysis coupled with artificial neural networks--a combined technique classifying small molecular structures using a concatenated spectral database.

    Science.gov (United States)

    Gosav, Steluţa; Praisler, Mirela; Birsa, Mihail Lucian

    2011-01-01

    In this paper we present several expert systems that predict the class identity of the modeled compounds, based on a preprocessed spectral database. The expert systems were built using Artificial Neural Networks (ANN) and are designed to predict if an unknown compound has the toxicological activity of amphetamines (stimulant and hallucinogen), or whether it is a nonamphetamine. In attempts to circumvent the laws controlling drugs of abuse, new chemical structures are very frequently introduced on the black market. They are obtained by slightly modifying the controlled molecular structures by adding or changing substituents at various positions on the banned molecules. As a result, no substance similar to those forming a prohibited class may be used nowadays, even if it has not been specifically listed. Therefore, reliable, fast and accessible systems capable of modeling and then identifying similarities at molecular level, are highly needed for epidemiological, clinical, and forensic purposes. In order to obtain the expert systems, we have preprocessed a concatenated spectral database, representing the GC-FTIR (gas chromatography-Fourier transform infrared spectrometry) and GC-MS (gas chromatography-mass spectrometry) spectra of 103 forensic compounds. The database was used as input for a Principal Component Analysis (PCA). The scores of the forensic compounds on the main principal components (PCs) were then used as inputs for the ANN systems. We have built eight PC-ANN systems (principal component analysis coupled with artificial neural network) with a different number of input variables: 15 PCs, 16 PCs, 17 PCs, 18 PCs, 19 PCs, 20 PCs, 21 PCs and 22 PCs. The best expert system was found to be the ANN network built with 18 PCs, which accounts for an explained variance of 77%. This expert system has the best sensitivity (a rate of classification C = 100% and a rate of true positives TP = 100%), as well as a good selectivity (a rate of true negatives TN = 92.77%). A

  7. Artificial neural networks for classifying olfactory signals.

    Science.gov (United States)

    Linder, R; Pöppl, S J

    2000-01-01

    For practical applications, artificial neural networks have to meet several requirements: Mainly they should learn quick, classify accurate and behave robust. Programs should be user-friendly and should not need the presence of an expert for fine tuning diverse learning parameters. The present paper demonstrates an approach using an oversized network topology, adaptive propagation (APROP), a modified error function, and averaging outputs of four networks described for the first time. As an example, signals from different semiconductor gas sensors of an electronic nose were classified. The electronic nose smelt different types of edible oil with extremely different a-priori-probabilities. The fully-specified neural network classifier fulfilled the above mentioned demands. The new approach will be helpful not only for classifying olfactory signals automatically but also in many other fields in medicine, e.g. in data mining from medical databases.

  8. Computational chaos in massively parallel neural networks

    Science.gov (United States)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  9. Neural networks for process control and optimization: two industrial applications.

    Science.gov (United States)

    Bloch, Gérard; Denoeux, Thierry

    2003-01-01

    The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned.

  10. A neural network with modular hierarchical learning

    Science.gov (United States)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  11. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  12. Wave transmission prediction of multilayer floating breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Hegde, A.V.

    . Among many neural network architectures, the three layers feed forward error backpropagation neural network (BNN) is the most commonly used representing the input nodes as first layer, hidden nodes as second layer and output nodes as third layer...

  13. Solos (Dice Game) and Conductor (Neural Network)

    OpenAIRE

    Marquetti, Andre

    2015-01-01

    Solos (Dice Game) and Conductor (Neural Network) combines a multilayered environment made of solo pieces, ensemble music, and a digital network. A series of short interludes separate each solo and the Main Section of the composition. The Main Section re-unifies the instruments’ solos by granting the performer the opportunity to improvise over a repeated vamp. Unique audio synthesis methods identify each solo instrument. The solo morphology for the clarinet is an open-notated piece derived fro...

  14. Convergence Results for Neural Networks via Electrodynamics

    OpenAIRE

    Panigrahy, Rina; Rahimi, Ali; Sachdeva, Sushant; Zhang, Qiuyi

    2018-01-01

    We study whether a depth two neural network can learn another depth two network using gradient descent. Assuming a linear output node, we show that the question of whether gradient descent converges to the target function is equivalent to the following question in electrodynamics: Given $k$ fixed protons in $\\mathbb{R}^d,$ and $k$ electrons, each moving due to the attractive force from the protons and repulsive force from the remaining electrons, whether at equilibrium all the electrons will ...

  15. Simplified Learning Scheme For Analog Neural Network

    Science.gov (United States)

    Eberhardt, Silvio P.

    1991-01-01

    Synaptic connections adjusted one at a time in small increments. Simplified gradient-descent learning scheme for electronic neural-network processor less efficient than better-known back-propagation scheme, but offers two advantages: easily implemented in circuitry because data-access circuitry separated from learning circuitry; and independence of data-access circuitry makes possible to implement feedforward as well as feedback networks, including those of multiple-attractor type. Important in such applications as recognition of patterns.

  16. Auto-associative nanoelectronic neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C. P. S. M.; Guimarães, J. G. [Departamento de Engenharia Elétrica - Laboratório de Dispositivos e Circuito Integrado, Universidade de Brasília, CP 4386, CEP 70904-970 Brasília DF (Brazil)

    2014-05-15

    In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.

  17. Auto-associative nanoelectronic neural network

    International Nuclear Information System (INIS)

    Nogueira, C. P. S. M.; Guimarães, J. G.

    2014-01-01

    In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns

  18. A short-term neural network memory

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.J.T.; Wong, W.S.

    1988-12-01

    Neural network memories with storage prescriptions based on Hebb's rule are known to collapse as more words are stored. By requiring that the most recently stored word be remembered precisely, a new simple short-term neutral network memory is obtained and its steady state capacity analyzed and simulated. Comparisons are drawn with Hopfield's method, the delta method of Widrow and Hoff, and the revised marginalist model of Mezard, Nadal, and Toulouse.

  19. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  20. Non-Linear Systems Identification Using Neural Networks

    OpenAIRE

    Chen, S.; Billings, S.A.; Grant, P.M.

    1989-01-01

    Multi-layered neural networks offer an exciting alternative for modelling complex non-linear systems. This paper investigates the identification of discrete-time non-linear systems using neural networks with a single hidden layer. New parameter estimation algorithms are derived for the neural network model based on a prediction error formulation and the application to both simulated and real data is included to demonstrate the effectiveness of the neural network approach.

  1. Artificial neural networks in neutron dosimetry

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A.; Gallego, E.; Lorente, A.

    2005-01-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ 2 - test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  2. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...

  3. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  4. Visualization of neural networks using saliency maps

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai

    1995-01-01

    The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...

  5. Towards semen quality assessment using neural networks

    DEFF Research Database (Denmark)

    Linneberg, Christian; Salamon, P.; Svarer, C.

    1994-01-01

    The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...

  6. Image Encryption and Chaotic Cellular Neural Network

    Science.gov (United States)

    Peng, Jun; Zhang, Du

    Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.

  7. Separable explanations of neural network decisions

    DEFF Research Database (Denmark)

    Rieger, Laura

    2017-01-01

    Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...

  8. Localizing Tortoise Nests by Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto Barbuti

    Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  9. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  10. water demand prediction using artificial neural network

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... 2 DEPT OF ELECTRICAL & ELECTRONICS ENGR'G ABUBAKA TAFAWA BALEWA UNIV., BAUCHI, BAUCHI STATE. NIGERIA. E-mail addresses: ... cubic meters per capital per year (water scarcity), health, economic ..... task of the neural network, the data set was normalized to [0, 1] range using equation.

  11. Ribosome binding site recognition using neural networks

    Directory of Open Access Journals (Sweden)

    Márcio Ferreira da Silva Oliveira

    2004-01-01

    Full Text Available Pattern recognition is an important process for gene localization in genomes. The ribosome binding sites are signals that can help in the identification of a gene. It is difficult to find these signals in the genome through conventional methods because they are highly degenerated. Artificial Neural Networks is the approach used in this work to address this problem.

  12. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    Abstract. Proposed here is a new neuron model, a basis for Compensatory. Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the ...

  13. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

  14. Localizing Tortoise Nests by Neural Networks.

    Science.gov (United States)

    Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  15. Applying Artificial Neural Networks for Face Recognition

    Directory of Open Access Journals (Sweden)

    Thai Hoang Le

    2011-01-01

    Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.

  16. Energy Complexity of Recurrent Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    2014-01-01

    Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014

  17. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron ..... Engelbrecht A P, Cloete I, Geldenhuys J, Zurada J M 1995 Automatic scaling using gamma learning for feedforward neural networks. From natural to artificial computing.

  18. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  19. Neural model of the genetic network

    Czech Academy of Sciences Publication Activity Database

    Vohradský, Jiří

    2001-01-01

    Roč. 276, č. 39 (2001), s. 36168-36173 ISSN 0021-9258 R&D Projects: GA ČR GA204/00/1253 Institutional research plan: CEZ:AV0Z5020903 Keywords : bacteriophage * neural network Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.258, year: 2001

  20. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  1. Artificial neural networks and support vector mac

    Indian Academy of Sciences (India)

    number of independent, in this case the chemical features, and by the number of dependent variables, in this study, the electroluminescence. The software WEKA (Hall et al. 2009) was used to develop artificial neural networks models that could predict electroluminescence with good accuracy. It generated five artificial ...

  2. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  3. Method of Creation of “Core-Gisseismic Attributes” Dependences With Use of Trainable Neural Networks

    Directory of Open Access Journals (Sweden)

    Gafurov Denis

    2016-01-01

    Full Text Available The study describes methodological techniques and results of geophysical well logging and seismic data interpretation by means of trainable neural networks. Objects of research are wells and seismic materials of Talakan field. The article also presents forecast of construction and reservoir properties of Osa horizon. The paper gives an example of creation of geological (lithological -facial model of the field based on developed methodical techniques of complex interpretation of geologicgeophysical data by trainable neural network. The constructed lithological -facial model allows specifying a geological structure of the field. The developed methodical techniques and the trained neural networks may be applied to adjacent sites for research of carbonate horizons.

  4. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

    International Nuclear Information System (INIS)

    Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin

    2009-01-01

    In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

  5. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  6. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A hyperstable neural network for the modelling and control of nonlinear systems ... Computer control; neural networks; nonlinear systems; adaptive control. ... control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure.

  7. Tensor Basis Neural Network v. 1.0 (beta)

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-28

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  8. An Application of Automaton Neural Networks to Artificial Agents

    OpenAIRE

    Kawano, Yoji; Nakao, Zensho; Chen, Yen Wei; 仲尾, 善勝; 陳, 延偉

    1999-01-01

    There is presented a model that transfers artificial intelligence into an intelligent Neural Network, which is called AUtomaton Neural Network (AUNN), and is composed of two algorithms: an automaton algorithm and a neural network algorithm.The model was applied to artificial agents to provide them with intelligence, and its applicability was demonstrated by computer simulation.

  9. Application of radial basis neural network for state estimation of ...

    African Journals Online (AJOL)

    An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...

  10. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...

  11. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.

  12. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a

  13. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  14. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  15. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  16. Moving image compression and generalization capability of constructive neural networks

    Science.gov (United States)

    Ma, Liying; Khorasani, Khashayar

    2001-03-01

    To date numerous techniques have been proposed to compress digital images to ease their storage and transmission over communication channels. Recently, a number of image compression algorithms using Neural Networks NNs have been developed. Particularly, several constructive feed-forward neural networks FNNs have been proposed by researchers for image compression, and promising results have been reported. At the previous SPIE AeroSense conference 2000, we proposed to use a constructive One-Hidden-Layer Feedforward Neural Network OHL-FNN for compressing digital images. In this paper, we first investigate the generalization capability of the proposed OHL-FNN in the presence of additive noise for network training and/ or generalization. Extensive experimental results for different scenarios are presented. It is revealed that the constructive OHL-FNN is not as robust to additive noise in input image as expected. Next, the constructive OHL-FNN is applied to moving images, video sequences. The first, or other specified frame in a moving image sequence is used to train the network. The remaining moving images that follow are then generalized/compressed by this trained network. Three types of correlation-like criteria measuring the similarity of any two images are introduced. The relationship between the generalization capability of the constructed net and the similarity of images is investigated in some detail. It is shown that the constructive OHL-FNN is promising even for changing images such as those extracted from a football game.

  17. Vibration monitoring of EDF rotating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging

  18. Proceedings of the Neural Network Workshop for the Hanford Community

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-01-01

    These proceedings were generated from a series of presentations made at the Neural Network Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are reproduced in these proceedings. This workshop was sponsored by the Computing and Information Sciences Department in the Molecular Science Research Center (MSRC) at the Pacific Northwest Laboratory (PNL). Artificial neural networks constitute a new information processing technology that is destined within the next few years, to provide the world with a vast array of new products. A major reason for this is that artificial neural networks are able to provide solutions to a wide variety of complex problems in a much simpler fashion than is possible using existing techniques. In recognition of these capabilities, many scientists and engineers are exploring the potential application of this new technology to their fields of study. An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical system, or even an electro-chemical system designed to emulate some of the brain`s rudimentary structure as well as some of the learning processes that are believed to take place in the brain. For a very wide range of applications in science, engineering, and information technology, ANNs offer a complementary and potentially superior approach to that provided by conventional computing and conventional artificial intelligence. This is because, unlike conventional computers, which have to be programmed, ANNs essentially learn from experience and can be trained in a straightforward fashion to carry out tasks ranging from the simple to the highly complex.

  19. A neural network model for non invasive subsurface stratigraphic identification

    International Nuclear Information System (INIS)

    Sullivan, John M. Jr.; Ludwig, Reinhold; Lai Qiang

    2000-01-01

    Ground-Penetrating Radar (GRP) is a powerful tool to examine the stratigraphy below ground surface for remote sensing. Increasingly GPR has also found applications in microwave NDE as an interrogation tool to assess dielectric layers. Unfortunately, GPR data is characterized by a high degree of uncertainty and natural physical ambiguity. Robust decomposition routines are sparse for this application. We have developed a hierarchical set of neural network modules which split the task of layer profiling into consecutive stages. Successful GPR profiling of the subsurface stratigraphy is of key importance for many remote sensing applications including microwave NDE. Neural network modules were designed to accomplish the two main processing goals of recognizing the 'subsurface pattern' followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. We used an adaptive transform technique to transform raw GPR data into a small feature vector containing the most representative and discriminative features of the signal. This information formed the input for the neural network processing units. This strategy reduced the number of required training samples for the neural network by orders of magnitude. The entire processing system was trained using the adaptive transformed feature vector inputs and tested with real measured GPR data. The successful results of this system establishes the feasibility the feasibility of delineating subsurface layering nondestructively

  20. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  1. Neural network construction via back-propagation

    International Nuclear Information System (INIS)

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima

  2. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  3. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  4. HAWC Energy Reconstruction via Neural Network

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2016-03-01

    The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.

  5. Event Discrimination using Convolutional Neural Networks

    Science.gov (United States)

    Menon, Hareesh; Hughes, Richard; Daling, Alec; Winer, Brian

    2017-01-01

    Convolutional Neural Networks (CNNs) are computational models that have been shown to be effective at classifying different types of images. We present a method to use CNNs to distinguish events involving the production of a top quark pair and a Higgs boson from events involving the production of a top quark pair and several quark and gluon jets. To do this, we generate and simulate data using MADGRAPH and DELPHES for a general purpose LHC detector at 13 TeV. We produce images using a particle flow algorithm by binning the particles geometrically based on their position in the detector and weighting the bins by the energy of each particle within each bin, and by defining channels based on particle types (charged track, neutral hadronic, neutral EM, lepton, heavy flavor). Our classification results are competitive with standard machine learning techniques. We have also looked into the classification of the substructure of the events, in a process known as scene labeling. In this context, we look for the presence of boosted objects (such as top quarks) with substructure encompassed within single jets. Preliminary results on substructure classification will be presented.

  6. Forecasting of electricity prices with neural networks

    International Nuclear Information System (INIS)

    Gareta, Raquel; Romeo, Luis M.; Gil, Antonia

    2006-01-01

    During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools

  7. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  8. The Growing Hierarchical Neural Gas Self-Organizing Neural Network.

    Science.gov (United States)

    Palomo, Esteban J; Lopez-Rubio, Ezequiel

    2017-09-01

    The growing neural gas (GNG) self-organizing neural network stands as one of the most successful examples of unsupervised learning of a graph of processing units. Despite its success, little attention has been devoted to its extension to a hierarchical model, unlike other models such as the self-organizing map, which has many hierarchical versions. Here, a hierarchical GNG is presented, which is designed to learn a tree of graphs. Moreover, the original GNG algorithm is improved by a distinction between a growth phase where more units are added until no significant improvement in the quantization error is obtained, and a convergence phase where no unit creation is allowed. This means that a principled mechanism is established to control the growth of the structure. Experiments are reported, which demonstrate the self-organization and hierarchy learning abilities of our approach and its performance for vector quantization applications.

  9. Multiview fusion for activity recognition using deep neural networks

    Science.gov (United States)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  10. Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wan, Can; Song, Yonghua; Xu, Zhao

    2016-01-01

    The uncertainty of wind power generation imposes significant challenges to optimal operation and control of electricity networks with increasing wind power penetration. To effectively address the uncertainties in wind power forecasts, probabilistic forecasts that can quantify the associated...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....

  11. An Artificial Neural Network for Data Forecasting Purposes

    Directory of Open Access Journals (Sweden)

    Catalina Lucia COCIANU

    2015-01-01

    Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.

  12. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...... algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes-often called immunoproteasomes-found in cells stimulated by gamma-interferon under...

  13. Decorrelated Jet Substructure Tagging using Adversarial Neural Networks

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted Z' decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a paramet...

  14. An architecture for designing fuzzy logic controllers using neural networks

    Science.gov (United States)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  15. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2012-03-01

    Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  16. Artificial neural network for location estimation in wireless communication systems.

    Science.gov (United States)

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  17. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  18. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  19. Membership generation using multilayer neural network

    Science.gov (United States)

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  20. Nuclear power plant monitoring method by neural network and its application to actual nuclear reactor

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.

    1995-11-01

    In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)

  1. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  2. Fuzzy logic and neural networks basic concepts & application

    CERN Document Server

    Alavala, Chennakesava R

    2008-01-01

    About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank

  3. Active Noise Feedback Control Using a Neural Network

    OpenAIRE

    Qizhi, Zhang; Yongle, Jia

    2001-01-01

    The active noise control (ANC) is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR) filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with ...

  4. Artificial neural networks as a tool in urban storm drainage

    DEFF Research Database (Denmark)

    Loke, E.; Warnaars, E.A.; Jacobsen, P.

    1997-01-01

    The introduction of Artificial Neural Networks (ANNs) as a tool in the field of urban storm drainage is discussed. Besides some basic theory on the mechanics of ANNs and a general classification of the different types of ANNs, two ANN application examples are presented: The prediction of runoff c...... with other conventional and more advanced modelling techniques, creating so-called hybrid models. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  5. Global robust exponential stability for interval neural networks with delay

    International Nuclear Information System (INIS)

    Cui Shihua; Zhao Tao; Guo Jie

    2009-01-01

    In this paper, new sufficient conditions for globally robust exponential stability of neural networks with either constant delays or time-varying delays are given. We show the sufficient conditions for the existence, uniqueness and global robust exponential stability of the equilibrium point by employing Lyapunov stability theory and linear matrix inequality (LMI) technique. Numerical examples are given to show the approval of our results.

  6. Spiking Neural Network in Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-07-01

    Full Text Available In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN. Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN. In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce power consumption of sensor nodes Modified Chain-Cluster based Mixed (MCCM routing algorithm is used. According to MCCM, the sensors will send their packets that are less than threshold moisture level to the sink. The SNN with Modified Spike-Prop (MSP training algorithm is capable of identifying soil, irrigation periods and monitoring the soil moisture level, this means that SNN has the ability to be an identifier and monitor. By applying this system the particular agriculture area reaches to the desired moisture level.

  7. Applications of neural networks in training science.

    Science.gov (United States)

    Pfeiffer, Mark; Hohmann, Andreas

    2012-04-01

    Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Mechanical stress in abdominal aortic aneurysms using artificial neural networks

    OpenAIRE

    Soudah Prieto, Eduardo; Rodriguez, Jose; López González, Roberto

    2015-01-01

    Combination of numerical modeling and artificial intelligence (AI) in bioengineering processes are a promising pathway for the further development of bioengineering sciences. The objective of this work is to use Artificial Neural Networks (ANN) to reduce the long computational times needed in the analysis of shear stress in the Abdominal Aortic Aneurysm (AAA) by finite element methods (FEM). For that purpose two different neural networks are created. The first neural network (Mesh Neural Netw...

  9. Neural dynamics in superconducting networks

    Science.gov (United States)

    Segall, Kenneth; Schult, Dan; Crotty, Patrick; Miller, Max

    2012-02-01

    We discuss the use of Josephson junction networks as analog models for simulating neuron behaviors. A single unit called a ``Josephson Junction neuron'' composed of two Josephson junctions [1] displays behavior that shows characteristics of single neurons such as action potentials, thresholds and refractory periods. Synapses can be modeled as passive filters and can be used to connect neurons together. The sign of the bias current to the Josephson neuron can be used to determine if the neuron is excitatory or inhibitory. Due to the intrinsic speed of Josephson junctions and their scaling properties as analog models, a large network of Josephson neurons measured over typical lab times contains dynamics which would essentially be impossible to calculate on a computer We discuss the operating principle of the Josephson neuron, coupling Josephson neurons together to make large networks, and the Kuramoto-like synchronization of a system of disordered junctions.[4pt] [1] ``Josephson junction simulation of neurons,'' P. Crotty, D. Schult and K. Segall, Physical Review E 82, 011914 (2010).

  10. Neural networks as a control methodology

    Science.gov (United States)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  11. Training multi-layered neural network neocognitron.

    Science.gov (United States)

    Fukushima, Kunihiko

    2013-04-01

    This paper proposes new learning rules suited for training multi-layered neural networks and applies them to the neocognitron. The neocognitron is a hierarchical multi-layered neural network capable of robust visual pattern recognition. It acquires the ability to recognize visual patterns through learning. For training intermediate layers of the hierarchical network of the neocognitron, we use a new learning rule named add-if-silent. By the use of the add-if-silent rule, the learning process becomes much simpler and more stable, and the computational cost for learning is largely reduced. Nevertheless, a high recognition rate can be kept without increasing the scale of the network. For the highest stage of the network, we use the method of interpolating-vector. We have previously reported that the recognition rate is greatly increased if this method is used during recognition. This paper proposes a new method of using it for both learning and recognition. Computer simulation demonstrates that the new neocognitron, which uses the add-if-silent and the interpolating-vector, produces a higher recognition rate for handwritten digits recognition with a smaller scale of the network than the neocognitron of previous versions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Probing many-body localization with neural networks

    Science.gov (United States)

    Schindler, Frank; Regnault, Nicolas; Neupert, Titus

    2017-06-01

    We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.

  13. Simulation of Missile Autopilot with Two-Rate Hybrid Neural Network System

    Directory of Open Access Journals (Sweden)

    ASTROV, I.

    2007-04-01

    Full Text Available This paper proposes a two-rate hybrid neural network system, which consists of two artificial neural network subsystems. These neural network subsystems are used as the dynamic subsystems controllers.1 This is because such neuromorphic controllers are especially suitable to control complex systems. An illustrative example - two-rate neural network hybrid control of decomposed stochastic model of a rigid guided missile over different operating conditions - was carried out using the proposed two-rate state-space decomposition technique. This example demonstrates that this research technique results in simplified low-order autonomous control subsystems with various speeds of actuation, and shows the quality of the proposed technique. The obtained results show that the control tasks for the autonomous subsystems can be solved more qualitatively than for the original system. The simulation and animation results with use of software package Simulink demonstrate that this research technique would work for real-time stochastic systems.

  14. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  15. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  16. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

    Directory of Open Access Journals (Sweden)

    Christopher Bergmeir

    2012-01-01

    Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.

  17. Heart abnormality detection by using artificial neural network

    African Journals Online (AJOL)

    2017-09-10

    Sep 10, 2017 ... Multilayer Perceptron (MLP) [17] is the most suitable and referred neural networks in the pattern recognition detection. This network can be trained to form various decision surfaces in the input space [3]. 2.1. Hybrid Multilayer Perceptron (HMLP). An MLP network is a feed-forward artificial neural network that ...

  18. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    input. RBF Training Procedure. The radial basis neural networks have been designed by the using the function newrb available in the neural network toolbox supported by MATLAB 7.0. The function newrb iteratively creates a radial basis network by including one neuron at a time. Neurons are added to the network until the ...

  19. Interpretation of Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Larsen, Jan

    1997-01-01

    This paper addresses techniques for interpretation and characterization of trained recurrent nets for time series problems. In particular, we focus on assessment of effective memory and suggest an operational definition of memory. Further we discuss the evaluation of learning curves. Various...

  20. Sensory ecology and perceptual allocation: new prospects for neural networks.

    Science.gov (United States)

    Phelps, Steven M

    2007-03-29

    Sensory ecology provides a conceptual framework for considering how animals ought to design sensory systems to capture meaningful information from their environments. The framework has been particularly successful at describing how one should allocate sensory receptors to maximize performance on a given task. Neural networks, in contrast, have made unique contributions to understanding how 'hidden preferences' can emerge as a by-product of sensory design. The two frameworks comprise complementary techniques for understanding the design and the evolution of sensation. This article reviews empirical literature from multiple modalities and levels of sensory processing, considering vision, audition and touch from the viewpoints of sensory ecology and neuroethology. In the process, it presents modifications of extant neural network algorithms that would allow a more effective integration of these diverse approaches. Together, the reviewed literature suggests important advances that can be made by explicitly formulating neural network models in terms of sensory ecology, by incorporating neural costs into models of perceptual evolution and by exploring how such demands interact with historical forces.